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Summary. We generalise the theory of infinitely divisible positive definite
functions f: ¥ — € on a group ¥ to a theory of infinite divisibility for com-
pletely positive mappings @: ¥ — #(#) taking values in the algebra of
bounded operators on some Hilbert space 5.

We prove a structure theorem for normalised infinitely divisible complete-
ly positive mappings @ which shows that the mapping &, its Stinespring
representation and its Stinespring isometry are of type S (in the sense of
Guichardet [Gui]). Furthermore, we prove that a completely positive map-
ping is infinitely divisible if and only if it is the exponential (as defined
in this paper) of a hermitian conditionally completely positive mapping.

Introduction

Let X be a real valued random variable with characteristic function ¢y(2)
=¥y teR. Then ¢y: R — C has the following properties:

(1) ¢4 is positive definite, i.e., for all functions teR — /2, € with finite support,
we have that

2 A he $x(t —1)20 )

(2) ¢ is normalised, ie. p4(0)=1
(3) ¢y is continuous.

Conversely, if ¢: R— € is a function having the three properties mentioned
above, then, by Bochner’s theorem, there exists a real valued random variable
X such that ¢ is the characteristic function of X.

By definition a random variable X is infinitely divisible iff its characteristic
function ¢y satisfies the following condition: for each nelN, there exists a
normalised positive definite function ¢,: R — € such that

bx ()= ¢, (1) (1)
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for all telR.

The notion of positive definiteness (i) and infinite divisibility (ii) can be natu-
rally extended to complex valued functions ¢: 4 — € on an arbitrary group
%. This leads to the study of infinitely divisible positive definite functions on
groups and their associated representations [Str], [Pa], [Gui], [PaSch]. Infinite
divisibility has also been extended to positive functionals on some particular
algebras such as CCR-algebras [Ar] [CoGuHu], CAR-algebras [MaStr]-
[HuWiPe] and Lie algebras [Str]. On the other hand, the structure of bi-algebras
provided a natural setting to implement the notion of infinitely divisible function-
als [GVW], [vW], [Sch].

A further extension consists in considering infinite divisibility for positive
definite functions for which not only the space on which they are defined is
non-commutative (e.g., a group, an algebra), but also the range space is allowed
to be non-commutative (e.g., a*-algebra). Under this extension, the notion of
positive definiteness (i) is carried over to the notion of complete positivity (cf.
Definition 1.1.), whereas the proper reformulation of infinite divisibility (ii) will
invoke tensor products (cf. Definition 1.6.). Examples of completely positive map-
pings satisfying this extended notion of infinite divisibility have already been
constructed in [FQ], [Q], [AcBa] by means of a central limit procedure.

In this paper we study this fully non-commutative natural extension of infi-
nite divisibility for completely positive mappings @: 4 — #(#) defined on a
group ¥ and taking values in the algebra of bounded operators on some Hilbert
space #. Two important results of the theory of infinitely divisible positive
definite functions on groups are extended. The first result, which is known as
the “ Araki-Woods embedding theorem”, shows essentially that the representa-
tion induced canonically by an infinitely divisible positive definite function has
a continuous tensor product structure [ArWo] [Gui]. The second result charac-
terises infinitely divisible positive definite functions as those functions having
a hermitian conditionally positive definite logarithm,

The paper is divided into three main sections. In the first section we collect
the basic definitions and elementary properties of complete positivity and infinite
divisibility. In the second section we obtain an “ Araki-Woods embedding” result
for the group representation induced canonically by an infinitely divisible com-
pletely positive mapping, as well as for the mapping itself. Finally, in the last
section we construct a logarithm for an infinitely divisible completely positive
mapping. As in the function case, this logarithm is hermitian and conditionally
completely positive. It also exhibits the new property of infinite additivity (a
logarithmic version of infinite divisibility) which remained hidden for functions.
Moreover using an inverse (“exponential”) construction we show that there
is a one to one correspondence between infinitely divisible completely mappings
and hermitian infinitely additive conditionally completely positive mappings.

All new notions and constructions in the paper are illustrated by an explicit
example.
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L. Definition and Elementary Properties
of Infinitely Divisible Completely Positive Mappings

1.1. Completely Positive Mappings

Definition L.1. (i) A mapping @ from a group ¥ into the bounded operators
A (H) on a Hilbert space & is called completely positive (C.P.) if

Y X: o g) X,

2.8

is a positive operator on # for all choces of ge¥ — X ,e#(#’) vanishing every-
where but on a finite number of elements of 4. Any function of this type will
be called in the sequel an almost zero function.

(i) Such a C.P. mapping & is said to be normalised if ®(e)=1 where ec¥,
is the neutral clement and 1% () is the identity operator on 3.

(iii) A C.P. mapping @ on a topological group ¥ is continuous if

gey - d(g)
is weakly continuous.

Remark 1.2. (i) For # =C, ¢ is a complex-valued function on ¢ and the notion
of complete positivity reduces to positive definiteness.

(i) If ¢ is the group of unitary elements of a unital C*-algebra .o/, and
@ is C.P. mapping from % into #(#), which is linear with respect to the linear
structure on ¥ inherited from .7, then @ extends uniquely to a linear mapping
from .of into % (#’) which is C.P. in the usual sense. [ Tak].

(ii1) Definition I.1 (i) is equivalent to

Z <€g|¢(g_lg,) 5g'>go

g8

for all choices of almost zero functions ge¥ — ¢, e #.
(iv) It follows immediately from complete positivity that @ is a self-adjoint
mapping, indeed:

O(g™)=d(g)*, ge¥.

1.2. The Stinespring Decomposition of a Completely Positive Mapping

Theorem 1.3. Let V be an isometry from a Hilbert space # into a Hilbert space
A~ and m be a representation from a group ¥ into the unitary operators U(H)
on A then

g—VEr(g)V

is a normalised C.P. mapping from ¥ into % ().
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Conversely if &: % — B(H#) is a normalised C.P. mapping, there exists a triplet
(A", m, V) as above such that

P(g)=V*n(g) V.

Moreover (A", , V) is unique up to unitary equivalence if it satisfies the minimality
condition

{r(@)}' VH]=A".
Finally continuity of ® is equivalent to strong continuity of .

Proof. [Sti].

The triplet (4", =, V) is called the Stinespring triplet of @. If @ is a function
of positive tye on ¥ the Stinespring decomposition reduces to the well known
G.N.S. representation theorem.

Remark I.4. From the Stinespring decomposition (4", z, V) of a normalised C.P.
mapping from @ into #(#) a few useful properties of @ are easily deduced.
1) For g;,2,€% and {ef:

[(@(g1)—D(g2) E1* = | V*(n(g)) —7(gy) VEI?
< |l(n(g1)—n(g2)) VEII?
=2Re(&(1-d(g; ' g2)) - (1)
Hence it is sufficient that g — @(g) is (weakly) continuous at g=e in order

obtain strong continuity of g — &(g) everywhere.
ii) Let X: ge¥ — X, €% () be an almost zero function then we have that

Y XFP(g T HP(g) X, =) XFV*r(g ) VV*n(g) VX,
8g 8¢

=Q n@ VX VV* (L n(g) VX,
Y X¥Vra(gTlg) VX,

=) X;o(g ' g) X, @

8,8
This inequality is known as the 2-positivity inequality. In particular it implies

(@)l =1.

L3. Products of Completely Positive Mappings

Let &,: 4, > B(H)i=1,...,n ncN, be normalised C.P. mappings, then there
exists a unique normalised C.P. mapping =9, ®...® P, from ¥, x...x 4,
into #(#, ® ... ® #,) such that

P((815 > 8N=P1(81)® ... ® P, (gn)-
Indeed let (], =;, V) be the Stinespring triplets for @;, then

(€15 s GV ®...Q V¥ (1, (8)® ... QTN ® ... ® V)
:¢1(g1)® ®¢n(gn)



Infinitely Divisible Completely Positive Mappings 373

is normalised and C.P. by Theorem 1.3. By the uniqueness of the Stinespring
decomposition it follows that (A1 ®...® #,, 1, ® ...®n,, Vi ® ... @ V,) is the
Stinespring triplet of &.

In particular if for all i 4 =% then clearly the mapping

ge9—9,(9)®...® D,(8)
is C.P. and normalised and will by abuse of notation be denoted by (®45i)(g).

The Stinespring triplet of this mapping is clearly given by (A4, x, V) wherle
# =[{@m()lge)” @V #1]
n(g)= @ﬂi(g)b{
V= ® Vil

Remark that in general #” can be a proper subspace of (X) #;.

I.4. Infinitely Divisible Completely Positive Mappings

As we need in the sequel a lot of cyclicity conditions we introduce the following
notions:

Definition L.5. (i) We call (#°, @, Q) a C.P. triplet on a group ¥ if

a) @ is a normalised C.P. mapping from ¥ into #(#)

b) Qe # is a normalised vector cyclic for {®(%)}"

Furthermore (o, @, Q) is called a continuous C.P. triplet whenever @ is
continuous.

(i) Two C.P. triplets (#;, @;, Q) i=1, 2 on a group ¥ are equivalent (#,,
&, Q))=(4,, ©,, Q,)) if there exists a unitary operator U: s, — #5 such
that

UQ, =0,
U(‘pl U*=¢2.

(i) If (£, &, Q) i=1, 2,...,n, nelN, are n C.P. triplets on a group ¥
the product triplet (X)(#;, ®;, Q)= (A, ®, Q) on ¥ is defined by

%:[{®@i(g)lgeg}” ®Qi]
@(8):®@i(g)|x
Q=®Qi.

The notion introduced in definition 1.5 allows us now to introduce infinite
divisibility for C.P. mappings.
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Definition 1.6. A C.P. triplet (#, @, Q) on a group ¥ is infinitely divisible if
there exists for each neIN, a C.P. triplet (2", /", Q") on ¥ satisfying

(H, @, Q)= @"(H 11", @17, Q1)

(oM Plm Qi) is called an n™ root of (#, @, Q).

It is clear that our definition extends the usual notion of infinite divisibility
for positive definite functions on groups [Gui], [PaSch] and infinite divisible
representations [Str]. Indeed let # be an infinite divisible positive definite func-
tion on a group ¥4 with G.N.S. triplet (#, =, @), then the triplets (T, £4 1) and
(s, m, Q) are both C.P. on % and infinitely divisible in the sense of definition L6.

As we will mainly be concerned with continuous C.P. mappings we briefly
investigate the relation between continuity and infinite divisibility.

Definition 1.7. Let ¥ be a topological group. We say that ¢ is continuously
divisible if for each net (g,), in % converging to the neutral element ¢ and for
cach nelN,, there exists a net (h,), in converging to e such that eventually
8. =h;.

Remark that a lot of groups are continyously divisible: Lie groups, connected
locally compact groups [MZ], unitary groups of von Neumann algebras, ....

Lemma 1.8. Let & be a continuous positive definite function on a continuously
divisible group 4.

If for some neN, there exists a positive definite n"-root @' of & then
@™ continuous.

Proof. Without loss of generality we can assume @ to be normalised. As
(@"(g))' =d(g) and as P is continuous at g=e we have: for all ¢>0 there
exists a neighborhood 0, of e such that for all g0, there exists ke{0, ...,n—1}
such that

|91 (g)—dil <e
2mik

where J, =exp

Furthermore, by continuity of the group inversion, @, can be chosen such
that @7 '=0,. Obviously for ¢ small enough O, can be written as a union of
disjoint sets 0%, ke {0, ...,n— 1} where

Ui ={ge0,]|®*"(g)— ol <&}

and as @'/ is self-adjoint if follows immediately that (0¥)™'=@r*.
We now prove that if he@*, We@* and hh'e@, then hi'e®] where j=(k

+k)Ymodn.
Indeed, choose 4, =1, A,- 1= —4% &, 4, = —% d, and 4, zero elsewhere, then
Z Ig Ay (gt )20
2,8
becomes

Re{d_,_p O (hh)} <1 —4e. (3)
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Because hh' €0, it belongs to some () and (3) can only hold if j=(k+ k') mod n.
Suppose now that @ is discontinuous, then, as @' is positive definite,

it must be discontinuous at g=e (Remark L.4.i)). As ®'/" is uniformly bounded

by ®'”(e)=1 we can find a net (g,), in % converging to e such that lim ¢'(g,)

=46=+1. Since @=(®'™" and lim P(g)=1 we have that 6=7, for some

ke{1,...,n—1}. Therefore g, belongs eventually to O%. By the continuous divisi-
bility of the group there exists a net (k,), converging to e such that eventually
g,=h!. Therefore h”, m=1,2,...,n, belongs eventually to @, and h, belongs
frequently to some ¢}. It then follows from the argument above that frequently

— Lt njmodn__ m0
ga_haE(Qs _(95

which contradicts that eventually g,e 0%, k+0.

Hence ¢!/ cannot be discontinuous. [

Before proving the analogous result for mappings we introduce some useful
notations.

Let 4 be the set of all n-tuples (g, ..., g,), gi€%, i=1, ..., n, neIN where
a O-tuple is the empty set. 7 is a semigroup for the composition law:

U, NG xGi>AxNed
where

A=Agy, ..., 8
A'=(g1, > 8m)
AXA =(g1, s 8ur &rs e L)

Furthermore % is equipped with a natural involution induced by the group
inversion in %:

2 G5G A=(g,,....g)> 4% =", .., g Y

If X is a function on ¢ with values in the linear operators (possibly unbounded)
on some hilbert space we will use the notation

X(N)=X(g) X(g3).--X(g) A=(81,---18n)

if such a product is well defined. Finally by convention X (¢)="1.

Theorem L9. Let (o, @, Q) be a continuous C.P. triplet on a continuously divisible
group %.

If (&' QY7 is a n't-root of (#, D, Q) (in the sense of definition 1.6.),
then it is continuous.

Proof. Let Ae%. As & is C.P. the function

2eG>{(D(4) Q| D(g) D(4) Q> eC
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is positive definite. If (#1/", 1", Q1/") is a n™-root of (#, @, Q), we have that

(B(4) Q] B(g) (4) Q) =((BV"(4) QU BV (g) BVH(4) QU7
and
ged— (D (4) Q17| 071() @'11(4) Q) eC

is again positive definite. From lemma 1.8 it now follows that for neN,, 4e%

geG > (D(4) Q1" | pUM(g) DU (4) Q1) (4)
is continuous. 5
Because span{®'"(4) Q| 4%} is dense in #V" and |P'(g)|| <1 for all
g€%, the mapping
geG— (g e B (A1)

will be continuous if we show that for any Ae%
gEgH@l/n(g) @1/"(A) Ql/net%pl/n

is continuous, but this is an immediate consequence of (4) and the inequality
®. O

We now give an example which will be followed throughout the paper in
order to illustrate various constructions.

LS. An Example

Let H be a complex hilbert space. The scalar product <{.].) defines a symplectic
form

& m—aEn)=Im|n>

on H. The Heisenberg group H, is then given by H,={(¢, 8)|£eH, feR} with
composition law

($1,00)(82,0,)=({1 + &2, 0, +0,—0(E1, &)

Note that (0,0) is the neutral element and that (— £, —#6) is the inverse of (&, ).
Moreover the group is non-commutative. H, becomes a topological group if
equipped with the product topology of H x IR.

For any complex hilbert space H one constructs the symmetric hilbert space
& (H) (also known as Fock space, exponential space, ...} as follows [Gui].

S (H)=DH,

nelN

where Hy=C and H, is the symmetric subspace of ®" H, neIN,. & (H) is gener-
ated by the exponential vectors {Exp n|ne H} given by
1
Expn=(D —=®"n

n=0 I/n!
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where
®°n=1eC.
Notice that
CExpnl|Expn’)=exp{nly).

Furthermore the exponential vectors are mutually linearly independent. Also
if H=H, @ H, there is a natural isomorphism & (H,)® & (H,)— < (H) given
by Exp ¢, @Exp ¢,—~Exp ¢, ® ¢, ¢;eH;, i=1,2.
We now define a class of C.P. mappings on H,. Let ceR™ and R, Qe #(H)

be such that

HQ=z0

(i) e~ R*R| 0.
Define

H =% HycS(H) where Hp=RanR
Q=Exp0
Pg,o..(& 0) Exp=exp(icl— 1 <E[(R*R+Q) &> —(REIn))
EXp(ﬂ‘FRCU), ’7€HR, (é: H)EHO"

One can check that (J#, @¢ 4 ., Q) is a continuous C.P. triplet on H, [DVV].
This triplet is infinitely divisible, indeed for any neN, its n'® root is given
by (+#, ng/]/;,Q/N,c/n’ Q).

IL. Structure of Infinitely Divisible Completely Positive Triplets
11.1. Mappings of Type S

The aim of this subsection is to give some general properties of mappings of
type S. Such mappings generalise those considered in [Gui] and arise naturally
in the study of infinite divisibility.

Definition IL1. Let # and " be complex hilbert spaces and & (#) and & (A')
their corresponding symmetric hilbert spaces. A linear operator C:
F(H)— F(A) with Span{Exp y|ne#} =Dom C is said to be of type S if it
maps exponential vectors into multiples of exponential vectors, ie., if there exist
mappings

y: H->C: n—y(y)

I''s#->A :n—I(n)
such that

CExpn=y(n) Exp I'(y).

Propesition I11.2. Let C: F(#)—> L (A7) and its adjoint C*: L (A )— S () be
operators of type S. There exist
(1) yeC
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(i) peA’, fre
(iti) a bounded linear operator, A: H — A
such that
CExpn=yexp{f*in) Exp(B+A4n), neAt
C*Exp {=yexp{B|> Exp(B*+A4*(), (e

Proof. As C and C* are of type S there exist mappings

ne#A —ymeC, C[ed —y*({)eC,
ne#H—I'(nex and (eA ' —I*eH

such that
CExpn=y(n) Exp I'(n), ne#
C*Exp {=y*(Q) ExpI'*({), {exX.
One has then for ne s, (e A’

() exp LI T (1)) = <Exp {|C Expn)
=(C*Exp {|Expn)
=y*(0) expL{T*(0)[n). )
Putting in (5) successively { =0 and =0 it follows that
y(n)=7*(0) exp<I*(0)|n), neH
7*(0)=70) exp<LI'(0)| O, leX. (6)

If y(0)=0 then one has C=C*=0 and the proposition follows trivially we can
therefore assume without loss of generality that 0=7(0)=7*(0). Inserting (6)
in (5) leads to

exp(KI™* (0)[n) + LT ()>) = Exp (KL T (0)> +<T* (D))

and so there exists a mapping

N: #xAH —>Z: (n,0)—~N@n)
such that

¥ O) > + LT =< TO +LI*(Oln> +2ni N(n, {). ()

Writing out (7) for n=#,+#, and subtracting the same expressions for n=7#,
and n=#, one obtains

KLy +n)—T(n)—Tn)+10)>
=27i(N(n; +12, )~ N0, )— Nz, ). )

As N takes values in Z this can only hold if

N +n2,0~N@,, )~ N(n,,0)=0.
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Fix now ne#, (e one has then for any keIN

N, =2 N2 n,0)

and therefore N(x, {)=0.
From equation (8) it now follows that

Iy +ny)—Tn)—Tn)+T0)=0 5y, ne8

or equivalently that
neX —An=I(n)—IO)ex
is a linear operator.
Finally using (7) one concludes that also

{eA —>B{=I*({()+I*0)eH
is linear and that
LKlAny=<BLln), neH, [eX
KNAny=<{BLllny, neH, L[eX.
Therefore A4 is closed and, as it is everywhere defined, bounded. Moreover B= A*.
Putting now
we find that y=y(0), p=I0) and B*=I%*(0)
CExpn=yexp{f*|n) Exp(dn+f), ne#
C*Exp {=yexp{f|{> Exp(A*(+ %), Clex. OO

Proposition IL.3. Let C: & (#) > S (KA) and C*: & (HA) - F (H) be linear opera-
tors of type S. C is bounded if and only if

CExpn=yexp{f*|n> Exp(dn+f), nert
where
(i) yeC
(i) A: H — A is a contraction
(iii) Be, B*e A are such that f*+ A* BeRan(1— A* A)V/2,

Proof. By Proposition I1.2 there exist yeC, fe A", f*e# and a bounded linear
operator A: # — A such that

CExpn=yexp{f*|n) Exp(B+An), ne#
C*Exp(=yexp{B|{> Exp(f*+A*(), (eA

(i) Suppose that C is bounded then for nes#

ICExpn|?=[y|* exp{<B*|n> + {nl B*> + | An+ B11%}
S| CI*|[Expn|*=[|C|*explin|*

and therefore there exists a constant M such that

A A=W n>+2Reln|f*+A*f>=M, net. ©)
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Condition (9) is equivalent to

i) )=t
i) [l B+ A* BYRSM Gl (A~ A* A)ny,  nek (10)

Let n now be an arbitrary element of Ran {(1 — A* 4)"/?| ,p ok er(1 - 4+.4)} then by (10)

KA —A*A)~ V2 | p*+ A* B> S M {nin)
and so
p*+ A* feDom {(1 — A* 4)™ V2| 4 oxerca - asa)}
or
B*+ A* BeRan (1l — A* A)1/2,

(i) Suppose conversely that | 4| =1 and that there exists a 5,65 such that

B* -+ A* f=(1— A )11 .
Define for 0511

C;Expn=yexp{f*in) Exp(f+iAdn), neA.
By a simple computation

CFC,Expy
=y exp({B* + A A*Bln)>+ | B|*) Exp(B* -+ AA* B+ 1> A* Ay), neH.

It is straightforward to check that for 5, e

U(ny) Expn=exp(—%|nI>— o |n)) Exp(n,+1)  net

extends to a unitary operator on & () with adjoint U*(n)=U(—n,). As |4
<1,1—1% A* 4 has for 0L A< 1 a bounded inverse. Choosing now

ni=—0—2A*A)"H(B*+24*p)
one verifies that for ne s#

U(n,) C; C, U*(n) Expy
=y exp(| B>+ (1—A> A% A)~ V2 (B*+ L A* B)|*) Exp 2> A*An.  (11)

The operator
Expy—ExpA* A*Ay, neH

is easily seen to be equal to

D@ A* A,
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(where #, is the symmetric subspace of (X)o#) and has therefore norm one.
It follows then from (11) that

IC 12 =17I? exp(I B> + (1 — A2 A* A) " V2 (B* + 1. A* B[ ?).
Asfor |A]|£1and 0L A<1 one has

(1—=2)2M—22A*4)" 1 <1
and
(A—i2A4%4) T d-4*)=1
it follows that ‘

(L —A% A* A)~ V2 (B*+ 2 4% B2
= [(L— 2% A* A7 (M- A* A2 po— (11— 2) A*B)]
S2|(A—22 A*A) VR —A* AP o 12+ 21(1 - (R =22 A )72 A* B2
S2mol*+2181%

Therefore
ICAIP=Iy1? exp im0l > +3 1813 (12)

For e, and (e, we have now

1;igl<EXp {1C, Expyy=<Exp{|CExpn)

and as Span {Exp n|nes#’}, Span{Exp {|{e} are dense in () respectively
& (A") we have using (12) that C is bounded. In fact

[CI?=Iy* exp(]| BII* + inf Inol® O

Br+ A= (1— A% 4)1/2n0

We now consider specific cases of type S mappings. If # =" the set
{(, B, B*, A)|yeC, Ac B(H), | A1, B, f*e#, f*+ A* feRan(1— A* A)'/?}, of
type S operators gencrates a C*-algebra determined by the following product
and involution rules

. B, B*, A)', B, B¥, A)=(yy exp{B*| D, B+ A, p*' + A™* p*, AA))
(v, B, B*, A =(3, B*, B, A%). (13)

From this we immediately recover the type S representations of groups,
which were considered by Guichardet [Gui], as mappings

T G US (H)): g (g Egr U1 &g Uy)
where

(@) g U, is a unitary representation of 4 into % (#)
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(i) g+ & e satisties the following cocycle relation

ég gg’:ég_i_ []g ég" (14)
(iii) g+ c,eC satisfies
Cogr = Cg Cg CXP— <§g| U d»t-g'>'

Another class of type S mappings & () —» & (A") which will be of interest
in the sequel are the type S isometries which are easily seen to be given by
(y, B, — W* B, W) where W: # — A is an isometry and |y|* exp | ]|>=1.

11.2. Some Preliminary Lemmas

It is well known [Pa] that continuous infinitely divisible positive definite func-
tions on a connected group never vanish. We now generalise this property to
C.P. triplets. Using the notation introduced just before Theorem 1.9 we have
the following lemma.

Lemma IL4. Let (&, ®,£) be a continuous infinitely divisible C.P. triplet on a
connected group 4. For all Ac% we have that

IKQ[®(4) 25 >0.

Proof. The proof uses an induction argument on the length # (4) of the n-tuple
Aed.

(i) For 3 (4)=1 the situation reduces to that of infinitely divisible positive
definite functions. The proof can be found in [Pa].

(ii) Suppose that the result holds for n-tuples of length k then we show
that it is also valid for n-tuples of length k+1. Let 4e% be such an n-tuple
and write 4={g} x 4" where ge¥% and A’ is an n-tuple of length k.

Let (o°V" m'/" V1" be the Stinespring triplet associated with the n™-root
(Y, @l QY™ of (#, B, Q). Choose A, ucC such that |A]=|u|=1 then by
the triangle inequality:

|2V QU — purtin(g) VHm @1 (47) @12 <
2 “}“V”n Ql/n_nl/n(g) Vl/n Ql/n“Z
+27H(g) VI QU umtin(g) VA BU(4) Q12 (15)

We now compute the different terms which appear in (15):

“iVl/n Ql/n_lunl/n(g) Vl/n ¢1/n(A/) Ql/nHZ

=1+ @A) QY"|2—2 Re TulQ | ®1/(4) Q1) (16)
”/1 Vl/n Ql/n_nljn(g) Vl/n 91/73”222_2 Re I<lei d)lln(g) Ql/n> (17)
”nl/n(g) Vl/n Ql/n—,uTL'l/"(g) Vl/n @1/"(11,) Ql/nHZ

=1+ || @A) Q" ||2—2 Re ul{ QY| ®"(A) Q1. (18)
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By choosing appropriate phases for 4 and u and inserting (16), (17), (18) in
(15) we then obtain the following inequality:

1= [KQI| DUn(A) QU S2 (1~ K@U D1 in(g) Q1))
+2(1—KQU Ot (A) QUIm)), (19)

As (A @ln QUM is a n'-root of (#, ®, Q) we have for any X e¥
[KQUM @1M(X) QU =[<Q| P (X) )| (20)
Multiplying (19) by n, using (20) and taking the limit n — co we then obtain:

—In[KQ[@(4) Q)= —2InKQ|D(g) )| -2 In[KQ| D (4') 2}
<O

by the induction hypothesis.
Hence

KQ|o() 251>0. O

Lemma IL5. Let f:X — € be a continuous function on an arcwise connected topo-
logical space X such that

S()£0  forall xeX and f(xg)=1 forsome xy,eX. 20

Then for each nelN, there exists at most one continuous function f,: X - C
such that (f,)"=f and f,(xq)=1.

Furthermore, if for all neN, such a function f, with the properties mentioned
above exists, then there exists a unique continuous function v: X — € such that

f=expov, v(xy)=0.
Moreover for all xeX
v(x)=lim n(f,(x)—1)

and

v(x
fr(x)=exp % (22)
Proof. First remark that a continuous function f: X — € satisfying (21) admits
at most one continuous n®-root f, with f,(x,)=1, neN,.
Indeed suppose that both f, and f, are continuous n™-roots of f with f,(x,)
= £, (xo) = 1. Define 68(x) by

2 () =1£" ()| exp 6} (x).

As (f,)'=(f)"=f and |f(x)|>0 we have that exp in (8,(x)—8,(x))=1 and there-
27mk(x)
n

fore there exists a k(x)eZ such that 8,(x)—0,(x)= . But the function
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2mik(x) . .
is continuous on a connected

x>, (%)/ £ (x) =exp i(0,(x) — 0,(x)) = exp

space and takes the value 1 in x,. Therefore k(x)enZ, so f,=f,

To show the lemma fix now xeX and let 7: [0,1] - X be a path in X
connecting x, and x. Then t+—1(t) = f(t(t))/[f (z())| is a path in the 1-dimensional
torus with 7(0)=1 and hence by the Covering Path Property there exists a
unique path ¢: [0, 1] — R with ¢(0)=0 such that t =exp i ¢. Put now 6(x)=¢(1).
Then f(x)=|f(x)| exp i0(x). We have to show that #(x) is independent on the
choice of the path 7. Consider therefore another path 7' connecting x, and
x and let ¢’ be the corresponding path in IR and &' (x) the corresponding number.
As f(x)=|f(x)| expif(x)=|f (x)| exp i#'(x) there exists a keZ such that

0 (x)=0(x)+27k. (23)

The functions t+— | fi+ 1 (1) exp i@ (@)/(|k|+ 1)) and 1+ fy, 4 1 (z(¢)) are both con-
tinuous (Jk|+ 1) roots of t— f(z(f)) taking the value 1 in t=0. Hence by the
remark in the beginning of this proof, we have that fi,(t(®))=|fjx+1 (@)
exp i (t)/(k|+1) and of course the same relation holds for 7" and ¢'. Taking
t=1 and using (23) we then find

exp i0(x)/([k|+1)=exp il (x)/|k|+1)
=exp[i0(x)/(|kl+1)+2mik/(k|+1)]

which implies k=0 and therefore 6(x)=0'(x).

Moreover, it can easily be seen that x+—60(x) is continuous.

Summarizing, we have now shown that there exists a unique continuous
function x— 6(x) such that

B(x0)=0
f(x)=1f(x)| exp i6(x)
 O(x
h9=1h0expi 0.
Now it follows immediately that x> v(x)=In|f(x)|+i#(x) is the unique continu-

ous logarithm for f with v(x,)=0. Clearly also (22) holds. []
Applying the first part of Lemma IL5. to C.P. triplets we find:

Corollary IL6. Let (#, ®, Q) be a continuous C.P. triplet on an arcwise connected
group 4. Then (#, @, Q) has, up to unitary equivalence, at most one continuous
n'" root.

Proof. Suppose (#,, ®,, Q,) and (#,, ®,, Q,) are two continuous n™ roots
for (47, @, Q). Then we have to show that

<Q1 |¢1(A) Ql>:<Q2|@2(A) 'Qz>

for all 4e%.
Take Ae@ with A+¢ and put k=#A. Let X=%Xx¥ x ... x¥% (k times)
and x,=(e, ¢,...,¢). When X is equipped with the product topology of ¥, it
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becomes an arcwise connected space. Define f: X —C: 4> {Q|P(4)Q> and
[ii X > C: 4-Q;|P;(4) 2,5(j=1,2).

Then f, f, and f, are continuous, f(x)=f;(xo)=/f2(xc)=1, and f=(f,)"
=(f>)". From Lemma IL.5. it now follows that f; =f, which proves the result. []

Definition II.7. A continuous infinitely divisible C.P. triplet (&, &, Q) on an
arcwise connected group ¥ is said to satisfy condition C if it has continuous
n'® roots.

We have seen that the continuous #'™ roots of a continuous infinitely divisible
C.P. triplet on an arcwise connected group are necessarily unique (up to unitary
equivalence). Moreover if the group, on which the triplet is defined, is contin-
uously divisible, then condition C is always satisfied (cf. Theorem 1.9.).

As an immediate consequence of the second part of Lemma II.5., we now
have:

Corollary 11.8. Let (5, @, Q) be a continuous infinitely divisible C.P. triplet on
an arcwise connected group 4. If (#, ®, Q) satisfies condition C, then there
exists a unique continuous function d

d:G-C: A—d,
such that
(1) <R][P(4)Q)=expd,
() d, =0where 4, is any n-tuple of the form(e,e, ..., €) (24)

Furthermore,
QY| @I (A) QU™ =exp d 4/n. (25)

Using this function d we can now construct two positive kernels.

Lemma IL9. Let (#, @, Q) be an infinitely divisible C.P. triplet satisfying condition
C on an arcwise connected group % ad let d: 4 — € be as above, then

(i) k4, AY=d gy o —du—d is a positive kernel on G. (26)
(i) ka((g, A, (8s AN=dpexg-1gyxa—daex g~y digyx s 27
is a positive kernel on 4 x 4.
Proof. (i) will immediately follow from (ii) by putting g=g'=e¢ in (27) and observ-
ing that ¢ (e)="1.
(ii) Let (#", @1/ Q") be the n'® root of (#, &, Q) and take
1= 3 75, 2(@V"((@) x 4) Q' — QUM A
g.4
Then,
Osniimal?=n 3 244k # QB (A% x(g7") x (g) x 4) Q1)
g4
g, 4"

1= QUM PU(A% x (g™ 1)) Q1" — QU DUIn(g) x A4) @]
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By the 2-positivity inequality (2) the first term can be majorized to get

0=n Y, Agady, #[KQU|@VM(A* x (g7 g) x 4) Q") —1)

g.4
T

— QM@ (4* x (g7 1) Q1" —1)
— (K@Mt ((g)x 4) Q1" — )],

Taking now the limit n — oo and using (25) we get

Y Agatg aaxg-rgyxa—daxg-n—dg)xAZ0. O
=
Given a positive kernel (x, y)e X x X+—k(x, y)eC on a set X one constructs

in a standard way a Hilbert space. The kernel k extends to a positive sesquilinear
form on the complex free vector space V(X) generated by X: Let V¥
={ueV(X)|k(u,u)=0}. By hil(X, k) we denote the completion of V(X)/V, for
the scalar product induced by k. By abuse of notation we will denote the elements
of V(X)/V, by u instead of u+V,. Also the scalar product in hil(X, k) will
be denoted in the conventional way ({-|*>).

I1.3. Structure Theorem for Infinitely Divisible C.P. Triplets

We are now in a position to describe the general structure of infinitely divisible
C.P. triplets and their Stinespring decomposition. More precisely we will show
that any such mapping, as well as its Stinespring decomposition, extends to
a mapping of type S.

Lemma IL10. Let (#, @, Q) be a continuous infinitely divisible C.P. triplet satisfy-
ing condition C on an arcwise connected group 9. Denote by (K, =, V) its Stine-
spring triplet. Let H,=hil(%, k,) and H,=hil(4 x %, k,) where k, and k, are
defined from (3¢, &, Q) by (26) and (27).

Then

() Vi: o > F(H,): D(4) Q—{Q|PAQ> Exp A extends to an isometry.

M) Vy,: A —>F(Hy): VP(4) Q—{(Q|P(4) 2> Exple, 4) extends to an
isometry.

(iii) W: H, —» H,: A+ (e, A) extends to an isometry. Its adjoint is given by

W#*. H,—»H;: (g, A)—(g)x 4
(iv) The mapping U: % — % (H,): gr— U, with
U (h, 4)=(gh, A)—(g, ¢) (28)

is a continuous unitary representation of % on H,.
V) 7: 9 >U(F (H,)): g—7 with

7, Exp n=<Q|®(g) 2> expl(g™ ", d)In) Exp(U,n+(g, 4)), neH,
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defines a continuous unitary representation of type S of 4 on F{H,). In terms
of the quadruplet notation for type S mapping we introduced in (13) we have

Ty =((Q|P(2) 2. (g. $). (87", 9), Up) (29)
(vi) The mapping A: % —%(H,): g— A, given by
4,4=(g)x 4—(g)

is continuous, normalised and C.P~.
(vii) &: 9 B(S(H,)): g— D(g) where

®(g) Exp [ =<Q|P(g) @) exp{(g ™ ")|{> Exp(4,{+(g)), (eH,

is a continuous, normalised C.P. mapping of types S. In terms of the quadruplet
notation we have

B(g)=({QIP(2) 2, (2), (87 1), 4p)-

(viii) The objects above are related by the following equations

A,=W*U, W (30
&(g)=Exp W*#,Exp W  where Exp W=(1,0,0, W) (31
V=V Exp WV, (32)
(g =V V, (33)
D(g)=V7* ﬁ(g) Vi (34)

Proof. (i), (ii) and (iii) follow from (24), (26) and (27) and the observation that
the normalisation of @ implies that d , ) x 4 =d, x 4, for all 4, 4'e%. For instance
(i) is shown as follows: for all 4, 4'eZ we have that

KQIP(4) 25 Exple, 4)[<Q|(4') 2) Exple, 4))
={Q|P(4%) Q) {Q|P(4') 2 explle, A)|(e, 4)>

={Q[{P(4*) Q) Q| P(4) 2) eXp(dA*x(e)xA"“dA*x(e)_d(e)xA')
={P(A) Q2| P(4)Q2>={VD(A) Q2| VP(4") Q).

(iv) Using (27) one checks that for all g, h, €% and 4, A'€%

{(gh, A)—(g, P)I(gh', 4)—(g, §)> =<(h, )| (K, 4.

Hence U, is well defined by (28) and isometric. Also U, U, = U,,. and as U,=1,
U is a unitary representation. The continuity of U follows immediately from
the continuity of d

(v) One verifies straightforwardly that the quadruplet (29) satisfies condition
(14).

(viii) For 4e% we have that

W* Uy WA=W*Uyle, 4)=W*((g, 4)—(8, 9))
=(g)x4—(g),
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which proves (30) and by Theorem 1.3 as well statement (vi). One derives (31)
and (vii) easily from

Exp W* n, Exp WExp {
=Exp W* n, Exp W{
=Exp W*<Q|P(g) 2> exp<(g™", )| W) Exp(U, W+ (g, ¢))
=<{Q|P(g) Q> exp{W*(g™ ', $)|{> Exp(W* U, W+ W*(g, ¢))
={Q|P(g) Q) exp<(g~ )LD Expl(d, {+(2))-

The statements (32), (33) and (34) are proven by analogous calculations. [
The preceding results can be summarised in the following theorem.

Theorem IL11. Let (A, @, Q) be a continuous infinitely divisible C.P. triplet
satisfying condition C on an arcwise connected group 4. Denote by (A =, V)
its Stinespring triplet.
Then there exist
— symmetric Hilbert spaces ¥ (H,) and & (H ),
— anisometry W: H; —» H,
— a continuous C.P. mapping of type S: &: 4 — B(S(H,))
— a continuous unitary representation of type S:

i G u(S(H,)
such that
~ (A, @, Q) is unitarily equivalent to (¥ (H,),, D, Exp 0) where

& (H,).=[{$(%)}" Exp 0]
3.(8) =B (@)l a,).- (35)

— (A, =, V) is unitarily equivalent to (¥ (H,),, i,, (Exp W),) where

S (H,).=L{7(9)}" Exp WS (H,).]

7(8) =% (@) 5 @),
(Exp W), =Exp W|gwm,. 9

Moreover the minimal objects (¥ (H,), ®, Exp0) and (¥ (H ), &, Exp W) which
satisfy (35) and (36), are unique up to unitary equivalence. We call them the canoni-
cal forms of the triplet and the Stinespring decomposition. Their explicit construc-
tion is given in the previous lemma.

The various relations between the objects introduced in Lemma I1.10 and
Theorem I1.11 can be summarised in the following diagrams.

H, —2., m

Ue
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b (g)
F(H,) - S(H,)
N
\ /
2 D (g) #
ExpW VJ ]A y* Exp W*
A A
w(g)
V2 £
S (H) — ()

IL4. Example

Here we will illustrate Theorem II.11 for the infinitely divisible triplet (& (Hpg),
Py, 0,.» Exp 0) introduced in Sect. L.5.
One easily computes that

k k
dy=ic ), 0,— Z GIR*R+Q)EH— 3, (RE&IRE) (37)

1<i<j<k

fOr 4 =((€1> 91): cres (éka Gk))e@'
Now it follows immediately that the triplet is already in its canonical form.
Indeed, one has

k K
k1(Aa A/)=<R Z fi|R Z, €;>

i=1

Hence, using the notation of Theorem II.11 and Sect. 1.5, we have H;=Hpy
and d= Pr.0.c-

We now compute the canonical form of the Stinespring decomposition. First
observe that

ka((g, 4), (g, AN=CS1 £|S:1 &>+, {15, &

el a)le(e 5 9)

where g=(&,60)e¥, 4 and A’ are as above, and S, (resp. S,) is the positive
square root of Q+c¢— R*R (resp. Q —c¢+ R*R). Hence H, can be identified as
follows. Let Hg, (resp. Hg,) be the closure of Ran S, (resp. Ran §,). We denote
by Hg, the conjugate Hilbertspace of Hg, ie., Hg, is as a set the same set
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as Hg,, the identification mapping bein denoted by neHg, —7eHg,. The addi-
tion in Hyg, is given by 7, +7,=n;+n,, the scalar multiplication by Af=1zn
and the inner product by {#;|%,>=<9,|%,>. Then H, is the subspace of
Hg, ® Hs, ® Hy, generated by {(S, &, S, & RE)|E EeH).

Furthermore, the representation 7 of the group H, on & (H,) reads as

ﬁ(éa 0) EXP(’?n 17]2a 713)
=exp[ic0—3<E|(R*R+Q) &) —<(8: & 52 R4, 725 13))]
- Exp(n:+81 &7, +5,, 13+ R).

Moreover the isometry V: & (H,)— % (H,) maps Exp#n onto Exp(0,0,#). One
may check that indeed &(+)=V* #(+) V.

III. Logarithms of Infinitely Divisible Completely Positive Triplets

In this section we will show how we can construct a logarithm for an infinitely
divisible completely positive triplet. We hereby generalise the well known result
that an infinitely divisible positive definite function is the exponential of a condi-
tionally positive definite function. Due to the noncommutativity arising from
consideration of general mappings instead of functions, the logarithm will not
only be conditionally completely positive (in a suitable sense) but also enjoy
properties which remained hidden in the case of functions where they trivialise.

In a first subsection we will list the definitions of the objects and their proper-
ties which will naturally arise in the construction of the logarithm. In the second
we will characterise the infinitely divisible triplets as those admitting a suitable
logarithm. Finally in the last section we will make the explicit construction
of the logarithm for an example.

I111.1. Conditionally Completely Positive Triplets

Definition IIL1. () A mapping ¥: % - ¥ (X)) (=set of possibly unbounded
linear operators on some Hilbertspace 4" having some common dense domain
D) is said to be conditionally completely positive if

Y, (&IP(ETe)E>=0

g,.8'e¥

for all choices of almost zero functions gr—&,eD such that ) £, =0.
ge¥

(il) We call (A", ¥, Q%) a conditionally completely positive triplet on a group
Gif¥V: 9> L(X)is a mapping from ¥ into the (possibly unbounded) linear
operators on a hilbertspace # and Q°c.#" is a normalized vector such that:

— Q% Dom ¥(g) and ¥(4) Q°cDom ¥ (g) for all ge ¥, AcZ
— D=span{¥(4) Q°|4e%} is dense in A
— V:9 - %,(A) is conditionally completely positive in the sense of (i)
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— Y is normalised in the sense that ¥ (e)=0
- DcDom ¥(g)* for all ge@.

(iii) A conditionally C.P. triplet (A", ¥, Q°) is continuous if gr—<E&|¥(g)n)
is continuous for all &, neD.

(iv) A conditionally C.P. triplet (X4, ¥,Q°% is called hermitian if
Y(g = P(g)*.

Remark that the case of conditionally positive definite functions is covered
by the notion of conditionally C.P. triplet by taking # =C and Q°=1eC.

Definition IIL2. A conditionally C.P. triplet (&, ¥, Q°) on ¥ is called infinitely
additive if for all nelN, there exists a conditionally C.P. triplet (&,, ¥, Q)
on % and an isometry U,: 2 — ® "4, such that

~UDc®"D, where D,=span{¥,(4)Q°|1e%}
_Un90=®ngl(1)

~PN)=Us[](Be®1®...01+...+1® .. 1® %) U, forall 41e%.

ged
(38)
We call (A, ¥, 29) an n'™-part of (A, P, 2°).
Notice that in the case of conditionally positive definite functions ¥: 4 - C
the notion of infinite additivity trivialises. Indeed take #,=C, Q°=1eC, U,
the isomorphism between € and ® "C and ¥,(g)= ¥ (g)/n.

Definition 111.3. Given a mapping ¥: ¥ — ¥ (4") and a normalized vector Q~° ex
such that Q° and y(4) Q° belong to domain of ¥(g) for all ge¥, Ae¥, the
cumulants P}, Ae% of ¥ with respect to Q° are inductively defined by

B =0
P °>=> ] Ff. (39)
peP, Aep
where %, is the set of ordered partitions p of 4 into non empty sets 4.
Remarks. (1) Clearly P{ is a homogeneous polynomial in {Q°[%(X)Q°> of
degree # (/) if we put deg<Q°| ¥ (X) Q°> = # (X), e.g.,
(g)—<Q°|‘P( ) Q2%
R ny=<Q°| ¥ (g) P (h) Q° —<Q°| ¥ (g) Q%) (Q°| P (W) Q°).

(2) P¥ generalizes the usual cumulants P, which are defined by

<QleztA Q> =exp Z ( t)n

az1

Ae L (H).

Indeed, take ¥ (g)= 4 for all ge ¥, then B,= P} whenever # (A)=n.
(3) If ¥ is a complex valued function, then P{ =0 for all 4 with # (A4)> 1.
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Lemma HL4. If (X, P, Q%) is an infinitely additive conditionally C.P. triplet with
n™ parts (#,, ¥,, QF) on a group %, then the cumulants of ¥ w.r.t. Q° satisfy

() Bf=limn<QB(A) 2D, 4cF\(4) (40)
G) Brr=PY, Aed 1)

Proof. First we prove the existence of the limit in (40) by induction on 4 (A).
For #(4)=1, say A=(g), we have by infinite additivity of (&, ¥, Q% that
n{Q%| ¥ (g) 2°>=<(Q°|¥(g) Q°). Suppose now that the limit exists for all 4%
with # (4) <m. Take then a 4eZ with 4 (4)=m+ 1. Now note that by infinite
additivity we have for all 4e%

@ W(A)Q°>=<® "Q0

1 (z 19...0 %(E,0 .. 01)©"2})
ged \j=1

p;ﬁ = #(p))' £[p<90|lp(/1) Q0. 42)

Hence
n{QRB(4) Q9> =(Q°| ¥ (4 Q°)

n!
— —_— Q2w (A) Q0 43
I e c@inma 3)
p¥{4}

The limit for n — oo of the right hand side of (43) exists by the induction hypothe-
sis since all A’s that appear have # (A)<m; so the limit of the left hand side
of (43) must exist as well. Denoting this limit by P{ and taking the limit n— oo
of (42) it is also clear that (39) holds.

Moreover, again by an induction argument on # (4) it follows immediately
from (43) that P} is homogeneous polynomial of degree # (4) in (Q°|P(X)
Q°, X = A. Hence, the P’s given by (40) are actually the cumulants of ¥
w.r.t. Q°

It is straightforwardly checked that (%, ¥, Q) is infinitely additive and
that its k™ parts are given by (A, By, 25). So by (i):

Phn=lim k(ORI % P (A Q0> = lim nk(Q0,| P, (4) 2L, JP;". 7l
nk—-o

111.2. Construction of the Logarithm of Infinitely Divisible Triplets

Lemma IIL6. Let (o7, D, Q) be a continuous infinitely divisible C.P. triplet satisfy-
ing condition C on an arcwise connected group 4. Denote its n'™ root by (A",
@1 QU™ Then,

() f(4)= lim (®" Q| I, (A) ® "Q*/*> exists
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where
L(=(@"@-1R1Q ... 1+1® (#'"(g)-1)®...®1
+..+1®...01Q (2" (g)—1). (44)
Moreover
f=% ] X (=1n*“Pdy (45)

peP s Acp XA

where 2, is the set of ordered partition p of A into non empty sets A and where
dy is given by (24).
(i) (4, A'y=f(A4* x A} is a positive kernel on F.

Remark. If @ is a function (ie., # =C), then f(4)=] ] v(g), where ®=e¢".

ged
Proof. (i) Using the notation

1.(8)=2'"(g)—1 (46)
we can write

f(4)=lim (@" Q™" H Z(ﬂ@ ®1,(2);® ... 1) ®" QL

ged j=1

= Ii [T <@Y () @t
lim p;A( sy Ep( [n,(A4) Q57>

n!

n!

=lim ) [T 3 (—D*A0Qun dlin(x) Q1ny,

"_mope.@d( :H:(p))‘AercA

Now, as Aep is a non-empty set, we have Y (—1)* =0 and we can, using
(25), rewrite f(A) as follows ¥ed

f@=lm Y Gk #(p)), T Y (0 expldym—1]

=Y Il X (=)*“"0dy
pePs Acp XA
which proves (i).
(i) The proof of (ii) is straightforward. [

Theorem I1L.7. Let (£, ®, Q) be a continuous infinitely divisible C.P. triplet satisfy-
ing condition C on an arcwise connected group 9. Using the notation of lemma
1116, let A =hil(Z,]).
(i) For all ge¥
Y(g): Ae A —(g)x AeA 47

defines a linear operator on the dense subspace D =span{A|4e%} of A

(i) Put Q°=¢peA", then (A", ¥, Q° is a continuous hermitian conditionally
C.P. triplet

(i) (", ¥, Q°) is infinitely additive and has continuous hermitian n'® parts.
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(iv) (4, ¥, Q°) satisfies an additional positivity condition:

(g, 4),(g" 4)— Y. B (48)

Acarx(g=lg)x g’

is a conditionally positive kernel on 4 x Z.

Proof. (i) If }° A,4=01n o, then ) A,(g) x 4=0 as well since
A 4

HZ?»A(g)XAH2 Y Aada [(A* (871, g)x A)* x A')

4,4

= Z dahs f(g7 1, 0)x A)
4,4
= g7l g) X AIZ Aq 4> =0.

Hence ¥ (g) is well defined by (47).
(ii) By construction Q°=¢eDom ¥(g) and 4=¥(4) 2°cDom ¥(g). Also
D=span{¥(4)Q°|4e%} is dense in A"
Furthermore, for all g — &, Z Ag, 4 A€D with ) &, =0, we have, using nota-

tion (44), £
2 &I P )

2.8
=Y Zyadg,a f(4*x (@71 g)x 4)

g8
A, 4°

—khm Z g, a7y, o <A@ Q¥ (g™ ¢') [(4) ®* Q@Y%)
A A
= lim Z Ag, 4 g, 4 < (A) ®F Q¥
k— o0
A A

k
YA®. @0 g)®...@1) L(4)® Q')
j=1
—khm Z Jg.a Agr, < (A) ®F QUF| T (A) @ QVED.
A A

The first term is positive by complete positivity of @'’ whereas the second
term tends to

2 Aeatg s f(A*x A)=]} &|?=0.
8.8 g
A, 4

Hence (', ¥, Q°) is a conditionally C.P. triplet.
From (45) and the continuity of X €%+—-d, e, it follows that

geG—f(A* x(g)x 4)=<4|¥(g) 4
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is continuous for all 4, A’€%. Hence (4", ¥, Q°) is continuous.
Moreover, as

AW A>=f(A4*x (&) x A)=f((g ") xA*x 4)={P (g™ ") 4|4,

(o, ¥, 2° is hermitian.

Finally, since f(4)=0 as soon as ee 4, it is clear that ¥ (e)=0.

(iii) Let (oY @'" Q'™ be the continuous n® root of (#, ®, Q). Because
(A Pl QY™ is also infinitely divisible and has continuous roots, we can
by (i) and (ii) construct with it a continuous hermitian conditionally C.P. triplet
which we denote by (%, ¥, Q9. We prove that (#,, ¥,, Q) is the n'™ part
of (A4, ¥, 2°. Note therefore that (use notation (44))

CP(4) Q1P (4) Q%
= lim (®"* QU¥| I (4* x 4) ®* 2%
k— o0

= lim <®kn Ql/knll-l;n(A* ®A/)®kn Ql/kn>

k— o0

— hm < kn Ql/kn

k=

- - (d+ 1)k
I1 Z( Y 11®~-®*m(g),-®...®11)®""91/k”>

gedsx A’ 1=0 \j=1k+1

— hm Z H l/kn

k= e P ar (n— #(P

H 2 1Q... @ 1u(2);® ... 1 ®* '+

gedj=1

=lim ¥ ———fnaymmum@mM>

k_)ooPE«@A*XA ( #( ) Aep

= — Q%) 2
pegéw( #(p))‘,gf |(4) 2.5

=<®" oA

fl (Z 11®...®¥:,(g),»®...®11>®"9,?>

ged*x A" \j=1

:<f[ (Z 1.0 %(@,®...10" 2

geda \j=1

Il (Z 11@...@%(g'),~®...®11>®"93>.

gled” \j=1

This implies that the mapping

Y(4) Qe —T] (Z n®...®¥;(g),-®...11>®"9,95"1fn

ged \j=1
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is well defined and can be extended to an isometry U,: # — ®"4,. It is now
clear that (38) is satisfied. Hence (4", P, 2°) is infinitely additive and has continu-
ous n™ parts.

(iv) By comparing (39) and (45), recalling that f(4)=<{Q° ¥(4) Q° and
observing that BY =d, =0, we have for all 41e%

Pf= Y (—1)*0d,. (49)

Xc=Aa

So, summing (49) over A A one gets

Z P¥ = Z z (—DFAD g Z ( z (__1)#(A\X))dx

Acd AcdX<=A Xcd cAc4d

Since ) (—1)*“W=0if X, +X,, we end up with
XicdAdc=Xo
d,= Y PY. (50)

Ac=d

Hence in order to prove (iv), we have to show that (g, 4), (2", A)—=d g x g- 14y % 4
is a conditionally positive kernel. But this follows immediately from the fact
it is hermitian and that its exponential (ie., (g, 4), (g 4)—<{Q|DP(4* x (g"1 g)
x A) Q>) is a positive kernel. []

Remark. In the case of conditionally positive definite functions ¥: 4 — C the
propositions (iii) and (iv) of the preceding theorem are trivially satisfied, since
then the notion of infinite additivity trivialises and the additional positivity
condition turns out to be equivalent with conditional positive definiteness of
¥ itself. However, for mappings (dim .¢" = 1) (iii) and (iv) are non-trivial proper-
ties.

Definition IIL.8. Let (o, &, Q) and (4, ¥, Q° be as in theorem II1.7. We call
(A, ¥, Q°) the logarithm of (#, @, Q). Notation: (A, ¥, Q°)=In(s#, @, Q).

Clearly in the special case of a continuous infinitely divisible complex valued
function f=e", we recover the usuval definition of the logarithm: In(C,f, 1)
=(C, v, 1).

As we have now found an infinitely additive conditionally C.P. triplet as
a logarithm for an infinitely divisible C.P. triplet, an obvious question arises:
can we conversely “exponentiate” an infinitely additive conditionally C.P. triplet
in some way, to end up with an infinitely divisible C.P. triplet? This will be
the problem we will solve in the sequel.

To find a way to construct an exponential of a hermitian infinitely additive
conditionally C.P. triplet, we consider the special case of complex valued func-
tions. If v: ¥ - C is a conditionally positive definite function with v(e)=0 and

v(g)=v(g™ '), then

¢’ = lim (1 +3)
n

n— o
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is an infinitely divisible normalized positive definite function. If (", ¥, Q%) is
a hermitian infinitely additive conditionally C.P. triplet with n'® part (&£, ¥,

Q9), it is clear that Y should be replaced by ¥,. Therefore we consider
n

w— lim ®"(1+ ¥,(g)).

Lemma IILY. Let (', ¥, Q°) be a hermitian infinitely additive conditionally C.P.
triplet with n™ parts (X, ¥,, Q%) on a group ¥.

Then
() F(4)=lim <®"92 [1(®" 1+ %(g»®"93>
n— o ged
exists and
F(d)=exp ) Pf. (51)
AeA

(i) F (A, A)=F(4* x A') is a positive kernel on F.
Proof. (i) We have

<®an

I ®"(ﬂ+%(g))®"fz,?>

=<s22 T] 1+ % () 9>

=[ X RN DT

A=A

“|1+7 ¥ ncatmuen|.
N Aca
AFd

Now use (40) and the fact that P;¥ =0 to get (51). [
(ii) follows straightforwardly.

Theorem IIL10. Let (o, ¥, Qo) be a hermitian infinitely additive conditionally
C.P. triplet on a group 4 such that ¥(e)=0 and the additional positivity (48)
is satisfied. Using the notation of Lemma I111.9, let s =hil(%, F).

() For all ge¥%, ®(g): AeH —(g) x AeH defines a bounded linear operator
on K.

(ii) Put Q= e, then (#, @, Q) is an infinitely divisible C.P. triplet on 4.

(iii) If (A", P, Q) is continuous and has continuous n'® parts, then also (#, ®, Q)
is continuous and it has continuous roots.
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Proof. () If Y’ 1,A=01n o, then > 1,((g) X 4)=0 as well, because
A A

12 24(@)x D?= 3 440 F(4*x (g7, g) x A
4

4,4’

=) 24 41Y, 24 (87, g) x 4> =0.

4 4
Hence ®(g) is well defined as a linear operator on the dense subspace D
=span{4|4e%}. Since F(4*x(g)x A)=F(((g~!)x A)* x A), it is clear that
P(g )= o(g)*.
Moreover, as P (e)=0 we have ¥,(¢)=0 and so

CA|B(e) A"S =F (4% x (¢) x 4')

— tim (2] [] (1+ ) A~ i(0) T] (1+0e) 2]
—tim (02 T @+ )
n—o ged¥x A’

=F(A*x A}y={4]|4">
which means that @ (e)=1.

To prove boundedness of @(g), we first show complete positivity of g @(g)
onD. Let {,=> 4, , A€D, then
A

2P 8) > =2 Tgalg 4 F(4* x (g7 " g) x 4)

2.8

=Y Ay 4hg 4€XD Y PY>0 (52)
g2 Acarx (g lgyxa
A, Ar

where the inequality follows from the additional positivity property of and the
fact that the exponential of a hermitian conditionally positive kernel is positive.
Now (52) implies for all £, neD

CE1P(@)ny+L{P(g)n| &>+ EIE>+Lnlny =0.

Take ||€]|=|ln]l=1 and multiply ¢ and n with an appropriate phase factor
to get that [<¢|®(g)n>|<1 for all normalized &,n7eD and since D is dense in
S this implies | @(g)|| = 1.

(i) In the proof of (i) we have already shown that gr—®(g) is C.P. on D
and by continuity also on the whole of #. By construction, || =1 and Q
is cyclic for {®(%)}". Hence (#, §, ?) is a C.P. triplet.

Now we show that it is infinitely divisible. The n™ part (#,, ¥, Q9) of
(", ¥, Q2% is clearly infinitely additive as well and by (41) it also satisfies the
additional positivity condition (48). Therefore we can construct with it a C.P.
triplet (s 1/", ®1/", Q1) in the same way as (#, ®, 2) was made out of (', ¥, 2°).
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It can easily be seen that (#°'/", #*/ Q') is an n' root for (#, @, Q). Indeed,
notice that

{Q|P(4)2)=F(4)
=exp Y PY

A=4d
=expn Y Pfn
AcA
=FE,(4y
— <Q1/"|@1/"(A) Ql/n>n= <®n Ql/nl ®n QI/H(A) ®n Ql/n>.

Hence (#, ®, Q)= Q" (A", 1" Q1m,

(iii) The continuity of (&, ¥, Q° and (A,, ¥, Q,) yields the continuity
of g F(4* x (g) x A") and g+ F,(4* x (g) x 4’) and this clearly implies the contin-
uity of @ and @'/,

Definition IIL11. Let (4, ¥, Q% and (#,®,Q) be as in theorem II1.10. We
call (#, @, Q) the exponential of (4", ¥, Q°). Notation: (#, ®, Q)=exp (A", ¥, Q°).
Remark. In the special case of a conditionally positive definite function v: G - C
we have exp(C, v, 1)=(C, e%, 1).

The logarithmic construction of theorem I11.7 and the exponential of Theo-
rem II1.10 are mutually inverse. In fact we have:

Theorem IL12. (i) If (A, ®,Q) is a continuous infinitely divisible C.P. triplet
satisfying condition C on an arcwise connected group, we have

exp(In(#, P, Q)= (', D, Q)

(up to unitary equivalence ).

(i) If (A, ¥, Q% is a continuous hermitian infinitely additive conditionally
C.P. triplet on an arcwise connected group, satisfying ¥ (e)=0 and the additional
positivity condition (48) and having continuous parts, then we have

In{exp(A, ¥, Qo)=(A", ¥, Q°)

(up to unitary equivalence ).

Proof. (i) Let (A7, ¥, Q%) =In(#, &, Q) and (#, ®, Q) =exp(A, ¥, Q°). Then using
(51) and (50) we have

(Q|B(A)Qy=exp ¥, P =expd,=<Q|9(4) 2>
A=A
Hence (#, &, Q) =(#, ®, Q).

(ii) Let (o, ®, Q)=exp(A", ¥, Q% and (£, P, 3°) =In(H#, &, Q). Let d: ¥ - C
be the function satisfying (@] @(X) Q) =expdy. Then it follows from the con-
struction of ¢ and (51) that

dXZ Z R:y

YoX
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Hence, using (45) and (39) one gets

<D= 3 ] T (-1,

pePrAepXca

SR INCIREED W

pePs Aep X = A YeoX

=Y Il XY (—n*“opR"

pePpAdepYcd YeXcA

- ¥ e

peP4 Aep

=<Q°|P(4) Q%

which means (4, ¥, Q%) =(4", ¥, Q°).

1.3, Example

We will illustrate the construction of the logarithm for the triplet (¥ (Hgz), Px ¢..»
Exp 0) introduced in Sect. I.5.
We show that the logarithm of this triplet is given by

(L Hg), Pr,g.c 2°)
where
Q°=Exp0
and
¥r 0.8 0)=iBRE+(icO—3{LI(R* - R+Q) )1

where B(y) is the infinitesimal generator of the strongly continuous unitary
group {W(in)| AeR} on & (H) with

W(in) Exp E=exp(—$ A% 1> = A<n1E) Exp(An + &)
or in terms of the quadruplet notation introduced in (13)
W(l”l) =(exp—% ;LZ ” n “27 lna —/1’7,11)

First we compute the cumulants Pj . Clearly, by (37) and (49) we have for
gi=(éi’ Bi)EHo'(iz 17 2)

P¥ =icO,—3<& [(R* R+ Q) &)
BY o= —<REIRED.
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For 4 (A4)>2 we have that

PAW= Z (—1)#(/1\)0 dy

Xcd

=T (= T (~D*“m)E]

ged Yo A\(g}

+ Y X (=DTOR,

8:.8)=4 Y=A\g.g'}
=0.
It is well known [BR] that

C(ExpO0|B(#,)... B(13,+1) Exp 0> =0
and

CExpO|B(ny)... B(02,) Exp 0> =3 (i, 115, - Mgy, 113,

where the summation runs over all partitions of (1,2,...,2n) into sets
(il, iz), . '(iZn—l’ izn) Wlth il <l3< - <i2n—1 al‘ld i2k~1 <i2k fOI‘ k: 1, veey M
Hence it suffices to show that

Q¥ (gy) ... Plgons1) Q=0 (33)
and

(Q°1¥(g1)... V(g2 QD =(—1)" L (RE, IR, E) .. (R, [IREL)>  (54)

where the summation is taken as above and
F(g)=P(g)—(icO—1<E|(R*R+Q) &N 1.

To prove (53) and (54), consider 4=(g,, ..., g,,)- Then we make the following
summation rearrangements:

QP Q% =<Q°| [[ (#(9)- Ry 1) Q%

=(=D*D Y (—1)* QP (X) Q% [T B

XA geXe

Since (Q°| P (X)Q° = Y || B*and B¥ =0if # (Y)>2 this can be rewritten as

pePx Yep

(=D*DYATEN T By X (=p*eD (55)

q Zeq gege Uc=ge
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where the summation ) means the sum over all sets g of subsets of A of the

q
form g={(g;,,2.) - @in_,» 8} kEN; gi€d, iy <iy and ij<iz<...
<iy,_1, and where ¢ is a shorthandnotation for the set A\(U Z).
Zeqg

If 4 (4) is odd, then ¢° contains at least one element and therefore (55)

vanishes. On the other hand if 4 (4) is even, the only terms in the ) -summation
q

that contribute are those for which ¢°= ¢. Hence we recover (54).

Finally, the n™ part of (¥ (Hg), P g, 2% is easily seen to be (¥ (Hy),

0
'PR/VZ, Q/n, Cjn> Q°).
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