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Summary. This paper presents a maximum likelihood estimation method for 
imperfectly observed Gibbsian fields on a finite lattice. This method is an 
adaptation of the algorithm given in Younes [28]. Presentation of  the new 
algorithm is followed by a theorem about the limit of the second derivative of the 
likelihood when the lattice increases, which is related to convergence of the 
method. Some practical remarks about the implementation of the procedure are 
eventually given. 

I. Introduction 

We study here parametric inference problems for Gibbs fields. For this purpose, 
numerous methods have been developed. The most popular one is pseudo- 
likelihood estimation, which has been proposed by Besag (Besag [2]), as an 
alternative to maximum likelihood, which was then thought impossible to compute, 
at least in general set-up (maximum likelihood could be evaluated, or approxi- 
mated, for particular fields, for example in the Gaussian homogeneous case, or in 
the Ising case; see Guyon [10], and Kfinsch [13] for the Gaussian case, and Pickard 
[20-22] for the Ising model). For  binary markov fields, an estimation framework 
has been studied by Possolo (Possolo [24]). In preceding papers (Younes [27], 
Younes [28]), I proposed a stochastic gradient algorithm which converges to the 
maximum likelihood estimator for general Gibbs models with finite state space. 

All these methods are very strongly dependent on the structure of the 
neighbourhood system of the field. They all assume that the conditional law at one 
site knowing all the other ones only depends on a few sites that are called its 
neighbours. This assumption is in general very natural, and is satisfied for all models 
that are used in practice. But in the case when the modeled field is imperfectly 
observed (for example perturbed by a noise), the noisy field, which is the only 
information that is available for inference, does not have this Markovian property, 
even when the neighbourhood system of the original field is very simple. A standard 
estimation set-up is thus impossible to use, and one must search for different 
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procedures. For  example, Chalmond (Chalmond [5]) proposed such a procedure 
for parameter estimation of noisy fields in view of image restoration. His method, 
which has the advantage of being easy to implement, depends in a large part on the 
particular form of the model he chose. We here propose a method that can (in 
theory) be used in very general situations. It can be seen as a generalisation of the 
algorithm in Younes [28]. 

In this paper, we shall present this algorithm, (Sect. 3), and give some results 
about its convergence, results that are mainly inspired by M6tivier and Priouret's 
work on stochastic gradient algorithms (M&ivier-Priouret [18], Benveniste- 
M&ivier-Priouret [1]). We shall point out practical and theoretical problems that 
this procedure involves. Section 4 will be devoted to the statement and the proof  of a 
theorem that is related to the convergence of the algorithm and to the asymptotic 
normality of the maximum likelihood estimator. In Sect. 5, we shall give some 
aspects of practical problems that one may encounter. 

First, we shall present, in the next section, the modelization we use, and recall 
some results about random fields that will be useful in the paper. 

2. Random Fields 

2.1. Generalities 

We shall consider here imperfectly observed random fields. We shall then define an 
original field, X, which will be modeled in a standard way, and an observed field i1, 
which will be a perturbation of X. 

The field X will be indexed by Z z. The restriction to 2-dimensional fields is not 
crucial for what follows; it is mainly done in order to simplify notations, and 
because 2-D problems are, at the moment, the most frequent cases in spatial 
statistics. 

Let F be a given finite set. The field X, that can be written as 

X=(X~,s~Z2), 
will be assumed to take its values in F z2. 

For  any subset D of Z 2, and any x ~ F  z~ we shall note xD=(xs, s~D). 
We give ourselves a family of potentials: (2c(0, x)) where C runs over finite 

subsets of Z 2, and 2c(0, x) is defined on F z~ but only depends on coordinates of x 
that are elements of C. 0 is the parameter we want to estimate : the law of X will be 
associated to a potential (2c(0, ,  .)), for an unknown 0.. 

Y will be a function of X, which will be assumed, and this is the principal 
limitation of  our method, to be calculated from X component by component. More 
precisely, we shall consider a finite set G and a function b from Fon to  G, and assume 
that for all s, y~=b(x,). Calling b the application defined on F z~, which has all its 
components equal to b, we have: Y=b(X).  

In addition, i fD is any subset of  Z z, we shall call bD the application defined on F D 
with all components equal to b. 

The case of main interest included in this situation is the case of noisy data. To 
see this, consider an original field, X 1 , and a noise N =  (Ns). We call X =  (X 1, N), and 
we model the joint law of X 1 and N, making no assumption such as independence, 
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for example, The observed data is thus a function of X. In the case of  additive noise, 
it is X 1 + N. Of  course many  variations on the way the noisy field is constructed may 
be taken into account, with the limitation that it must be computed independently 
for each component.  

Another context which is included in this set-up is the case when the original 
field is partially unobservable;  for example, one often considers, in image 
processing, fields of  the kind X =  (X v, XE) where X e is the intensity (grey level) at 
each pixel, and Xe is the occurence of  an edge at the site. The function b 
corresponding to the true observation is then b(xp, xe)= x v. 

2.2. Assumptions 

Throughout  this paper, we shall assume the following facts on the potentials: 

Assumption 1. i) There exists a V>0 such that, for all x and all 0,2c(O,x)=O 
whenever diam (C) > ?. diam (C) is the diameter of  C for the metric on Z 2 defined 
by: 

d((i,j), (i ' , j ')) = max ( [ i -  i'], [ / ' - j ' [ ) .  (1) 

ii) We call, for s ~ Z 2 T~ the shift operator  of  step s, i.e. 

(r~x)t =Xs+t. 

We assume then that for all C and for all s: 

,~c+~(O, T~x) = 2c(X). 

iii) 2c(0, x) is twice continuously differentiable in 0 for all x. 
We have thus assumed that the field Xis  of  bounded range, uniformly in 0, and 

that the potential is spatially homogeneous. 
This assumption ensures the existence of a law on Z 2 associated to the potential 

for any 0. This means that for all 0 there exists a law for Xsuch that, for any D c Z 2, 
finite, for any x ~ F  v, and x ' ~ F  D~ where D c is ZZ\D, the probability of  X o = x  
knowing XDc=x' is given by: 

rc 0 (x[x') = exp ( - A o (0, x .x'))/Z(O, x')  (2) 

where x - x '  is the concatenation of x and x' ,  and: 

Ao(O,x .x ' )= Y~ ,~c(O,x.x') 
C,CnD=I= 0 

Z is a normalizing constant. 
As we assume that the potential is homogeneous, we can (and shall) assume that 

the law of  X is homogeneous (see Preston [24]). 
Let 's point out that this model does not ensure uniqueness of  a law on Z 2 

associated to a parameter  0. This uniqueness is closely related to mixing properties 
of  the field X. Although no uniqueness nor mixing assumption is needed for the 
definition of the algorithm, we shall use such properties in the asymptotics we shall 
make in Sect. 4. This is why we recall now some sufficient conditions related to 
them. 
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2.3. Uniqueness and Mixing 

We recall here Dobrushin's uniqueness conditions and more precisely conditions 
given by Simon, ensuring Dobrushin's ones. These conditions apply to finite state 
spaces. They say that, if we are given a potential (2c), a sufficient condition for 
uniqueness of a field associated to it is: 

Condition 1. There exists an ~ ~ [0, 1 [ such that: 

vt (Ic1-1)tl2c11 <  (3) 
C,t~C 

(Dobrushin [5], Ktinsch [14], Simon [26]). 
For a set A c Z 2 we shall call ~A the o--algebra generated by the projection o f F  z2 

o n  F a. We define, for a law P on F z2 : 

q~(A, B) = sup IP(Vr~ w ) -  P ( v ) P ( W ) I  

where the supremum is taken over VE WA and WE ~ .  One can easily check the well 
known estimate: if A, B are subsets of  Z 2, and f ,  g, are two bounded and positive 
functions, that are respectively ~A and We mesurables, we have: 

[E(fg) - E(T)E(g)[ < ]1 f I] co []g 1[ go ~b (A, B) (4) 

Under condition 1, we have the following theorem: 

Theorem 1. I f  we assume condition 1, and i f  the potential 2 is of  bounded range, we 
have (P being the law associated to 2): 

(a(A, B) <= K'~ a(a'B) 

Where d(A, B) is the distance between sets A and B, according to the distance in Z 2 
defined in (1); K is a constant that depends on A and B, and ~ can be taken as being 
equal to o~ a/~. 

We shall say that the law is exponentially mixing, with rate ~ (see Dobrushin [5], 
Kfinsch [14], Guyon [10]. 

Let's remark that the results we have given for a field on Z z are also true for a 
field defined on a subset S of Z 2, so that we can replace all the "c  Z 2'' by "e  S". We 
also can notice that the field doesn't need to be homogeneous, and we don' t  even 
need the space F to be the same for all s. 

The following result about comparison of expectations will be useful. 
Let S be a finite subset of Z 2, and two potentials, (2 ~ and (2~), indexed by the 

subsets of S. 
On F s we define the law R i by: 

We call E 0 and E 1 the corresponding expectations. We want to estimate the 
difference between these expectations when both laws are mixing. This is the subject 
of the following proposition: 
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Proposition 1. We assume: 
i) (2 ~ and (2~) of  bounded range (i. e. there exists a ~ >= 0 such that o 1 2 c = 2 c = 0  

/f diam (C) > y). 
ii) .for ~ ~ [0, 1 [ 

vt s, 2 (Icl-1) ma (llZll ,ll  ll )<= (6) 
C,tEC 

Let A c S and f ~A-measurable. We have : 

ieo(f)-E (f)i Kllfll o 2 (7) 
C 

K is a constant that only depends on A, 7 and ~. 

This is standard, references for this are, for example Kfinsch [14] or F611mer [6]. In 
our case, it can also be proved very easily by defining 

~ 0 1 0 2c - 2c + "c (2c - 2c), 

and expectations E~, as in (5), and making simple estimates on the derivative of E~. 
As a consequence of this result, or as a consequence of KiJnsch [14], 

Corollary 2.4, one can compare conditional expectations to absolute expectation 
for mixing fields. Let's give ourselves a field defined on S c  Z 2, not necessarily finite 
and assume that this field is associated to a potential (2c). I fD  c S is finite, we want 
to compare for f ,  depending only on a small number of coordinates, the expectation 
o f f  conditionally to D c, which is computable, to the expectation under the marginal 
law of the field (the absolute expectation) which is most of the time not computable. 
We have: 

Corollary 1. We assume afield on S satisfyin9 conditions 1 (we call (4) the associated 
potential). Let D ~ S, and A c D be finite sets. We denote by E the absolute 
expectation for  the f ield and by E D~ the conditional expectation knowing Dq We 
assume that D and A are rectangles (i. e. o f  the form [al, a 2 ] • [ha, b 2 ]). 

Let then f be YA measurable. We have the following estimate: 

/I E~176 ( f ) -  E(f)II KII f II oo  (s) 
K is a constant which depends on ~, A, and o f  the range o f  the field. 

We omit the proof  of this standard result. 

2.4. Law o f  X Knowin9 Y 

As we shall see in Sect. 3, the conditional law of Xknowing Yis of main interest for 
our problem. We give now some results about it. 

0 is fixed in this section and we omit it in the notations. 
Fix an element y in G z2. We shall study the law of X conditionally to Y = y .  Its 

support is the set F of all x such that b (x )=y .  As we have defined b component by 
component, this set is the product:  

F = H F  s 
S 

where ff~ is by definition: b- l (ys ) .  
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Let's put for D ~ Z 2: 

Po= FI Fs 
sED 

and let/~D be the counting measure on F D ;/~o is also product of  the/is, counting 
measures on Fs, for s~O. 

Let x '  be in FDc. Let ~Y(xlx') be the probabili ty o f x  ~ F D, conditional to Xoc = x '  
and Y=y. This probabili ty is equal to: 

P(XD=X[XDo=X', Y=Y)=P(Xo=xIXD~ =x', Yo=YD). 

And this is therefore equal to:  

~(xlx')  (9) 
 (ulx') ' 

u, bo (u) =YD 

This shows the following result: 

Result 1. I f y  is fixed, the law of X knowing Y=y is in general non homogeneous. 
The state space at site s is: Fs=b-l(y~), and the field is associated to the same 
potential as the field X. 

This implies the corollary: 

Corollary 2. I f  (2c) satisfy conditions 1, the law of X conditionally to Y=y  is, 
for all y, exponentially mixing, with the same rate as the law of X. 

This is trivial under Dobrushin-Simon conditions. But this result appears to be far 
harder to obtain, - and maybe false - under weaker hypotheses. 

We now come back to the estimation process. 

3. Estimation of 0 

3.1. Likelihood 

Let's recall that we have a model for the field X, and that we want to make statistical 
inference f rom the observation of Y, on a finite domain D c Z 2, i.e., we observe 
Yo=bo(XD). 

First of  all, we must note that it is impossible to obtain the marginal law of X o n  
D. We must then choose an approximation and a possible choice is the conditional 
probabili ty in (2), in which we fix x' arbitrarily. We can make numerous different 
choices of  the likelihood, making the energy A vary, especially for edge sites. 
Anyway, we shall here impose to the "likelihood" to be given by (2), and then to be 
of  the kind: 

no (x) = exp ( -  A (0, x))/Z(O). 

We assume for the moment  that D and x '  are fixed and don ' t  mention them in the 
notations. 

We can now compute the equations that have to be solved in order to obtain the 
maximum likelihood estimator. The law of Y is given by 

Y So(X). 
x,  b D ( x ) = y  
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If we differentiate the logarithm of 4, we get: 

d [log no(X)]no(X ) 2 20 
d log 4o(Y) -  x,b,,(x)=r 
dO Y~ ~o(X) 

X, bD (x)  = y 

equal to the conditional expectation of  d (log no) knowing Y=y,  and we This is 

shall denote it by: 

d l~176176  d ] )-0 log nol Y = y  . (10) 

If we differentiate again, we obtain: 

dO 2 log4o(y)=Eo ~ l o g n o l Y = y  +var0 lognolY=y �9 (11) 

In fact, it was not necessary to assume that the state space was finite in order to 
obtain these equations; this only formally simplifies the computations. With 
essentially the same kind of calculus, and simple considerations on conditional 
expectations, one can check that Eq. (10) and (11) are true for any law no. 

If we express the derivatives of log n o by means of A, we get the following result: 

Result 2. The derivatives of the log-likelihood of Y are : 

d 
dO log 40 (Y) = Eo [A'] - E o [A' I Y = y].  (12) 

And 
d 2 
dO 2 log4o(y)=Eo[A"]-Eo[A"lY=y]-(varo[A'] -varo[A' lY=y]) .  (13) 

In order to find the maximum likelihood, one must thus solve: 

h(O) =0  (14) 

Where h is defined by'  

h(O) = Eo [A']-  Eo [A'I Y =  y] . (15) 

3.2. Estimation method 

3.2.1. Introduction 

If we assume that the field is perfectly observed, i.e. Y= X, the expression of h (0) 
boils down to: 

h(O) = Eo(A' ) - A' (y) = Eo(A ' -  A' (y)) 

(y is the observed value of Y=X).  
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This equation is thus of  the kind Eo(f) = 0, and fits into the standard context of  
stochastic gradient algorithm: one tries to use a recurrent equation of the kind: 

On+i=On+anf(On,X n+l) 

where ~, is an appropriate step and X" + 1 tends to simulate the law of parameter  0,. 
This is the method we proposed in (Younes [28]). 

In the case of  imperfectly observed data, the basic idea lies in the remark that 
(15) is also of  the kind Eo( f )= 0, where ~ is an expectation for a properly chosen 
law. Indeed, let's consider a field on (FD) 2, denoted by (X i , Xz). Let X1 have the law 
zc 0 and X 2 the law rc~, which is by definition the conditional law o fXknowing  Y=y. 
Let's call E the expectation for the joint law and 

f (O, x~ , x2) = A'(O, x l ) -  A'(O, x2) 

We have Eo(f)=h(O). 
In theory, the joint law o f ( X  1 , )(2) may be any law with marginals u0 and u~ ; in 

practice it seems very difficult to find Gibbsian fields with given marginals, excepted 
the obvious one which corresponds to independent X 1 and X 2. However, the joint 
law of X 1 and X 2 will be of  the kind: 

if0 (Xl, x2) = exp (71 (0, x 1 , x 2))/Z(O, y) 

where Z(O,y) is the sum of the A(0, x 1, x2) ) for all x a and x 2 such that bD(Xz)=y. 
When X1 and ii2 are independent, we have : A (xl, x2) = A (xl) + A (x2). 

To solve h(O)= 0, we can thus follow the same process as in Younes [28]. We 
briefly recall it now. 

3.2.2. Presentation of the Algorithm 

We want to solve the equation Eo(f) = 0 for a given function f(O, x) and a Gibbsian 
law rc 0 (x), of  a field X on F D for a finite D c Z 2. It is important  for what follows that 
for each s, the conditional laws of Xs=x s knowing Xt=x ,, for t4=s are easily 
computable.  This is true for the law r~ we introduced before (at least when X 1 and X 2 
are independent), but this is not true for the marginal law of Y, ~0, in Sect. 3.1. 

As already said, we shall use an algorithm of the kind 

0,+ 1 = O , + a , f  (O,, X 0+1) (16) 

where (~, is a step (gain) that we shall choose, for simplicity, to be of  the kind 
[ (n+ l )U]  -1, although, in practice, the choice of  matricial gain can accelerate 
convergence (see Benveniste-M6tivier-Priouret [1 ]). X" must be a process that tends 
to simulate the law ~0.. Unfortunately, there exists no direct method of simulation 
of a Gibbsian field on D. The only tool we can use is the Gibbs sampler, which is an 
iterative simulation process of  Gibbsian fields. Before explaining the way we form 
i "+1 , we must recall the definition of the Gibbs sampler, that can be found for 
example in Geman  [7]. 

We want to simulate a law rc on F ~ The exact value of ~ is impossible to 
compute,  but one can easily use the conditional probabilities: 

~(xAx, ,  t +-s), 
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which are the probabilities of having x~ in s, knowing the other sites. This is what is 
done in the Gibbs sampler: its philosophy is to start with any configuration Xo, to 
sweep the domain D site by site, and at each time a site is visited, to renew the current 
configuration by changing only this site, according to the corresponding con- 
ditional probability. 

More precisely, we must define a sequence (s,) of  sites that sweeps D; we shall 
impose to the s, the following periodicity condition: there exists an integer R such 
that, for all n 

D = { s , +  1 .... , s ,+~}.  

We start with a configuration x o and define f rom it a sequence of configuration, 
X", such that:  ~ + 1 = X~ s for all s 4: s, and we obtain the new value, X~ + 1 = X~, at 
random, according to the law: 

rcs"(. IXT~, t 4:s,) .  

One can easily check that (X") is an inhomogeneous Markov  process with transition 
probabilities: 

P(X"+X=dxlX~=x')=P"'"+~(x',dx)= | 6~x~)| (17) 
~ :4: $ n 

6~i is the Dirac measure at point x;. 
This Markov  chain converges in law to the distribution ~ on F ~ We can now 

return to the estimation algorithm (16), and give the definition of X "+1 
For  each 0, we can define a Gibbs sampler and then a family of  transition 

kernels, P~'" + ~ given by (17). Now X" + ~ is defined as taken from X" according to the 
kernel P" '"+I  On 

The exact definition of the algorithm is: 

I 
Xo,O o given 

O"+~=O"§ (n-( -t-11" U- f(O"'X"+~-) (18) 

+i ) -  , , + a  , P(X" = x l X " = x ) = P 0 ' , ,  (x,x). 

The important  point in this algorithm, is that we do not expect the Gibbs 
sampler to converge for each 0,, or equivalently, we do not mind if X" really follows 
the law re0. for all n (this will be generally untrue, unless 0, has converged). Thus, we 
do not have to wait as in (Lippman [17]), at each step, for the convergence to be 
achieved. In (18), we renew the value of 0 at each step of the simulation algorithm; it 
is possible to wait a few sweeps between each renewal, in order to reduce the calculus 
that is needed, but even in this case, X" doesn't  follow the law ~0.. Of  course, when 
the parameter  has converged, and thus when its variations are small enough, the law 
of X" begins to stabilize. One can even show that  empirical estimations of  means of 
functions computed on the basis of  the (X") converge to the expectation of the 
function under the limit parameter.  

The proof  of  convergence of this algorithm, in the case of  perfectly observed 
data and exponential model lies in (Younes [28]) and (Younes [29]). In this case, we 
proved almost sure convergence provided the constant U is large enough. We 
cannot follow this p roof  in the present case, because the dynamic of the algorithm is 
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far from being as simple. We shall in the next section, give an idea of what is needed 
for the study of  the behaviour of an algorithm such as (18). We shall apply results of 
M6tivier-Priouret [18] to obtain what we shall call quasi-convergence of  (18), which 
is a weaker result than what has been made in (Younes [28]). 

First, let's look at what (18) gives in the precise context of Sect. 3.2.1. 
We have a field (X1,)(2). We choose X 1 and X 2 independent, and we recall that 

X 1 follows the law r~ 0 and •2 the law rc~. The simulation of (X1, Jtz2) can then be done 
by simulating each component separately. This leads us to define two Gibbs 
samplers, and thus two families of conditional probabilities, noted P~,"+I and 
Q g., + 1 respectively corresponding to rc 0 and rc~. As we know exactly the potentials 
for both these laws, these kernels are easily computable. Now the algorithm is 
obtained by simply transcripting what has been said before into the present context, 
and this gives: 

X~I, X~2,00 given 

1 
rA,r 0 X,+la O,+l=O,-~ (n+l )U~ ~ , ,  1 J-A' (O, ,X~+I))  (19) 

P( X~ +1 = xx lX~ = x'l ) = Pg'"+ l (x'a , xl ) 

P(X~ +1 =xzlX ~ = x ; )  = Q~., + 1 (x;, x2). 

In the particular case of exponential models, which are almost exclusively used 
in practice, we have A(O, x) = (0, H(x)> and the increment 0,+ 1 - 0, is independent 
of 0,. In the case of noisy data, X 2 follows the conditional law of  the original field 
knowing the noisy one. It will thus become more deterministic as the noise becomes 
weaker, and for negligible noise, we get back into the algorithm of  (Younes [28]). 

We now recall some results about the behaviour of algorithms such as (18). 

3.3. Quasi-converyence of the Algorithm 

3.3.1. Introduction 

The results we cite now are taken from (M6tivier-Priouret [18]) and (Benveniste- 
M6tivier-Priouret [1 ]). Like most of the results related to stochastic algorithms, they 
do notprovide almost sure convergence of the parameter 0, in (18). In fact, they give 
estimates of the probability of non-convergence of the algorithm, and one of the 
conclusion we can draw from them is that, if the parameter comes back infinitely 
often in a given compact set, then it converges. 

M6tivier-Priouret [18] have studied Markovian stochastic algorithms, i.e. of  the 
kind: 

1 
O , + l = O , + ~ i ~  f (O,,X"+l) 

(20) 
P(X "+1 e AiX" = x ' )  = Po, (X', A ) . 

Such an algorithm is thus controled by homogeneous transition kernels. (The 
transition only depends on n by the parameter 0,). In this context they gave 
sufficient conditions which ensure quasi-convergence. These conditions are 
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numerous, and are made to fit in very general situations. Some of them boil down to 
trivialities in our case, and we shall not recall them. In fact, only two groups of 
hypothesis in M6tivier-Priouret [18] are really significant here (they are called H 5 
and H 6 in [18]). One group is related to stochastic behaviour of the process X" and 
the other one to dynamical behaviour of the mean differential equation associated 
to (18). 

This equation is: 
d 
d~ (0) = h (0). (21) 

Where h(O) is given by (15), i.e. h(O)=Eo(f(O, .)). 
If we put: 

g (0, x) = E o ( f  (0,.)) - f (0, x) .  

Equation (18) becomes : 
1 

0~ 1 - 0, = ~ + 5  (h (0,) - 9  (0,, X,+I )). 

(22) 

This equation can be interpreted as a discretization of (21) perturbed by the "noise" 
9- This remark forms the basis of the theory of stochastic algorithms. There exists 
numerous results which compare the sequence (0,) to the trajectories of (21). When 
this differential equation possesses an asymptotically stable point one can expect 0, 
to converge to it. 

It is clearer now why one needs stochastic and dynamical conditions: on one 
hand, we must control the behaviour of the perturbation g, and on the other hand 
one has to control the stability of the mean differential equation. We begin by the 
stochastic ones. 

3.3.2. Conditions H5 in M~tivier-Priouret [18] 

These conditions essentially assume the existence of solutions of Poisson equations 
associated to 9 and to the transition kernels. In the homogeneous case this means 
that there exist functions (0(0, x)) that satisfy: 

e(0, x ) -  (P00)(0, x) =g(0, x), 

and possess some regularity properties in O, ensured for example by differen- 
tiability. 

3.3.3. Conditions H6 in M&ivier-Priouret [18] 

As already noted, the asymptotic stability of the mean differential equation is a 
natural condition of convergence of the algorithm. Let ~ be an open subset of R a, 
the space where the parameter 0 may vary. 

Asymptotic stability with attraction domain ~ is implied by the existence of a 
Liapunov function, ~ ,  twice continuously derivable, such that, denoting by'O the 
solution of (14): 
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1. ~q(O)=O and ~~ for 0 6 ~  and O=i=O. 

2. (~'(O)[h(O))<O if O e ~  and 0 + 0 .  

3. 5f(O)--* +oo if 0 ~ @  or if 101-~+oo, O e ~ .  

3.3.4. Main result in Mktivier-Priouret [18] 

The main result of M6tivier-Priouret [18], is the following: 

Theorem 2. Let ~ be a subset of  Rd for which conditions H 6 are true. Under conditions 
H 5, we have: 

For all compact set (9 included in ~,  the probability of  non-convergence of the 
sequence O, defined in (18) to the solution of(14), conditional to 0,o ~ (9, is lower than 
C((9).1/n o, where C(C.) is a constant that depends on Q. 

This implies that if 0, returns infinitely often in a given compact subset (9 of ~ ,  
then it converges. This is what we can call quasi-convergence of the algorithm. 

3.3.5. Application to the Estimation Algorithm 

Before applying the preceding result, we must make the following remark. In (20), 
transition kernels associated to a fixed 0 are homogeneous; (18) does not possess 
this property and thus seems more general. In fact, one can include the non- 
homogeneous situation into the homogeneous one by the following construction: if 
X, is a non-homogeneous Markov chain, with transition kernels P"'" + 1, and initial 
law #, the process (n, X,) is homogeneous, with initial law &0 |  and transition: 

P((p, x'), ( q, x)) = 6p+ 1 (q)pp, p+ 1 (x', x).  

Using this remark, conditions H5 become: 
there exists a family of functions (~,(0, x)), that satisfies: 

0,(0, x) - (  P~'"+ l 0,+1)(0, x) =9(0, x) , 

Q, must be regular in 0. These functions have been studied in (Younes [28]), where 
existence and regularity have been checked. As (18) is still controled by a Gibbs 
sampler, conditions H 5 are also satisfied in the present context. 

When the field Xis  perfectly observed, and when the model is exponential, it is 

easily checked that ~0 is a negative matrix. In fact, h is the differential of a concave 

function (the likelihood), and conditions H 6 are trivially true; quasi-convergence is 
thus true in this context; as already said, one can even show (under some additional 
conditions on the gain) that the algorithm converges almost surely (Younes [28]). 
Unfortunately, in the present case, the behaviour of the equation is far more 
unstable and the only thing one can say about it is that, as the maximum of the 
likelihood r is a solution of (14), one can expect the differential of h to be negative 
in a neighbourhood ~ of this solution, and result 2 is true with this ~ .  This says that 
provided that the algorithm stays not too far from the maximum likelihood 
estimator, it wilt converge to it: there exists a compact set (~ containing 0 and the 
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algorithm can diverge only if it goes of (2 and never comes back. The meaning of 
"not  too far" (or, equivalently, the size of (9) will depend on the amount of 
information about the original field Xtha t  is contained in the observed field Y. The 
following theorem shows this precisely, in the case of mixing fields. It provides the 
expression of the second derivative of the likelihood, for large observation domain 
D. It shows that, in a neighbourhood of the true parameter 0 , ,  this likelihood is 
concave; as it can be shown that the maximum likelihood estimator is convergent 
(cf. Younes [29]), this gives another means to check the local stability of the mean 
differential equation; it will also point out where the risks of unstability, and 
"explosion" of the algorithm are. 

4. Second Derivative of  the Likelihood 

4.1. Notations 

We keep the notations of Sect. 2 and give some new ones. 
Let's order Z 2 with respect to the lexicographic order. In order to write the 

energy A in (2) as an homogeneous sum of  terms, we define : 

(0,x)= Z ,~c(0, x). 
C/max(C) = 0 

Assumptions 1 imply that: 

/~(0,x)--- y~ ,~c(0, r,x), 
C/max(C) = s 

for all s ~ Z 2. 

(23) 

One has" 

AD(O, x) = ~ 2c(0, x) (26) 
C/F + max(C) CD 

In fact, the expressions A and A only differ on the edge of D. 
We shall denote by E 0 the expectation for the absolute law of the field, under the 

parameter 0. When the energy on D is A x', we shall denote by Uoo' or by E o the 
corresponding expectation. We shall use the same kind of notations for expressing 
variances (or covarianees) according to these laws (Var, varX',...). 

As we assumed bounded range, fl(O, x) only depends on coordinates o f x  whose 
indices are included in a finite subset F of Z 2, containing 0; the diameter of F is at 
most 2~. 

According to (2), the approximate density is equal to 

re0 (x) = re0 (x[x') = exp ( - A x' (0, x))/Z(O) 

Where we noted: 
A~" (O, x) = ~ 2c(0, x . x ')  (24) 

C,Cc~D:~O 

Most of the time, we shall not express D nor x'  in the notations, writing re(x) and 
A(x). We also define: 

AD(O, x) = ~ [1(0, T~x). (25) 
s , F + s E D  
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In the following, we shall consider limits of  expressions when the domain  D 
tends to Z 2. This must  be unders tood as limits of  the expression for any sequence of  
squares centered at 0 that  increases to Z 2. 

4.2. Theorem 

Theorem 3. The fieM X is associated to potentials, 2 c (0 , , . )  satisfying to conditions 1. 
We assume in addition that Dobrushin's conditions are true .for O,;.for notation 
convenience, we will express it by: 

there exist an c~ E [0, 1 [ such that 

Z (ICl-1)l]'~c(O,,.)l] ~176 (27) 
C , O ~ C  

We assume that x is a realization of X under Po,, the only law on F z2 associated to 0,.  
We consider a function b from F onto G and the associated function b on the space 

of configurations over Z 2. We call Y = b ( X ) ,  and y = b ( x )  the observed realization of 
Y. We note F~=b-l(ys)  

For all D,finite subset of  Z 2, let x' be any edge condition defined on FDc. For a given 
O, we use the approximate likelihood no(. Ix'). 

We denote by ~o(. ix') the associated likelihood for Y on D, and put: 

1 d 2 
LD(O) = ]D] dO 2 log t~o(yD[x' ) 

Then, for all 0 for which Dobrushin's condition is true: LD(O ) converges for Po, 
almost all x to the sum of two matrices'-I(O, 0,)  and S(O, 0,)  with: 

I(0, 0 , )  = ~. Cov 0 (fl'(O,.), fl'(O,.)o T~) 
s ~ Z  2 

And: 

- ~ Eo. Covo(~ ' (0  , . ) , , 8 ' (0 , . )o  T~IY) (28) 
, s c Z  2 

" 0  S(0, 0 , )  = E 0 (fl" (0 , . ) )  - E0, (E 0 (fl ( , .  )1Y)) 

I f  0 = 0 , ,  S vanishes and I(O, 0,) is equal to I ,  with" 

I ,  = ~ Covo,(Eo,(fl'l r) ,  E0,(fl' o T~{ Y)) 
s ~ Z  2 

(29) 

(30) 

LD(O) =;X;~, [Eo [A"]] - Eo [A"I Y=y] - (var0 [A'] - varo [A'I Y=Y])I. 

4.3. Proof 

4.3.1. First Step 

Remark  first that  (27) implies exponential  mixing with rate c~ for the global law as 
well as for  the approximate  ones. We fix a 0. For  simplicity of  notat ion,  we assume 
that  the associated laws are mixing with the same rate as the law of  parameter  0 , .  

We have 
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Expecta t ions  and var iances  are here compu ted  with respect  to the approx imat ing  
law. We shall intend to replace these expecta t ions  by  the absolute  ones and A by the 
homogeneous  sum A. 

We split LD(O)in two:  

L .  (0) = L~ (0) - L 2 (0) ,  
with 

1 
L~ = ~ [E o [A"] - var  o [A']] 

and 

L 2 (0) =~DI [E~ [A"l Y=y] - varo [A'I Y = y ] ]  �9 

We s tudy LD ~ , and show that  it converges to" 

Eo(Y')- Y, Covo(Y,/ro ~) 
s e E  2 

In fact this reduces to show that  LD 1 has the same limit as: 

1 
- -  [E0 (A" (0,.)) - Var0 [A ']]. 
I n [  

Indeed,  by homogene i ty :  

i Eo(A,,(O,.)) 1 ID~ = ~  ~ Eofl"o T~ 

tends to E0(fi"(0, .)) (the n u m b e r  of  terms in the sum is equivalent  to IDi). 
And,  Var0(A'  ) can be wri t ten as: 

Var0(A') = Y, Cov0(/~' o T,,/~"o T,) 
s, t  

=Y, Cov0(/~',/~'o g-s)  (31) 
S~t 

The sums are over  s and t such tha t  F + s c D  and F+teD. We note, for  k e Z  2 : 

rk(D ) = c a r d  {s, F + s c D  and F +s + k c D }  (32) 

we can write" 
rk(D) 

l V a r o ( A ' ) =  ~. Covo(fl '  , f l 'o  Tk ) 
[D[ k~Z2 ID] 

Since F is finite, rk(D ) is equivalent  to [DO when D tends to Z 2. Because of  mixing 
propert ies,  the covar iance between fl' and  fi' o T k tends exponent ia l ly  to 0, i f k  tends 

1 
to + ~ ; thus, ~ Var0(A'  ) tends to 

Y, Cov0(/~',/~'o T~) 
s E E  2 

by the domina ted  convergence theorem.  
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We must now show that we had the right to replace E by E, and A by A. It is 
1 

clear that the difference: [ ~  (EY(A " ) - E y ( A ' ) )  tends to 0, because both energies 

differ only at the edge of D, which is of order 1 ] / ~  for square domains. We must 
thus show that E ( A " ) -  E (A") is negligible before IDI. 

According to Corollary 1, we have: 

Ile (s)-Eo(/)II ___< cst ilfll or 
if f is J~j-measurable. If we remember that fl" depends only on coordinates indexed 
by r ,  we can estimate Ile( ")-E(A")II by: 

cst y '  off (r+s'~176 (33) 
S 

the constant depends on F. It is easy to check that the expression in (33) is an 

O ( I ~ ) .  
We now estimate the differences of the variances. We first consider : 

1 
(var (A') - Var (A')) 

IDI 
This is equal to: 

1 y(cov(fl 'or~,fl '  Z+k)-Cov(fl'or~,fl' r~+k)) _ _  o o 

IDI s,k 

the sum is over s and k such that F + s c D, et F + s + k c D. 
We note, for F + k c D  

1 
a k ( D ) = m ;  ~' (cov(fl '  o T~, fl' o T~+k)-Cov(fi '  o T~+k) ) 

I L l  s,F+s+kCD 

and a, ( D) =  0 if F + k dg D. We must study the limit of ~ a k (D). Mixing properties 
(for both absolute and approximate laws) imply: k 

N ak (D)]I < cst 0~ Ikl 

The constant depends on the diameter of F. 
To apply the dominated convergence theorem, we only need to show that ak(D) 

tends to 0 for a fixed k, when D tends to Z 2. But, putting f~ = fl'o T, 

cov (fs ,  fs--k) - Cov ( fs ,  fs+k) = E( f s"  f~+ k) - E(f~ "f~+ k) 

- E (  f~)(E(fs+k) -- E( f ,+k) )  t 

- (E(f~) - E (f~)) E (f~+ k)' (34) 

k being fixed, we can show convergence of ak(D ) to 0 as before, using Corollary 1. 
1 1 

In order to finish this part of the proof, we need to compare ~ var0(A' ) and ] ~  

var0(A" ). We can do this in exactly the same way as before, writing the difference as 
a sum over k of terms bk(D ), of the same type as the ak(D), such that each of them 
exponentially tends to 0 with k (uniformly in D), and tends to 0 when D increases. 
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4.3.2. Second Step 

With essentially the same technics, we study convergence of Lg to : 

Eo.(/3")- ~ Eo.[Covo(fl',fl'oT~lY)] 
s ~ Z  2 

This is mainly based on Corollary 2 and on the following remark: 
I f  (a is a function defined on F z2, Po inte9 table, we have, for s ~ Z 2 : 

E((9o T~(X)I Y) = E(qS(X)I y)  o T~ (35) 

As before, we shall show that we can replace A by A, and the approximate 
expectation (E) by the absolute one (E) in L 2. If we assume this, we have to study on 
one hand the limit of: 

1 
- -  Y~ E o ( f l " ~  T, IY) 
IO[ s,r+scD 

which is equal to: 
1 

Eo(/3"l Y) ~ T~. 
ID[ s,r+scD 

Since X is homogeneous and mixing, so is Y and this sum converges to : 

E0,(E0(ff'l Y)). 

On the other hand, we must study the limit of 

1 
Cov0 (~'o Ts,/~'o T,I Y=y). 

IDI s . t  

The sum extends over s and t such that F + s  and F + t  are included in D. If we 
remark that: 

Cov0(/~'o T,, ~'o T~lY=y)=Covo(~',~'o T, ~tY=y)o T~ 

we can order the sum in the following manner: 

1 B' 
~ ~ Cov0(fl', o TklY=y)o T~. (36) 

The sums are made on sets of cardinals equivalent to IDI. According to the 
ergodic theorem, for each k, the sum over s, normalized by [DI converges to 

E0, [Cov0(fl', fl' o Tkl Y)] 

As Corollary 2 implies that the covariance between fi' o T~ and fi' o Ts+ k converges 
exponentially to 0 i fk  tends to infinity, we obtain that expression (36) converges, if 
IDI tends to Z 2 to 

2 Eo,[C~ '~ TkIY)]. 
k e Z  2 

To finish the proof, we must show that we did not change the limits by taking 
absolute expectations and homogeneous sums. But result 1 implies that, for fixed y, 
the law of Xconditional to Y = y  satisfies corollary 1. This allows us to make exactly 
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the same estimates for L~ as we made for L~, so that we do not need to write them 
again. 

We have then shown that L o(O) converges to: 

E0( f l " ) -  Y', Covo(fl',fl'~ Tk)--Eo,(Eo(fl"lY))+ ~, Eo,[Covo(fl',fl 'o Tklr)] 
k ~ Z  2 k E Z  2 

as announced in Theorem 3. 
The expression of I ,  for 0 = 0, is obtained by noting that: 

Coy0 (/~',/~'o T~)- E0 [Cov0 (/~',/~,o ~1 r)] = Cov0 (E0 (/~'1Y), ~0(/~ '~ T~I r)) .  

4.4. Extensions and Remarks 

If one uses an other energy than the one we chose in order to define the approximate 
likelihood, the conclusions of  the preceding theorem are still true, under the 
following hypothesis: For  each D, we can choose a family (Xc) of  potentials, to 
which we associate the energy/1 D on D. It is easy to change the proof  to check that 
the theorem is still true if we assume: 

Z (Vl-*)max(ll, c(O,.)lloo, 
C, teC 

for all t, (to be able to apply proposition 1), and: 
1 

1. 

I 
2. [D~ II~c~=-X~lloo~o, 

1 3 E 

A n o t h e r  important extension is the possibility to solve: h(O)= fro(f)=-0, when 
f is not exactly the derivative of the likelihood. The differential of h is now: 

R o ( f ' ) - ~ 6 ~  ( f  , A' (O,x)) 

(cov means the covariance for the approximate law). 
In order that this expression (normalised by ]D]) has the same limit as 

1 
]D~] E~ (A") - A" (0, x o) - var (A'(O, x)), 

it suffices to assume that f is a sum of potentials: 

f =  
C 

and that the (2"c) satisfy the same kind of conditions as the X before (the mixing 
condition excepted). 

These variations in the hypothesis have a great importance if one tries to use an 
estimation procedure that avoids bias problems. It is not in the intent of  the present 
paper to develop these questions. We refer in particular to (Kfinsch [15]), (Guyon 
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[10]), and (Younes [29]) to obtain some answers. Finally, let's remark that 
Theorem 3 can be used to obtain asymptotic normality results for maximum 
likelihood estimators. If the matrix I ,  is invertible, 1,1 will be the asymptotic 
variance of the maximum likelihood estimator. This is proved in (Younes [29]), 
jointly with consistency - which is true under much weaker assumptions - and will 
be the subject of a future paper. See also Gidas [9] for consistency and asymptotic 
normality in the perfectly observed case. 

We can make a few remarks about Theorem 3. First, we stated it for a quite 
general family (4) of potentials. In fact, the case of main interest in practice is when 
these potentials are associated to exponential models for X, i.e. 2(0, x) = @, l(O)). 
In this case, the term S(O, 0,)  vanishes, and /~'(0, .) does not dependend on 0 
anymore in the expression of L However, dealing with the general case was not far 
more expensive. 

As S is in the applications most of the time equal to 0, we shall make some 
remarks on I(0, 0,). It can be easily checked, by taking trivial examples, or by 
making simulations, that, if 0 is far from 0, ,  this matrix is no more positive. As 
already pointed out, this is a real danger for the convergence of the algorithm, and 
can have as a consequence the explosion of the algorithm, i.e. the parameter 0, in 
(19) can tend to infinity. One must then try to find some methods to prevent this 
kind of accident. 

The risk of unstability will of course highly depend on the sharpness of the crest 
of the likelihood near its maximum. This is given by the matrix I ,  in (30). This 
matrix measures the amount of information about X that is included in Y. If Y is 
independent of X, this matrix vanishes, and it is maximum as a positive matrix when 
Y= X. In order that the algorithm (19) has a chance to converge, one must assume that 
this matrix is strictly positive definite. Even more, it must be "positive enough" to 
provide a sufficiently sharp maximum, which means that it might be very difficult 
(and quite impossible by our method) to make precise statistical inference from too 
strongly perturbed data. Finally, let's remark that nothing ensures uniqueness of a 
local maximum of the likelihood; this means that there might be situations for 
which the algorithm converges, but does not reach the maximum likelihood 
estimator, especially if the starting point is too far from it. This situation is of course 
caused by the loss of the concavity of the log-likelihood. 

However, these limitations leave a rather large domain of application for 
parametric inference, and one obtains encouraging results with significant 
perturbation. 

We now make some practical remarks on the algorithm. 

5. Practical Remarks 

The preceding procedure has been tested on simulated data, namely on noisy 
Gaussian fields (sometimes coupled with another binary field, that represents edge 
location), Ising models (including external field parameter), perturbed by various 
noises (addition of a white Gaussian noise, replacement of some values by 0 with 
a certain probability...). We also used it for parametric estimation on real data, 
in view of image restoration, using a model of the type of Chalmond's one 
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(Chalmond [5]). All numerical results will be given in Younes [29]. Simulations 
enabled us to make estimations of asymptotic mean square errors of estimators; 
comparison to standard estimators such as pseudo-maximum, has been used to 
evaluate the significancy of perturbations. 

All these experiments brought out the following general facts about the 
procedure. We separate the algorithm in three phases: its beginning, i.e. the choice 
of 0 o in (19), the time it runs, and the choice of a stopping rule for it. 

1. The choice of a good starting point is of  main importance. It does not only 
reduce the number of steps that will be needed until convergence, but a choice of a 
starting point that is too far from the maximum likelihood can cause explosion of 
the algorithm. 

Unfortunately, this choice appears to be very difficult in our context. For totally 
observed data, some fast and good preliminar estimators can easily be found, using 
for example pseudo likelihood. In the presence of  noise, these estimators are no 
more available; when the noise is not too strong, pseudo-likelihood estimators, 
computed as if the data were not perturbed can give an idea of the parameter. But 
this estimator becomes very bad as the noise becomes singificant. 

In our applications, we chose to let (19) wind up a certain time with constant 
step, starting with any 0 o ; if the step is not too large, this provides a good - but long 

- preliminar estimation procedure. 
2. In (19) the gain is a scalar. In fact, it has been seen on simulations that a 

matricial gain can make convergence faster, and reduce risks of explosion. The 
choice of the gain is done according to standard gradient algorithms. It is an 
approximation of the "opt imal"  one: 

d2 log ~pol- 1 

These derivatives are given by result 2. They can't  be exactly computed, but can be 
estimated by simulations. In our applications, we used empiric estimations com- 
puted on a certain number of preceding iterations of (l 9), based on A t (X.~), i = 1, 2. 

As all approximates in the algorithm, these are not expected to provide the exact 
values of the expectations, unless the algorithm has begun to converge. But they give 
a sufficiently good idea of them to ameliorate the performances of the algorithm, 
provided that the constant in (37) is large enough. 

3. In order to decide whether the algorithm has converged or not, we test if the 
difference : 

(At(On, X~ +l)-At(0n, X~ +1)) 

in (19) has zero mean or not. Indeed, once the algorithm has converged to 0 . ,  X~' 
and X~ respectively follow the laws re0, and rt~,. One can show that, for large enough 
domains, under each law, A' follows a Gaussian law. We use then a Z 2 test to 
implement the stopping rule. 
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