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I. Introduction 

Let X1, X 2 . . . .  be i.i.d.r.v.'s with d.f. F having a continuous density f on R. 
Let k = k ,  be a sequence of positive integers such that 

k--*~, k/n-*O as n ~ .  (1.1) 

A class of histogram type nonparametr ic  estimates of f (x)  given by 
Van Ryzin (1973) has the form 

k/n 
f,(x) = YA.(x)+k -- A~(x) Y , (1.2) 

where Y1 < Y2 <- . .  < I1,,, are order statistics of Xa, ..., X n and {A,(x)} is a pre- 
assigned sequence of positive-integer valued r.v.'s. For each n>__l, Am(x ) is 
measurable w.r.t, the a-field generated by X 1 . . . .  , X,,  and is such that, for any 
x ~ R  

O < A , ( x ) < n - k ,  YAn(x)<=x<=YA.(x)+k, if YI<=X~Yn,  

A,(x) =0  if Yl>x, 
A,(x)=n+ l if Y, <x, 

where Yo = - o o  and Y,+I = + ~ .  Therefore, 

P(O <= A,(x) <= n + 1, YA,(x) <= X <--_ YAn(x)+k) = 1. (1.3) 

The local properties of such estimates have been discussed by Van Ryzin 
(1973) and Kim and Van Ryzin (1975, 1980). Our objective is to obtain global 
measures of how good f,(x) is as an estimate of f(x). In particular, the 
asymptotic distribution of the function sup [ f , ( x ) - f (x ) l / f (x ) ,  i.e., the max imum 

X E J  

of the normalized deviation of the estimate from the true density, for some 
compact  interval J is evaluated under proper conditions as n--+ oo. 
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Bickel and Rosenblatt (1973) considered a kernel density estimate s and 
established the asymptotic distribution of the functionals 

sup [ s  0/2) and i ~ [ s  2 dx 
o<=~<=, o f ( x )  

under appropriate conditions, as n ~ o o .  Mack (1982) also established the 
asymptotic distribution for sup I f * ( x ) - f ( x ) l / f ( x ) ,  where f *  is the k,, nearest 
neighbor density estimate. ~ J  

The study of the asymptotic distribution of the maximal normalized de- 
viation of the density estimate from its true density over an interval leads to 
the construction of confidence bands for the true density and are useful for 
goodness-of-fit tests concerning the unknown density. 

As a natural extension, we also give similar results for a hazard rate 
function estimate based on f , (x)  given in (1.2). 

II. Main Results 

We define a normalized deviation process based on f , (x)  as follows: 

Q, (x) = kl /2 f -1 (x) (f ,  (x) - f  (x)). (2.1) 

The limiting distribution of the process Q,(x) will be established through 
the following steps: We first express the order statistics in the denominator of 
our estimator f , (x)  in terms of two intermediate order statistics, and then 
adapt the almost sure representation of intermediate order statistics (as later 
seen in Proposition 1) to those two resulting intermediate order statistics sepa- 
rately. Secondly, we rewrite our deviation process in terms of the empirical 
processes and then proceed to approximate these empirical processes through 
the use of related Brownian bridges and Brownian motions. 

To facilitate the first step, we now introduce two sets of order statistics on 
the right and left of the given point xsJ ,  where J = [a, b], - oo < a < b < o% and 
O < m < f ( x ) < M <  + oo on J6=[a-cS, b+cS] with 6>0.  For fixed x~J, let 

or if X i < x  
Ux'i= X i - x  if Xi>x ,  i=1  . . . .  ,n, 

and let Ux,(1)_< ... < Ux,(,) be the order of statistics of {U~,I, ..., U~,,}. Define G~ 
as the d.f. of Ux, i, i = 1 . . . . .  n, i.e., 

Let 

cx(t)=P(U~,~<~t)-- (x 

oo if 
Wx'i= x - X  i if 

if t~O 

+ t ) - F ( x )  if O < t <  oe. (2.2) 

if t=o o  

Xi~> x 

X~<x i=1  . . . .  ,n, 
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and let W~,(1)<...<W~,(, ) be the order of statistics of {W~,~ . . . . .  W~,,}. Define 
H~ as the d.f. of Wx, i, i=1  .. . .  ,n, i.e., 

f 0 

Hx(t)=P(W~, i <=t)=~ F(x ) -F(x  - t )  
t l  

if t < 0  

if 0 < t <  oo. 
if t=oo  

(2.3) 

For the remainder of the paper we let ~ be a preassigned number, 0 < e < I, 
such that when n is large A.(x)+k-R.(x)=[c&],  where Rn(x)=max {j: Yj<x} 
and [a] =max {i:i is an integer and i<a}. Since R.(x)=nF.(x), 

A,(x)+k=nFn(x)+[~k ] and An(x)=nF,(x)-(k-[~k]).  (2.4) 

For simplicity we use A =An(x ) when there is no confusion. 
Before investigating Q,(x), we begin with investigation of a slightly modi- 

fied process (~,(x), 

(f,(x) k/n 1 G(x)=kl,V-l(x) c.(x)+~n(x) ], (2.5) 

where c.(x) and d.(x) are defined implicitly by 

Gx(c.(x))=[c&]/n and Hx(d.(x))=(k-[c&])/n (2.6) 

respectively. Note that  Qn(x) can be rewritten as 

k/n (2.71 Q,(x)=kl/2f- l(x)  \ya+k_ yA G(x)+d,(x)]" 

The following theorem gives the asymptotic distribution of the deviation 
process (~,(x) defined in (2.5). 

Theoreml.  Let J=[a,b], a<b, and Jo=[a-g), b+~5], 6>0.  Assume f '  exists 
and is bounded on Jo, and let O<m< f ( x ) < M < o o  on J~. For fixed xeJ, let 
{An(x)} satisfy (1.3) and (2.4) and let k satisfy 

(i) k/n ~ 0 and k ~ oo as n ~ 0% 

(ii) (log n)3 (lOg k) Z =o(k) and (2.8) 

(iii) k s/4 =o(n(log n)l/4). 

Then, 

where 

and 

lira P {a,[sup I(~,(x)l-b,] <2} =exp { -2e -~} ,  
n ~ o o  J 

an ={2  log /n  \)1/2 

(2.9) 

As an immediate corollary we have 
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Theorem 2. Let k satisfy (a) k/n--*O and k ~c~ as n--,oo 
(b) (log n) 5 =o(k) and assume further that 

(c) k (lOgk)l/S=o(nl/4) if T=l/2 

(c') k (log~f/3=o(n4/5) if ~ l/2. 

Assume also that f '  and f"  exist and are bounded on Jo and O<m< f(x)<M < 
+ oe on J~. Then Q.(x) in Theorem 1 can be replaced by Q.(x) in (2.1) and more 
explicitly 

lim P{f~(x) fn(x) 2+ < f ~ ( x ) + ~  (~+b.),  for xEJ} 

=exp { - 2e-  x}. 

IIL Proofs 

For the second step in proving Theorem 1 we investigate some related pro- 
cesses which arise naturally and are defined here. It will be shown step by step 
that (~,(x) can be properly approximated uniformly on J through this series of 
processes. 

Let F. be the empirical d.f. based on Xi's and D. the corresponding empiri- 

cal process, i.e., D.(x)=t/n(F.(x)-F(x)). Also let D*(x)=D~(F-I(x)), i.e., D*(x) 
=t/~(F.(  F -  1 (x)) -x) .  We now define 

iQ.(x)='c.(x) (kf /2  [D.(x + c.(x))-D.(x-d.(x))], 

where 

~. (x )  = ( c . (x )  + d . ( x ) ) -  ~ ' ' - [ G  (c .  ix))  H~  (d .  (x))]  , (3.1) 

2Qn(x)=(~)x/2[D*(F(x+cn(x)))-D*(F(x-d,x)))], (3.2) 

where B ~ is a sequence of Brownian bridges used in the proof of Proposition 2 
below, and 

where B, is a sequence of Brownian motions, i.e., B~ e=Bn(t)-tB,(1), for 

0 <- t < 1. Here ~" means equivalent in distribution. 
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The following results quoted as propositions from the literature are needed 
in the proof of Theorem 1. 

Proposition 1 (Watts, 1980). Let X n be i.i.d, random variables defined on the 
probability space (~, A, P) with d f  F and assume F has a finite left end point x o 
such that F(xo)=0. Suppose in an interval (x o, Xo + 6), 3>0,  F is twice differentia- 
ble with f "  bounded and lim U(x) exists and is positive. For sufficiently large 

x~xo 
n, we define x,  by F(x,)=kn/n, where k, satisfies (i) k ~ o o ,  (ii) k, /n~O, and (iii) 
kn/log 3 n ~ oo as n-~ oo. Then for almost all coef2, 

F(xn)  - F . ( x . ,  co) 
X,,(k.)(co ) =x,-+ F'(x,) t-R,(co), 

where R,(cg)=O(n-lkl/41og3/4n) as n--*oo w.p.1, and X,,(k,) is the knth order 
statistic of X 1 . . . .  , X, .  

Proposition 2 (Komlos, Major and Tusnady, 1975). Given independent r.v.'s U1, 
U 2 . . . . .  U, uniformly distributed on (0, 1) with corresponding empirical d f  Hn, 
there exists a sequence of Brownian bridges {B~ 0 < t <  1} such that for all n 

sup 17n(t)-B~ w.p.1, 
O_<t_<l 

where 7n(t)=]//n(H~(t)-t), 0 < t <  1. 

Proposition 3 (Stute, 1982). Suppose fin is a sequence of numbers satisfying 

(i) t~. $0, 
1 

(ii) log fl~=o(nfi,) and 

0o ;) 
1 ]-1/2 

Then, lim 2fl, log~-/p, sup ID*(t)-D*(u)[=l, w.p.1. 
n~oo I~-~1_</~ 

Proposition4 (Bickel and Rosenblatt, 1973, Theorem A.1). Let Yr( ')  be a 
sequence of separable Gaussian processes with mean #r( ' )  such that Yr( ' ) - I lr("  ) 
is stationary. Let r(.) be the covariance function of Yr, 

Mr=max{Yr( t ) :  O<_t<r}, mr =min  {Yr(t): O<_t<_r}. 

Let br(t ) =#r(t)  (2 log T) 1/2. Suppose that: 

(i) br(t ) is uniformly bounded in t and r on [0, T] as r ~ o o .  

(ii) 
(iii) 

T---+ o9. 
(iv) 
(v) 

(vi) 

br ( t )~b( t  ) uniformly on [0, T] as T~oo .  

T -  t 2 [t: b (t) <= x, 0 <_ t <_ T] ~ t l(t)( = the dr. of a probability measure) as 
(2 denotes Lebesgue measure.) 

b(. ) is uniformly continuous on R. 

r(t)= 1 - c  Itl~+0(ltl~), 0 < f i < 2 ,  as t--,O. 

r2(t)< oo. 
0 
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Let 

B(t) =(2  log 01/2 
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1 
(21ogt)a/2 { ( ~ - ~ )  loglogt +log((2~)-l(c-l/2Hp2(2-s 

where H~= l im ~- S esP( sup Y(t)>s)ds and Y is a Gaussian process with, 
T ~ o ~  0 O < - t < - T  

E(Y(t))=-lt?, cov(Y(tl), Y(t2))=ltll~+lt2?-ltl-t27. 
Then, 

U r =(2  log T) I /2 (MT-B(T) )  and V r = - ( 2  log T)t/2(mr+B(T)) 

are asymptotically independent with 

P(UT<Z)--+e -~e-z, P(VT<Z)-.e -z2e-,, 

where 21 =~ eZdtl(Z) and )~2 =~ e-Zdtl(Z) . 

In  addi t ion  to the above  proposi t ions ,  the p roo f  of  T h e o r e m  1 will be 
facilitated by the following set of  l emmas  which we prove  now, 

L e m m a  1. Suppose that the conditions of Theorem 1 hold, then (~ , (x )= lQ , (x )  
+O(k-1/4(logn) 3/4) w.p.1 uniformly on J. 

Proof Observe  that  by using the mean  value t heo rem repeatedly  and  by the 
definit ion of G~ and Hx in (2.2), (2.3) and (2.6), we have 

[~k]/n--G~(c.(x)) = F (x + c.(x)) - F (x) =c.(x) f (xl. ) (3.6) 

for some Xl. , x<x~.<x+c.(x),  

(k-[ek])/n=H~(d.(x))=F(x)-F(x-d.(x))=d.(x)f(x2.)  (3.7) 

for some  x2. ,  x -d . ( x )<x2 .<x ,  

! ! * 
G~(c.(x)) = f (x + c. (x)) = f (x) + c. ( x ) f  (x.)  (3.8) 

�9 x+c.(x), and for some x*, x < x .  < 

H'~ (d. (x)) = f (x - d. (x)) = f (x) - d. (x) f '(x* *) (3.9) 

�9 * - d , ( x ) < x * , * < x .  for some x.  , x 
Hence  if 0 < m < f (x) < M < ~ and I f ' (x ) l  < N < ~ ,  we see that  

k 
c. (x) = [ ~ k l /(nf (x i .)) ~ - ,  (3.10) 

n 

k 
d. (x) = (k - [~ k])/(nf (x 2.)) ~ - ,  (3.11) 

n 

where % ~ ft. means  0 < c < ~ < d < 0% for n sufficiently large. 
P .  
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Hence, 

G'x(G (x)) = f (x) + O (!  ), (3.12) 

and 

t 
By Taylor's expansion we have 

k3/2 I 
O~.(x) nf(x)(c.(x) + d~ 2 [c.(x) + d.(x)--(rA+k-- YA)] 

{[G(x) + d"(x) --(YA 4 k - YA)]2 ) } (3.14) 
+o \ c.(x)+d.(x) " 

Observing that YA+k-- YA = Ux,(t~kl)+ Wx,(k-E~kl) and applying Proposition 1 to 
Ux,(t~kl) and Wx,(k_~kl), we obtain 

c~ G) 

= G:,,. (c. (x)) - G x (c. (x)) ~ Hx, . (d. (x)) = H~, (d. (x)) 
G'x(e.(x)) H'~(d.(x)) 

+O(n-lkl/4(logn)3/4), w.p.1, uniformly on J. (3.15) 

Combine the first two terms on the right hand side of (3.15) with common 
denominator G'~(c.(x)) H'~(d.(x)) and apply (3.8), (3.9) to G'~(e.(x)) and H'~(d.(x)) 
in the resulting numerator, and then apply Proposition 3 to obtain 

c.(x)+cl.(x)-(Y~+~- YA) 
X ~ C r = f ( ) [G x ( . (x)) H x (d. (x))] -1 IF. (x + c. (x)) - F (x + c. (x)) 

- F.(x -d.(x)) + F (x - d.(x))] + O(n -1 kl/4 (log n)3/4), (3.16) 

w.p.1, uniformly on J, provided k 5/4 =O(n(iog n)~/4). 
Applying Proposition 3 again to the first term of (3.16) we have 

O ([c.(x)+ d"(x)-(YA+k-c.(x)+d,,(x) YA)]2 ) ( 1l-1 n =O log~/ .  (3.17) 

w.p.1, uniformly on J. The result follows by applying Eqs. (3.16) and (3.17) to 
(3.14). 

Kemma2. I f  the conditions of Theorem i hold, then Glz~-l(x)-l[--+0 uniformly 
On J (Is FI---+ oO. 

Proof. By applying Taylor's expansion on G~- ~ and H~-1 respectively we have 

G(x) = [~k]/(nf(x)) + 0 [(k/n) 2] and d~(x) =(k - [~k])/(nf(x)) + 0 [(k/n) 2] 

Together with (3.12) and (3.13) we obtain 
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anlz21(x)-11 
n \ l / 2  

C 2 t ," __ 

= (21ogc~] [ f ( )  

~-j ], 

which tends to zero uniformly on J under the conditions assumed. 

((!t Lemma3.  (i) F ( x + c , ( x ) ) = F ( x ) + ~ + O  and (ii) F(x-d , (x ) )=F(x)  
n 

- (1  - ~ ) k + o  , uniformly on J. tl 
Proof. The desired conclusions follow immediately from Taylor's expansion 
and the assumed conditions on J. 

Lemma 4. For n large enough, 

sup I~Q.(x)] L sup F -1 t +Op . 

Proof. Note that 

5Qn(X)=-(~)I/2 ~ l(F{x)-(l-cQ!<s<F(x,+c~!)dUn(S) ' 

where the last integral can be interpreted in the I to sense. Let v =~  (F(t)) i.e., 

t = F  -1 v for te[a, b], and let V,(v)= ~ I , dB,(s). 

n 
Due to Brownian scaling, in this case it is y=~s,  

V,(2) a= I(,_(~_~)<,<v+~)dB,(y); ~F(a)<v< F(b). 

Since, if v 1 < •2, 

Coy (L(vO, V.(vg) =E V.(vO V.(v9 

- - c O  

if v 2 - v ~ > l ,  

we conclude that the covariance function of the process 
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is 
?(u)={~-Iul  if lul-=l 

if lul>l,  

indicating stationarity. Thus, together with the fact [hat 

4Q,(x) = 5Q,(x)- B,(1), 

we have the result. 
We now return to the proof of Theorem 1. 

Proof of Theorem 1. The proof will be completed by examining the error 
incurred by approximating (~,, defined in (2.5), successively by 1Q, to 5Q,, 
defined in (3.1) to (3.5). Observe the following: 

(i) By Lemma 1, we have 

sup L(~,(x)l =sup I1Q,(x)l + O(k-1/4(log///)3/4) w.p.1. 
J Y 

Note also that anO(k-1/4(logn)3/4--+O as n---~oo is implied by condition (iii) in 
(2.8). 

(ii) By the definition of D* and D,, we have 2Q,(x)=z;l(X)lQ,,(x) and the 
error due to approximating 1Q, by 2Q. is taken care of by Lemma 2. 

(iii) Proposition 3 and Lemma 3 give 

sup o~ (~+c~))_o: (~)+~!))=o 
and 

~u~ o: ( ~  _~))_o:  (~)_~ _~)!)) -_ o 

Hence, 

! [ n\1/2\ 
[log~) ) w.p.1, 

( ( ~  F/\1/2\ 
suplzO,(x)-3Q,(x)l=O log ; )  ) w.p.1. 

(iv) By Proposition 2, we have 

sup ]3Q,(x)-r =O(k -U2 logn) w.p.1. 
J 

Therefore, by Lemma4 and by applying Proposition4 to 5Q,(F- l (k ( t ) ) ) in  
\ \ 1 ~ 1 /  Tl 

Lemma 4 with T=;(F(b)-F(a)), c=l, f l= l  and H l = l  (given by Pickands 

1969), the proof is completed. 

Proof of Theorem 2. Note that the result is determined solely on the order of 

I k/n .f(x) the magnitude of sup - -  which in turn, by applying Taylor's 
j c . ( x ) + d . ( x )  
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expansion on G~ -1 and H2  ~ w.r.t 0 respectively, is equivalent to the order of 
[~k]  ~ ( k - [ ~ k ] )  ~ 

//2 //2 - - .  Observe that 

[~k] ~ (k - / -~k] )  2 
//2 1./2 

Thus, for any e, 0 <  c~_< 1 

(k2) 0 ~-  for 0<_c~_<1 

0 ~ for ~=1/2.  

(3.18) 

a, sup =O log (3.19) 
j f (x )  c.(x)+d.(x) 

from which the result follows if e +  1/2 under condition (c'). When ~ = 1/2, we 
consider separately the cases k<n  1/2 and k > n  a/2. If k<n  ~/2, the left hand side 
of (3.19) has order O((logn)l/2n -1/4) which tends to zero. If k>n  1/2, we have, 
by (3.18), the left hand side of (3.19) is 

n {k 5/2 / n\ 1/2 

which tends to zero when (c) is satisfied. 

Remark 1. When c~ is chosen to be 1/2, it is the symmetric case mentioned in 
Van Ryzin (1973). In this case Theorem 2 of Kim and Van Ryzin (1980) estab- 
lishes that with kS/n4---,d as n--.oo, where d_>_0, the estimate has a better rate 
of convergence than if ~ 1 / 2 .  Similarly in our Theorem2,  if we assume f "  
exists and is bounded on Jo and e = 1/2, then we have condition (c) instead of 
(c'), which asserts a higher rate of k and hence a better rate of convergence and 
tighter confidence bands. 

Remark 2. When e = 1/2, the deviation process based on f ,  in (1.2) has the same 
limiting distribution as the deviation process based on the k-nearest-neighbor 
estimate (c.f., Mack, 1982). Therefore in studying the deviation processes the k- 
nearest-neighbor estimate is asymptotically equivalent to the symmetric case of 
the histogram density estimate. 

Remark3. Theorem 3.1 of Bickel and Rosenblatt  (1973) derived the limiting 
distribution of the maximal deviation between a kernel estimate and the true 
density over a compact  interval. In spite of the apparent  similarity between this 
result and out Theorem 1, the resulting confidence bands are not the same. A 
similar remark was made by Mack (1982) for k-nearest-neighbor estimates. In 
particular, a n depends on F, so the result of our Theorem 1 is not distribution- 
free. Nevertheless, we can make it distribution-free by replacing a n and b, by a' n 

and b' n respectively, where a',= 2log (Fn(b)-F~(a)) and b', is defined 

accordingly. It can be shown that 

([ / n \ - 1 1 1 / 2 \  
l a , - a ' j = O  n-l( loglogn) l log#) ] ) w . p . 1 .  
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IV. Hazard Rate Estimation 

As a natural  extension, the hazard rate 

h (x) = f (x)/(1 - F (x)), 

if F(x) < 1, can be est imated by 

(4.l) 

h n (x) = f~ (x)/(1 - F~ (x)), (4.2) 

where fn(x) is given in (1.2) and F n is the empirical distr ibution of the X~'s. The 
pointwise asymptot ic  propert ies of h, such as consistency and asymptot ic  
normal i ty  are special cases of more  general results by Prakasa  Rao and 
Van Ryzin (1985). We now focus on the deviation process based on hn(x ) given 
in (4.2), i.e., 

sup Ih.(x)-h(x)I/h(x), 
x E J  

where 

Define 
d=[a ,b] ,  0 < a < b < o o ,  F (b )<  1. 

Pn(x) =- k 1/2 h -1 (x)(hn(x) - h(x)), (4.3) 

the following theorem gives the asymptot ic  distr ibution for the max imum of 
the normal ized  deviat ion process based on P,(x): 

Theorem3.  Assume the hypotheses of Theorem2 and assume J = [ a ,  b] with 
F(b) < 1. We then have lim P {a  n [sup IP,(x)l - b,] _<_ e} = exp { - 2e-~}, where a n 

n ~  oo y 

and b n are given in (2.9). 

Proof. Apply the definitions of h(x) in (4.1) and h,(x) in (4.2) and write P,(x) in 
terms of Q,(x) in (2.1), we see 

P,(x) = kilZ h -  l (x)(hn(x) - h(x)), 

= (1-  F(X)~k,iZf_i(x)(f,,(x ) _ f  (x))+ kl"z(1-,F(x) (1 - ;,~(x) 1 1-?(x)) \1 -Fn(x)]  

= (I) + (II), say. 

F n ( x ) - F ( x ) ~  ~ ,  , , 
Note  t h a t ( I ) =  1~ -I ~ F ~ ) )  ]~gntx) and 

(H) =k,/2 Fn(x)-F(x) 
1 -f.(x) 

By the law of i terated logar i thm for Fn(x ) and the fact that  1 -Fn(x ) is bounded  
uniformly in J w.p.1, we have 

(I) = Qn(x) + Q~(x). 0 ((n- 1 (log log n)) ~/2) w.p. 1 and 
(II) =O((n -1 k(log log n)) t/2) w.p.1. 

Therefore,  

a n sup t(I)1 = a n sup IQ,(x)l + (a, sup IQn(x)l) O((n- 1 log log n)1/2). 
J J Y 
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a n d  
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(( (log ) ?) a n sup  [(II)l = O n -  1 k (log log n) . 
J 

The  resul t  t h e n  fol lows f rom T h e o r e m  2. 
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