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Summary .  We show that almost all binary strings of length n contain all 
blocks of size (1-e)logzn a close to uniform number  of times. F rom this, 
we derive tight bounds on the discrepancy of random infinite strings. Our  
results are obtained through explicit generating function expressions and 
contour  integration estimates. 

1. Introduction 

Emile Borel introduced in 1908 the notion of normal numbers characterized 
by the proper ty  that, in their binary representation, each block pat tern of zeros 
and ones occurs with its natural  probabil i ty (namely 1/2 k with k the length 
of the block). He then proved that almost  all real [0, 1] numbers are normal,  
and later in his life conducted various experiments on digits of particular 

numbers like e, 7z or ]/2. 
Our purpose in this paper  is to provide statistical estimates for the occur- 

rences of blocks in r andom binary strings of either finite or infinite length, 
and in particular try to determine quantitatively which deviations from the 
" n o r m "  are to be expected in a random string. 

To take a particular example, if one computes (say, with the Gauss-Salamin 
method) 10000 bits of rc and if one looks, for various values of k, at the least 
frequent block and most  frequent block of size k, one finds: 

Length (k) Least frequent Most frequent 

2 (11) 2'~s~ (00) 2509 
3 (111) 1226 (000) 1275 

4 (1100) 603 (0000) 652 
5 (11100) 296 (00000)341 
6 (100111) 133 (101101) 176 

7 (0101100) 5T (0110110) 97 

* Research of the three authors was supported by the French-Austrian scientific cooperation pro- 
gramme 
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It would obviously be of interest to determine whether such deviations from 
the norm point out to specific "non-random" properties of the decimals of 

Much in the same vein, tests on occurrences of blocks in bits produced 
by (pseudo) random number generators are often employed and the reader may 
refer to Knuth's  encyclopedic treatment on this subject (see especially Sect. 3.5 
of [Kn 69]). 

The present paper is concerned to extremal statistics regarding occurrences 
of blocks in random strings. The basic concept that formalizes our previous 
numerical observations, is that of discrepancy and it is often used in [0, 1] 
distribution problems (see e.g., Hlawka's or Kuipers and Niederreiter's books 
[H179; KN 74]). Let b = b 1 b 2 . - . b ,  be a (finite) binary string. Then its k-discrepan- 
cy is defined as: 

Dk(b)=max (2(~u) l k ,  
I~l =k 

where ~?(b, u) is the number of occurrences of a pattern (block) U~UlU2...u k 
in u: 

f2(b, u) = card {jlbj b j+ 1...bj+k- 1 = Ul UZ...Uk}. 

In the definition of discrepancy, ~2(b, u)/n represents the observed frequency 
of block b in u and 1/2 k is the probability of occurrence of block b at at any 
position in a random string. Thus, the discrepancy does represent deviations 
from uniformity observed in string b. Stated informally, a string b will pass 
a randomness test with block length k if the discrepancy is "much smaller" 

than ~ .  It is therefore of interest to determine for what range of values of 

k (as a function of n) this test should be meaningful, as well as to determine 
what is an "acceptable" deviation from the norm. 

Our main result for infinite strings is contained in Theorem 1 below. In 
essence, a "finite version" of this theorem (Theorem 2) states that almost all 
binary strings of length n contain all patterns of length k a (close to) uniform 
number of times as long as k < ( 1 -  e)log 2 n. Notice that much stronger results 
cannot be expected to hold since a string of length n has only n bit positions 
so that, when k > l o g  2n, some patterns are certain not to occur while others 
will tend to occur only once. 

To state Theorem 1 precisely, we first need to introduce the notion of discrep- 
ancy for infinite strings. 

Definition. Let co=b1 bzb3.., be an infinite string. Then, for integers k and n, 
the discrepancy Dk(co, n) is Dk(b 1 b 2. ..bn). Let k(n) be a non-decreasing sequence 
of positive integers. Then, the string co is said to be k(n)-uniformly distributed 
if 

lim 2 k(') Dk(n)(co , n)  ---- O. 
n ~ o o  
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In previous works, we have established several properties of k(n)-uniformly dis- 
tributed sequences. Earlier relevant results also appear in [-FKT 86]. 

Our Theorem 1 states that almost all infinite strings are fairly uniformly 
distributed. Here, our measures on finite and infinite strings are the usual product 
measures, with individual 0-1 bits being equally likely. The notation lgn is 
the binary logarithm lg n = log2 n. 

Theorem 1. Let k(n)<= lg n - l g  lg n - 2  lg lg n be a non-decreasing sequence of posi- 
tive integers. Then almost all infinite binary strings co are k(n) uniformly distributed. 

As a direct consequence, we get 

Corollary 1. Almost all infinite strings co are k(n) uniformly distributed for k(n) 
= [(1 -- e) lg n], with e > O. 

Notice that from earlier research [KT 85], the uniform distribution property 
was only known to hold for k(n)~�89 The assertion of Theorem 1 remains 
true if lg n - l g  lg n - k ( n ) ~  oo (for n ~ oo) and this result is best possible. 

To attain our goal, we mostly study distribution problems on finite strings. 
The transfer to infinite strings is then easy by the Borel-Cantelli lemma. 

In Sect. 2, we introduce a particular Markov chain (with 2 k states) that 
records information about the simultaneous occurrences of all k-blocks in a 
random string. Interestingly enough, the graph of this Markov chain is nothing 
but a DeBruijn graph (see e.g., [Kn68, p. 379]) used classically to construct 
minimal sequences that contain all possible k-blocks once and only once. The 
Markov chain is equivalent to a probabilistic traversal of this graph, while 
the construction of the minimal De Bruijn sequences corresponds to a particular 
deterministic traversal. Consideration of this Markov chain shows a priori that 
rational generating functions are to be expected in this range of problems. It 
also provides useful probabilistic intuitions and could lead to numerical approxi- 
mations for parameters of interest when k is kept fixed. 

We then proceed in Sect. 3 with the computation of the distribution of the 
number of occurrences of a fixed pattern in a random string of length n. This 
is achieved via generating functions. Here, the situation is greatly helped by 
the fact that closely related generating functions have earlier been computed 
by Guibas and Odlyzko [GO81a;  GO81b].  In particular, it turns out that, 
although the number of occurrences of a pattern of length k in an n-string 
has average: 

n - k + l  
2 k , 

the corresponding variance depends deeply on the overlap structure present 
in the pattern block. The correlation polynomials of Guibas and Odlyzko are 
essential to our treatment. 
Section 4 uses crude saddle point estimates that suffice to obtain exponential 
tail results for occurrence probabilities. Such results are needed if we want to 
let k vary with n and approach lgn. In Sect. 5, these estimates are used to 
derive rather directly the proof of our main result. 
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Notice the difference with two previous approaches [KT 85, FKT 86]. Firstly, 
tail estimates based on Tchebycheffs inequality are too weak to lead to Theo- 
rem 1. Secondly, another approach based on W. Philipp's law of iterated loga- 
rithm leads to accurate probability distribution estimates for discrepancies, but 
is limited to slowly growing sequences k(n). What  renders our proof possible 
is the clear relation (from Guibas and Odlyzko's works between generating 
functions and pattern structures. 

2. A Universal Markov Chain 

We introduce here a Markov chain that is in a sense "universal" for counting 
pattern occurrences. It takes into account the simultaneous occurrence of all 
k-blocks in a random string of size n. Fix k, the block length. The Markov 
chain jg(k) has l=  2 k states; state i means :" the  block of {0, 1} which corresponds 
to the binary representation of integer i with length k has just occurred". Thus 
if a new element ee{0, 1} of a random string is added, the new state is j = ( 2 i  
+ e) mod 2 k. Whence 

Definition. The Markov chain ~(k) has 2 k states. Its transition matrix M (k) is 
given by 

M(k) _ x if (j---- 2 i mod 2 k) or (j = 2 i + 1 mod 2k), i i - -  2 

all other entries being equal to 0. 
It is of interest to note that the graph F (k) associated to jg(k), whose adjacency 

matrix is 2 M (k), is nothing but a classical De Bruijn graph used in combinatorics 
l-Kn68, p. 379]: The fact that this graph has a Eulerian circuit (all its nodes 
are of even degree) entails the existence of a (minimal) string of length 2 g ~ k--  1 
which contains every k-block once and only once. 

Let V be the diagonal matrix with elements (Vo, Vl, . . . ,  Z)I_I) .  Then from 
the standard matrix theory of Markov chains results that the Taylor coefficient 

n o  n l  n l -  1 of l-Vo vl ...v~-1 ] in the quantity: 

(1,1, ,1)(1--VM(k))- l( . ;  l ~2~)t ... ,2k . . . .  , (1) 

represents the probability that a random string of length n = n o + n I 4-... 4-nt_ 1 
+ k -  1 has nj occurrences of block with number j, for all j. 

Let (No, N1, ..., N~_ 1) denote the random vector where Nj represents the 
(random) number of times state j is reached in a sequence of n transitions of 
the Markov chain jg(k). The expectation of each Nj is asymptotically, for large 
n, ~n/2k: The matrix being doubly stochastic, the stationary probability of 
each state is 1/2 k. In other words, a random n-string tends to contain each 
k block about n/2 k times. 

Stronger normality results follow if we appeal to the standard theory of 
limit theorems for Markov chains. We then find that, in the limit, vector 
(No, N1, ..., N~-I) obeys a limiting multivariate Gaussian distribution. This 
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strongly suggests that deviation from expected values for occurrences of any 
"small"  block should be of small amplitude. 

The above observations are useful when k stays fixed while n varies and 
they may be used to derive approximate numerical estimations in this case. 
However, for the purpose of proving Theorem 1, we must let k vary and 
approach lgn so that we need uniform error terms in n and k, for the class 
of Markov chains d//(k). We shall therefore need to continue in Sect. 3 with 
another route, less probabilistic and more analytic. 

As a first result here, notice that restrictions of the "universal" generating 
function (1) give almost all conceivable generating functions of interest, when 
counting occurrences of blocks in words. In particular, we expect such generating 
functions to be rational. Let rc (r~ be the probability that a random string of u,n 
length n contains the pattern u exactly r times. The associated bivariate generat- 
ing function: 

..,,, v _ (2) 
n, r~0  

is obtained from Eq. (1) by the substitution v~F-~zv and v?--~z for i+j with 
j being the number whose binary representation (with length k) coincides with 
the string u. Thus P,(z, v) is a linear fractional transformation of v with coefficients 
that are rational in z. 

Proposition 1. The bivariate generating function for the probabilities of occurrence 
of pattern u is of the form 

A.  (z) + v B.  (z) 
(z, v) = C. (z) + v D.(z) '  

for some rational functions A,(z), B,(z), C,(z) and D,(z). 

In particular, for r > 1, we find that the generating functions 

are given by 

~., .z (3) 
n~0  

p(r) (z) = c~ (z) (fi (z)) r, (4) 

for some rational functions c~(z) and fi(z) that depend on pattern u. 
The purpose of the next section is to make explicit the dependency of those 

functions with respect to the structure of the pattern using the correlation polyn- 
omials of Guibas and Odlyzko. 

3. Generating Functions for Pattern Occurrences 

This section relies heavily on explicit expressions for generating functions related 
to occurrences of patterns in strings. These were derived by Guibas and Odlyzko 
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[GO 78; GO 81 a; GO 81 b] and later surveyed by Odlyzko [Od 841. Our notations 
follow Odlyzko's survey, except that the variable in our generating function 
is z while he uses z-1. Thus our generating functions are the usual ones, and 
they are analytic at the origin while Guibas and Odlyzko's are analytic at oe. 

Let u=ul U2...Uk be a binary string of length k. The primary notion is that 
of the correlation polynomial associated to u. This is a polynomial p(z)=_p,(z) 
of degree k -  1, such that p(0)= 1; the correlation polynomial has 0-1 coefficients 
given by t 

[zl]p(z)--1 if Ulbl2...Uk_l=Ul+lUl+2...blk (5) 

and [z z] p(z)= 0 if the condition in (5) is not satisfied. In other words, the correla- 
tion polynomial describes the way the pattern "matches"  slided versions of 
itself. For  instance, the correlation polynomial of u= '00100100 '  is p(z)= 1 + z  a 
+ z6+ z 7. Given a string u, we define the following sets of binary strings: 

1. The set ~ is the set of binary strings that end with u and contain only 
a single occurrence of u. 

2. The set (q, is the set of strings that start with u, end with u and contain 
exactly two occurrences of u. Note that the two occurrences of u are allowed 
to overlap. 

3. The set ~ is the set of strings that start with u and contain only one 
occurrence of u. 

If 2 ~ is a set of strings, we let L(z) denote the generating function of 2~, in 
the usual sense of combinatorial  analysis. Thus [z"] L(z) is the number of strings 

in set ~ .  Observe that, since there are 2" binary strings of size n, [z ] L 

is also the probability that a random string of length n belongs to ~c~. 
Guibas and Odlyzko have provided expressions for the generating functions 

of set ~ ,  and Nu, which in our notations read as 

? ? + (1 - 2 z)(p(z)- 1) 
Fu(Z)=zk+(l_2z)p(z ) and G,(z)-=-z k z ~ l Z ~ ) z ) p ( ~  (6) 

with still p(z)~pu(z) the correlation polynomial of u. These are Eqs. (4.5) and 
(4.10) in [Od84]. 

Now comes an easy combinatorial  argument. First, let fi denote the mirror 
image of u (elements of u are taken in reverse order). There is a clear bijection 
between ~ and 4 .  Also from the definition of the correlation polynomial, 
it immediately results that pn(z)=-p,(z). Thus, Fu(z) is also the generating function 
of the set ~ , .  

Next observe that there is a direct bijection between the following two sets: 
(i) the set (9~ of strings containing r possibly overlapping occurrences of pattern 
u; (ii) the set of r +  1 tuples ~ x ((r 1 x ~,~. Furthermore under this bijection, 
there corresponds to a string of length n in C', a tuple of strings with total 

1 We let as usual [z"] f(z) denote the coefficient of z" in the Taylor expansion off(z) at the origin 
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length n + k ( r - 1 ) .  Thus, from standard combinatorial analysis (products of sets 
correspond to products of generating functions etc.), see e.g. [GJ 83], we find 

0(, r) (z) = z - kr (Fu (z)) 2 ( G, (z)) ~- 2 (7) 

Equations (6) and (7) thus provide for the explicit form of the generating function 

of probabilities ~(r) since, from a previous observation, P(r)(z ) -  O(')[z] 

Proposition 2. The generating function P(r)(z) for  probabilities o f  a pattern u occur- 
ring k times is given by 

zk+2k(1 - - z )  p --1 

P~(~)(z)= 2k z k for  r-> 1 (8a) 

where p(z) is the correlation polynomial o f  string u. 

The generating function P.~~ is also found from [Od84] to be 

P,(~ = (8b) 

zk+2k(1 - - z )  P(2)"  

4. Saddle Point Estimates 

We now have at our disposal the explicit form of Proposition 2, Eq. (8) for 
generating functions of probabilities. One can return to the probabilities them- 
selves by means of Cauchy's theorem, 

~(~) = rz"q R(r)tz~- 1 dz 
, , , - L  J . , , - ~  o+ ~ p(r)(Z)z ,+~.  (9) 

We shall get bounds on the probabilities, when r is far from the mean - namely 
n/2 k - ,  by estimating the integral in (9) along a circle I zJ= R, where R is chosen 
so as to traverse an approximate saddle point of the integrand. We shall find 
that, in our range of values of r, k and n, it is sufficient to take R = 1 _+ e (with 
adequate e ~ 0), and use trivial bounds on the integral. This leads to uniform 
exponential tail results for the probabilities: These are summarised by Eqs. (18) 
and (23) below. In the next section, we shall see how to derive discrepancy 
estimates from there. 
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In the sequel, n is large and tends to infinity. The block lengths we consider 
are k = k(n) with 

k (n) = [ l g  n -  lg lg n -  2 lg lg lg n]. 

A pattern 2 u (block) of length k in a random string of length n has an expected 
number of occurrences that is asymptotic to Jo (n)= n/2 k. We are interested in 
the probabilities that the random variable J. representing this number of occur- 
rences deviates from the mean. Set 

j=[~+6~),  (10) 

where 6 r  + 1]. We need estimates on the probabilities that J,<j when 
6 < 0 (lower tail) and J, > j  when 6 > 0 (upper tail). Thus, we need to estimate 

L,(6)=Pr{J,<j} (3<0)  and U,(6)=Pr{J,>j} (3>0). 

These quantities are sums of the zc ~ probabilities defined earlier: u,// 

On(6)= 2 /.~(r),,, L , (6)=  ~ rc (~).,. L',(a).'= ~ Tc (').,.. (11) 
def  r>j  r<j  l < r < j  

We shall use integral representation (9) to evaluate these sums. 
For  k = k(n) and 6 in the fixed interval, all subsequent estimates are uniform 

in n and 6, and implied constants in O(o) notations are absolute constants. 
Now comes a batch of notations. We set # = 2 k so that 

/~=2k= 00 n with � 89  
lg n(lg lg n) 2 

We can rewrite Eq. (8) as 

with 

where 

p(r) (z) = P,(r)(z) = 2 k a (z) b (z) ~- 1, 

z a 2k(z - 1) 
a(z)= QZ(z), b(z)=l-~ Q(z) ' (12a) 

Q(z)= zk+2k(1--z)P(2)" (12b) 

We have obviously 

b ( 1 ) = a ( 1 ) = l ,  and b ' ( 1 ) = # = 2  k. 

2 Throughout this section we omit all subscripts u in formulae for readability 

(12c) 
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Upper Tail. There 6 is strictly positive, accordingly j >  n/2 k, and from (9), (11), 
(12), we find 

U.(6)=~__7~ ~ ~ 2ka(z) bJ(z) dz (13) 
o+ 1 - b ( z )  z "+1" 

We propose to evaluate the integral in (13) using the contour 

lg n lg lg n 
Izl = 1 - e ,  e=e(n)= (14) 

whose choice is dictated by a saddle point heuristic. Provided we check that 
the integrand in (13) is analytic for ]z[ < 1, trivial bounds on the integral lead 
to 

a(1 - e )  
U,(6) <= 2 k b J(1 - e)(1 - e)-". (15) 

1 - b ( 1  --e) 

The analyticity condition that justifies (15) is given by the following lemma. 

Lemma 1. For large enough patterns (k >=ko), the polynomial Q(z) has no zeroes 
1 

in the domain I z] < 1 + 2k + 1" 

Proof Using the substitution z/2 = 1/w, the equation Q(z)= 0 is equivalent to 
1 + ( w -  2) p (l/w) w k- 1 = 0. Following again Guibas and Odlyzko [GO 78, Lem- 
ma 3], we find that this equation has only one zero in the domain Iwl>l .7 .  
Applying Lemma 4 in [-GO 78], we obtain for the zero w (and k large enough) 

1 
[w[__<2-~.  Hence, for k>ko ,  the equation Q(z) has no solution satisfying ]z] 

1 2 
_-__ 1 + ~ i - <  2__2-k. []  

Remark that /ze=0o/( lg  lgn) tends to 0 as n ~ o o .  Estimates that follow are 
stated for values of functions a(z) and b(z) at l + e  since they will be used 
later. 

[ a ( l_+e)=l+O(/~e)  

b(1 _+e)= 1 _+#e+ O(#2~ 2) 
exp( + e#j  + O (j/~2 e2)) [ bJ(1 + e! = _ 

[ (1 +e ) -  =exp(-T-ne+ O(n+e2)). 

(16) 

These bounds all follow by inspection from the explicit forms (12), and the 
observation that 

k [ \ l + e  
Q(1 + ~)=(1 + ~) -y- p e p l ~ l  = 1 + o ( ~ ) ,  \ z /  

(17) 
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since the correlation polynomial p(z) has 0-1 coefficients. Applying estimates 
(16) to bound (14), we get an upper bound on U,(c~) in the form 

2 k 1 + O ( # 0  exp - ~ n 5 + O  52 . 
U,(6) = 5# 1 + O(#e) lg n(lg lg n) 2 

This gives our main upper bound for the upper tail: 

U, (6)_<_ e x p ( -  6 lg n lg lg n + e~ lg n) (18) 

for some absolute constant cl and n large enough. 

Lower Tail. Now 6 is strictly negative, and accordingly j <  n/2 k. From (9), (11), 
(12), we find 

L',(6)=21irc J+ 2k a(z)b(z) 
1 - b J -  l(z) dz 

1-b(z)  z "+~" 
(19) 

We evaluate the integral in (19) using the contour 

lg n lg lg n 
I z l= l+5 ,  5=5(n) -  (20) 

n 

If we know that b ( l + e ) >  1 and that a(z), b(z) have no poles in the domain 
[z[< 1 +e, then (19) is upper bounded by 

L',(6) <j 2 k a(1 + e) bJ(1 + e)(1 + 5)-". (21) 

The transition from (20) to (21) is obtained via Lemma 1: Note that b(1 +5)>  1 
is equivalent to Q ( l + 5 ) > 0 ,  which follows from Lemma 1, Q(1)>0 and l + e  

1 
< 1 +~T~i-- The conclusion for the lower tail comes directly from (21) and (16), 

so that 

L',(6)=j 2k(1 + 0(#5)) exp(e#j + 0(j  #2 52) - n5 + O (n52)). (22) 

But j =  O(n) and 2k= O(n2) ,  s o  that 

L" (6) < exp (6 n e + Cz lg n) 

for some absolute constant c2 and large enough n. Applying (8b) and estimating 
rc (~ as above we finally obtain g , n  

L, (6) < exp (c5 n 5 + e 3 lg n) (23) 

for some absolute constant Ca and large n. 
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5. Discrepancies of Finite and Infinite Strings 

From Eqs. (18) and (23), we have exponential tail estimates for the probability 
distribution of occurrences of a single pattern u with length k when k=k(n). 
Returning to discrepancies is easy: if 3 is > 0, and b represents a random string 
of length n, we have 

Pr{2kDk(b)>o} <= 2 Pr ~2(b,u)-2~ > 
lul =k 

=<2~(L. (--3)+ U.(+ 3)) (24) 

Thus, by (4) and estimates (18), (23), we obtain 

Theorem 2. Let k = k(n) =- [lg n -  lg lg n -  2 lg lg lg n] and 6 be such that 0 < 3 < 1. 
Then the probability distribution of discrepancy over the set of strings b of length 
n satisfies 

Pr  {2 k D k (b) > 3} < n-  ~ lg lgn + c (25) 

where c denotes an absolute constant. 

In essence, the result can be extended to smaller values of k using the follow- 
ing lemma from EKT 85] (Proposition 2.1 there): 

Lemma 2. Let s and t be two integers such that s <_ t <_ lg n. Then, for an arbitrary 
string b of length n, we have 

t 
2 s Ds(b) < 2 t Dr(b) + 2 s . (26) 

n 

Applying Lemma 2 to Theorem 1 shows that bound (25) actually holds not 
only for k=k(n)  but also for all k<k(n).  

We are now ready to complete the proof of Theorem 1. Choose 3 a function 
of n" 

6=6(n)=( lg lgn)  -1/2 (n_=4) 
and observe that 

E n-~(n)lglgn+e ~ oO. 

n 

Hence, by the Borel-Cantelli lemma (cf. [Fe68, p. 201]), we obtain Theorem 1. 
Now we establish the following final result: 

Theorem 3. Let 0 (n) with lim ~ (n)= oo and k (n) < lg n - l g  lg n - 0  (n) be sequences 
n-+oo 

of positive integers. Then almost all infinite binary strings co are k(n)-uniformly 
distributed. 

This result follows by the same arguments as used in the proof of Theorem 1 

choosing e(n)= lg n 2~,(n)/2 in the contour integration method. 
n 
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Remark 1. In a forthcoming paper K. Grill will establish that the bound of 
Theorem 3 is best possible: 

Pr {e) is k (n)-uniformly distributed} = {10 ifotherwise.lOg n - log log n - k (n) ~ oe 

Remark 2. It follows immediately from our proof of Theorem 3 that almost 
all 0-1 sequences are k(n)-uniformly distributed for every sequence 
k (n) <_ Ig n -  lg lg n -  ~ (n) of positive integers. 

Remark 2. It seems to be an interesting problem to consider other normalizing 
factors instead of 2 k (") in the definition of k(n)-uniform distribution. 

Acknowledgement. We are grateful to our colleagues K. Grill and G. Turnwald for helpful comments 
concerning Theorem 3 as well as to Professor P. R6v6sz for pointing out the problem raised in 
Remark 2. 
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