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Summary. We consider the class of stationary stochastic processes whose 
margins are jointly rain-stable. We show how the scalar elements can be 
generated by a single realization of a standard homogeneous Poisson pro- 
cess on the upper half-strip [0, 1] x R+ and a group of Ll-isometries. We 
include a Dobrushin-like result for the realizations in continuous time. 

1. Introduction 

We say that a random vector Z, with elements Zk, is "min-stable" if and only 
if its distribution is  a limiting extreme value distribution with negative expo- 
nential margins. 

In fact 2~ is rain-stable if and only if m i n { Z j a ,  jn= 1,2, ...} has a negative 
exponential distribution for any nonrandom vector 4, with elements a ~ [ 0 ,  oo] 
at least one of which is positive. Notice that if a,_=0, then Z, /a ,=  oo and the 
term plays no role in the minimization. Multivariate extreme value distri- 
butions and their domains of attraction have been studied extensively. See de 
Haan and Resnick [1977]. For a general source on extreme value theory and 
applications see the book by Galambos [1978]. See, also, the book by Lead- 
better, Lindgren and Rootzen [1983]. We are not concerned here with do- 
mains of attraction. The univariate limiting extreme value types can be trans- 
formed into one another by means of simple functional transformations (logx, 
l/x, x ~ etc.). The same is true for multivariate extreme value distributions. That 
is a distribution is determined by its margins and independently, by its de- 
pendence function. The choice of marginal type is one of convenience. We use 
the negative exponential family. That is we use X which is such that 
- l o g P  {X > x} = x /EX.  Notice that these are limiting distributions of smallest 
values. 

In Sect. 2, we present a representation for any finite or infinite dimensional 
rain-stable random vector Z. It depends upon a standard homogeneous Pois- 
son process on the strip [0,1] x R+ and a set of nonrandom functions fn: 



478 L. de Haan and J. Pickands III 

[0, l i a R +  which correspond to the components Z ,  of Z. This is Theorem 2 of 
de Haan [-1984], followed b y  a transformation. We consider the nonuniqueness 
of {f,} and introduce the group of "pistons": a class of function transfor- 

1 1 

mations F which are such that S C ( f ) ( s ) d s =  ~ f ( s ) d s  for all non-negative f We 
discuss this group in Sect. 3. 0 o 

In Sect. 4 we continue the discussion of representations and we show that a 
"proper" one always exists, in the sense of a definition given there. In Sect. 5 
we consider the implications of strict stationarity. We consider continuous time 
stationary processes in Sect. 6 and we include a Dobrushin-like result for the 
sample paths. 

For  another example of representing a stochastic process as a functional of 
a 2-dimensional standard homogeneous Poisson process, see Pickands [19713. 
The embedded process, there, is on R§ x R+ rather than on [0, 1] x R+ as here. 
The processes generated in that paper are extremal processes which are not 
stationary. 

2. Representation of Min-Stable Processes 

Let Z, with elements Zn, be min-stable. By definition 2 is min-stable if and 
only if l /Z, with elements 1/Z,,  is max-stable in the sense of de Haan [1984]. 
We begin with Theorem 2 of that paper. By that theorem we can write 

1/Z,  = maxf ,  (Sz) U~ (2.1) 
l__>l 

where {Sz, Ul}~~ are the points of a 2-dimensional Poisson process with in- 
tensity measure p(ds-) x dff/ff 2 =p(ds-) x d(1/g) on [0, 1] x R+ with p[0, lIE(0, oe) 

1 

and f~ are nonnegative functions such that Sf~(s)p(ds)< co. We can transform 
the space and rewrite (2.1). Let u-= 1/g. o 

Now 
1/Z n - max f ,  (Sl)/U l 

1 > 1  

where {Sz, Ul} now has intensity measure p(ds) x du. 
So 

Z,  --- min Ul/f, (Sz). (2.2) 
1 > 1  

Let the distribution function F be defined by 

F(t)  = p [0, t ] / p  [0, 1]. 

Now for l=  1, 2,... we can exhibit S~ as 

where the S z are from a Poisson process with unit intensity measure and F -1  (s) 
is a suitably defined inverse function for F(t), such as g l b { t l F ( t ) > s }  
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= l u b { t [ F ( t ) < s } .  Let 
L (s) - fT(F- ~ (s)) 

and recall (2.2). The following theorem results: 

Theorem 2.1. 2 is rain-stable i f  and only  i f  

Z,  = rain Ujf,(S~), (2.3) 
l = > l  

U. ~ is a homogeneous  Poisson  process  with unit  in tens i ty  on the where {St, l}i=l 
1 

strip [0,11 x R +  and f.:=[0, 1]--,IR+ with ~f,(s)ds<~ for n=1 ,2 ,3  ..... 
0 

The functions {f,} will be called the spectral  func t ions  for the process {Z,}. 

Remark .  One could also take e.g. a Poisson process on IRxlR+ with unit 
intensity as a basis for the representation. 

For z,~(0, oo), the event 

{Z.>z~ (~ { </X(s , )> z~ ~3 { q >  z.X(s,)} 
l = 1  / = 1  

= Emp {(s, u) lu ~ [0, znf . (s)]  } 

where EmpA denotes the event that A t [ 0 , 1 ]  x R +  contains no points of the 
homogeneous Poisson process on [0, 11 x R+. But the number of points of the 
process in A has the Poisson distribution with mean (parameter) 22(A ) where 
22 is 2-dimensional Lebesgue measure. It follows that 

- l o g  P {Z n > zn} -- ")~2 {(s, u) lu ~ [0, z.f.(s)] } 
1 1 

= ~ znf~(s)d s = z n ~f~(s)ds.  (2.4) 
0 0 

Notice that Zn, then, has a negative exponential distribution with mean 

E Z  n = 1 (s) ds. 

Let the event {Z>  ~}= (~ {Zn> zn} = E m p  0 An, where, for each n, 
n=l n=l 

An = {(s, u) iu ~ [0, z. L (s)] }. 
But 

and 

and so 

0 A. = {(s, u) lu ~ [0, max z. f~(s)] } 
n = l  n 

(U A3 = maxz.f.(slds 
\ n =  1 / 0 n 

1 

- l o g  P {2 > ~} = ~ max z , fn (s  ) d s. (2.5) 
0 n 
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Thus rain-stable joint distributions are determined by the values of all integrals 
of the form (2.5) above. For every rain-stable (joint) distribution there exists a 
representation of the form (2.3) but the sequence {f,} is not uniquely de- 
termined. Another sequence {g,} yields the same distribution if and only if 
integrals of the form (2.5), above, are all unchanged if {f,} are replaced by {g,,}. 

Definition Z1. Two sequences {f,} and {g,} of spectral functions are called 
equivalent and we write {f,} ~ {g,}, if for every sequence {z,} of non-negative 
numbers 

1 1 

max z, f ,  (s) d s = 5 max z, g, (s) d s. 
0 n 0 n 

We shall now introduce a class of mappings F which is such that if  

g,=C(f , )  
for all n, then {g,} ~ {f,,}. 

Definition 2.2. A function mapping F is called a piston if for all f :  [0, 1]~]R+ 

1 1 

~ Ff  (s) ds = ~ f (s) ds (2.6) 
0 0 

and 
Ff  (s) = r (s) f (H (s)) (2.7) 

where r(s) and H(s) are measurable, r(s)>0 for 0 < s < l  and/4(s) is a one-to-one 
mapping of [0, 1] onto itself. 

The set of pistons, thus defined, is just the class of linear LI+[0,  1] isomet- 
ries. See Royden [1968] Theorem 16, page 333. 

Note that if g , :=  Ff, for all n with F a piston then {g,} ~ {f,}. 

3. P i s t o n s  

In this section we study pistons. They are essential for the development in the 
subsequent sections. First note that /4 in (2.7) determines r. As examples we 
could let 

H ( t ) = l - t ,  

= t + 0 m o d l ,  0 e ( -  oo, oo) 
o r  

= t ~ a e ( 0 ,  oo). 

By (2.6) and (2.7), for the first 2 examples r(t)~ 1. For the third r(t)=at a-1 

Lemma 3.1. The pistons constitute a group. 

a) I f  F~f (s) = t~(s) f o Hi(s ) (i = 1, 2), then F 1Fzf (s ) = r 1 (s) r 2 (H 1 (s)) f o H 2 o H 1 (s). 

b) I f  Ff(s)=r(s)foH(s),  then F- l f ( s )=foH~(s ) / roH~(s ) ,  where H ~ is the 
inverse function of H. 

We consider two kinds of pistons. 
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Definition 3.1. A piston F M is m o n o t o n e  if the function H in (2.7) is non- 
decreasing. 

Lemma 3.2. I f  a piston is monotone, 

s 

H(s)=Sr(u)du for O_<s_<l. 
0 

s 

Proof. Define R(s)=Sr(u)du.  Now by definition 
0 

1 1 1 

~ f (s) d s = ~ r(s) f o H (s) ds = ~ f o n o R~ (s) d s. 
0 0 0 

This holds for any non-negative f e L  1. Now take f ( s ) = l  if s<a  and 0 
elsewhere. Then 

a = 21 [0, a] = 21 {(H o R ~) ~ [0, a] } = R o H ~ (a). 

Another kind of piston is given in the following definition. 

Definition 3.2. A piston Fp is a permutation if r = 1. 

Lemma 3.3. I f  a piston is a permutation, H is measure-preserving. 

1 1 

Proof. ~ f o H ( s ) d s = ~ f ( s ) d s  for all f e L l + .  
0 0 

Now take f tabe the indicator function of an arbitrary Borel set. 

Remark. The permutations and the monotone transformations form subgroups 
of the group of pistons. 

The final lemma gives some insight into the nature of pistons. 

Lemma 3.4. A piston F can be factored, uniquely, 

r= rM rd 

where F M, Fa] are monotone and Fp, F* are permutations. 

Proof. Write Ff(s)=r(s)  f o H(s) for all f ~ L  u. Define Fuf(s )=r(s )  f o R(s ) with 
s 

R(s)=~r(u)du,  then F M 1 F f ( s ) = f o H o R ~ ( s ) = F J ( s )  and Fp is a permutation by 
0 

definition. 
Apply the representation just obtained to /~=F -~, then we find F=FMFe 

i.e. r = Fp* Fff with Yp* = ~'-  and F* =/~M 

Remark. Using the decomposition of Lemma 3.4, the requirement (2.6) is 
s 

fulfilled if one writes (2.7) as r(s) f (HooR(s))  with R(s)=Sr(u)du and one 
1 0 

requires that ~r(u)du = 1 and H o is measure preserving. 
0 
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4. Proper Representations 

We are now going to use the t rans format ions  discussed in Sect. 3 to t rans form 
an arb i t ra ry  sequence of spectral  functions into a nice one. As we have seen, a 
representa t ion  of the fo rm (2.3), involving a sequence of L i+- func t ions  {f,}, is 
always possible. 

Definition 4.1. We call such a representation proper, or equivalently we say that 
the sequence {f,} is proper, if two conditions are met. 

First 
,t I {s [ sup f~(s) > 0} = 1, (4.1) 

n 

where 2 i is 1-dimensional Lebesgue measure. Second, the a-field generated by the 
ratios {fm/f, for all n, m} including the values 0 and oo on [0, 1] is, except for 
atoms, the Borel field. 

As we will see the a toms  can be taken wi thout  loss of generali ty to be 
intervals. This condi t ion is similar to Hard in ' s  [1982] concept  of  minimali ty.  

Remark. Note  that  if for a sequence of posit ive constants  {c,} the identi ty 
supc,f , (s)= 1 holds a.e., then the spectral  functions of a p roper  representa t ion  

n 

generate  the same  a-field as their ratios. 
Suppose  (4.1) is not  true. Then  a measurab le  por t ion  of the strip is "was-  

ted"  in the sense that  u/f,(s)=oo for all u > 0  and all n if s is such that  
m a x s  So the content  of this por t ion  of the strip plays no role in the 

n 

minimiza t ion  of (2.3). 
We include an example  in which the second condi t ion is violated. Let  

A ( s ) = l  
and let 

f,(s) 1 =li-sl 

for n > 2 .  Pairs of points  of the fo rm {s, 1 - s } ,  s~[0,�89 are "e lementa ry"  in that  
no set which is measurab le  {f,,/f ,} can include one but  not  the other. Also 
such a pair  has Lebesgue measure  0 and so it is not  an a tom.  

Theorem 4.1. Every rain-stable process 2 has a proper representation. 

Proof. We proceed  constructively.  Let  {f,} be a sequence of spectral  functions 
for 2.  First, we will show tha t  there exists a n o n r a n d o m  vector  g with elements 
c,  > 0 such that  

1 

Sf-(s) ds = 1 (4.2) 
0 

where 
f ] s )  = sup c, f ,  (s). (4.3) 

n 

To see that  this is so, notice tha t  maxc , f , ( s )<~c , f , ( s ) ,  whose integral  is finite 
for appropr ia t e  choice of ~. " " 
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Now let 
x 

F (s)= S f-(x) dx. (4.4) 
0 

Notice that F(s) is an absolutely continuous probabili ty distribution function. 
Define f*(s)=f,(P-(s))/f-(F~-(s)) for n = l , 2  . . . .  and seF(A) where A 

= {slf-(s)>O}. Let f * ( s ) = 0  for s6F(A). 
First we prove 

supc, f*(s)= l a.s. (4.5) 
n 

This is clear for all s with fo F~(s)> 0. It remains to prove that fo F~(s)> 0 a.s. 
Let U be a random variable with uniform distribution on [-0, 1]. Take X 
= / ~ ( U ) ,  then X has density f7 

It follows that 

;h {s[foF~(s)=O}=P{f-(X)=O}= ~ f-(s)ds=O. 
f ( s )  = 0 

Next we prove {f*} ~ {f~}. Take the random variable X as above. For arbi- 
trary z~__>O (n~N) 

1 

~supzJ*(s)ds= ~ supz.f.(ff~(s))/foF~(s)ds 
0 n foF (s)>O n 

=EsupzoL(X)/f-(x)= ~ sup~~ 
n f ( s ) > O  n 

1 

= ~ supzJ.(s)ds=SsupzJ.(s)ds. 
f ( s ) > O  n 0 n 

Next we apply a second transformation T in order to satisfy the second part  of 
the definition. The functions {f*(s)} generate a a-field R of [0, 1]. By (4.5) this 
is the same as the o--field generated by the ratio's {f,;,*(s)/f*(s)}. The o--field R 
is included in the Borel field since the functions f*(s) are measurable. We will 
show that there exists a measure preserving point transformation T: 
[0, 1 ]~ [0 ,  1], which maps intervals on the beginning of [0, 1] into the atoms of 
R and maps the Borel field off of intervals corresponding to the atoms into R, 
off of the atoms. Let {Ck} be the atoms of R. For  each k, let T(x)= C k for x in 
the interval 

k-- 1 k \ 

E ' ~ I ( C j )  , E " ~ I ( C j ) ~  �9 
j = l  j = l  I 

Now from Halmos  [1950] it follows that there is a measure algebra isometry 
(i.e. a set operations and measure preserving transformation) T ~ mapping 

Rc~{C1 ' C2 ' ...}c onto the Borel field B restricted to 2(Cj), 1 . 
Lj= i 

Such a transformation induces a canonical transformation T ~ mapping 
functions measurable with respect to Rc~{C1, C 2 . . . .  }c into functions measur- 

able with respect to B restricted to 2(Cj), 1 . 
k j =  1 
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Define f * * = T ~ f  * for n - - l , 2  . . . . .  Since T is linear isometry, for all z , > 0  
(n --- 1, 2,.. .) 

1 1 

~ m a x z , f * * ( s )  d s =  S m a x z , f * ( s )  ds. 
0 n 0 n 

Consequently {f*} ~ {f**} in the sense of Definition 2.1. Clearly the represen- 
tation {f**} satisfies the second requirement of Definition4.1. It is now 
sufficient to prove that max c , f * * ( s ) =  1 a.e. Let S be a uniformly distributed ran- 

n 

dora variable. Obviously the distribution of max c , f * ( S )  is the same as that of 

max c,f ,**(S). Since the former is identically 1~ it follows that max c, f * * ( S ) =  1 
n n 

in distribution, hence a.s. 

Remarks. If {f,} is already proper then there exists a piston F M of monotone 
type such that f *  =FM(f, ) for all n. Furthermore, then there exists a piston Fp 
of permutation type, such that f * * = F v ( f *  ) for all n since A off the atoms is 
just the Borel field, itself, there. That Fp is pointwise one-to-one, then, follows 
from the Halmos construction, explained above. Relation (4.5) means that the 
{f*(s)} and hence also the {f**(s)}, which are random variables, reside on the 
"generalized rectangle" s u p c , f * * ( s ) - l .  Instead of this one could also con- 

n 

struct a proper representation satisfying the restriction 

~c,f**(s)==_ 1 (4.6) 
n 

(a generalized simplex), We prefer to use (4.5), however, because it enables us 
to use Lemma 4.1, below. 

Theorem 4.2. Let {f,} ~ {g,} in the sense of  Definition 2.1. I f  both are proper, 
there exists a piston F such that 

g, - F(f,)  (4.7) 
for all n. 

Remark. If supc , f , ( s )=  1 a.s. for some sequence of positive constants {c,}, then 
n 

F is essentially unique. For  details and proof see Sect. 6. 
Before proceeding to prove the theorem we state and prove a lemma which 

is due to A.A. Balkema. 

Lemma 4.1 (A.A. Balkema, personal communication.). Let X 1, X z . . . . .  X k be the 
non-negative elements of  a random vector with f inite means. Define 

dp(a 1, a 2 . . . . .  ak) = E(max {1, X1/al ,  X 2/a 2 . . . .  , Xk/ak} ) (4.8) 

for all ai~(O, ov]. Then 

P { X I  <-_a 1 . . . . .  Xk <ak} 

=l ime -1 [(1 +e)qS(al (1 +e) . . . . .  ak(1 +~)) _ ~ ( a l ,  ..., ak)]" (4.9) 
e . t 0  
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Remark. q~, given by (4.8), is a "sup-characteristic function". The result (4.9) is 
an inversion formula. 

Proof For ai~(0, oe], vie[0 , oo) and e>0,  let 

~,e(v, ,  v2 . . . .  ,v~) 

= max {(1 + e), vl/a 1 .. . .  , vk/ak} --max {1, vl/a 1 .. . .  , Vk/ak}. 

Notice that 

if vl < ai for i = 1, 2, ..., k, and that 

4,~=0 

if vi>ai(1 +e) for some i. Consequently ~--1~/e converges monotonically, as eJ, 0, 
to the indicator function of the set [0, al]  x [0, a2] • . . .  • [ -0 ,  a k ]  , whose expec- 
tation is the probability on the left hand side of (4.8). 

Proof of Theorem 4.2. This proof depends upon the steps in the proof of 
Theorem 4.1, above. Let c , > 0  be so chosen that (4.2) holds where f(s) is given 
by (4.3). Define the monotone piston F by letting 

F-lh(s)=f-(s) .h  x )dx  . 

SimilarlY define the monotone piston G by letting 

( i )  G-  1 h(s)-=g(s), h f,(x) dx  

with g(s) = supc. g.(s). 

It follows that {Ff.} and {Gg.} are proper and that {Ff.} ~ {Gg.}. Notice 
that supc.Ff . - -supc .Gg.=-l .  Therefore for every sequence of non-negative 

n n 

constants {a.} 

1 

~max {1, supa.F f.(s)} ds 
0 n > l  

1 

= Smax {(sup c, Ff,(s))(supa, Ff,(s))} ds 
0 n > - i  n >-1 

1 1 

= ~ sup {max (c., a.)- Ff.(s)} d s = ~ sup {max(c., a,,). G g.(s)} d s 
on_->1 o n > l  

1 

= ~max {1, supa.Gg.(s)} ds. 
0 n > l  

By Lemma 4.1, above, the sequences {Ff.} and {Gg.} have the same probabili- 
ty distribution, i.e. 

2 ((max a. F f . ) - i  (B)) = 2 ((max a. G g . ) - i  (B)) 
n>__l n > l  
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for every Borel set B e [ 0 , 1 ]  and all a , > 0  (n= l, 2, . . .). This leads to an 
isometry between the a-fields a{Ff,} and a{Gg,} induced by the two se- 
quences of functions (identify (maxa, Ff , )-  l(B) with (maxa, Gg,)-l(B)}. Since 

n__>l n=>l 
the two representations are proper, the isometry can be realized by a one-to- 
one measure preserving transformation T - l :  [0,1]-+[0,1]  (Rohlin, cf. Parry 
and Tuncel [1982], p. 22). Now Gg,(s)=Ff,(T(s)) for n = l , 2 ,  ... a.e. The state- 
ment of the theorem follows. 

Remark. The piston F referred to in Eq. (4.7) can be written F = G - 1 T F  where 
T is the permutation from the last part of the proof and G and F are of 
monotone type. 

5. Stationarity in Discrete Time 

Suppose that Z, with elements Z,,  is strictly stationary. That is {Z,} and 
{Z,+I} have the same joint distribution. It follows that {Z,+k} have the same 
joint distribution for all k=O, •  +2,  .... Now {Z,} has a representation of 
the form (2.3). Recall Definition 2.1 of equivalence. By Theorem 4.1 there exists 
a proper sequence {f,} for the representation (2.3). It follows that {f,+k} is a 
proper sequence for any k. 

By stationarity 

{f.} ~ {s 1}. 

By Theorems 4.1 and 4.2 we have the following: 

Theorem 5.1. The elements of 2 are representable by (2.3) with proper sequence 
{f.}. There exists a piston F such that 

L+ l - r(f ,)  
and so 

L-r" ( fo ) .  

Example. Take fo(S)=S and F f ( s ) = f ( 1 - s ) .  The process {Z,} is periodic with 
period 2 and 

z~ + z~ + zl z2 
P{Zl  > zl, Zz> z2}=exp 

2(Z 1 -~ Z2) 

Remark. Suppose that 21{slfo(s)>O}=1. Then one can take fo(S) to be con- 
stant on [0, 1] without loss of generality. If 2l{Slfo(s)>O}e(O, 1), we can take 
fo(S) to be constant on [0,a] and 0 thereafter for any ae(0,1). It is not 
necessary that a -  21 {Slfo (s) > 0}. 

As we saw in the second remark following Theorem 4.1, we can choose the 
sequence {f,(s)} so that it resides on a generalized recto,:gle. There exists a 
nonrandom vector e, with elements c ,>0 ,  such that for almost all se[0, 1], 

max c, f ,  (s) - 1. 
n 
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For  each k, {f,+k(s)} resides on a similar but different generalized rectangle 
with {c,} replaced by {c,+J.  

In discrete time, a strictly stationary stochastic process of our type is 
completely described, in distribution, by {fo, F} where 

f,, = F"(fo), 

n=0 ,  4-l, 4-2 . . . . .  Hence F" is a power group of pistons. The representation 
{f0,F} is not unique. Let {go, G} be another, equivalent, representation. That is 

where 

n = 0, 4-1, -+ 2, .... Then we write 

{LI-{g.} 

g, = O"(go) , 

{fo, F} ~ {go, G}. (5.1) 

Theorem 5.2. Equivalence  in the sense o f  (5.1) holds i f  and only i f  there exis ts  a 

piston B such that 

go = B(fo) (5.2) 
and 

G" = B F " B -  1, (5.3) 
n=0 ,  +1,  _+2 . . . . .  

P r o o f  First assume that (5.1) is true. By Theorem 4.2 there exists a piston B 
such that, for n = 0, _+ 1, _+ 2, ..., 

g, = G"(go) =B(f , )  =BV"(fo) = B F " B -  1 (go). (5.4) 

By Theorem 4.1 we can take both {f,} and {g,} to be proper. So for n =0, + 1, 
_ + 2  7 . . .  

G" = B F " B -  1. 

suppose that (5.2) and (5.3) are true. For any integers m, Conversely 
n ~ ( -  oo, ~), 

GroG n = B F m B  - a B F n  B -  1 = B F m F n B  - 1 = B F m + n B  - 1 = Gm+n.  

Thus (5.1) is true, verified by (5.4) from right to left. 

6. Stationarity in Continuous Time 

In this section we assume that 2? is a min-stable stationary random function 
with values Z( t ) ,  - o o < t < o o .  A standard assumption is continuity in prob- 
ability. See e.g. de Haan [1984 I. We make that assumption about {Z(t)}. A 
representation for such a process may be defined as follows: First we construct 
a representation for {Z(r,)} where {r,} is a countable sequence dense in 
( -  o% oo). Since Z is continuous in probability, a unique extension exists from 
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the representation for {Z(r,)} to one for {Z(t)}. This follows by Theorem 3 of 
de Haan [1984] before the reciprocal transformation of Sect. 2. The latter does 
not invalidate it. 

In this section we consider equivalence classes of pistons rather than 
individual pistons. 

Two pistons F 1 and F 2 are equivalent (are considered the same) with respect 
to a family {ft} of Ll-functions if F1F2 -1 is of permutation type (i.e. the 
function r from Definition 2.2 equals 1 a.e.), furthermore F1Fz-l(Zc)=Zc for the 
indicator function of any atom c of the a-field induced by {ft} and F 1F 2-1 is 
the identity a.e. outside the atoms of that a-field. 

Theorem 6.1. For all t ~ ( -  0% o9), 

ft = qY(fo) (6.1) 

for some nonnegative L 1 function fo(S) and some power group {~t} of pistons, 
that is ~t+s-qbt~*, for all s, t~( -oo ,  oo). 

Before proving the Theorem we have the following: 

Lemma 6.1. The functions ft(s) from the representation for 2 are L 1 continuous 
in t. 

This is essentially Theorem 3 of de Haan 1-1984]. It is easily seen that it 
remains true after the transformation of Sect. 2. 

Proof of Theorem6.1. By Theorem 3 of de Haan 1-1984] and Theorem4.1 
above there is a family { f t } ~  of non-negative Ll-functions such that for all 
real t 

Z t = rain Uk/ft(Sk) 
k_>-- i  

with {Sk, Uk} as in Sect. 1 and the representation {frn}r~a is proper for 

We may further suppose that for some sequence c . > 0  (n=0,  _+1, _+2 . . . .  ) 
we have s u p c . f , -  1. 

n 

From Lemma 6.1 it follows that ft is measurable with respect to a{f~.}~.~Q 
(the a-field induced by this sequence of random variables) for all teF..  Further- 
more for any s~lR the family {f ,+J~.~a  is Ll-dense in {f,}t~. Now fix sE~,. 

We claim that supc,fs+~(u)>O a.e. Suppose not, then the set A defined by 
n 

A= {ulcJs+r~(u)=O for all r, eQ} 

has positive Lebesgue measure. Since supc, f~(u)-1 there exists a subset A~ of 
n 

A with positive Lebesgue measure, ~ > 0 and an index n o such that 

f,~o(u)>e for uEA i. 

Now the sequence {fs+~},~o is dense in {ft}t~a i.e. there is a subsequence such 
that fs+, --*f~ in L~. Since on the one hand fs+~ (u)=0 for ueA~ and all r,, 

n ,  n o n '  

and on the other hand f~o(u)>e for uEAI, a contradiction is obtained. 
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The proper representations {frn} and {fs+~,} are equivalent. Hence by 
Theorem 4.2 for all s there exists a F~ such that for all n 

fr~+,(u) = F~s ) = r,(u) s  ~ o Rs(u)) (6.2) 

u 

with Rs(u)=Sr~(v)dv and T s measure preserving. Since s u p c , s  1, 
0 n 

r~(u)=supc,fr,+s(U). 
n 

Since both {s and {s induce the Borel field off the atoms in [0, 1], the 
mappings f and Is: [0, 1]--+IR ~ with coordinates { f J  and {s respectively, 
are one-to-one a.e. outside the atoms. It follows that for all s the piston F s is 
determined up to an equivalence (as defined in the beginning of this section). 

From (6.2) it follows by L,-continuity 

Hence for all s, t e n  
L+,=rA 

and {F~}~ forms a power group of pistons since all of them are determined up 
to an equivalence. 

Theorem 6.2. The realizations are of either of two kinds. 

1) They are bounded away from 0 on every finite interval with probability 1. 

o r  

2) They are arbitrarily close to 0 on every finite interval with probability 1. 

These are true, respectively, according as 

1 

~[ maxft(s) ] d s < o r =  oo. (6.3) 
0 0 < - t < ) ~  

The integral is finite for all )~E(O, co) if it is for any such L 

Remark. A similar result is known to hold for stationary Gaussian processes. 
In fact in case 1, above, a stationary Gaussian process is continuous every- 
where with probability 1. This result is due to Dobrushin [-1960]. See also 
Cram6r and Leadbetter [1967], Chap. 9. 

Proof of Theorem 6.2. First suppose that 2~(0, oo). By (2.5), for ze(0, oo) 

1 

- l o g P  { Zz  > z} =zS[  maxf~(s)] ds 
0 0 - - < t ~ < 2  

where 
Zz=  min Z( t )=  min min Ujs  Uj[ maxf~(Sl) ]. 

O_<t_< )~ O_<t_<2 l > _ l  l > I  O_<t ~)~ 

If the integral is finite, then Zz has a negative exponential distribution with 

E Z ~ = I / i  o<=~<=amaxft(s)ds" 
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Thus 1, above, is satisfied by the sample functions. Clearly by stationarity 
and separability the same is true for all 2e(0, oo). Suppose on the other hand 
that the integral diverges. Then - l o g P { Z z > z } = o o ,  P { Z a > z } = O  and so Z~ 
= 0 with probability 1. So 2, above, holds. 

Example. The process {Z(t)} defined by Z( t )=max  Uz/ft(Sz) where 
/ > 1  

f t(s)=FJo(S) for selR 
with 

F e h (s) = e t. s e* - 1. h (s e') 

is a strictly stationary rain-stable process for any non-negative foeL1.  
We examine in detail a broad but not exhaustive class of min-stable 

stationary processes in continuous time. It is analogous to the class of moving 
average processes. In fact ours are moving minimum processes. For some 
properties of moving minima in discrete time see Deheuvels [1983]. 

Let H(x) be an absolutely continuous distribution function with support on 
( -oo ,  oo). Notice that H: ( -oo ,  oo)~(0,1). Let Sl, V l be, as before, a homo- 
geneous 2-dimensional Poisson process on the strip [0, 1] x R+. Let 

(X~, Y~) = (H-  ~ (St), UJ(H- a)'(Sl) ). (6.4) 

Now {X~, Yt} are the points of a homogeneous Poisson process on R x R+, the 
upper half of the plane. Inverting, 

(S1, U1)= (H(Xz), YI/H' (XI)). 

Let the function r R ~ R + .  Assume that 

For each r e ( -  0% oo) let 

The marginal distribution 

1 s s. 

By (6.4) and (6.6) 

where 

Clearly 

and we can let 

O(s)dse(O, oo). (6.5) 
- - o o  

Z (t) = min Y~/~b (X z - t). (6.6) 
I 

of Z(t) is negative exponential with mean 

Z (t) = rain Uz/f~ (S~) 
l 

It(s) = (H- 1)'(s) ~b(H- l(s) - t ) .  

fo (s) : (H-  1), (s) q5 (H-1 (s)) 

It(s): ~'L (s) 

where {4~ t} is a power group of pistons with 

Ct=_A-1Bt A 
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where 

and 

A f (s) = f (H-  I (s))(H- 1)' (s) 

A- l f ( s )  = f (H (s)) H' (s) 

B ' f ( s )= f ( s  - t ) .  

By Theorem 6.2, the sample paths are of types 1 or 2 of that theorem according 
as 

[ m a x  O ( s + t ) ] d s < o r = o o .  (6.7) 
- - o o  0 - - < t < 2  

For divergence of the integral it is clearly sufficient that q5 be unbounded. For 
convergence it is not sufficient that q5 be bounded as we show by the following 
example. oo 

Let {b,} be such that b, >0,  n =0, + 1, _+2 . . . . .  Assume that ~ b, < oo. Let 
n = - o o  

qS(s)= 1 n<_s<n+b,  

= 0 otherwise. 

Notice that the integral (6.5) converges but that the integral (6.7) diverges. 
In order that both integrals converge, it is sufficient that ~b be proportional 

to a unimodal probability density function. 
For example, let 

4(s)=e -Isl. 
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