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Summary. We generalise the theory of infinitely divisible positive definite 
functions f :  N ~ 112 on a group N to a theory of infinite divisibility for com- 
pletely positive mappings ~b: ~ ( 2 4  ~ taking values in the algebra of 
bounded operators on some Hilbert space ~ .  

We prove a structure theorem for normalised infinitely divisible complete- 
ly positive mappings �9 which shows that the mapping ~, its Stinespring 
representation and its Stinespring isometry are of type S (in the sense of 
Guichardet [Gui]).  Furthermore,  we prove that a completely positive map- 
ping is infinitely divisible if and only if it is the exponential (as defined 
in this paper) of a hermitian conditionally completely positive mapping. 

Introduction 

Let X be a real valued random variable with characteristic function C~x(t ) 
= (e i tX) ,  t s tR .  Then 4x : lR  ~ C has the following properties: 

(1) q~x is positive definite, i.e., for all functions t e n  ~ 2telU with finite support, 
we have that 

~, &, c~dt'-t)>o (i) 
l ', t '  

(2) q5 x is normalised, i.e. ~b x (0) = 1 
(3) ~b x is continuous. 

Conversely, if qS: IR ~ ~; is a function having the three properties mentioned 
above, then, by Bochner's theorem, there exists a real valued random variable 
X such that q5 is the characteristic function of X. 

By definition a random variable X is infinitely divisible iff its characteristic 
function ~b x satisfies the following condition: for each n e N o ,  there exists a 
normalised positive definite function q~,: IR ~ IE such that 

~b x (t) = ~b n (t) n (ii) 



370 M. Fannes and J. Quaegebeur 

for all t~lR. 
The notion of positive definiteness (i) and infinite divisibility (ii) can be natu- 

rally extended to complex valued functions q~: N ~ 112 on an arbitrary group 
N. This leads to the study of infinitely divisible positive definite functions on 
groups and their associated representations [Str], [Pa], [Gui], [-PaSch]. Infinite 
divisibility has also been extended to positive functionals on some particular 
algebras such as CCR-algebras [Ar] [CoGuHu], CAR-algebras [MaStr]- 
[HuWiPe] and Lie algebras [Str]. On the other hand, the structure of bi-algebras 
provided a natural setting to implement the notion of infinitely divisible function- 
als [GvW], [vW], [Sch]. 

A further extension consists in considering infinite divisibility for positive 
definite functions for which not only the space on which they are defined is 
non-commutative (e.g., a group, an algebra), but also the range space is allowed 
to be non-commutative (e.g., a*-algebra). Under this extension, the notion of 
positive definiteness (i) is carried over to the notion of complete positivity (cf. 
Definition 1.1.), whereas the proper reformulation of infinite divisibility (ii) will 
invoke tensor products (cf. Definition 1.6.). Examples of completely positive map- 
pings satisfying this extended notion of infinite divisibility have already been 
constructed in [FQ], I-Q], [AcBa] by means of a central limit procedure. 

In this paper we study this fully non-commutative natural extension of infi- 
nite divisibility for completely positive mappings ~: N ~ ( ~ )  defined on a 
group ~q and taking values in the algebra of bounded operators on some Hilbert 
space ~ .  Two important results of the theory of infinitely divisible positive 
definite functions on groups are extended. The first result, which is known as 
the "Araki-Woods embedding theorem", shows essentially that the representa- 
tion induced canonically by an infinitely divisible positive definite function has 
a continuous tensor product structure [ArWo] [Gui]. The second result charac- 
terises infinitely divisible positive definite functions as those functions having 
a hermitian conditionally positive definite logarithm. 

The paper is divided into three main sections. In the first section we collect 
the basic definitions and elementary properties of complete positivity and infinite 
divisibility. In the second section we obtain an "Araki-Woods embedding" result 
for the group representation induced canonically by an infinitely divisible com- 
pletely positive mapping, as well as for the mapping itself. Finally, in the last 
section we construct a logarithm for an infinitely divisible completely positive 
mapping. As in the function case, this logarithm is hermitian and conditionally 
completely positive. It also exhibits the new property of infinite additivity (a 
logarithmic version of infinite divisibility) which remained hidden for functions. 
Moreover using an inverse ("exponential") construction we show that there 
is a one to one correspondence between infinitely divisible completely mappings 
and hermitian infinitely additive conditionally completely positive mappings. 

All new notions and constructions in the paper are illustrated by an explicit 
example. 
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I. Definition and Elementary Properties 
of Infinitely Divisible Completely Positive Mappings 

1.1. Completely Positive Mappings 

Definition 1.1. (i) A mapping @ from a group ~ into the bounded operators 
~ ( ~ )  on a Hilbert space ~ is called completely positive (C.P.) if 

X* O(g -1 g') Xg, 
g,g '  

is a positive operator on ~ for all choces of g e N - + X g e ~ ( ~ )  vanishing every- 
where but on a finite number of elements of ~. Any function of this type will 
be called in the sequel an almost zero function. 

(i) Such a C.P. mapping �9 is said to be normalised if O(e)=ll where eeff,  
is the neutral element and llsN(~'4 ~) is the identity operator on ~(. 

(iii) A C.P. mapping �9 on a topological group N is continuous if 

geff--+ O(g) 

is weakly continuous. 

Remark 1.2. (i) For 24 ~ = 112, �9 is a complex-valued function on N and the notion 
of complete positivity reduces to positive definiteness. 

(ii) If ff is the group of unitary elements of a unital C*-algebra sr and 
@ is C.P. mapping from ff into N(af),  which is linear with respect to the linear 
structure on ~ inherited from ag, then @ extends uniquely to a linear mapping 
from d into N(24 ~ which is C.P. in the usual sense. [Tak]. 

(rio Definition 1.1 (i) is equivalent to 

< g=l O(g -1 g') ~g,> ~ 0 
g,g '  

for all choices of almost zero functions ge~--+ {geog. 
(iv) It follows immediately from complete positivity that @ is a self-adjoint 

mapping, indeed: 

O(g- 1)= O(g)*, ge~ .  

1.2. The Stinespring Decomposition of a Completely Positive Mapping 

Theorem 1.3. Let V be an isometry from a Hilbert space ~ into a Hilbert space 
Y and ~ be a representation from a group ff  into the unitary operators ~ ( J f )  
on Y then 

g~-+ V* It(g) V 

is a normalised C.P. mapping from ~ into ~(Jr 
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Conversely if q~: fg---, ~ (2~)  is a normalised C.P. mapping, there exists a triplet 
(A:, re, V) as above such that 

q~(g) = V* re(g) V. 

Moreover (X,  n, V) is unique up to unitary equivalence if it satisfies the minimality 
condition 

E{~(~))" v::] = ~:. 

Finally continuity of q) is equivalent to strong continuity of re. 

Proof. [Sti]. 
The triplet (JF, n, V) is called the Stinespring triplet of 4~. If �9 is a function 

of positive tye on N the Stinespring decomposition reduces to the well known 
G.N.S. representation theorem. 

Remark 1.4. From the Stinespring decomposition (• ,  re, V) of a normalised C.P. 
mapping from 45 into ~ ( ~ )  a few useful properties of �9 are easily deduced. 

i) For gl,  g2 ~ and ~e24~ 

I[(~(gl)-- r ~112 = 11V*(n(gl)--n(g2)) V~[I 2 
< II(n(gO- rc(g2)) V~]I 2 
= 2Re<gl(1 - ~ ( g l  I g2)) ~>- (1) 

Hence it is sufficient that g ~ 4~(g) is (weakly) continuous at g =  e in order 
obtain strong continuity of g ~ 4~(g) everywhere. 

ii) Let X" gefq + XgeN(~r ~) be an almost zero function then we have that 

y '  X* ~(g-  1) q}(g,) Xg, = 2 X* V*n(g- 1) VV* rc(g') VXg, 
g,g" g,g" 

= ( y  ~(g) vx~)* vv* (y:(g') vx?  
g g' 

2 X* V* 7~(g -1 g') VXg,  
g,g' 

= ~ X* r  g,) X,,. (2) 
g,g' 

This inequality is known as the 2-positivity inequality. In particular it implies 

II ~(g)l[ ~ 1 

1.3. Products of Completely Positive Mappings 

Let ~i: ~ f i ~ ( ~ i )  i=  1, ..., n, n~No be normalised C.P. mappings, then there 
exists a unique normalised C.P. mapping 45--~ 1 | ... | n from ffl x ... x fin 
into ~ ( ~ 1  |  | ~ )  such that 

�9 ((gl . . . . .  g,))= ~1 (gl) |  @ q~,(g,). 

Indeed let ( ~ ,  n i, Vi) be the Stinespring triplets for ~i, then 

(gl, ..., g,)~(v~* |  | v~*)(~l (gP |  | ~,(g,))(vl |  | v,) 

= ~ l (gO |  | ~,(gO 



Infinitely Divisible Completely Positive Mappings 373 

is normalised and C.P. by Theorem 1.3. By the uniqueness of the Stinespring 
decomposition it follows that (•l |  | Ji;,, n 1 |  | n,, V1 |  | V,) is the 
Stinespring triplet of ~b. 

In particular if for all i N. = fr then clearly the mapping 

g e fq ~--~ ~ 1  (g) |  | ~b, (g) 

is C.P. and normalised and will by abuse of notation be denoted by (@453(g). 

The Stinespring triplet of this mapping is clearly given by (~Y~, 7~, V) where 

d = [{@ni(g)[g~ff}" @ ~ ~ i ]  
i i 

(g) = @ (g)I. 
i 

i 

Remark that in general S can be a proper subspace of @ X~. 
i 

1.4. Infinitely Divisible Completely Positive Mappings 

As we need in the sequel a lot of cyclicity conditions we introduce the following 
notions: 

Definition 1.5. (i) We call ( ~ ,  ~, (2) a C.P. triplet on a group f~ if 
a) �9 is a normalised C.P. mapping from fr into N(~%~) 
b) ~2effg is a normalised vector cyclic for {~b(f~)}" 
Furthermore (fit ~, ~b, f2) is called a continuous C.P. triplet whenever 4~ is 

continuous. 
(ii) Two C.P. triplets ( ~ ,  ~i, f2i) i=  1, 2 on a group fr are equivalent ((~f~, 

q~l, f21)~(fft~2, ~b2, f22)) if there exists a unitary operator U: W1 ~ffg2 such 
that 

U ~ I  = Q2 

U ~  1 U *  = ~ 2 .  

(iii) If (~/,  451, f21) i=  1, 2, ..., n, n EN o are n C.P. triplets on a group ~f 
the product triplet @ ( i f  i, 45~, f2i)= ( ~ ,  ~b, ~2) on fr is defined by 

i 

= [ { ( ~ i ( g ) I g e ( r  @ o,1 
i i 

q~(g) = @ ~i(g)[ge 
i 

~'~= @ ~'~i " 
i 

The notion introduced in definition 1.5 allows us now to introduce infinite 
divisibility for C.P. mappings. 



374 M. Fannes and L Quaegebeur 

Definition 1.6. A C.P. triplet ( ~ ,  45, f2) on a group N is infinitely divisible if 
there exists for each n e N o  a C.P. triplet (~'4 ~1/", 451/,, g21/,) on N satisfying 

(~ ,  45, ~)= @n(~l/n, 451/n, ~'~l/n). 

(d4ol/,, 451/,, s is called an n th root of (Yt '~, 45, f~). 
It is clear that our definition extends the usual notion of infinite divisibility 

for positive definite functions on groups [Gull ,  [PaSch] and infinite divisible 
representations [Str]. Indeed let / be an infinite divisible positive definite func- 
tion on a group ~ with G,N.S. triplet (Yr 7~, Q), then the triplets (( ; , / ,  1) and 
(Jr ,  n, ~) are both C,P. on N and infinitely divisible in the sense of definition 1.6. 

As we will mainly be concerned with continuous C.P. mappings we briefly 
investigate the relation between continuity and infinite divisibility. 

Definition 1.7. Let N be a topological group. We say that N is continuously 
divisible if for each net (g~)~ in N converging to the neutral element e and for 
each n s N o ,  there exists a net (h~)~ in converging to e such that eventually 
g~ = h~. 

Remark that a lot of groups are continuously divisible: Lie groups, connected 
locally compact groups [MZ],  unitary groups of yon Neumann algebras, .... 

Lemma 1.8. Let 45 be a continuous positive definite function on a continuously 
divisible group ~. 

I f  for some n e N o  there exists a positive definite nth-root 451/, of 45 then 
451/, continuous. 

Proof. Without loss of generality we can assume 45 to be normalised. As 
(451/.(g)y=45(g) and as 45 is continuous at g = e  we have: for all e > 0  there 
exists a neighborhood (9~ of e such that for all g~(9~ there exists k~{0 . . . . .  n - l }  
such that 

1 451/"(g)- ~1 < 
2zrik 

where 6k = exp - - -  
n 

Furthermore,  by continuity of the group inversion, (9~ can be chosen such 
that ~)~-a= C9~. Obviously for e small enough (9~ can be written as a union of 
disjoint sets C9~, k~{0, ..., n -  1) where 

k (9~ = {g~ (9~11 451/"(g) - 6kl <e} 

and as 451/, is self-adjoint if follows immediately that ((9~)-1= (9~-k. 
We now prove that if h e (9~, h' ~ (9~' and h h' e (9~ then h h' ~ (9Js where j = (k 

+ k') rood n. 
Indeed, choose )~a = 1, 2 h-, = - �89 6 k, 2 h, = - �89 @ and 2g zero elsewhere, then 

i-. 451/"(g g')>__0 
g,g' 

becomes 

Re {3_k_k, 451/n(hh')} < 1 --4e. (3) 
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Because h h'e (9~ it belongs to some (9~ and (3) can only hold i f j  = (k + k ')mod n. 
Suppose now that ~b 1/" is discontinuous, then, as @*/" is positive definite, 

it must be discontinuous at g = e (Remark 1.4.0). As q~l/, is uniformly bounded 
by ~b~/"(e)= 1 we can find a net (g,)~ in N converging to e such that lim eb~/"(g~) 

=~=#1. Since ~=(~b~/")" and lim ~(g~)=l  we have that 6 = ~  k for some 

ke {1 . . . . .  n - 1 } .  Therefore g~ belongs eventually to (_9~. By the continuous divisi- 
bility of the group there exists a net (h~)~ converging to e such that eventually 
g~=h~". Therefore h~, m =  1, 2, ..., n, belongs eventually to (9~ and h= belongs 
frequently to some (9 j. It then follows from the argument above that frequently 

g = h n f f ( o n j m o d n  o 

which contradicts that eventually g~ e (9~, k ~ 0. 
Hence ~ / "  cannot be discontinuous. C] 
Before proving the analogous result for mappings we introduce some useful 

notations. 
Let ~ be the set of all n-tuples (gl . . . . .  g,), gie(q, i=  1, ..., n, n ~ N  where 

a 0-tuple is the empty set. ~ is a semigroup for the composition law: 

where 

(/I, A')e~ x a3~a x a'ea~ 

A = a ( g ,  . . . .  ,g , )  

a ' =  (gi ,  --., g ' )  

x 4 '  = ( g l , - - . ,  g, ,  gl  . . . . .  g;,) 

Furthermore ~ is equipped with a natural involution induced by the group 
inversion in f#: 

*: ~--+~: A = ( g l , . . . , g , ) ~ - + A * = ( g f  ~ . . . . .  g?~). 

If X is a function on f# with values in the linear operators (possibly unbounded) 
on some hilbert space we will use the notation 

X ( A )  = X(g,) X(g2)... X(g,) ,  A = (g l , . . . ,  g,) 

if such a product is well defined. Finally by convention X(~b)= 11. 

Theorem 1.9. Let (Jr ~, ~b, (2) be a continuous C.P. triplet on a continuously divisible 
group ~. 

I f  (jg~i/,, g91/,, (21/,) is a nth-root o f  (J~, go, (2) (in the sense of  definition 1.6.), 
then it is continuous. 

Proo f  Let A e~.  As ~b is C.P. the function 
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is positive definite. If (jr ~1/,, f21/,) is a nt<root of ( ~ ,  ~, [2), we have that 

<~(A) ~I ~(g) ~(A) ~>--(<~I/"(A) ~W/" I ~l/"(g) ~l/n(A) ~l/n>)n 
and 

g ~ f# ~+ <~I/,(A ) f21/, I ~l/,(g) ~ba/,(A) f21/,> ~ff2 

is again positive definite. From lemma 1.8 it now follows that for n~N0,  A s@ 

g~__>(~ l / . (A  ) Qn,,i ~l / . (g ) ~I/,,(A ) QII,,> (4) 
is continuous. 

Because span{4~l/"(A) f21/" ] A c@} is dense in ~ 1 / ,  and [I ~l/,(g)II < 1 for all 
g e ~f, the mapping 

will be continuous if we show that for any A e ~  

geffF--~l/n(g) q)l/n(A) (2ilnE~il  n 

is continuous, but this is an immediate consequence of (4) and the inequality 
(1). []  

We now give an example which will be followed throughout the paper in 
order to illustrate various constructions. 

1.5. An Example 

Let H be a complex hilbert space. The scalar product <. ].> defines a symplectic 
form 

on H. The Heisenberg group H~ is then given by H~= {(4, 0)l ~eH,  0eN}  with 
composition law 

(~1,01)(42, 0j=(~l +42, 01 + 02-~(41,42)). 

Note that (0,0) is the neutral element and that ( -  4, - 0) is the inverse of (4, 0). 
Moreover the group is non-commutative. H~ becomes a topological group if 
equipped with the product topology of H x IR. 

For  any complex hilbert space H one constructs the symmetric hilbert space 
5f(H) (also known as Fock space, exponential space,.. .) as follows [-Gui]. 

~(H) = @/-I, 
n~N 

where Ho =(12 and H,  is the symmetric subspace of |  H, n ~ N  o. 5P(H) is gener- 
ated by the exponential vectors {Exp t/l~/eH} given by 

t l  

| ~ 
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where 

Notice that 

|176 
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(Exp q[Exp ~/') = exp (q ] t/'). 

Furthermore the exponential vectors are mutually linearly independent. Also 
if H=H1 �9 He there is a natural isomorphism 6e(Ha) | 6e(H2) --, 5e(H) given 
by Exp q)x |  ~02~--~Ex p q)a (~ q)2, (Pi~Hi, i= 1, 2. 

We now define a class of C.P. mappings on H, .  Let ceN~ + and R, Q ~ ( H )  
be such that 

(i) Q = 0 
(ii) I c - R * R [ <  Q. 

Define 

= Y (Hn) c 5 e (H) where Hn = Ran R 

O = Exp 0 

~R, Q,c(~, 0) Exp t /=exp( icO-- �89  ~[(R* R + Q) ~) - (R~]~) )  

Exp(~ +R~),  tl~HR, (~, O)~H,,, 

One can check that (~:4 ~, ~R,e,c, f2) is a continuous C.P. triplet on H ,  [DVV]. 
This triplet is infinitely divisible, indeed for any n c N 0  its n th root is given 
by (~f~, ~R/I~,Q/N,r s 

II. Structure of Infinitely Divisible Completely Positive Triplets 

II.1. Mappings ofType S 

The aim of this subsection is to give some general properties of mappings of 
type S. Such mappings generalise those considered in l-Gui] and arise naturally 
in the study of infinite divisibility. 

Definition II.1. Let 240 and 2r ~ be complex hilbert spaces and 6 e ( ~ )  and 6P(~)  
their corresponding symmetric hilbert spaces. A linear operator C: 
J ( ~ )  ~ ~9~(Sf) with Span {Exp q l q s ~ }  ~ D o m  C is said to be of type S if it 
maps exponential vectors into multiples of exponential vectors, i.e,, if there exist 
mappings 

7: Y f ~ ; :  r/~--'7(q) 

F : ~ f  ~ 2r ~ ~--~ F(~) 
such that 

C Exp t/= 7 (q) Exp r(q). 

Proposition 11.2. Let C: J(J/g) --+ 5~(~I) and its adjoint C*: 5P(Y) ~ 5P(~)  be 
operators of type S. There exist 

O) 7~C 
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(ii) f i~S(,  fl*~g/d 
(iii) a bounded linear operator, A: ~ ~ X 

such that 

C E x p q = T e x p ( f i * l q ) E x p ( f l + A t l ) ,  ~ I~H 

C*Expff=Texp(/31~)Exp(fl*+A*O, ~ .  

Proof. As C and C* are of type S there exist mappings 

qeJY~-~F(~ / )~  and ~sJt%--~F*(~)e~ 
such that 

C Exp t/= 7 (t/) Exp F(q), r I ~ ~t ~ 

C* Exp ~ =7"(~) Exp F* (~), [ ~ .  

One has then for t/~ JY, ~ s (  

7 (t/) exp ( ( I F  (t/)) = (Exp (]C Exp t/) 

= (C* Exp ~1Exp q) 

= 7* (() exp (F* (() ] ~). 

Putting in (5) successively ff = 0 and t/= 0 it follows that 

M. Fannes and J. Quaegebeur 

(5) 

( r * ( O ) l r l ) + ( ( l r ( n ) ) = ( ( l r ( o ) ) + ( r * ( O l n ) + 2 z i N f f l ,  O. (7) 

Writing out (7) for q = q l + r h  and subtracting the same expressions for ~/=ql 
and t/= ~/2 one obtains 

(~ I r(~l  + ~2) - r(~ 1) -  r(~2) + r(0))  

= 27z i(N(~/1 +/72,  ( ) - - N ( r / 1 ,  ~)--N(~/2,  ~)). (8) 

As N takes values in Z this can only hold if 

N ffh + 172, ~)-- N (rh, ~)-- N (q2, ~) = O. 

such that 

7(q) = 7"(0) exp (F* (0) I ~/), ~ 

7" (~) = 7 (0) exp (F(0) I ~), ffEZU. (6) 

If 7(0)=0 then one has C =  C* = 0  and the proposition follows trivially we can 
therefore assume without loss of generality that 0 4= 7(0)= 7*(0). Inserting (6) 
in (5) leads to 

exp((F* (0) ] q)  + (~ I F(~/))) = Exp ((~ [ F(0)) + (F*  (~) ] ~/)) 

and so there exists a mapping 

N: ~ x de" ~ Z :  (t/, ~)v-~N(r/, () 
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Fix now t / e d ,  ffe2U one has then for any k e n  

U(n, 0 =2~ N( 2 -~  ~, ~) 

and therefore N(t/, ~)=0. 
From equation (8) it now follows that 

r ( ~  + 72) - r ( q 0 -  r(~2) + r(0) = o 

or equivalently that 

is a linear operator. 
Finally using (7) one concludes that also 

ql,  Y/2eJ~ 

379 

is linear and that 

( ~ l A q ) =  (B~ltl) ,  t / e d ,  ~e~# 

(~]At/)  = (B(]~/), t / e d ,  ~ e ~ .  

Therefore A is closed and, as it is everywhere defined, bounded. Moreover B = A*. 
Putting now 

wef indtha t  7=7(0), f i=F(0) and B*=F*(0)  

CExpt l=yexp( f i* lq)  Exp(Atl+fi), t i e d  

C* Exp ~ = y-exp (/31 ~) Exp(A* ~ +/~*), ( e ~ .  []  

Proposition II.3. Let C: 5P ( d )  ~ 5e ( d )  and C*: 5 P ( d ) ~  ~ ( d )  be linear opera- 
tors of type S. C is bounded if and only if 

CExptl=Texp(f l*l t l )  Exp(Aq+fl), tle~d 
where 

(i) 7eC 
(ii) A: d ~ Y is a contraction 

(iii) / ~ e S , / ~ * e d  are such that fl* + A* f l e R a n ( ~ - A *  A) 1/2. 

Proof By Proposition II.2 there exist 7eft;, f l e d ,  f i * e d  and a bounded linear 
operator A: d ~ ~,U such that 

C Exp t/= 7 exp (fl* Iq) Exp(fl +Aq),  t / e d  

C* Exp ~ = ~-exp (fl] ~) Exp(fi* +A* ~), ~eoU 

(i) Suppose that C is bounded then for t / e d  

I[ C Exp ~ [I 2 = ]7] 2 exp {(fl* [q) + (7 [fl*) + [[Aq +fl  1[2} 

=< I[CI[ 2 l] gxp t/II 2=  [] CH2 exp IIt/]l 2 

and therefore there exists a constant M such that 

(q IA*A- - t ) r l )+2Re(r l IH*+A*f l )<M,  ~led.  (9) 
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Condition (9) is equivalent to 

i) [IAII <1  
ii) I(71fi*+A*fl>12<M(7I(4-A*A)7>, 7 ~  (10) 

Let 7 now be an arbitrary element of Ran {(11 - A* A) 1/2 ]X'eKer(a -A'A)} then by (10) 

1((4 -- A* A ) -  1/2 7lfl* + A* fi)l 2 < M ( 7 [ 7 )  

and so 

fl* + A* fie Dom {(4 - A* A)- 1/2 IJ~(~Ker (~ -- A 'A)}  

or 

fi* + A* fie Ran(4  - A* A) 1/2. 

(ii) Suppose conversely that L[ A[I < 1 and that there exists a 7o s W such that 

fl* + A* f l=(4-  A* A) 1/2 qo. 
Define for 0 < 2 < 1 

C~ ExpT=Texp(fl*17) Exp(fi+ 2 A7), 7~2/~. 

By a simple computation 

C* C~ Exp 7 

=]712exp((fl*+2A*fl[7)+llfll12)Exp(fi*+2A*fl+22A*A7), tl~2,~. 

It is straightforward to check that for 71 ~4~ 

U(70  Exp 7 = exp(-�89 (7117)) Exp(71 + 7) t / ~  

extends to a unitary operator on 5~(~)  with adjoint U*(71)= U ( - 7 0 .  As ][A][ 
__< 1, 4 - 2 2  A*A has for 0__<2< 1 a bounded inverse. Choosing now 

71 = _(~__ 22 A'A) -  t(fi, + 2A*fl) 

one verifies that for 7 ~ 

U(71) C~ CA O*(71) Exp 7 

=1712exp(llfl]12+ll(~_-)LaA*A)-l/2(fl*+)~A*fl)[12)Exp22A*Atl. (11) 

The operator 

Exp 7~--~Exp 22 A 'AT,  7e2/g 

is easily seen to be equal to 
n 

+ ( @ 2 2  A* A)[~. 
n=O 
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n 

(where J((, is the symmetric subspace of @ J r  ~) and has therefore norm one. 
It follows then from (11) that 

II c ~ / 2 =  I71 z exp(llBl[~ + I1(1 _~2  A.A)-~/2( f i .+)~A. f i )[ I2) .  

As for 1] A I1 < 1 and 0_<_ 2 < 1 one has 

and 

it follows that 

(1 - )~)2 (11-)~2 A 'A)  -1 __<_11 

01--2 z A * A ) - l ( 1 1 - A * A ) < 1 1  

[[(l--)~ 2 A* A ) -  I/z(fl* + 2A*  fi)I 2 

= I (~ - 22 A* A ) -  1/2 ((~ _ A* A) 1/2 *1o -- (11 -- 2) A* fi)[[ 2 

< 2  I1(~--)o 2 A ' A ) - 1 / z ( 1 1 - A * A )  1/z qo II 2 + 2  I[(1 - 2 ) ( t -  22 A ' A ) - 1 / 2  A,  fill2 

< 2  []r/o 112-t-2 ][fill 2 

Therefore 

II Cxll2 <1712 exp(2 It~o 112 + 3/~112) (12) 

For qEx4 ~, and ~ 2 U ,  we have now 

lim (Exp ~ I C~, Exp q ) = (Exp ~ [ C Exp ~/) 
) .~ '1  

and as Span { Exp q [ q ~ ~ } ,  Span { Exp ~ [ (~ ~ } are dense in ~ (J,~) respectively 
5P(~)  we have using (12) that C is bounded. In fact 

IIC/2=l~[2exp(llflll2+ inf Iltloll 2) [] 
3*+A*fl=('~ A*A)l/2tlo 

We now consider specific cases of type S mappings. If 24~= • the set 
{(7, fl, fl*, A)[7~C, A e ~ ( W ) ,  [[A]I< 1, fl, fi*~W, f l * + A * f l 6 R a n ( t - A * A ) l / 2 } ,  of 
type S operators generates a C*-algebra determined by the following product 
and involution rules 

(7, fi, fi*, A)(7', fl', B*', A')= (7 7' exp (fi* l fl'), fi + A fi', fi* '+  A'* fi*, AA') 

(7, fi, fl*, A)* =(7, fi*, fl, A*). (13) 

From this we immediately recover the type S representations of groups, 
which were considered by Guichardet [-GuiJ, as mappings 

: ~ --+ ~ (s~ ( ~ ) ) :  g ~ (c=, ~=, - u,_, ~,, G) 
where 

(i) g ~ Ug is a unitary representation of N into ~# (24 ~) 
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(ii) g~--* ~ g ~  satisfies the following cocycle relation 

~g ~g, = ~g+ Ug ~.g,. (14) 

(iii) g~--*cgOE satisfies 

cgg,=cgcg, exp-<r  G ~g')" 

Another class of type S mappings 5~(YF)--*SP(S) which will be of interest 
in the sequel are the type S isometrics which are easily seen to be given by 
(% f i , -  W* fi, W) where W: ~ ~ c (  is an isometry and [~12 exp II fill 2= 1. 

II.2. Some Preliminary Lemmas 

It is well known [Pa] that continuous infinitely divisible positive definite func- 
tions on a connected group never vanish. We now generalise this property to 
C.P. triplets. Using the notation introduced just before Theorem 1.9 we have 
the following lemma. 

Lemma IL4. Let ( ~ ,  ~b, Y2) be a continuous infinitely divisible C.P. triplet on a 
connected group (~. For all A ~ we have that 

{<~I~(A)~>I>O. 

Proof The proof uses an induction argument on the length # (A) of the n-tuple 
As~.  

(i) For  ~ (A) = 1 the situation reduces to that of infinitely divisible positive 
definite functions. The proof can be found in [Pa]. 

(ii) Suppose that the result holds for n-tuples of length k then we show 
that it is also valid for n-tuples of length k +  1. Let A ~  be such an n-tuple 
and write A = {g} x A' where g ~  and A' is an n-tuple of length k. 

Let (3f q/", rct/", V l/n) be the Stinespring triplet associated with the nth-root 
( j : l / , ,  q~/,, (2~/,) of (~,~b,~?). Choose 2 , # ~ E  such that I,~I=1#1=1 then by 
the triangle inequality: 

II ~ Vl/n ff~l./n __#~l/n(g) vl/n (l)l/n(A,) ~l/n II 2 

2 [[ 2 v ~/~ ~211~ - ~t/,(g) v l / ,  f21/. II 2 

+ 2 II ~l/ .(g) ge/n ff~l/n ~7~l/n(g ) ml/n (I)l/n(A,) ff~l/n II 2. (15) 

We now compute the different terms which appear in (15): 

LI ~ g *i~ ~:211n -- # rdl"(g) Vii" ~ii"(A') Q:I. II 2 

= i ~- [I If~l/n( A t) ff~l/n II 2_  2 Re 2 .  <~'/"1 @'/"(A) 0 ' / 9  

II 2 V 1/~ Q1/._ 7zl/.(g) Vt/. f21/n H 2 = 2-- 2 Re X< f21/" t ~l/.(g) f21/.} 

]] ~l/n(g) v1/n ~l/n__ #~l/n(g) v1/n r (A t) ~l/n 112 

= i + l] ~/n(A') Q1/,, l[2_2 Re #(f21/"[~/"(A') Q1/,,). 

(16) 
(17) 

(18) 
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By choosing appropriate phases for 2 and # and inserting (16), (17), (18) in 
(15) we then obtain the following inequality: 

1 -I<~l/"lq,1/"(A) C~1/">1 < 2(1 -I<fal/" I ~a/"(g) ~a/")l ) 
+ 2(1--I<U2~/"I~I/"(A') K2a/")I ). (19) 

As (jgl/ . ,  ~1/., 121/.) is a nt~-root of (2/~, ~, f2) we have for any X 6 N  

I<~i /" laJ~/"(x)  fat/">l = I<~1 ~ ( x )  ~>1 ~/". (20) 

Multiplying (19) by n, using (20) and taking the limit n--+ oo we then obtain: 

- i n  I<Cal ~(A) ~>l < - 2  in I<~71 @(g) ~7)1- 2 In I<~71 ~(A') ~?>l 
<(DO 

by the induction hypothesis. 
Hence 

I<~l~(A) ~)1>0 .  []  

Lemma II.5. Let f :X ~ C be a continuous function on an arcwise connected topo- 
logical space X such that 

f(x)q=O forall x E X  and f ( x o ) = l  forsome xoEX. (21) 

Then for each n e N o  there exists at most one continuous function f ,:  X ~ C  
such that (f,)" = f and f,(xo) = 1. 

Furthermore, if for all n e N o  such a function f~ with the properties mentioned 
above exists, then there exists a unique continuous function v: X ~ C such that 

f = e x p  v, V(Xo)=0. 

Moreover for all x E X  

v(x) = lira n ( f . ( x ) -  1) 
i t  --+ oo  

and 

v(x) 
f.(x) = exp - -  (22) 

n 

Proof First remark that a continuous function f: X ~ C satisfying (21) admits 
at most one continuous nth-root f .  with f . (xo)=  1, nENo. 

Indeed suppose that both f .  and f.' are continuous nth-roots o f f  with f.(xo) 
=f ' (xo)  = 1. Define O(.')(x) by 

f~ ' )(x)  = If~')(x)l exp iO(.')(x). 

As (f.)" = (f2). = f  and I f(x)l > 0 we have that exp in (0. ( x ) -  0'n (x))= 1 and there- 

fore there exists a k(x)~7l such that O.(x)-O'.(x) - 2 n k ( x )  But the function 
n 
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x ~-~f, (x)/f" (x) = exp i(0, (x) - 0', (x)) = exp - - 2  zc i k (x) is continuous on a connected 
n 

space and takes the value 1 in Xo. Therefore k (x )enZ ,  so f ,  =f , '  
To show the lemma fix now x e X  and let z: [-0, 1] - - .X be a path in X 

connecting Xo and x. Then t~-+~(t)=f(z(t))/[f(z(t))l is a path in the 1-dimensional 
torus with ~(0)= 1 and hence by the Covering Path Property there exists a 
unique path q5: [0, 1] ~ IR with q~ (0) = 0 such that z = exp i ~b. Put now 0 (x) = q5 (1). 
Then f ( x ) =  [f(x)l exp iO(x). We have to show that O(x) is independent on the 
choice of the path -c. Consider therefore another  path z' connecting Xo and 
x and let ~b' be the corresponding path in N and O'(x) the corresponding number. 
As f ( x ) =  If(x)l exp iO(x)= If(x)] exp iO'(x) there exists a k~Z such that 

O'(x) = O(x) + 2Irk. (23) 

The functions t~-~ ]fkl + 1 (z(t))l exp iO(t)/(Ikl + 1)) and t ~--~f(k)+ 1 (z(t)) are both con- 
tinuous (Ik[+ 1) th roots of t~-*f(z(t)) taking the value 1 in t=0 .  Hence by the 
remark in the beginning of this proof, we have that flkl+l(z(t))=lfkl+l(z(t))] 
exp i~(t)/(Ikl+ 1) and of course the same relation holds for ~' and qS'. Taking 
t--  1 and using (23) we then find 

exp iO(x)/(Ikl + 1)=exp iO' (x)/(ik[ + 1) 

=exp  [iO(x)/(Ikl + 1) + 2rcik/(Ik[ + 1)] 

which implies k = 0 and therefore O(x)= O' (x). 
Moreover,  it can easily be seen that xw-,O(x) is continuous. 
Summarizing, we have now shown that there exists a unique continuous 

function x ~ O(x) such that 

0(xo)=0 
f ( x )  = I/(x)l exp iO(x) 

O(x) 
f ,(x) = [f,(x)l exp i - -  

n 

Now it follows immediately that x ~ v (x)= In If(x)] + i O(x) is the unique continu- 
ous logarithm for f with v (xo) = 0. Clearly also (22) holds. []  

Applying the first part of Lemma II.5. to C.P. triplets we find: 

Corollary II.6. Let ( ~ ,  ~, f2) be a continuous C.P. triplet on an arcwise connected 
group f4. Then ( ~ ,  ~b, s has, up to unitary equivalence, at most one continuous 
n th root. 

Proof. Suppose (~1, 4~1, f21) and (~2,  ~[~2, ~"~Z) are two continuous n th roots 
for (2((, ~, g?). Then we have to show that 

for all A ~ 9. 
Take A e ~  with A =t= ~b and put k =  @ A. Let X = f q  x fq x . . .  x fr (k times) 

and x o =(e, e . . . .  , e). When X is equipped with the product  topology of fr it 
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becomes an arcwise connected  space. Define f :  X - , C :  A - ,  ([21@(A) [2 > and 
fj: x -, ~;: A + <Osl %(A) ~s>(J= 1, 2). 

Then  f f l  and f2 are cont inuous,  f ( xo )=f l ( xo )=f z (Xo)=l ,  and f = ( f 0 "  
= (f2)". F r o m  L e m m a  II.5. it now follows that  f l  = f 2  which proves the result. [ ]  

Definition II.7. A cont inuous  infinitely divisible C.P. triplet (2(f, ~, ~2) on an 
arcwise connected  group  fr is said to satisfy condition C if it has cont inuous  
n t h  roots.  

We have seen that  the cont inuous  n TM roots  of a cont inuous  infinitely divisible 
C.P. triplet on an arcwise connected  g roup  are necessarily unique (up to uni tary  
equivalence). M o r e o v e r  if the group,  on which the triplet is defined, is contin-  
uously divisible, then condi t ion  C is always satisfied (cf. Theo rem 1.9.). 

As an immedia te  consequence of the second par t  of L e m m a  II.5., we now 
have:  

Corollary II.8. Let (~r162 ~, /2) be a continuous infinitely divisible C.P. triplet on 
an arcwise connected group f~. I f  (Jr ~, ~, (2) satisfies condition C, then there 
exists a unique continuous function d 

such that 

(i) (~1 ~(A)/2> = e x p  da 

(ii) da+=0 where Ae is any n-tuple of the form (e, e . . . .  , e) 

Furthermore, 
(Qi/n I ~l/n(A ) Q1/n) = e x p  da/n. 

(24) 

(2s) 

Using this funct ion d we can now construct  two positive kernels. 

L e m m a  II.9. Let (Jd, ~, [2) be an infinitely divisible C.P. triplet satisfying condition 
C on an arcwise connected group (~ ad let d: (~ -,112 be as above, then 

(i) kl(A, A ' )=da .  •  is a positive kernel on 9. (26) 

(ii) k 2 ((g, A), (g', A')) = da, • (g-, g,) x A' - -  dA, x re- i) -- dig,) • a' (27) 

is a positive kernel on ff x 9. 

Proof (i) will immediate ly  follow from (ii) by put t ing g = g' = e in (27) and observ-  
ing that  ~b (e) = 11. 

(ii) Let  (J4 ~1/", ~1/,, f21/,) be the n th roo t  of ( i f ,  ~b, O) and take 

z. = ~ ~g,~(~l/.((g) x A) O1/._ O~/.)e~l/.. 
g ,  A 

Then,  

0~n  tlz.llZ=n ~2 2g,~ ~-g',a+E<g21/"[ ~1/"( A* x (g-1) • (g) • A3 Q1/"> 
g ,  A 

g ' , A '  

+ i - <~1/"1 ~'/"(~* x (g-1)) am/.>_ <~1/. I ~l/.((g,) x A') o1/n>]. 
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By the 2-positivity inequality (2) the first term can be majorized to get 

O ~ n  2 Xg, A "~g',a '[((~'~l/nl(l-D1/n(Z]* x(g -1 g')xA')Q1/n) - 1 )  
g,A 

g',A' 

- ( ( F 2 1 / + [ ~ l / ' ( A  * x ( g -  1)) f2 , /~)  _ 1) 

_((Q1/n[ ~l/n((g,) X A') Q1/n) __ 1)]. 

Taking now the limit n + oo and using (25) we get 

~2 Zg, a 2g,,a,(da.•215215215 
g,a 

g', ,:1' 

[]  

Given a positive kernel (x, y ) e X  x X~+k(x,  y)e(E on a set X one constructs 
in a standard way a Hilbert space. The kernel k extends to a positive sesquilinear 
form on the complex free vector space V(X) generated by X: Let Vo 
---{ueg(X)lk(u, u)--0}. By hil(X, k) we denote the completion of V(X)/Vo for 
the scalar product induced by k. By abuse of notation we will denote the elements 
of V(X)/V o by u instead of u +  V 0. Also the scalar product in hil(X, k) will 
be denoted in the conventional way ((-1. )). 

11.3. Structure Theorem for Infinitely Divisible C.P. Triplets 

We are now in a position to describe the general structure of infinitely divisible 
C.P. triplets and their Stinespring decomposition. More precisely we will show 
that any such mapping, as well as its Stinespring decomposition, extends to 
a mapping of type S. 

Lemma II.10. Let (2/g, q~, ~2) be a continuous infinitely divisible C.P. triplet satisfy- 
ing condition C on an arcwise connected group ft. Denote by (K, ~, V) its Stine- 
spring triplet. Let H l = h i l ( ~ ,  kl) and H 2 = h i l ( f f x f f ,  k2) where kl and k2 are 
defined from (24 ~ 4~, g2) by (26) and (27). 

Then 
(i) VI: 5C ~ ~9~ ~(A) O~-~ (~21 q~A f2) Exp A extends to an isometry. 
(ii) V2: 5( (~9~ V~(A) Y2~-~(Y214~(A) g2) Exp(e,A) extends to an 

isometr y. 
(iii) W: H 1 ~ H2: A ~-~(e, A) extends to an isometry. Its adjoint is given by 

W*: H2- -+HI :  ( g , A ) ~ ( g ) x A  

(iv) The mapping U: (~ ~ 6g(H2): gl--+ gg with 

U~(h, A)=(gh, A) - (g ,  q~) 

is a continuous unitary representation of (r on H2. 
(v) z?: ff ~ag(~ga(H2)): gv-+~ with 

~g Exp r/= (f2 ] ~(g) f25 exp ( (g-  1, qS) [ r/) Exp(Ug r/+ (g, qS)), r /EH 2 

(28) 
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defines a continuous unitary representation of type S of ~ o n  ~ga(H2). In terms 
of the quadruplet notation for type S mapping we introduced in (13) we have 

~g =((s qS(g) s ~b), (g- 1, ~b), U.) (29) 

(vi) The mapping A: (~--+~(H1): g~-~Ag given by 

Ag A = (g) x A -- (g) 

is continuous, normatised and C.P. 
(vii) ~:  f f ~ ( S g ( H 1 ) ) :  g~-+~(g) where 

~(g) Exp ~ = (s ~(g) O) exp ( (g-  ~) I {) Exp(Ag~ + (g)), ~EH1 

is a continuous, normalised C.P. mapping of types S. In terms of the quadruplet 
notation we have 

~(g) =(<s ~(g) s (g), (g- 1), 4 ) .  

(viii) The objects above are related by the following equations 

Ag = W* U+ W (30) 

(g) = Exp W* fig Exp W where Exp W= (i, 0, 0, W) (3I) 

V= V* Exp WV, (32) 

~(g) = V* fig V 2 (33) 

6~(g) = VI* ~(g)  V1 " (34) 

Proof (i), (ii) and (iii) follow from (24), (26) and (27) and the observation that 
the normalisation of �9 implies that dA • {e) • a' = d4 • 4, for all A, A' e 9. For instance 
(ii) is shown as follows: for all A, A ' e ~  we have that 

((s ~(A) s Exp(e, A)] (s ~(A') s Exp(e, A')) 

= (s ~b(A*) s (s 4,(A') s exp ((e, A) ] (e, A')) 

= (s 45 (A*) s (s ~(A') ~2) exp(da. • ~) • 4, - d4* x ( e )  - -  d(~) • 40 

= (~ (a )  s ~(d') s = (V ~(A )  s v~(~' )  s 

(iv) Using (27) one checks that for all g, h, h ' e ~  and A, A'e.~ 

((gh, A)-- (g, qS)I(gh' , A')-(g,  ~b)) =((h ,  A)I (h', A')). 

Hence Ug is well defined by (28) and isometric. Also Ug U,, = Ugg, and as U~ = ~, 
U is a unitary representation. The continuity of U follows immediately from 
the continuity of d 

(v) One verifies straightforwardly that the quadruplet (29) satisfies condition 
(14). 

(viii) For  A e ~  we have that 

w *  u~ w a  = w *  ~(e ,  a ) =  w*((g, ~ ) - ( g ,  ~)) 
= (g) • A - (g), 
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which proves (30) and by Theorem 1.3 as well statement (vi). One derives (31) 
and (vii) easily from 

Exp W* ~ Exp WExp 

= Exp W* rcg Exp W[ 

= Exp W* ( ~  I r exp ((g-1, q~)l W~) Exp (Ug W[ + (g, q~)) 

= (O I q'(g) O) exp ( W* (g- l, qS)] ~) Exp(W* Ug W~ + W* (g, ~b)) 

= (f2I~(g) f2 ) exp((g-*)[~) Exp(Ag ~+(g)). 

The statements (32), (33) and (34) are proven by analogous calculations. [] 
The preceding results can be summarised in the following theorem. 

Theorem II.11. Let ( ~ ,  q~, f2) be a continuous infinitely divisible C.P. triplet 
satisfying condition C on an arcwise connected group f~. Denote by (~Y~ re, V) 
its Stinespring triplet. 

Then there exist 
- symmetric Hilbert spaces ~9~ and 5a(H2), 
-- an isometry W: H1 --* H2 
-- a continuous C.P. mapping of type S: ~: ~--+ ~(~9~(H1)) 
-- a continuous unitary representation of  type S: 

fc: ~ ~qI(SP(H2) 
such that 

- ( ~ ,  4, O) is unitarily equivalent to (~(Hx)c, ~c, g x p  0) where 

6P(H~)~ = [{$(f~)}" Exp 0] 

'b~(g) = $ (g)ls~m)o. (35) 

_ (~r, 7r, V) is unitarily equivalent to (6P(Hz)c, ~c, (Exp W)~) where 

6e(H2)~= [{~(N)}" Zxp WSa(H~)~] 

(Exp W)~ = Exp Wig(nOt. (36) 

Moreover the minimal objects (SP(H0, ~, Exp 0) and (5~(H2), $, Exp W) which 
satisfy (35) and (36), are unique up to unitary equivalence. We call them the canoni- 
cal forms of the triplet and the Stinespring decomposition. Their explicit construc- 
tion is given in the previous lemma. 

The various relations between the objects introduced in Lemma II.10 and 
Theorem II. 11 can be summarised in the following diagrams. 

~_i~ I Ag ) HI 

H2 ' H2 v, 
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Exp W V 1 

X 

~,/42) 

(g) 

�9 (g) 

(g) 

(g) 

Iv, 

, ~ ( H 2 )  

389 

Exp W* 

II.4. Example 

Here we will illustrate Theorem II.11 for the infinitely divisible triplet (~(HR), 
~g, e,c' Exp 0) introduced in Sect. 1.5. 

One easily computes that 

dz =ic ~ 0 . 1  ~ k 2 ~' <~jI(R*R+Q)r ~ <R~iIR~j> (37) 
j= l  j= l  l<i<j<k 

for A = ( ( ~ ,  01), ... , (~k, Ok))~'~" 
Now it follows immediately that the triplet is already in its canonical form. 

Indeed, one has 
k k' 

kl(A,A')=<R ~ ~il R ~ 4)>. 
i=1 j=l  

Hence, using the notation of Theorem II.11 and Sect. 1.5, we have HI=H R 
and $ = q~R, e, c. 

We now compute the canonical form of the Stinespring decomposition. First 
observe that 

k2 ((g, A), (g', A')) = (S~ ~[S~ ~') + <82 ('1S2 ~> 
k' 

-~-(i (~-~-~-~i=1 ~i) e(~'-l-j~=l~J)>"= 

where g=(~, 0)eN, A and A' are as above, and $1 (resp. $2) is the positive 
square root of Q+c--R*R (resp. Q--c+R*R). Hence H2 can be identified as 
follows. Let Hs~ (resp. Hs2) be the closure of Ran $1 (resp. Ran Sz). We denote 
by Hs2 the conjugate Hilbertspace of Hs2 i.e., /~s2 is as a set the same set 
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as Hs2, the identification mapping bein denoted by qeHs2~-+OeHs2. The addi- 
tion in Hs2 is given by 01+02=r / l+ r /2 ,  the scalar multiplication by 2 0 = 2 ~  
and the inner product by (Ot lO2)=(q21ql ) .  Then H2 is the subspace of 
Hs~ | Hs~ | HR generated by {(St ~, $2 ~, R ~')1 {, {'e H}. 

Furthermore, the representation r~ of the group H ,  on 5~(H2) reads as 

~(~, 0) Exp(r/~, Y/2, r/3) 

=exp[icO-l(~l(g*g+Q) ~ ) -  ((S, 4, $2~, R ~)l(r/1,02,//]3))-I 

�9 Exp(r/a + S ,  ~, (/2 +$2~, r/3 +R~).  

Moreover the isometry V: ~(H1)  --+ ~9r maps Exp q onto Exp(0, 0, 7)- One 
may check that indeed ~ (.) = V* ~ (') V. 

III. Logarithms of Infinitely Divisible Completely Positive Triplets 

In this section we will show how we can construct a logarithm for an infinitely 
divisible completely positive triplet�9 We hereby generalise the well known result 
that an infinitely divisible positive definite function is the exponential of a condi- 
tionally positive definite function. Due to the noncommutativity arising from 
consideration of general mappings instead of functions, the logarithm will not 
only be conditionally completely positive (in a suitable sense) but also enjoy 
properties which remained hidden in the case of functions where they trivialise. 

In a first subsection we will list the definitions of the objects and their proper- 
ties which will naturally arise in the construction of the logarithm�9 In the second 
we will characterise the infinitely divisible triplets as those admitting a suitable 
logarithm. Finally in the last section we will make the explicit construction 
of the logarithm for an example�9 

III.1. Conditionally Completely Positive Triplets 

Definition IliA. (i) A mapping 7": N ~ ~o(~ff) (=se t  of possibly unbounded 
linear operators on some Hilbertspace ~C having some common dense domain 
D c ~ )  is said to be conditionally completely positive if 

(ggl 7"(g-~ g') gg,) =>0 
g,g 'e~ 

for all choices of almost zero functions g ~ ~g e D such that ~ ~g = 0. 
ge(q 

(ii) We call (~ ,  71, f2 ~ a conditionally completely positive triplet on a group 
/f 7': (r S0(Jr) is a mapping from ~ into the (possibly unbounded) linear 

operators on a hilbertspace X and O~ is a normalized vector such that: 
- O ~  T(g) and 7"(A) O ~  7"(g) for all g~(r A e ~  
-- D=span{7"(A) O~ is dense in 
-- 7": (r ~D(~() is conditionally completely positive in the sense of (i) 
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- 7" is normalised in the sense that 7"(e)=0 
- D c D o m  7"(g)* for all g e ~ .  

(iii) A conditionally C.P. triplet (Jr, 7", ~o) is continuous if g~+({I 7"(g)*/) 
is continuous for all {, qeD. 

(iv) A conditionally C.P. triplet (Y,  7",~2 ~ is called hermitian if 
7"(g- 1) c 7" (g).. 

Remark that the case of conditionally positive definite functions is covered 
by the notion of conditionally C.P. triplet by taking 3 (  = C and /2o=  1 e~E. 

Definition l i t2 .  A conditionally C.P. triplet (3U, 7",/2o) on ff is called infinitely 
additive if for all ne]No, there exists a conditionally C.P. triplet (oU,, ~ ,  (2 ~ 
on ff and an isometry U,: J f  --+ | "~(, such that 

-U ,  D c  | where D,=span{~(A)O~ 
_ U./2o= |  ~,o 

..+ 

-7"(A)=U.* I1 (~(g)| ~ | ... |  +~ | ... | 174  %(g)) c. 
geA 

for all A e ~. 

(38) 
We call (a((,, ~ , / 2  ~ an nth-part of (J l ,  7",/20). 

Notice that in the case of conditionally positive definite functions 7-': N--, C 
the notion of infinite additivity trivialises. Indeed take •, = ~ ,  o /2, = 1 ~ ,  U, 
the isomorphism between C and | "C and ~ ( g ) =  q'(g)/n. 

Definition III.3. Given a mapping 7*: N--+ ~ (a4#) and a normalized vector/2oe a(( 
such that ~2 ~ and O(A) Qo belong to domain of 7"(g) for all g~N, Aa~,  the 
cumulants PA ~, A ~ of 7' with respect to ~2 ~ are inductively defined by 

P ~ = 0  

</2~ ga~ = Z [I  PI" 
pe,ga Aep 

(39) 

where ~ is the set of ordered partitions p of A into non empty sets A. 

Remarks. (1) Clearly P~ is a homogeneous polynomial in (~2~ 7"(X)/2o) of 
degree 4t: (A) if we put deg(/2~ 17*(X) ~2 ~ = 4t= (X), e.g., 

i / / _  p~=>_ <Qo 17"(g )/2o) 
~P __ ~g,h~- (~o [ 7"(g) 7"(h) ~0)_  (~o 17"(g) ~o) (/2o [ 7"(h) o%. 

(2) P~ generalizes the usual cumulants P~ which are defined by 

(it)" e.. AeY(JF) .  (/21e"A/2)=exp ~ nt "' 
n>=l 

Indeed, take 7"(g)=A for all ge.~, then P~=P~ whenever # (A)=n. 
(3) If 7' is a complex valued function, then P~ = 0 for all A with 4t= (A) > 1. 
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Lemma III.4. I f  (3((', T, (2 ~ is an infinitely additive conditionally C.P. triplet with 
n tb parts (~,,,, ~ ,  f2 ~ on a group fq, then the cumulants of T w.r.t, t? ~ satisfy 

(i) P~V'=limn<g2~176 >, A~\{qS} (40) 
n ~ o o  

(ii) PA~e- = 1 Pa~V, A e ~  (41) 
n 

Proof. First we prove the existence of the limit in (40) by induction on # (A). 
For  4~ (A)= 1, say A =(g), we have by infinite additivity of (~(, T, ~2 ~ that 
n(~?~ 7',(8 ) f2 ~ = <f2~ I T(g) f2~ Suppose now that the limit exists for all A e ~  
with # (A)<m. Take then a A e ~  with # ( A ) = m +  1. Now note that by infinite 
additivity we have for all A ~ 

( +(+ 
<~~176 | f2, ]-[ ~ | 1 7 4 1 7 4 1 7 4 1 7 4 1 7 6  __ n 0 

\ I g e A  \ j =  1 n /  

n! 
= Z (n-- 4# (p))t 1-[ <(2~ ~(A)(2~ (42) 

p e # , j  A e p  

Hence 
n <~~ n~ = <a~ f(A) r2~ 

n! 
- ~" (n -# (p ) ) '  H < ~ ~ 1 7 6  

p e ~ A  " A e p  
p,{a} 

(43) 

The limit for n ~ oo of the right hand side of (43) exists by the induction hypothe- 
sis since all A's that appear have # (A)< m; so the limit of the left hand side 
of (43) must exist as well. Denoting this limit by PA ~ and taking the limit n ~ ov 
of (42) it is also clear that (39) holds. 

Moreover, again by an induction argument on # (A) it follows immediately 
from (43) that PJ" is homogeneous polynomial of degree #(A) in <~2 ~ ] T(X) 
~2~ X c A .  Hence, the P]"s given by (40) are actually the cumulants of T 
w.r.t. (2 ~ 

It is straightforwardly checked that (Jg,, ~ ,  (2 ~ is infinitely additive and 
that its k th parts are given by (J~r,k, ~k, ~2Og) �9 SO by (i): 

P ~ - =  lim k <f2~ ~k(A) f20k ) = 1 lim nk (O~ ~k(A) t?Ok) _---- 1 pV" N A " 
k ~ m  n k ~ m  n 

III.2. Construction of  the Logarithm of Infinitely Divisible Triplets 

Lemma III.6. Let (d,~, ~, (2) be a continuous infinitely divisible C.P. triplet satisfy- 
ing condition C on an arcwise connected group ~. Denote its n th root by (Jr ~t/", 
~1/,, (21/,). Then, 

(i) f ( A )  =_ lim ( | O1/" I F, (A) | "01/") exists 
n ~ o o  
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where 

Moreover 

r. (g) = (o ~/" (g)-  t )  | ~. |  | ~_ + l | (01/" (g)-  i )  |  | ~ 

+ . . . + ~ |  . . .  | t |  

f(A)= Z ~I Z (--1)~(A\X)dx 
p ~ , ~  A~p  X ~ A  

(44) 

(45) 

where ~ is the set of ordered partition p of A into non empty sets A and where 
d x is given by (24). 

(ii) y(A, A')=f(A* x A') is a positive kernel on ~. 

Remark. If �9 is a function (i.e., ~ f  =G), then f ( A ) =  ~ v(g), where O=eL  
gEA 

Proof (i) Using the notation 

~, (g) = ~b 1/, (g) _ 1 (46) 

we can write 

--+ n 

f (A) = lim ( | f21/" 1~ ~ 01 | | G(g)j |  1l) | ~'~l /n)  
n-~oo gsA  j =  =1 

n! 
= lim ~. ( n -  ~(p))! ~[ (f211"I~'(A)Q~/") 

n--+ cx) pev~ A A e p 

n! = lim ~ (n-- :~(p))! l~ ~ (--1)#(A\X)<g21/nl(I)I/n(X)Q1/n)" 
n~co  pE~@zl A e p  X ~ A  

Now, as Aep is a non-empty set, we have ~ (-1)~(A\X)=0 and we can, using 

(25), rewrite f (A) as follows x=a 

n~ 
f ( A ) =  lira ~ (n-- #~(p))! ]~ ~ (-1)~(a\X)Vexp(dx/n)-l] 

n--+~ P ~ A  A~p  X c A  

= Z H Z (--a)~(a\X)dx 
pe~zl AEp X ~ A  

which proves (i). 
(ii) The proof  of (ii) is straightforward. [] 

Theorem III.7. Let (~f, O, s be a continuous infinitely divisible C.P. triplet satisfy- 
ing condition C on an arcwise connected group (r Using the notation of lemma 
111.6, let • = hil(~,~). 

(i) For all g ~ 
T(g): A EX~--~(g) • A eJ%~" (47) 

defines a linear operator on the dense subspace D = span {A ]A ~ }  of X 
(ii) Put f 2 ~ 1 6 2  then ( S ,  T,(2 ~ is a continuous hermitian conditionally 

C.P. triplet 
(iii) (SU, T, f2 ~ is infinitely additive and has continuous hermitian n th parts. 
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(iv) ( f ,  7 j, f2 ~ satisfies an additional positivity condition: 

((g, A), (g' A'))~ F~ P~ 
A ~ A * X ( g -  l g ' ) X 4 "  

is a conditionally positive kernel on ~q x ~. 

Proof. (i) If ~ 2A A = 0 in ~ ,  then ~ 24 (g) x A = 0 as well since 
d 4 

(4s) 

II ~, G (g) x A I[ z = ~ G 24, f (A * x (g -1  g) x A)* x A') 
A A,A '  

= ~, Z424,f(((g-l,g) xA ') 
A , 4 '  

= ( Z  24(g-1, g ) x A l Z  24, A')=O. 
4 4 '  

Hence ~(g) is well defined by (47). 
(ii) By construction f2~ 7J(g) and A = 7J(A) ~ ~  7J(g). Also 

O=span{TJ(A) f2~ ~ }  is dense in ~ .  
Furthermore, for all g ~ ~ g = ~  2g,4 A 6D with ~ ~g=0, we have, using nota- 

tion (44), 4 g 

g , g '  

= ~ Zg, aZg,,4, f(A*x(g-ag')xA ') 
g, g" 
A , 4 '  

= lim ~ 2g, ~ Zg,, 4, (Fk(A) (~k (21/klFk(g-~ g,) Fk (A') | ~'~l/k) 
k.-+ oo g , g '  

d,A" 

= lira ~, "~g, AZg,,A,(i'k(A)(~k~'~ 1/k 
k--* oo g , g '  

d , d '  

k 

~=1 (t  |  | ~a/k(g- 1 g,)j |  | 1) Fk(A' ) | t21/k) 

- lim Z 2g,4 ,~g,,zv(~(A)Q k Q1/klFk(A')Qk Q1/k). 
k--* oo g , g '  

A , d '  

The first term is positive by complete positivity of ~0 l/k, whereas the second 
term tends to 

2g,4 2g,,4,f(A* x A')= [[~ ~gl[ 2 =0. 
g , g '  g 
A,A'  

Hence (• ,  7 j, ~2o) is a conditionally C.P. triplet. 
From (45) and the continuity of X ~ - - ~ d x ~ C ,  it follows that 

g~C~--~f(A* x (g) x A')= (A I ~(g) A')  
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is continuous for all A, A ' ~ .  Hence (.~, 7 ~, f2 ~ is continuous. 
Moreover, as 

<A I g'(g) A')=f(A* x ((g) x A' )=f( (g  *) x A)* x A')= (~P(g -~) A IA'>, 

(24 r, ~, O ~ is hermitian. 
Finally, since f ( A ) = 0  as soon as eEA, it is clear that 7'(e)=0. 
(iii) Let ( ~ / " ,  4 ~1/~, Ol/,) be the continuous n 'h root of (~4 ~, qs, f2). Because 

(~ l / , ,  ~bl/,, Ot/~) is also infinitely divisible and has continuous roots, we can 
by (i) and (ii) construct with it a continuous hermitian conditionally C.P. triplet 
which we denote by (2U~, ~ ,  Qo). We prove that (S~, ~ ,  f2 ~ is the n th part 
of (:~, 7 t, ~2~ Note therefore that (use notation (44)) 

(~,(~) ~o I ~,(~,) ~o) 

= lim ( |  fp/k [ Fk(A, x d') | f21/k) 
k~oo 

= lim ( |  Q~/k,IFk,(A, | A,)| f2~/kn) 
k-~oo 

n ) t = l i m (  @k" O * / k " k - ~  \ ,g~a*• \ j=~lk+l '~@'"@t~kn(g)J  @ ' ' ' @ ~  @ k n ~ l / k n  

n! 
= lim 2 (n-- # (p))! H (@k~-21/k" 

k~oo p~#zl* x A, A~p I 

k 

g~A j= 1 

n! 
= lira ~ ( n -  :~ (p))! H ( @ k O 1 / k l F k n ( A ) @ k Q 1 / k n )  

k~~176 p~#~, x A, A~p 

n! 
= 2 ( n _ # ( p ) ) !  [ I < O ~ 1 7 6  

pe~,j, x z~, Aep 

= | I1 Y ~ | 1 7 4 1 7 4 1 7 4 1 7 4 1 7 6  
\ ig~a*xA, \ j = l  

= I]  ~ ~| | ~ ( g ) j | 1 7 4  
\gsA \ j =  1 

H ~ | 1 7 4 1 7 4 1 7 4  |  . 
g'ea '  j 

This implies that the mapping 

~(A) Q ~  ~| | %(g);| | Q~ 
geA j =  1 
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is well defined and can be extended to an isometry Un: Y - ~  |  It is now 
clear that (38) is satisfied. Hence ( ~ ,  7 ~, f2 ~ is infinitely additive and has continu- 
ous n t5 parts. 

(iv) By comparing (39) and (45), recalling that f (A )= ( f2 ~  kU(A) f~o) and 
observing that p o = d4 = 0, we have for all A e 

P~= ~ (-1)~(z\X) d x. (49) 
X c A  

So, summing (49) over A c A one gets 

A ~ A  A ~ A X ~ A  X ~ A  X ~ A ~ A  

Since ( -  1) ~ (a) = 0 if X 14= X2, we end up with 
X I ~ A c X 2  

d A = Z e ~ .  
A ~ A  

(5o) 

Hence in order to prove (iv), we have to show that ((g, A), (g', A'))~--~da. • (,-1 ,,)• a, 
is a conditionally positive kernel. But this follows immediately from the fact 
it is hermitian and that its exponential (i.e., ((g, A),(g'A')~-+(~2l~(A*x (g-1 g,) 
x A) ~2)) is a positive kernel. []  

Remark. In the case of conditionally positive definite functions (//: fg--,IE the 
propositions (iii) and (iv) of the preceding theorem are trivially satisfied, since 
then the notion of infinite additivity trivialises and the additional positivity 
condition turns out to be equivalent with conditional positive definiteness of 
7 j itself. However, for mappings (dim x(C _>_ 1) (iii) and (iv) are non-trivial proper- 
ties. 

Definition III.8. Let ( ~ ,  ~, (2) and (x(, ku, f2 ~ be as in theorem III.7. We call 
(2(, 7/, f2 ~ the logarithm o f ( ~ ,  ~, f2). Notat ion:  (X ,  ~u, f2o) = ln(~4 ~, ~, ~2). 

Clearly in the special case of a continuous infinitely divisible complex valued 
function f=e  v, we recover the usual definition of the logarithm: ln(ll2,f, 1) 
= (C, v, 1). 

As we have now found an infinitely additive conditionally C.P. triplet as 
a logarithm for an infinitely divisible C.P. triplet, an obvious question arises: 
can we conversely "exponent ia te"  an infinitely additive conditionally C.P. triplet 
in some way, to end up with an infinitely divisible C.P. triplet? This will be 
the problem we will solve in the sequel. 

To find a way to construct an exponential of a hermitian infinitely additive 
conditionally C.P. triplet, we consider the special case of complex valued func- 
tions. If v: fr ~ (12 is a conditionally positive definite function with v (e) = 0 and 
v(g) = v(g- 1), then 

eV= lim 1 + 
n- -+  oo 
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is an infinitely divisible normalized positive definite function. If (gf, 7 j, s ~ is 
a hermitian infinitely additive conditionally C.P. triplet with n th part ( ~ ,  ~ ,  

f2~ it is clear that _v should be replaced by ~ .  Therefore we consider 
n 

w - l im |  (:~ + ~ (g)). 
it --+ co 

Lemma 111.9. Let (~r, ~, f2o) be a hermitian infinitely additive conditionally C.P. 
triplet with n th parts ( ~ ,  ~ ,  f2 ~ on a group f#. 

Then 

( off, o) (i) F (A)= l im  |  | 1 7 4  
n - - * m  g E A  

exists and 

F(A)=exp Z Pff" 
A ~ A  

(51) 

(ii) F(A, A')=F(A* x A') is a positive kernel on 9. 

Proof (i) We have 

|  |  (11 + % (g)) |  ~o 
g~,d 

oo), 
= [ 2 (~~ ~(A) ~o>]. 

A ~ A  

=[,+' 
L n A c A  

Now use (40) and the fact that P~" = 0 to get (51). [] 
(ii) follows straightforwardly. 

Theorem III.10. Let ( ~ ,  ~, s be a hermitian infinitely additive conditionally 
C.P. triplet on a group f# such that 7J(e)=0 and the additional positivity (48) 
is satisfied. Using the notation of Lemma IIL9, let ~ =hil(~,  F). 

(i) For all gef#, 4~(g): A ~  ~ ~ ( g ) x  A e ~  defines a bounded linear operator 
on 2/t ~. 

(ii) Put f2=4)eg/t ~, then ( ~ ,  q~, f2) is an infinitely divisible C.P. triplet on f#. 
(iii) I f  (.~, 7 j, (2 ~ is continuous and has continuous n TM parts, then also ( ~ ,  ~b, f2) 

is continuous and it has continuous roots. 
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Proof (i) If ~ 2~A = 0  in ~4 ~, t h e n  Z2A((g) • A)=0 as well, because 
A A 

II~ R~((g) x A)II 2 = ~ ~ ~ ,  F(A* x (g- 1, g) X A') 
d d,Z[,  

= ( ~  ;~ A [2 ~ . (g -L  g) x ~'5 =0. 

Hence ~(g) is well defined as a linear operator on the dense subspace D 
=span{A IAefr Since F(A* x (g) x A')=F(((g -1) x A)* x A'), it is clear that 
~ ( g -  1) c ~(g)*. 

Moreover, as 7~(e)=0 we have ~ ( e ) = 0  and so 

(A I 4~(e) A') =F(A* x (e) x A') 

/ + 7 = l i m  f2 ~ ( ~ + ~ ( g ) ) 0 1 - ~ ( e ) )  I1 Ul+~(g ' ) )  ~2 
n ~  g * g '~A '  

n ~ ~  g~  A t 

=F(~* x d')= {a IA') 

which means that ~b (e)= ~. 
To prove boundedness of ~(g), we first show complete positivity of g~-~(g)  

on D. Let Cg = ~ 2g, a A e D, then 
A 

~, {r q~(g- 1 g,) ~g,) = ~ 2g, a 2g, a, F(A* x (g-1 g') x A) 
g,g" g,g" 

= 2 Zg, a2g',Aexp 2 PA ~>=0 
g , g '  A ~ A * x  (g 1 g ' )  x d '  
A, At 

(52) 

where the inequality follows from the additional positivity property of and the 
fact that the exponential of a hermitian conditionally positive kernel is positive. 

Now (52) implies for all r t/~D 

(~ I ~(g) t/> + ( ~  (g) t/l C) + (r162 + (t/It/) => O. 

Take 11411 = lit/l] = 1 and multiply r and t/ with an appropriate phase factor 
to get that I(~l~(g)t/)l_-< 1 for all normalized r and since D is dense in 
xgf this implies II ~(g)ll _-< 1. 

(ii) In the proof of (i) we have already shown that g~-+~0(g) is C.P. on D 
and by continuity also on the whole of Jr By construction, II oil  = 1 and f2 
is cyclic for {~(fr Hence ( ~ ,  ~, f2) is a C.P. triplet. 

Now we show that it is infinitely divisible. The n th part (~f,, ~ ,  f2 ~ of 
( ~ ,  ku, f2 ~ is clearly infinitely additive as well and by (41) it also satisfies the 
additional positivity condition (48). Therefore we can construct with it a C.P. 
triplet (~1/ , ,  #])l/n, ~'~l/n) in the same way as ( ~ ,  ~, f2) was made out of ( ~ ,  7 j, f2~ 
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It can easily be seen that (~g~lln, ~lln, (211n) is an n th root for ( ~ ,  ~, s Indeed, 
notice that 

( ~[ qS(A) Q)  = F (A) 

=exp  Z P~ 
A ~ A  

= e x p n  • 
A c A  

= O1/">" = ( |  |  | 

Hence (;,ut~, ~, ~2)= | ~1/,, f21/,). 
(iii) The continuity of (sf,  7/, f2 ~ and (Y,, 7J,, f2,) yields the continuity 

of g~-+F(A* x (g) • A') and g~-+F,(A* • (g) • A') and this clearly implies the contin- 
uity of �9 and ~b 1/'. 

Definition III.11. Let ( S ,  7s, f2 ~ and (W, ~b, f2) be as in theorem III.10. We 
call (~r 4~, f2) the exponential of (sf,  7 s, f2~ Notation: (Jr ~, 45, f2) = exp (.2U, 7 s, f2~ 

Remark. In the special case of a conditionally positive definite function v: G ~ I12 
we have exp((E, v, 1) =(117, e v, 1). 

The logarithmic construction of theorem III.7 and the exponential of Theo- 
rem III.10 are mutually inverse. In fact we have: 

Theorem III.12. (i) I f  ( ~ ,  4), (~) is a continuous infinitely divisible C.P. triplet 
satisfying condition C on an arcwise connected group, we have 

exp (ln(Jt ~, ~, I2))= (g/g, q~, ~2) 

(up to unitary equivalence). 
(ii) I f  (Sf, 7 s, s ~ is a continuous hermitian infinitely additive conditionally 

C.P. triplet on an arcwise connected group, satisfying T(e )=0  and the additional 
positivity condition (48) and having continuous parts, then we have 

In (exp (;;if, 7 s, ~2o) = (X,  7 s, f2 ~ 

(up to unitary equivalence). 

Proof (i) Let (Jd, ~, f2~ = l n ( ~ ,  4~, f2) and ( ~ ,  ~, ~) = exp(Jd, ~, f2~ Then using 
(51) and (50) we have 

( ~ ] ~ ( A ) ~ ) = e x p  ~ P~=expda=(f214~(A) f2)  
A c A  

Hence (2~, ~, ~ ) =  (~4 ~, ~, f2). 
(ii) Let (H,  ~b, f2) = exp(• ,  ~, f2 ~ and ( ~ ,  ~, Q~ = l n ( R ,  05 f2). Let d: f# --+(12 

be the function satisfying (f2]~(X) f 2 ) = e x p d  x. Then it follows from the con- 
struction of ~b and (51) that 

dx=Z  
Y c X  
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Hence, using (45) and (39) one gets 

p e ~ A A e p X ~ A  

= E [ I  E (--1) ~`mx, ~, P~ 
p ~ , ~  A~p X ~ A  Y ~ X  

= ~. I~ E ( E (--1) e`A\x)PT) 
P ~ A  A~p Y ~ A  Y ~ X ~ A  

= E [[  P% 
p ~ , j  A~p 

= (ao I ~(~) ~o) 

which means ( ~ ,  ~, ~o)= (xC, T, ~2~ 

111.3. Example 

We will illustrate the construction of the logarithm for the triplet (SP(HR), ~R, e,c, 
Exp 0) introduced in Sect. 1.5. 

We show that the logarithm of this triplet is given by 

(~(HR), ~R, ~,c, 0~ 
where 

f2 ~ = Exp 0 

and 

tPn, o,c(~, O)=iB(R~)+(icO--�89 .R +Q) ~>) 11 

where B(~) is the infinitesimal generator of the strongly continuous unitary 
group {W(2t/)l 2elR} on 9~ with 

W(2 t/) Exp ~ = e x p ( -  �89 22 II t/II 2 _ Z (t/] ~)) gxp(Z t/+ 4) 

or in terms of the quadruplet notation introduced in (13) 

W(2 ~/)= (exp-  �89 2 2 II ~ I12, , ~ ,  - 2~A) .  

First we compute the cumulants P~. Clearly, by (37) and (49) we have for 
g, =(~,, O,)EH,~(i= 1, 2). 

P(~) = ic01 --�89 ](R* R + Q) ~1) 
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For  ~ (A) > 2 we have that 

P~= ~, (--1)*(A\X)d x 
X ~ A  

= E ( - -  2 (--l)*(mr)lP(~ 
g~A Y ~ A\{g} 

+ Z ( Z (-I)~(~\~))P(L') 
(g, g ')  ~ A Y ~ A \ { g , g ' }  

~---0. 

It is well known [BR] that 

and 

(Exp 0 lB(q0 . . .  B(~/z, + 1) Exp 0)  = 0 

(Exp 0lB(qz).. .  B(q2,) Exp 0)  = ~ ( %  1~i2) ... ( % .  ~ I the,,) 

where the summation runs over all partitions of (1,2 . . . . .  2n) into 
(il, i2), --. ' ( i 2 n - 1 ,  i2,) with i~ < i 3 " <  . . .  < i 2 n -  1 and i 2 k - 1  <i2k for k =  1 . . . .  , n. 

Hence it suffices to show that 

sets 

and 

(~'~0 I I~(gl)... ~l~(g2n+l ) n 0) ~--0 (53) 

(Y2~176 (R~illRi2~)...(R~_~lR~r (54) 

where the summation is taken as above and 

~ (g )=  tP(g)--(icO--�89 [(R*R + Q) ~ )  ~. 

To prove (53) and (54), consider A =(gl ,  ..., gin). Then we make the following 
summation rearrangements: 

(f2~ I ~(A) f2 ~ = (O  ~ ' g~A ((/' ( g ) -  P(~ l )  O ~ 

= ( - 1 )  *(a) ~, (-1)*(x)(O~176 I] P(~). 
X c A  g E X  c 

Since (f2~ 7~(X) O ~  ~ I1 P ~ a n d  Pr~=0 if ~ (Y)>2 this can be rewritten as 
P~x Yep 

(--1)e(A)~,(1-I Pz ~') 1-I P(~ ~ ( -1)  #(q~w) 
q Z e q  g e q  c U ~ q  c 

(55) 
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where the summation ~ means the sum over all sets q of subsets of A of the 
q 

form q={(gil,gi2) . . . . .  (gi2k-1, gi~k)}; k e N ;  g~A,  i2~_1<i2~ and i a < i a < . - .  
< iZk-1, and where qC is a shorthandnotation for the set A \ ( U  Z). 

Zeq 

If # (A) is odd, then qC contains at least one element and therefore (55) 
vanishes. On the other hand if :~ (A) is even, the only terms in the Z-summation 

q 

that contribute are those for which qC = q~. Hence we recover (54). 
Finally, the n th part of (5"~(HR), 7"R,Q,c, D ~ is easily seen to be (SP(HR), 

7 % 7 ; ,  Q/., c/ . ,  f2~ . 
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