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Summary. We compute the almost sure order of convergence of the Prokhor-  
ov distance between the uniform distribution P over [-0, 1] e and the empirical 
measure associated with n independent observations with (common) distribu- 
tion P. We show that this order of convergence is n -1/~ up to a power 
of log(n). This result extends to the case where the observations are weakly 
dependent. 

1. Introduction 

Let ~(IR d) be the set of all Borel probability laws on IR a. 
Let x l ,  x2 . . . .  be lR<valued and bounded random variables with common 

distribution P. 
t n 

Let P, be the empirical measure associated with Xl, ..., x, P,=-~ ~ 6x,. 
F/ i = 1  

The weak star convergence in ~(IR ~) is metrizable by various metrics. Dudley 
(1969) considered two such metrics: that of Prokhorov which we call p and 
that of Mourier-Fortet /~ (see Dudley (1968) for a definition of/~ and for general 
relations between/~ and p). In the case where the observations are independent, 
he proved that the speed of convergence of E(p(P,, P)), resp. E(~(P,, P)), is 
n -1/(a+2), resp. n -aId if d>2 .  (Note that these results extend to cases where 
d is defined in terms of metric entropy and need not be an integer (see Dudley 
(1969)) and to cases where the observations are weakly dependent as in G/ienssler 
(1970)). 

Moreover  he showed that these rates of convergence are sharp in the sense 
that they cannot be improved for some choice of P. But this choice of P in 
the case of p-convergence is very special so Dudley raised the problem to find 
the exact order of convergence of E(p(P,, P)) when choosing a "regular"  P 
such as the Lebesgue measure on the unit cube in N e. What  we intend to 
do in this paper is to solve this problem up to a power of log(n). 

So, from now on P is the Lebesgue measure on [0, 1] ~ and we write _(d) Pn 
for p(P,, P) and/~(,~) for/~(P,, P). 

Let us recall what is already known about  the subject. 
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In the Case Where d = 1 

E(p~, 1)) and E(fl~, 1)) are both of order n 1/2 and this is related to the central 
limit theorem (see Dudley (1969) again). 

In the Case Where d > 2 

lim n TM Ace)> 1 lim n TM fl~d)>C>0 surely, from Bakhvalov (1959). Moreover /Jn =~-  
the following upper bound is available: 

p~d) = O(]/log(n) n -  1/(a+ 1)) a.s. from Zuker (1974). 

From now on we call L the function x ~ log(max(x, e)). Before stating our results, 
here is a definition. 

For any (e, fl) with 0 < e < 2  and fl>0,  we call H(e, fl) the following assump- 
tion: there exist some constants, c, c' and c" such that, for any Borel set A, 
the inequality: 

Pr ( l ~  I(P, - P) (A)I > t a ( L a -  1)p) < c' exp(-- ct ~) 

holds for any (t, a) in /R 2 fulfilling P (A)(1-  P (A))< a 2 and t < c"~//n a/Ln. 

Statement of the results 

Theorem 1. (Speed of the p-convergence in the independent case). I f  the observa- 
tions are independent, for any integer d> 2 there exist two positive constants 
C 1 (d) and C 2 (d) such that: 

(a) lira (n/Ln) TM p~,d)>C1(d ) a.s. 
/1 

(b) lim(n/(Ln)2) TM p~d)< C2(d) a.s. 
n 

Theorem 2. (Generalization to the weakly dependent case). Assume that H (~, 
fl) holds for some (~, fl) with 0<c~<2 and fl>=O. Then, for any integer d>=2, 
there exists a positive constant C a (d) (depending of course on the constants appear- 
ing in H(~, fl)) such that: 

lim(n/(Ln)Z+~Z/~)+ 2a) l/d) p~)< C3(d ) a.s. 
n 

Comments 

Assumption H(a, fl) holds with (c~,fi)=(1/2, 1) (resp. with (a, fl)=(2,0)) when 
the strong mixing (resp. o-mixing) coefficient of the sequence of observations 
decreases geometrically to zero, see Doukhan and Portal (1987) (resp. Collomb 
(1984)). 
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The methods used to prove Theorem 1 and Theorem 2 are quite different. 
This is the reason why the speed of convergence in Theorem 2 when (c~,/?) = (2, 0) 
is not the same as the rate given in Theorem 1 as we should expect. 

As we shall see in the next sections, Theorem 1 and 2 derive from exponential 
bounds, so the almost sure orders of convergence above also hold in mean. 

From the results of Dudley (1969) and Theorem 1 we get that the speeds 
of mean p-convergence or/?-convergence are the same up to a necessary power 
of Ln for d > 3. In our opinion the interesting case is d = 2 because it is critical 
on the one hand (in the sense of metric entropy exponents as well as for the 
Donsker property) and because on the other hand, it is the key case for p- 
convergence as we shall see later. When d = 2 our upper bound for p(2) is consis- 

tent with that of Dudley for /?(2) both are of order L n .  but the problem re- 

mains open to find the exact speeds of convergence for/?~) as well as for p~2) 
(unfortunately the method used by Bretagnolle and Massart (1986) to study 
the critical H61derian classes of functions in IR d does not work when d is even). 

We write u ~  v when there exist two positive constants C and C' such that 
Cu < v <_ C' u. Changing the norm in N a affects p~) only through this equivalence. 
From now on we choose to work with the supremum norm in N e lYl = max ly~l. 

I <-i<-d 

The following sections are devoted to the proofs of Theorem l and 2. 

2. Approximation with Finite Algebras 

First of all, let us recall that p(a) is defined by: 

p~) = I n f { e > 0 :  P,(A)<P(A~)+e for any Borel set A} 

where A s is the ~-neighbourhood of A, that is 

A ~ = { y ~ N e : l y - z l < e  for some z~A}.  

We show that it is enough to study finite a-algebras instead of all Borel 
sets when computing _(d) 

More precisely, for any integer /~, let ~(u e) be the a-algebra generated by 
the cubes Ci={yelRd: i j 2 - U < y j < ( i j + l ) 2  -u for all j}, i e N e c a [ 0 , 2 u - 1 ]  e. In 
what follows, a Borel set B in N(d) will not be distinguished from its closure 
B which is a union of closed atoms {ysNd: ij 2 -U<yj<( i j+  1)2 -u for all j}. 
This confusion does not affect the boundary of B, nor does it change anything 
for B with respect to P or P, (up to a fixed null probability set as far as the 
latter is concerned). 

For  any Borel set B in ~(,~) we call perimeter of B the hypersurface area 
of its boundary. Let sd_l(B) denote this quantity. The following relations be- 
tween P and sa- ,  are available (we shall give a short proof  of the first one 
in the appendix): 

(2.1) P ( B ) <= ( iso perimetric inequality) 

(2.2) sa-1 (B) < (2d) 2 u P(B). 
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(2.3) Notation. Whenever f is a function from a finite set J into IR, V f denotes 

the supremum of f over J .  
The next lemma means that p~) and V P" -  P - -  are simultaneously of order 

~:) 1 + Sd- , 
2-".  

Lemma 1. For any integer #, the two following inclusions hold: 

(a) {p~d)>0 2-u}_~ V - - > 0 ( 1  +20) d-1 2-"  for any positive 0, 
v~.d) 1 + se- 1 

(b) {p(d)> 3 2-u} _ 4 V P"- P } - -  > 2 - " / ( 2  d )  . 

Proof of lemma 1. Let e = 0 2 -~. It will be shown that the following inequalities 
hold for any B in _~(d). 

(2.4) 

(2.5) 

P (B~\B) < ((1 + 2 0) ~ - 1)/(2 d) 2-"  sd- 1 (B) for any positive 0. 

P(B~\B)>=(1-(1-20)d)/(2d)2-"(se_l(B)-2d) for 0_<0_<�89 

In fact B~\B may be described as a union of disjoint prismoids, one of 
the two bases of any of these prismoids being an elementary face (of a cube) 
composing the boundary of B. The maximal (resp. minimal) content of any of 
these prismoids is equal to 2 - ,d ((1 + 2 0) d - 1)/(2 d) (resp. 2 - "~ ((1 - (1 - 2 0)d)/(2 d)), 
so this quantity represents the maximal (resp. minimal) contribution to P(B~\B) 
of one of the elementary faces composing the boundary of B (resp. of one of 
the elementary faces composing the boundary of B which is not included in 
the boundary of [-0, 1] d) and the number of such faces is equal to 2 "(~- 1) Sd-1 (B) 
(resp. greater than or equal to 2 "(a- 1)(s a_ 1 (B) -  2d)). 

Given 0=�89 set e = ~ 2 - " ,  then p~e)>:~ means that there exists a Borel set 
B' such that: 

P~ (B') > P (B'~) + c~. 

This inequality is preserved when replacing B' with B" which is the intersection 
of B' with the support of P,. 

We call then B the Borel set in N(d) which is composed by the atoms that 
intersect B". As B ''~ ~ B "- 2 - ~' we have: 

P~ (B) => P~ (B') > P (B ~) § ~. 

Using 2.5 we get: 

P. (B) -- P (B) > (2- "/(2 d)) (Sd-a (B) + 3 d -  2 d) > (2-"/(2 d)) (1 + sd - 1  (B)) 

giving (b). The proof of (a) is straightforward using 2.4. 
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A. The Independent Case 

Throughout part A, the observations will be assumed to be independent. For 
technical reasons of construction of random variables with given distribution 
it will be convenient to assume that the probability space (f2, d ,  Pr) on which 
the observations are defined is "r ichenough" in the sense that there exists a 
random variable defined on (~2, d ,  Pr) which is independent of the observations 
and whose distribution is the Lebesgue measure on [0, 1]. 

3. Approximation by a Brownian Bridge via the "Hungarian Theorem" 

The process [/-n(P,-P) is called the empirical Brownian bridge and is denoted 
by Z, .  

Let D and C denote respectively the space of functions on [0, 1] that are 
right-continuous and have left-hand limits on the one hand and the space of 
functions on [0, 1] that are continuous on the other hand. We give C the uniform 
topology and D the Skorohod topology. Then both spaces are Polish. 

A generic point in D x C is written (q~, ~); the uniform norm over [0, 1] 
is denoted by [1" ]1~o. Let us recall the statement of the "Hungarian theorem" 
(Koml6s, Major, Tusn/tdy (1975)). 

Theorem 3. Let F n be the law on D of the distribution function of Z ,  (here d = 1). 
Let Bo be the law on C of a continuous version of a Brownian bridge on [0, 1]. 
Then, there exists a probability law Qn defined on D x C (depending on the sample 
size n) with given marginals F, and B o and some positive constants C, 2 and 
A such that, given H,(s)= Q,(I] ~o- ~9 II o~ > s), we have: 

H, (s) = A exp ( - 2 (]/-s s - C Ln)), 

for all positive s. 
(According to Bretagnolle and Massart (1987), we may take C= 12, 2=  1/6 

and A = 2). 

Before deriving a Gaussian approximation lemma from theorem 3, we state 
the following definition. 

(3.1) Definition. Let ~r be a family of Borel sets (assumed here to be finite). 
We say that Z is a Brownian bridge indexed by J if Z is a Gaussian process 
indexed by J sucht that E(Z(B))= 0 and E(Z(B) Z(B'))= P(B c~ B')--P(B) P(B') 
for any B, B' in J .  

From now on H,  is the function that is defined in Theorem 3. 

Lemma 2. There exists a Brownian bridge Z (depending on n) indexed by Nu, 
such that for any positive U: 

Pr V - - >  <<-H,(U2 ,(d-1)). 
~d~ 1 + S d - 1 

d 

Proof of Lemma 2. For each cube ci= 1~ ]is2-u, (ij+ 1)2-u], let T(Ci) be the 
j=l 

interval T(Gi)=](i l  2"(d-1)+...  + ie) 2 -ue, (il 2 u(d- ~)+ ... +id+ 1) 2-ud]. The 



436 P. Massart 

_~(d) and ~(1) are mapping T extends to ~u-~(d) using additivity (the atoms of ~., 
ordered with respect to the lexicographical ordering, Tpreserves this ordering). 

"-"(~) using additivity Given ~ in D, define ~'(]s, t ] ) = ( ( t ) - ( ( s )  and then ~" on XOud 
again. Then, given T* : D x C ~ IR ~-d) x IR ~d~ 

T*: (~0, ~) ~ (~5o T, ~o T) 

let Q T  *-1  be the distribution of T* under (2, where we denote by Q for short, 
the probability law Q, which is defined in Theorem 3. The processes that are 
mentioned below are all indexed by _~(a) The first marginal of Q T* - 1 is exactly 
the distribution of Z ,  (just because the underlying multinomial distribution is 
the right one). So, using a lemma from Skorohod (1976), there exists a process 
Z such that the joint distribution of (Z,, Z) is Q T * - ~ .  

Of course Z is a Brownian bridge. In other respects, we have straightforward- 
ly: 

(3.2) I~(S)l <=F(B)II ~ II co for any S in ~(1) and ~ in D, 

where F(B) stands for the cardinality of the boundary of B. Given T= (i~ . . . . .  id-~) 
and B in ~(d) define ~9/x , 

( d-1 ) 
B  =II 1 + 1) 2 - q  • EO, 1] o 

Then F(T(B~)) is less than or equal to the number of elementary faces (of cubes) 
composing the boundary of B~, that are parallel to the hyperplane yd = O. The 
number of such faces (for all possible values of ~-) is not greater than or equal 
to 2 u(a- 1) Sd_ 1 (B). 

Clearly F ( T ( B ) ) N  S, 7 F(T(B~)), so we get that 

Thus, using 3.2: 

F(  T(B)) < 2 u(a - 1) sa_ 1 (B). 

I~~ _<2u(d- 1) 
V ll ll  ~ha) 

for any ~ in D, giving Lemma 2 via the identity: 

Pr V - - > U  = Q  V l~-Sd_-i > U  ~d) 1 + Sd- a ~l,e) 

and theorem 3. 

4. A Lower Bound for the Prohorov Distance (Proof of Theorem 1 a)) 

The following estimate yields Theorem 1 a via the Borel-Cantelli 1emma. 

Proposition 1. There exists  a positive constant C1 (d) such that: 

I I  n \11a \ 
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Proof of Proposition I. Let Z be a Brownian bridge indexed by ~(a) approximat- 
ing Z,  in the sense of lemma 2. Using a usual trick, Z may be written as 
Z = W - ~ P ,  where Wis a Wiener process indexed by N~) (that is W is a centered 
Gaussian process indexed by N(u d) with covariance function B, B' ~P(Bc~B')) 
and ~ is a random variable independent of Z with standard normal distribution. 

Given qS(s)=Pr(~>s) for all s, we set t=q~- l (2-u+l) .  An atom C in N~a) 
is said to be "fair" if W(C)> t 2 -ua/2. Let B ~ be the random set in .~(a) composed - - #  

of the 2 u(a-1) first (with respect to the lexicographical ordering) fair atoms, 
if the number of such atoms is sufficient, otherwise setting B ~ = 0. 

We call N the number of fair atoms. Let O be the event 

<2UeLn \ /  IZ,-Z[ <_2C 2u(a-1)Ln-} 
{ N=->2"(e- ~)' ~= ~nn '~d, l + s e - ~ -  ~fn 

where the constant C is that of Theorem 3. 
But, 

z , (n  ~ > W(B ~ 2_u ~ ~(r ~/ IZ , -  Zl 
1 + sa - 1 (B~  = 1 + sa - 1 (B~ ~ 1 + s d -  1 

So, using 2.2, the following holds on O: 

l+sd_l (B~ - \ 1 + 2 a  - - ~ n  ]" 

~ _ ~  [ a 2 -e/2 ~2 
Given a such that 0 < a <  , we set c ~ = 1 2 ( C ~ _ ~ + 2 d ) -  ) and then choose 

# such that c (2 -d~n  < 2 " d < e  n . 
Ln - Ln 

The behaviour of q5 is well known, so it is easy to see that t =  a ~/Ln for 
n ~ n  0 �9 

Thus, we have on O and for n > no: 

(P,-P)(B ~ > 2 _  u ( t [e  2-a]  1/e - ( 2 C +  1)c~]_> c~ 2-". 
l+sd_l (B~ = \ l + 2 d \  Ln ] ] 

Now we have to bound Pr(OC). From Lemma 2 we get: 

Pr(OC)<An -ac + q5 ( ~ / +  Pr(N < 2 u(a- 1)) 
\ V n /  

where, according to Theorem 3, we may take A = 2, C = 12 and 2 = 1/6. Moreover 
N has the binomial distribution ~ (2  a", 2-"+i) ,  so using an inequality that is 
due to Okamoto (1958) (see also Hoeffding (1963)), we get: 

2,(a- 1)) 
Pr(N < 2 u(a- 17) < exp 4 
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thus P r ( O 0 =  O(n-2). 
The conclusion follows from Lemma 1 (a) with 0 = c~ 2 -~+1 (a suitable choice 

of a leads to a constant C1 (d) = 2-  2d/(d(13 + 26 d)2)). 
Let us start proving Theorem l(b). Lemmas 1 and 2 ensure that, in order 

to solve the initial problem of bounding tJ,̂ (d), it is enough to solve the following 

Gaussian problem: controling the quantity ]Z] uniformly over ~e)  whenever 
Z is a Brownian bridge. Sd- 

5. Homogeneity of the Gaussian Problem 

The next lemma establishes a homogeneity principle for the Gaussian problem. 
This principle brings out that the solution of the Gaussian problem in dimension 
2 is the key for bounding p(f) in higher dimensions. 

Lemma 3. Given an integer d > 2, for any version Z k of a Wiener process indexed 
by ~(k) with k = d -  1 or d, we have, for any positive t: 

p r ( V  [Zdl>t2./2/_<_2uPr ( ~ IZd~-~l>t)" 
\ N ~  a) Sd-1 ] G3 i) Sd- 2 

Proof of lemma 3. For each integer j such that 0 < j < 2 " ,  let N~d)(j) be the a- 
algebra composed by the products : /~ x ] j 2-",( j  + 1)2-"] ,  ~ ( d - 1 )  Given B 
in ~(ud)(j) we call tj(B) the unique Borel set in __,.~A (e 11 such that B=t j (B)  
x ]j  2-u, (j + 1) 2-"] .  Let O be the event [Z ~ (B)[ <_ t 2-"/2 Sd-2 ~ tj(B) for any in 

N(f)(/') and all integers j such that 0 < j  < 2 ~. 
Given B in N(f), we introduce the partition: 

2~-i 

B =  ~ B j, 
j = 0  

where Bj is the union of the atoms which compose B, belonging to ~d)(j). 
An elementary face (of cube) composing the boundary of Bj that is parallel 

to the last coordinate axis, is also a part of the boundary of B. For  each B j, 
the total area for such faces is equal to 2-u sd-2 ~ tj(B). Thus, we get: 

2~t-- 1 

(5.1) sa_l(B)>=2 -u ~ Sd_2otj(B). 
j = O  

So the following holds on O" 

= 2 ~ - 1  

Iz~(R)[ Y~ 
j = O  

2 tx- 1 

Zd(Bj) ~=t'2-N2~ j~= 0 sd-2Qtj(B))<=t'2N2 Sd- l (B), 

from 5.1. 
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In order to control Pr(OC), we notice that, for each j, the processes (2 -~/2 
Zd-t(/3))~al~-l) and (Zd(B))B~a~)ti) are isomorphic via the mapping tj. Then, 
we have: 

Pr(OC)< ~ Pr - - > t . 2  -u/a <= Pr > 
j : O  \,~3~a)(j) S d - 2 ~  ,~ 1) S d - 2  

and the proof of Lemma 3 is complete. 
We derive straightforwardly from lemma 3 the following corollary (whose 

proof will be omitted). 

Corollary 1. Given an integer d > 2, for  any version Z k of  a Wiener process indexed 
by ~u  k) with k :  d or 2, we have for  any positive t: 

Sd- 1 ~}2 sl 

It is worth noticing that the homogeneity principle (lemma 3) does not allow 
us to derive a sharp upper bound for p,-(2) from Dudley's one dimensional result. 
In fact, up to possible powers of log(n), such an approach yields an upper 
bound for p~2) of order only n-1/3. As we shall see later, the sharpest upper 
bound for p(2) is of order of Ln ~ n -  1/2, with 1/2 <_ c~ <_ 1. 

6. Solution of  the Two-Dimensional  Gaussian Problem 

Throughout this section d is equal to 2. We shall write " ~ u "  instead of ,,.Nc2),, 
and " / "  instead of " s l "  which is here a length. 

We have in view to prove the following exponential inequality. 

Theorem 4. Let  Z be a Wiener process indexed by ~ .  For any e in ]0, 1[, 
we have: 

Pr(V ~->t)<=82.24Uexp(-8(1-O2 t 2) 

whenever t > 100 e-3/2/~. 

The basic ideas of the proof of Theorem 4 are the following: 
Izl 

- The supremum of T over Nu is the same as over the smaller class of 

"Jordan g-domains" (this notion is defined below). 
- For each fixed length 2, the metric entropy of the class o f" Jo rdan  #-domains 
with perimeter 2" (with respect to the L2(p)-metric) can be calculated: it is 
critical. 
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- As 1 is a discrete function, an exponential control for the supremum of 

Izl for each possible value 2 of/means an exponential control for the supremum 
2 

of I Z I  

1 
We now make precise the notion of a "Jordan #-domain". 

(6.1) Definition. The class @u of Jordan #-domains is the class of Borel sets 
B in ~u such that the interiors (in the usual topological sense) of B and IRZ\B 
are both connected. 

Izl 
Nu is extremal for ~ -  in the following sense. 

Proposition 2. (A maximum principle). Given an integer #, for any version Z 
of a Wiener process indexed by ~ ,  we have: 

vIZl=\/izl l ~, l a.s. 

The proof of Proposition 2 is straightforward (via the elementary inequality 

lYail < W  [_a[ which holds for all finite sequences (ai, bi)i~j of real numbers) 
Y, lb, l-- Vl lb] 

using the additive decomposition lemma stated below. 

Lemma 4. For any Borel set B in ~ , ,  there exists a finite collection (P~)i~s of 
Jordan #-domains and e in { -  1, 1} J such that: 

(6.2) I(B)= 2 l(P~) 

(6.3) ~B = ~ e~ lle, P -  a.s. 
i e J  

Proof of lemma 4. Given B in N,, let ~ be the (finite) collection of connected 
components of the topological interior /} of B. Then /}= ~ C, I(B)= ~ l(C) 

C ~  C ~  
and tB = ~ t e  a.s. 

Ce<g 

Now let C be one of these connected components; as C is bounded, II .z\C 
has a unique unbounded connected component. Removing that component from 
IRZ\C and calling G the result of this operation, we get two cases: 
- either G = 0 and in that case C is a Jordan #-domain and we have finished. 
- either G # 0. Then, let 5P(C) be the collection of connected components of 
G. 

We have G = ~ S. Moreover each component S is a Jordan #-domain 
Se.~" (C) 

as well as C = C ~ G by construction. Now the boundary of C may be partitioned 
as follows: the boundary of C which represents the "outside" boundary of 
C on the one hand, the boundaries of the S's whose union represents the "inside" 
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boundary of C on the other hand; so I(C)=I(C)+ ~ I(S) and 11c=~ e -  
SeSe (C) S~5~ 

I s  a.s. 
The proof of Lemma 4 is complete when setting (P~)~s 

= ( C ) c ~  u ( ~ ) ~ s ~ c ~ , ~ .  

Metric Entropy of the Class of Jordan #-domains 
with Perimeter 2 

Given 2 among the possible lengths, that is the k 2-U's when k varies between 
4 and 2 z"+l, let N2 be the class of Jordan /~-domains with perimeter 2. Our 
approach to calculate the entropy of ~z  is basically that of Dudley (i974). 
Before going further in that calculation, we need some notations and definitions. 

(6.4) Notation. Let S 1 denote the unit circle in IR 2. Given A = 2 2 ~, S 1 is divided 
in A parts of equal length, with successive extremities 00, 01 . . . .  , Oa = 00. 

(6.5) Definition. A #-curve is a continuous map C: S ~ o N 2 ,  whose range is 
composed of edges of atoms of ~u; moreover C is called a Jordan #-curve 
whenever C is one-to-one, furthermore C is said to be uniform with length 2 
whenever C follows the edge of vertices C(O~), C(Oj+ 1) between time 0j and 
time 0j+ ~, with a constant speed. The collection of uniform Jordan #-curves 
with length 2 is denoted by Ju a. 

It turns out that ~a  is exactly the collection of the "closed interiors" of 
the C's belonging to J,~ (the "closed interior" of a C being the union of the 
unique bounded connected component of NZ\range(C) with its boundary ran- 
ge(C) and there exists a unique uniform Jordan #-curve with length 2 whose 
range is exactly the boundary of a given set in N~', up to the choice of an 
origin). Thus, the approximation of a Jordan u-domain will be derived from 
that of a Jordan #-curve giving its boundary. 

Fitting a v-Curve to a Uniform Jordan/~-Curve 

For what follows, v is a given integer 0 =< v < #. 

Lemme 5. Let C be a uniform Jordan #-curve with length )~. A v-curve (denoted 
by Cv) exists such that: 

(6.6) rl C -  C, II ~ < 2-  ~. 

(6.7) range (C~) is composed of at most 2 + 4 2 2 ~ edges of atoms of ~ .  

Moreover, the eardinality of the collection of the C~'s when C varies in ju  i, 
is at most (2~+ 1) 2 9212~+i. 

Proof of Lemma 5. We set t = 2"- ~. We define a new partition on S 1 : (0o, ..., 0 k_ 1, 
Ok = gro) where 0j = 0ju 2 for any integer j in [0, k -  1], with k = 1 + [22 ~+ 1]. For 
each j, we call Cv(gj) the nearest point to C(Oj) on the regular grid of [0, 1] 2 
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with mesh 2 -~ (in case of ambiguities we choose C~(Oj) to be the nearest point 
of (0, 0)), also: 

(i) II Cv (Oj) -- Cv (0j + 1)II _-< 2- ~. 

We now define C~ between time 0"j and 0"j+ a enforcing the following rules: 
�9 Follow as few edges of atoms of Nv as possible (possibly stay on the spot) 
�9 Because of the first rule and because of (i), C~ has to follow at most two 
edges. If exactly two edges have to be followed, choose the horizontal one to 
be followed first. 
�9 Join C~(Oj) to C~(gj+I) with a constant speed. 

The v-curve C~ defined above fulfills of course 6.6. Moreover, since C~ follows 
at most two edges between time 0 r and time 0"j+ 1, 6.7 holds. 

To count the class {C~: CeJ,~}, note that (because of our rules), given 
C~(Oo) . . . .  , C~(Ok-1), the v-curve C~ is entirely known. Now the number of possi- 
ble origins C~(go) is equal to (2~+ 1) 2 and, for each step j, the number of possible 
values for Cv(Oj+l) given C~(Oj) is equal to 9 because of (i), completing the 
proof of lemma 5. 

Remark. In general, the v-curves C~ in Lemma 5 need not to be one-to-one, 
so we shall use the quite unusual notion of "interior" of a curve that was 
introduced and studied by Dudley (1974). We recall his definition in the appendix 
where we also show that this notion (which has no intrinsic geometrical meaning 
anymore) extends that of "interior" in the sense of Jordan which we already 
used above. 

The following entropy computation for ~u ~ is available. 

Lemma 6. There exists a map nv: ~ z  u -+ ~J~ such that, for any Jordan #-domain 
B with perimeter )~, we have 7z~BcB and P(B\rc~B)<_<1722 -~. Moreover the 
cardinality of the range of zc ~ is at most (2~+ 1) 2 92"~2v+1. 

Proof of Lemma 6. We write I(C), J(C) for the open or closed interior of a 
curve C (as defined in the appendix). 

Let B be a Jordan /z-domain with perimeter 2 whose boundary is given 
by the uniform Jordan/z-curve C with length )~, then J (C)=/~ (see the appendix). 
Following lemma 5, let C~ be a curve fitted to C. Recalling that the e-interior 
of a set A is defined by C(CA) ~, let n~B be the 2-~-interior of I(C~). Then we 
have (see Dudley (1978) p. 917): n ~ B c B  and B\rc~Bc(range(C~)) 2-v. As in 
2.4 we get, since C follows at most 422~+2 edges of atoms of B~: 
P((range(C~))2-~)< 4 �9 2-2~(422~+2)+2 -2~+1, thus P(B\rc ~ B)< 17 22 -~ when- 
ever 2 - ' < 2 / 1 0 ;  otherwise by 2.1, P(B\nVB)<P(B)N(2 /4)2<22 -~. [] 

Before proving Theorem 4, let us mention a corollary of Lemmas 4 and 
6 which will be useful in part B. 

Corollary 2. There exists a map ~z~: ~ ~ ~ such that P(B Arc~B)< 17 I(B) 2 -~ 
for any Borel set B in ~ , .  

Proof of Corollary 2. Let B be a Borel set in ~u.  Using lemma 4 there exists 
a collection (P~)~t of Jordan/z-domains such that 6.2 and 6.3 hold. 
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Let ~z~: @u ~ N~ have the properties of Lemma 6 for all possible 2. Then 
define rc~B by: ~ B = ( ( . . )  7VP0\ ( ~ ~* P,.). Since 

e i =  l ~i = - - 1  

(( U P~)\( U 8)) A (( U ~ P0\( U ~ 8)) ~ L)(8 A ~ P/) 
e i  = 1 e i  = - -  1 ~ i  = 1 g i  = - -  1 i 

we get from Lemma 6: 

P(B A Tc ~ B ) < ~  P(P~ A ~ P~) < 17(~ l(P~)) 2 v 
i i 

giving corollary 2 via 6.2. 
The above entropy computation in Lemma 6 allows us to prove Theorem 

4 using the so called "chain argument". 

Proof of theorem 4. By hypothesis we have: 

(6.8) t >  100 e - 3 / 2  #.  

Given a fixed length 2, let Vo be the smallest integer such that either Vo = #  
D 

or 2 ~ ~  holds, where K=2~ /L3 .  For each integer v s u c h  that 0 < v < # ,  
2 

let rc ~ be the map defined in Lemma 6 (re u may be taken as the identity map). 
Let I~z~[ denote the cardinality of the range of rc ~. 

# - - i  

The identity :llta = ~vo + ~ (11~ +1 - ~ )  leads to the inequality: 
v = v o  

tz /z 

IPI=0 whenever Vo=0 and whenever ( # - V o ) t / < 2 2 t :  

# - - 1  

IP2= ~ Irc~ll~z~+ll(VPr(IZorc~+l-Zorc~l>t/)); 
~z 

IPz = 0 whenever vo = #. 

We choose t /=4  K2(34/e) 1/2, then the latter condition on r/is fulfilled because 
of 6.8. 

Control of ]P1 (Vo > O) 

Given B in ~ ,  we get from the isoperimetric inequality 2.1 : 

p(n~o B) <= P(B) <= 22/16. 
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Besides, whenever ~ is a random variable with standard normal distribution, 
the following classical inequality is available: 

(6.9) Pr(l~l>s)<2exp(-s2/2) for all s. 

Then, using lemma 6 and 6.9 we get: 

~1 =< 18(2"+ 1)2 exp(K2 22~~ ( - 8  ( 1 - 2 )  2 t 2) 

thus, since 2 TM < 2et2/(K 2 2), 

~1 =< 18(2~ + 1) 2 exp(--  8(1 - e )  2 t2). 

Control of P2(Vo <#)  

F rom Lemma 6 we get p(~v+l BATcVB)<342 2-~ for any B in @~, then, 
using 6.9 again, we have: 

, - 1  ( t/2 _) 
IP2--<2 ~ lTc~+al2exp 682-2- ' 

v = v o  

thus, since ]~i _-<9(2"+ 1) 2 exp(K 2 2 2~), 

Pz <81"24"+1 2 exp(2v~ �9 
j_->0 \ e 

AS 2 TM K 2 2/e _-> t 2 and 2 j >__j + 1, we get: 

IP 2 _<_ 162. (2" + 1) 2 exp ( -  (8 - 4 e) t 2) ___ exp ( -  8 (1 - e) 2 t 2) 

because of 6.8. 
Collecting the above estimates of ]Pland 1172 gives: 

IP 1 +IP 2 ~41-22"  e x p ( -  8(1 _~)2 t2). 

Noticing that  the number  of possible values of the function 1 is at most 22"+ 1, 
we get: 

pr  ( V  IZI > t'~ _< 82 . 24. e x p ( - 8 ( l - e )  2 t 2) 
\~ I / -  

whenever condition 6.8 is fulfilled; we derive theorem 4 from the above inequality 
via the maximum principle (proposition 2). 
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7. An Upper Bound for the Prokhorov Distance 
(End of the Proof of Theorem 1 b) 

Using the Borel Cantelli lemma, Theorem 1 b derives from the following expo- 
nential bound: 

Theorem 5. 

Pr (Or, e)> 3 (36 d 2 U(Ln)2/n) TM) < 2(1 + n 2) exp(-- U(Ln) 2) 

for any d > 2 and U such that 

(7.1) U > (5/3) 3 104 

Proof of Theorem 5. Let % =  3(36 d 2 U(Ln)2/n) TM. We set An = Prtv. .). Since 
p(d)=< 1, we may assume that c~.__< 1. Then, let # be the integer such that ~- 2 -u 
< sn < 3-2 -u. Using Lemmas 1 and 2, there exists a Brownian bridge Z indexed 
by ~u d) such that: 

A < H . ( ~  2_ua/(12d))+ pr( V Z > 5~-~ 2-u/(m2d)) 

then, applying Corollary 1 and Theorem 4 with e=3/5 and t=(2  ud n)l/2/(6d) 
we get: 

A, __< H,  (4 d t 2 n-  1/2) + 82.2 u(a + 2) exp ( -  32 t2/25) + q5(3 t/2) 

whenever condition 6.8 is fulfilled. Since t 2~  U(Ln) 2 and #<Ln, condition 7.1 
implies 6.8. Moreover, using Theorem 3, we get: 

A, < (2 n 2 + 82.22 ,d exp( - 7 t2/25) + 1) exp(-- t 2) 

which leads to theorem 5 by noting that t2~  U(Ln) 2 and using the fact that 
7.1 implies: 

82- 22ud exp (-- 7 t2/25) ~ 1. 

B. The Weakly Dependent Case 

Throughout part B assumption H(c~,fl) is supposed to be fulfilled. We shall 
give up here the numbering of the approximating sets in ~2)  which was an 
essential point in part A (when ~<2,  inequality H(~,fi) does not allow the 
"chaining" in critical entropy cases). So, we shall take directly advantage of 
the finite atomic structure of the approximating o--algebras we are dealing with 
and of the additivity property of Z, .  
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8. Regularization by Changing of Scale 

The regularization lemma below derives from Corollary 2 via the following 
idea: see a Borel set B in --u-~e) as a "stack" of products of a Borel set in ~(u 2) 
with an atom of ~(e-2) the point is that the perimeter of B is greater than 
the sum of the "lateral" perimeters of the slices composing the stack; then 
each slice is regularized via Corollary 2. 

Lemma 7. For any integer v such that O<v<# ,  there exists a map 7z ~ from 
~(a) into .@(2)(~_~(d-2) such that the inequality: 

(8.1) P (re ~ B/k  B) < 17 s a_ 1 (B) 2-  v, 

holds for any Borel set B in -~1 ~a) 

Proof of Lemma 7. Given an atom C of ~ta-2) ~u , we consider the collection 
~a)(C) of those Borel sets of ~d) which are of the form /3 x C with/3 in ~2)  
For each B in ~(a), let B(C) be the union of the atoms composing B that 
belong to ~(ud)(c), clearly: B = ~  B(C). Besides, each elementary boundary face 

c 
of B(C) that is orthogonal to the plane (y3=0, ..., Yd=0) is also a part of the 
boundary of B. The total area of such faces is equal to 2 -u(a-2) l(B(C)) for 
each B(C), where/3(C) is such that B(C)=B(C)  x C. Thus, we get: 

(8.2) s a_a (B) > 2-"(a- 2) E I(B(C)). 
c 

From Corollary 2, there exists a map: ~"  N(2) ~,~(2) with the nice properties 
stated in the corollary. 

Given B in Ntu d), we set ~ r ~ B = ~ ( ~ B ( C ) x C ) ,  then rc~B belongs to 
c 

M(2) | N~a- 2) and we have from Corollary 2: 

P(B A n ~ B) < ~ P((~" B(C) x C) /X (B(C) x C)) 
C 

< 2-urn- 2) 17.2 -~ ~ l(B(C)). 
C 

Thus, lemma 7 follows using 8.2. 

9. Proof of Theorem 2 

As in Sect. 7, the proof of Theorem 2 is based upon an exponential inequality. 

Theorem 6. There exist some positive constants C and C' such that, for any 
d > 2, any positive U and any integer n, we have: 

[ /U(Ln)2#+2+(2/~)\l/d\ 
Pr ~])(d) > ~ H ) )  ~Ctn-CU=/2+I" 

Let us specify that if c, c' and c" are the given constants of assumption H (~, fl), 
the calculations yield C' = c' v 1 and C = (c /x 1). ((c"/x (1/(102.d))). 3 -a/2)L 
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Pr~176176176 1 / a ' T h e s t r u c t u r e ~  

we intend to p rove  allows us to assume tha t  fin__< 1 and  U~/2> C-1. Then,  let 

# be the integer such that 3 2-u< fin<=3 .2-C We set t=(~n  2-~a/2). (c" A (1 / 

(102.d))). F r o m  L e m m a  1 we get (since #<Ln): 

Pr(p(f)>fln)<pr(V ]Z.l>51122 u(a 2)/2t)=Au. 
\,~gd) Sd-  1 

In  order  to b o u n d  As, we consider  the collection ~r of  the a toms  of 
~ 2 )  | ~ ( j  - 2) where v is an integer such tha t  0 < v __< #. Let  O be the event  defined 
by" 

O = { V  [Znl<t.2-~2 -~(a-2)/2 f o r a l l v ,  0 < v < / ~ }  

(2 -~ 2 -u(a-2)/2 represents  the square  roof  of  the Lebesgue  measure  of  each a t o m  
of ~(?) | ~ -  ~)). 

N o t e  tha t  t <__ c"r  2-ug/2/Ln, so, using a s s u m p t i o n  H(~, fl) (and the inequali-  
ty: 2 ua <= n), we get: 

Pr  (O ~) < c' 2 au + 1 exp ( -- c (t (Ln) - ~)~) 

because each d~,u has a cardinal i ty  equal  to 22~+u(a-2). The  point  is that,  for 
each B in ~(22) ,v-, ~ ( a -  2) the following inequal i ty  holds on O" 

(9.1) IZn(B)I ~ (2  2v 2 "(`/-2) P(B)) x (t '  2 -~ 2 -~('/-2)/2) ~ t -2  v 2 "(a- 2)/2 P(B). 

Now,  let ~ be as in l e m m a  7, t ak ing  rc ~ to be the ident i ty m a p  and re~ B--* O 
(this choice of  rc ~ satisfies 8.1 because  of 2.1). Then,  taking advan tage  of the 

# - 1  

decompos i t i on  Z n = ~, (Z n orc ~ + 1 _ Zn o rc~), we get" 
v = 0  

# - 1  

IZnl ~ ~ INn o(7c ~+'\:~'91 + INn ~ v+')l. 
v = O  

Now,  the ranges  of  the m a p s  rc ~ +1\~C and ~ \ ~ v  + 1 are included in the o--algebra 
N(2) c~.@(e-2) for each given v, thus, f rom 9.1, we have  on O '  v + l  ~ - ~ #  

# - 1  

Iz.l<=t2 "(a-z)/2 ~ 2~+~Po(7~+~ArV) 
v = O  

giving, using 8.2: 

I z . l = 5 1  t # . 2  #(d-2)/2 Sd- 1 on O. 
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Thus 

A n _-_ Pr (0 c) < 2 c' 2 ~a exp ( -- c (t (Ln) - P)~) 

since c(t(Ln)-#)~>=C Ln U ~/2 and 2"d>(3dn)/U we get: A , < c ' ( ~ - ~ n  -cw/2 so, 

leading to theorem 6 via the inequality U~/2> c-1. [] \ u /  

Comment. It is worth mentioning that the conclusions of theorem 1 b still hold 
when assuming H(2, 0) instead of independence (using the same approach as 
in Bretagnolle and Massart (1986)), that is to say that the use of the "Hungar ian"  
theorem is not absolutely necessary. Nevertheless the approach that we devel- 
oped here seems to us to be much more illuminating (especially because of 
the homogeneity principle (Lemma 3 above)). 

Appendix 

First let us recall some definitions of algebraic topology. 

(A.1) Definition. Let f and g be two maps from a topological space X into 
another topological space Y. 

A homotopy of f and g is a continuous map F from [0, 1] x X into Y such 
that F(O,.)=-f and F ( 1 , . ) - g .  f and g are called homotopic if there exists an 
homotopy  o f f  and g. f is inessential if it is homotopic  to a constant map. 

Let the unit Euclidean sphere of ~ a  be denoted by S e- 1 Following Dudley 
(1974), the " inter ior"  of a continuous map from S d- 1 into R d can be defined 
as follows: 

(A.2) Definition. I f f  is a continuous map from S d- 1 into IR a, the (open) interior 
o f f  is defined by: 
I ( f ) =  {xMRd\range(f) :  for any homotopy  F o f f  and a constant map we have 
x~range(F)}. 

We call closed interior o f f  the set J ( f ) = I ( f ) ~  range(f) .  Besides, the defini- 
tion of the notion of interior in the sense of Jordan is given below. 

(A.3) Definition. A continuous one-to-one map from S d-1 into N~ d is called 
a Jordan hypersurface. 

The open interior in the sense of Jordan of a Jordan hypersurface f is the 
unique bounded connected component  of lRd\range(f )  (the Jordan separation 
theorem, see Hocking and Young (1961) p. 363, gives a sense to that definition) 
which we denote by I ' ( f ) .  Moreover we call closed interior of f in the sense 
of Jordan, the set J ' ( f )  = I ' ( f )  u range(f) .  

We intend to show that the two notions of interior defined above, are the 
same for Jordan hypersurfaces. That  property comes from the following separa- 
tion theorem (whose proof  can be found in Hocking and Young p. 275). 

(A.4) Notations. Let I'l denote the canonical Euclidean norm on IR d. Given 

x~lR ~, let J?~ be the map from lRd\{x} into S d-1 such that J~x(Y)- y - x  Jjy-xI[" 
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(A.5) Theorem (Borsuk's separation theorem). Let K be a compact subset of 
]R d, and let x be a point of ]Rd\K. For x to lie in the unbounded connected 
component of ~d\  K, it is necessary and sufficient that the mapping fl, I K be inessen- 
tial as a function into S a- 1 

The  first a im of  the append ix  is the following p rope r ty  which can be derived 
f rom the above  separa t ion  theorem.  

(A.6) Corollary.  Let f be a Jordan hypersurface, then l ( f ) = I ' ( f )  and 
J ( f ) = J ' ( f ) .  

Proof of  Corollary A.6. We set K = r a n g e ( f ) .  Clearly, it is enough  to p rove  
I ( f )  = I '  (f) .  P r o o f  of  I ' ( f )  = I (f) .  

Let  xr  if x r  it would  m e a n  the existence of a h o m o t o p y  F:  [0, 1] 
• S d-1 ~ l R d \ { x }  such tha t  F(O, . )=f  and F ( 1 , - ) = X o  for some x 0. We  consider  

the m a p  G: [0, 1] •  d-l,  G: ( t ,a)~f l , (F( t , f - l (a) ) ) .  G is a h o m o t o p y  of 
fix Ix and  fi~(Xo). So fix I~: is inessential,  a con t rad ic t ion  (with A.5). 
- P r o o f  of  I ( f )  ~ I '  (f)  (or equivalent ly  l R d \ I  ' ( f )  = l R d \ I  (f)).  

As K is included in bo th  IRd\I ' ( f )  and  lRa\I( f ) ,  it is enough  to p rove  
tha t  the u n b o u n d e d  c o m p o n e n t  of  N~d\K is included in ~ d \ I ( f ) .  

So let x lying in tha t  componen t .  Accord ing  to t heo rem A.5, fl~ [K is inessen- 
tial. So there exists a con t inuous  m a p p i n g  G: [0, t ] x K ~ S  d-a such tha t  
G(0,.)-=fl~[K and  G(1, ' ) ---y0.  We  define a con t inuous  m a p p i n g  F :  [0, 1] x S d- 1 
~ I R  d by:  

F: (t, u) ~ G(t, u)(t + (1 - t ) I f ( u ) -  xl) + x, 

then F is a h o m o t o p y  of f and  yo+x,  m o r e o v e r  xCrange (F)  because G(t, u)(t 
+ (1 - t ) I f ( u ) -  x [) canno t  be equal  to zero. 

Thus  x ~ N a \ I ( f )  and  the p r o o f  is complete.  

Proof of the isoperimetric inequality 2.1. We follow Federer  (1969) p. 278. Let  
2d denote  the Lebesgue  measure  in IR d. G iven  BeB(, d) and e > 0 ,  we have:  B~=B 
+ ] -  e, + e[ d, The  B r u n n - M i n k o w s k i  inequal i ty  (see Federer  (1969) p. 277) then 
gives on the one hand :  2d(B~)>(2e(B)i/d+2~)~>__2d(B)+2d~(2~(B)) ~d- ~)le. On the 
other  hand,  inequal i ty  2.4 obvious ly  still holds with 2a instead of P, so: 
2d(2a(B))(d-1)/d< (1 + 2e 2") d- ~ sd_ ~ (B). Let t ing  e tend to zero, we get 2.1. 
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