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Summary. Let {W(t), t>0}  be a standard Wiener process, and let L(x, t) 
be its jointly continuous local time. Define 

T~ =inf{t__> O; L(O, t)>=r}. 

The upper and lower class behaviour of infL(y, T~) is investigated, where 
the infimum is taken on an interval, which is an appropriately chosen func- 
tion of r. 

Introduction 

Let {W(t), t_>O} be a standard Wiener process and let L(x, t) ( - ~  < x < ~ ,  
0 =< t) be its local time, which is jointly continuous a.s., 

Denote 

L* (t) ---- sup L(x, t). 
X 

Kesten (1965) proved the following results: 

L*(t) 
lim_fiup ] /2 t  log log t 

lira inf L*(t) l]/~g log t 
t---~ O0 V ~ 

1 a.s. 

=7  a.s. 

The exact value of y was evaluated by Csfiki and F61des (1986), namely y =Jl" 1//2 
where Jl is the first positive root  of the Bessel function Jo (x)= I o (ix). 
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The problem of considering the infimum of L(x, t) over an increasing interval 
was raised by Perkins (1981), who proved, with the notation 

L,(t,h(t))= inf L(x,t), 
Ixl < h(t) 

the following theorem. 

Theorem (Perkins). There is a nonincreasing function 0(~) (~ > O) such that 

L* ( t ' ~ r  
(a) l imsup - 0 ( c  0 a.s. foral le>O, 

t -  oo 1/2 t log log t 

(b) 0(~)< 2~/x 1 for all ~>=0, 
4 

(c) 0(a)>(1 -l / /~) 2 for all cr 1. 

The above results stimulated the investigation of the following problem. 
Denote by T~=inf{t>0, L(0, t)> r}, i.e., the first passage process associated 

with L(0, t). What  can one say about  the upper and lower class behaviour 
of infL(y, Tr) where the infimum is taken on an appropriately chosen interval. 
It is not at all surprising that the above question is strongly connected with 
the behaviour of 

~br= max W(s). 
O ~ s ~  T r  

Theorem 1. Let f (x) be nondecreasing, lim f (x) = + oo and let 
x ~ o o  

Then 

Denote 

ii(f)= ~ dx  
1 x f (x)"  

/f I1 ( f )  = oo. 

~ r  = - -  m i n  W(s) 
O < s < T r  

and 

qr = min ( r  q~). 

Theorem 2. Let f (x) be nondecreasing, lira f (x) = + o% and let 
x--~ oo 

i2(f)= ~ dx  
, x f2(x)"  
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Then 

P {tI,>=rf (r) l l  /f 12 ( f )  = oe. 

X 
Theorem 3. Let f (x)  be nondecreasing limoo f (x) = + oo, f ~ / ~  + 0% and 

i 3 ( f ) =  ; f(x)  e_f(:Odx" 
1 X 

Then 

{ r " } { 0 i f I3 ( f )<~  
P ~ b F < 2 ~ l " ~  = 1 / f I 3 ( f ) = o e .  

Remark 1. Theorem 3 holds for t/F too. 

Remark. Theorem 1-3 can be formulated for simple symmetric random walk 
too. Denote by Tk* the k-th return to the origin of the simple symmetric random 
walk S,. It's easy to see, that 

P(  max S j < l ) =  1 -  . 
O<=j<T~ 

Based on this observation it's not hard to prove the random walk analogons 
of Theorem 1-3. This observation gives the possibility of proving the above 
theorems first for random walk, and get the above theorems via invariance 
principle. However we do not know the random walk analogues of the next 
two theorems. 

Theorem 4. Let f (x) be nondecreasing, lim f (x)= + oe. I f  I 2 ( f)< + oe then 
x--+ oo 

P ( l i m  inf L(x, T~) = 0) = 1. 
r ~ o o  [x l<r f ( r )  

I f  I2(f)= + oo then 

,(lim inf 
[x[<rf (r )  r 

Theorem 5. For any 0 < 6 < 1 

, infr  L y,r - 
lY[ < 2 loglogr 



5 4 8  A .  F 6 1 d e s  

where K ( 6 ) = ( 1  -] / /6)  2. Moreover,  in case 6 = 1 we also have 

L(y,  T~) = O) = 1. / 
P / l i m  inf inf / 

< _r 
\ r oo lY[ 2 l o g l o g r  

Remark.  As a consequence of Theorem 5 one can get a new proof of Perkins' 
result (his statement c.). However I learnt from Perkins the following precise 
result: 

Theorem A (Perkins). For all ~ > O, 

lim inf L ( x , t ) ( 2 t l o g l o g t ) - l / 2 = ( ~ 2 + l ) X / 2 - ~  a.s. 
t ~ ~ [x  I < ~(t/2 l o g l o g t ) l / 2  

Remark.  On the other hand our theorems imply only the following less precise 
results. 

Corollary 1. For any q > 0 

P( lim inf L(y,  u) u -  1/2 log u(log log u) 1 +~ = + ~ )  = 1. 
u ~ oo ly[ --< V u ( l o g  u) - 1 ( l o g l o g u )  - 2 - n 

Corollary 2. For any q > 0 

P(l im in f L(y,  u) = O) = 1. 
u ~ o~ ]Yl -< I / u ( l o g  u) - 1 /2  ( l o g l o g u )  - �89 + n 

Remark.  As Theorem A is far more significant than Theorem 4, we omit the 
proof of the latter, and incorporate Perkin's proof of Theorem A. 

w 2. Preliminary Result 

In what follows we list some well-known properties of L(x,  Tr) which will be 
used later on (see e.g. Bass-Griffin, I to-McKean, Knight) 

(A) {L(x,  T~); x > 0 }  is a diffusion in x on natural scale, started from 
O2y 

L(0, Tr)=r with generator 2x d x  2 . 

f i r  
(B) E ( e x p { - - ~ L ( x ,  T~)})=exp{ l + 2 f l x } "  (2.1) 

(C) Considering the equation 

~2y ~v 
2x 0x~x2 = , e > 0  (2.2) 
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the increasing and decreasing solutions are l//xIl(21/2~x) and I / ~ K I ( 2 1 / ~ ) ,  
where 11(. ) and KI( .  ) are the modified Bessel functions of the first and third 
kind respectively. 

(D) Denoting by 

% = inf  x >= O, L(x, T~) = b}, 

/~  1 1 ( 2 ~ )  
) if r___b 

E , ( e x p { - u Z b } ) = , ] #  Kl (  2~r ) if r>_b. 

V b K , (  2]/~) - 

(E) {L(y, T~), y<O} is also a diffusion with the same generator as 
{L(y, T~), y > 0}, and the processes are independent from each other. 

(F) Scale-change property 

(2.3) 

(2.4) 

d l  
L(x, T,)=-- L(cx, T~). 

C 

The following statement is also well known. It can be obtained for instance 
from Theorem 4.3.6 of Knight. 

Lemma 2.1. 

P( max W(s)<x)=P(L(x ,  T~)=0)=exp - . 
O < s < T .  

Remark 2.2. For any nondecreasing function f (x) for which lim f (x) = + co 
x ~ o o  

k= 1 f(pk) and ! x f (x)  dx  (p > 1) 

are equiconvergent. 
The following lemma is frequently used and its proof is routine. (See e.g. 

in Csfiki-Erd6s-R6v6sz, Lemma 4 and 5.) 

Lemma 2.3. Let f (x) x > 0 non-decreasing and positive, and nk = exp . Then 

f (x)  e_y(X)d x and ~ e -f("') 
1 X k =  2 

are equiconvergent. 

The following Borel-Cantelli type lemma is due to Erd6s and R6nyi (cf. 
R6nyi [-6], p. 391). 
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Lemma 2.4. I f  ~ P (Ak) = + oo and 
k 

then 

i i P(AkAz) 
lim inf k = 1 z= 1 

k 1 

P(A k i.o.) = 1. 

<1,  (2.5) 

Lemma 2.5. The Laplace transform of 

P( inf L(y,T,)>o~r) (inT)isfor c~N1 
O<y<yr  

0 O<_y<=yr 

Remark. According to (F) 

P( inf L(y, T~)>c~r)=P( inf L(z, T1)>c0, 
O<=y<Tr O<_z<_7 

hence independent of r. 

Proof Based on the result quoted in (A) and (D) we get 

L(n)= e-"'Pl(~>7)dT=E~ e-"'d~ =~(1-G(e-"~')) 
7=0 

which gives (2.6) by (2.4). 
For  the Laplace transform of the probability 

P( inf L(y, T,)<er) (as a function of T) 
O<y__<-gr 

the following estimate holds. 

Lemma 2.6. Given any 0 < e < l ,  c > 0  there exist c 1 and c2 depending only on 
c such that 

e-V~(a - V~)V~ 
cl < e - w P (  inf L(y, T~)<~r)d~ 

t/4[//~ o o_-<y_-<~r 

< C2 e-VT(X -V~)V~ 
(2.7) 

C 
holds if ~ >--. 

O~ 

(2.6) 
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Proof From (2.6) it is obvious that for 0 < e < 1 

oo 
e - ' ~ P (  inf L(y,T~)<=ar)dT= 1 K I ( ~ / ~ )  (2.8) 

0 O<Y--<Yr ~] 1//~ K I (  2 1 ~ ) "  

From the asymptotic expansion of Erd61yi et al. 1953 (Vol. 2, p. 24, formula 
(4)) 

K,  (z) = ] / ~  e-~ ( 1 +  0 ( | ~ ) )  z--+ o% (2.9) 

(2.7) follows easy computation. 
Let us define the function F(h, ~) by 

F(h ,~ )=P(  inf L(y, T~)<~r)=P(  inf L(y, T0<c  0 . 
O<=y<=hr O < y < h  

then clearly F(h, ~) is monotone increasing in h. 

Lemma 2.7. For any 0 < ~ <  1, h>0 ,  such that ~(1 _]/~)2 > 1 we have 
2h 2 

~/~ 2h J 
(2.10) 

where c 2 is the constant of Lemma 2.6. 

Proof Starting from the obvious equality 

c~ 

F(h, oO =F(h, ~). tlea" ~ e-""du<__rle "h ~ F(u, c 0 e -""du  
h h 

1 

by the monotonicity ofF(u, ~) and (2.7). Computing the minimum of this function 

(1 -V~)  2 
in q we get (2.10), where the minimum is taken for q = 2 h 2 

Lemma 2.8. For any given e*> 0 there is a ho(e* ) such t h a t / f ~ ( 1 -  ]/~)2/2h2 > 1, 
0 < ~ < 1 -- ~* and h < ho (e*), then 

where D is an absolute constant. 
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Proof For a given e* choose an 8 > 0 such that 

4~<e*, and (1-3~)(2e(1+~))-1>1 (2.12) 

should hold. Then e=~(e*) is fixed, when e* is fixed. Introduce the following 
notations 

h(1-e) h(1 +e) h(2+g) 

~e-"~F(Y,~)d7 = ~ + ~ + ~ + 
0 0 h(1-g) h(l+~) h(2 +e) 

= I 1  -+- 12 + i ra  + / 4  (2.13) 

(1-  [//~)2 . According to (2.7) Put */= 2h 2 

2clh2 exp{ (1-~]/f~)2-}. (2.14) ~exp{  Y (1~h2~)2} F(7, 7) d7 => (1 _ ]/~)2 ]//~ 

Denote 

D = rain 2q  
4 

o<=<1 (1 _ 1//~)2 V~ 

to get 

~exp{-7(l~hzl/~)2-}F(y, cOdT>Dh2exp { (1-~V~)Z-}. (2.15) 

In order to get a lower estimate for F(h, ~), estimate I,,  12, 13 and 14 from 
above. Based on (2.10) 

ix<h(lf -~' C2 exp{ (1--1//-~)2 (1-]//~)ey}dy. 
= g 4[/~ 27 2h 2 (2.16) 

Observe that the integrand in (2.16) is monotone increasing for 7 < h, implying 

(1--]/~)2 (1-- ~ + g~e)  } . i1 < c2 h e x p { -  2h =F; 
1 ~2 

Now being 1 - e + 1 - e = 2 + 1 - ~ '  

(2.17) 

i1<4c2 hexp~ e2 (12]h]h~)2_}exp{ (1-~]//~)2}. 
-~ l 1--e 

(2.18) 
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From the condition ~(1-]/~)2 2h 2 >1 we get that ~-1/4<h-1/2. 
0 < ~ < l - e *  

(1 - ]//a)2 > (1 - / 1  - e*12 = g> 0. 

Moreover 

553 

Now being 

(2.19) 

To estimate 14 observe that F(7, ~)< 1 (being a probability). Thus 

14< ; e-"~d7 = ~f exp 2h 2 j d7 
h (2 + e) h(2 + e) 

(1+.)2 e x p { -  (1 -h~)2 ) .  

if h < h2(g* ). 

52 g } 
c 2 ]/h exp 1 - e  2h <Deh2 

if h is small enough, say h < h 1 (e*) (as both e and g is a function of e*). Hence 

1 l ~ D g h  2 exp{ (1-h~)2  } - (2.20) 

if h < h 1 (5*). Being F(7, e) monotone increasing in 7 one gets for 12 

lz < 2h~F(h(l + e)' cQ exp {-(1-]//~)z (1--~)} (2.21) 

The estimation of 13 is similar to 11, by (2.10) 

c2 h'Z+~)exp{ (1--V~) 2 (1-~/~)27}d7" 
I3~ 4 .  h(l~+e ) 2? 2h 2 

The above integrand is monotone decreasing in 7 leading to the estimation 

{ ( 1 - - ~ ) 2  ( 1 + 1 + 5 ) }  
I 3 < . ,  h e x p _ ~  - . 

V~ 2h l + e  

Using the same argument as for 11 we get that 

13~h2D exp{ (1--~]//~)2 t (2.22) 
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According to (2.19) we have 

I < 2h2 4 =-~-  exp { -  ~-~} exp { 

__<ah2D exp {_ (1--~1/~)2 } 

if h < h a (e*). Now from (2.15)-(2.23) if h < min hi(z*) we have 
1</._<3 

f (1-]/~) 2] . . . .  2exp { (1 Dh2 expel - h-- ;  "-'eun _ [/~)2} 

implying 

(2.23) 

(2.24) 

F(h(l+e),co>l--3eDhexp{ (12@)2 (1 + e)} 
= 2e 

Denote h(1 + e)= h*, then by (2.12) 

1-3e +e) { (1- ~)2 (1 +e)2 } 2h* f(h*, e)>----2e(1 h*D exp 

>h*Dexp{ (l~h-h ~)2 } = (1 + e)2 

=D exp{ (1-~/~)22h* (l+e)}.h* exp~ (1-~/~)2).- ~ ((l+e*)-(l+e)2)}. 

(2.25) 

Now again by (2.12) and (2.19) 

h" exp {(12hV~-*c~)~2 [(1 + 8")- (1 + e)2]} > exp { (1-V~)2 (e'-2e-e2) } = 2h* 

>=h'exp,- 2h--*- ? ~ n  exp =h(l+e)exp 2h(lq-e) >1 

when h<h4(e*) (as ~ and g is a function of e*). Define ho(e*)= min hde*). 
Then we get from (2.25), that 1 _<i_<4 

F(h*,ot)>=D exp{ (1-l//~)2(l+e*)}2h* 

if h*< ho (e*) (as h*< ho (g*) implies that h < ho (e*)) and the lemma is proved. 
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In our next lemma we give the well-known upper and lower class results 
for T~ (see Chung and Hunt, Fristedt). 

Lemma 2.9. 

(a) l f  ~ ~ )  ds= + oo then l i m - ~ =  s ~ o o  a.s. 

1 . T~ 
(b) If ! ~ d s <  + oo then Jim h ( s ) = 0  a.s. 

fls 2 . 1 /f f i > l  

w 3. Proofs of  the Results 

The proof of the exact lim result is based on the theory of Donsker and Varadhan 
(1977); the following proof is due to E. Perkins (letter to the Author). 

Proof of Theorem A. Let d = {f:  ( -  0% oo) --+ [0, oo): f absolutely continuous, 

f(y)dy<l, i ( f ) = l  ; f,(y)e/f(y)dy<l}. 
- -  ~,3 - - o 0  

Let pt=(t/loglog t) 1/2. Theorem 3.9 of Donsker-Varadhan (1977) implies that 
w.p.1 the limit points (in the compact-open topology on C(R,R)) of 
{x ~ ( t  log log t)-1/2 L(ptx , t)} is _A_, and hence (apply Cor. 3.11 of Donsk.-Var. 
w i t h ~ ( g ) =  inf g(x)) 

Is[ < ~/V~ 

lim inf 
t -* oo Ix[ < = ~ ( t / 2  l o g l o g t ) l / 2  

Fix fs=A and let c = 

L(x, t)(2t log log t)- 1/2 

= 1 sup{ fiaf f(z):fEA=) 
//2 Izl =~V~ 

inf f(z), e'=c~/]/2. Then 
Izl__<~' 

(3.1) 

l > l E  S (f'/f)2f(z)dz/ ~ f(z)dz] 
Izl>~' Izl>~' Izl>~' 

>~[ ~ If'/flf(z)dz/ ~ f(z)dz] 2 
Izl>~ ' Izl>~' [zl>=' 

---->RE( ~ [f'(z)[dz)2/ ~ f(z)dz] 
Izl>a' Iz[>~' 

=>~(2c)2/( 1 -  I f(z) dz) 
Izl<~' 

f(z) dz 

f(z) dz 

(o /o  = o) 

(Jensen) 
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(Note that ; If '  (z) l d z > f (e') > c). Hence 

1 >(c2/2) / (1- -2~ 'c)=*c2<_2--4c~ '=>c 

< -- 2 e' + (4 ~' 2 + 2)i/2 _ Co (e'). (3.2) 

Therefore sup { in! f (z): ]re A} < -- 2 e' + (4 e' 2 + 2) 1/2. 
I z l = ~ '  - = 

To prove equality in (3.2) we simply have to find the right f in =A. An 
examination of the above argument shows we want f ' / f = c o n s t a n t  on lYl >~',  
f constant on lYl < ~' and I ( f ) =  1. This leads us to define 

Co(CQ if ]x]<~' 

f ( z ) =  Co(7')e -p(~- ' ' )  if x > ~ ' , f l = 2 c o ( c O ( 1 - 2 ~ '  Co(C()) -1 

Co(7') e +a(x+'') if x < - ~ ' .  

A routine calculation shows fe__A and hence 

sup{ inf f(z):  f e A } = c o ( O g  ). 
izl__< ~, = 

Therefore c(~/]//2)/]//2=(-o:1//2 +(2~ 2 + 2)i/2)/~/2 = -c~ +(~2 + 1)i/2 
gives the result. 

Proo f  o f  Theorem 1. Convergent part: According to Lemma 2.1 

and (3.1) 

~ x }  i (3.3) 1 < P ( m a x  W ( s ) > r x ) = l - e x p  - < 2 x  
4 x  O<_s<_r, 

for x > �89 Let r k = e k, k = 1, 2, .... Then 

rk 
max W(s)>rk+ i r~+lf(rk))  P( max W(s)>rkf(rk))=P(o<s<=rrk+ ' 

O~S~Trk+ 1 

<rk+ i 1 _ e 1 

= rk 2f(rk) 2 f ( r k )  

Hence the convergence of I i ( f ) ,  Remark 2.2 and Borel Cantelli lemma implies 
that for k > k o (co) 

max W(s) < r k f  (rk) 
O<=s<Trk+ 1 

implying for r k < r < r k + i 

max W ( s ) < r f ( r )  (3.4) 
O <s<_ Tr 

by monotonicity. 
Divergent part: 
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Let r k = e k, k-- 1, 2 . . . . .  Let us define the events 

Bk = max W(s)>rkf(rk) , B~= max W(s)>rkf(rk). 
0 <-- s < T r  k T r k  - 1 ~ s <~ T r k  

oo Then clearly { B  k }k= :t are independent and B* ~_ B k. On the other hand, observe 
that 

P(B*)  = P (  m a x  W(s)  > rkf(rk) ) 
O--<s<-- Tr  k r k _  I 

= P (  m a x  W(s)  > (r k - r k_ 1)" rk f(rk)) 
0 ~<s--< T r k - r k _  1 r k - - r k _  1 " 

1 rk--rk_ 1 1 1 e--1 1 
> -  (3.5) 
= 4  r k f(rk) 4 e f ( e  k) 

by (3.3). Using again Remark 2.2 and the Borel-Cantelli lemma we get that 
if 11 ( f )  = + oo 

P(B* i.o.)= 1 hence P(B k i.o.)= I. 

Proof of Theorem 2. Observe that 

P (qr > r x) = P (rain ( r  q~) > r x) 

= P (  max W ( s ) > r x , -  min W(s)>=rx) 
O < s < T r  O < s < = T .  

= P (  max W(s)>rx,  rain W ( s ) < - r x )  
O <=s<- T r  O <-s<_ T r 

=P(L(xr,  T,)~O, L(-- xr, T~)~O)=p2(L(xr, Tr),O), 

where the last equality holds by property (E). Consequently, 

( 1 1 <P(qr>rX)= 1--e  7 - 2 <  (3.6) 
16x 2 = 4x 2 

where the left-hand side inequality holds for x > 1. Based on (3.6) a repetition 
of the argument of the proof  of Theorem I gives the proof  of Theorem 2. 

The method of the next proof  goes back to the well-known Kolmogorov-  
Erd6s-Feller-Petrovski integral test. A detailed version of this technique can 
be found e.g. in Cs/tki, Erd6s and R6v6sz (1985). Therefore we give only a 
brief 

Outline of the Proof of Theorem3. Let r t = i  , rk=exp j l ~  k / (k=2,3 . . . .  ). Then 

according to Lemma 2.3 I3 ( f )  and ~ exp {--f(rk) } converge or diverge together. 
k 

Convergent part: 



558 A. FSldes 

Split the indices into the following two sets: 

A I = {k;f(rk)< C log log rk}, B I = {k;f(rk)> C log log rk} 

where C > 2 is fixed. Let 

Dk= ~ max W(s) 1 rk+l~ 
~O<s=<Tr k <f(rk+l) 2 

by Lemma 2.1 

Being 

it is easy to see that 

P(Dk)=exp{--r~+lf(rk+l) }" 

rk >exp  log(k+ 
rk+ 1 

/ log(k+ 1))_c 2 if k +  l e B y  
P(Dk)~ ~ - ~ 1  

exp{--f(rk+a)+C} if k+l~A I. 

(3.10) implies our statement by the Borel-Cantelli lemma. 
Divergent part: 
It is easy to see that without the loss of generality one can assume that 

�89 log log n <f(n) < 2 log log n. 

(see in Cshki, Erd6s and R6v6sz Lemma 9). Let 

By Lemma 2.1 

Ak=( max W(s)<~-;~). 
\O <-s<- T~ k 

P(Ak)=exp {-- f (rk)}. 

It is easy to observe that for k < l 

P(AkAt)<=P(Ak)P( max W ( s ) < ~ ) = P ( A k ) e x p { - - - -  
\ 0  <=s<= Trz - r  k 

F l - - F k  r z  x'~ ;, Jtr,Jr 

(3.7) 

(3.8) 

(3.9) 

(3.1o) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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Now for fixed k, split the indices 1 (k < l__< n) into three parts 

L I = { / :  O<l-k<=logl} 

LE={I: log l < l - k < l o g 2 I }  

L 3={l:  log 2 l < l - k } .  

Based on (3.11)-(3.14) one has to show that for arbitrary k>ko 

P(Ak Az)< CP(Ak) (3.15) 
IEL1 

P(Ak At) < CP(Ak) (3.16) 
leL2 

P(AkAt)<(I+OP(Ak)P(At) for l~L 3. (3.17) 

Clearly (3.15)-(3.17) and Lemma 2.4 imply our statement. To see that the above 
three conditions are fulfilled, one has to show that for lEL1 

implying (3.15), for leL2 

rz -- rk f (rt) >= C' (1- k) (3.18) 
r I 

rt--rk > C" (3.19) 
rl 

which together with (3.11) implies (3.16). 
Finally for l~La, it is easy to show that 

rkf(rt) ~ 0 as k--* 0% (3.20) 
r l  

implying (3.17) for large enough k and hence the theorem. 

Proof of Theorem 5. The 6 = 1 case is a trivial consequence of the divergent 
part of Theorem 3. Hence we only deal with 0 < 6 < 1. 

Convergent part:  
Let r k = pk, p > 1. For  any 0 < 6 < l and for an arbitrary small e > 0 define 

Ak= ~ inf L(y, T~k)<(1--e)K(6)rk+l} (3.21) 
I l y [ < ~ ,  rk+lO 

2 l o g l o g r  k + 1 

where K (6) = (1 -- ~/~)2. If ~ P (Ak) < oo then for k > k o (co) and any r k < r < r k +1 
k = l  

inf L(y, T~)> inf L(y, T,.,)>(1--e) K(fi)r k 
r6  rk+ 16 

lY[ < 2 l o g l o g r  [Yl < ]2 l o g l o g r k  + 1 

> ( 1 - ~ )  K(6) r a.s. (3.22) 
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which implies our statement. Thus it is enough to prove the convergence of 

~P(Ak). To get an upper bound for P(Ak) one has to apply Lemma 2.7. With 
k = l  

the notation of Lemma 2.7 and using property E 

P(Ak) _-< 2 F 2 log log r k + 1' (1 - e )  pK (5) . (3.23) 

By (2.10) if k is big enough, then 

oxp{ P (A~) < 

41//(1 - e) p K (6) P 

<C* e x p { _  (1--(1--]/~) l/P(1--e'))2 loglogrk+ l} p5 

= C*((k + 1) log p)-'(P'~'~) (3.24) 

where C* is a constant depending on e, p and 5 but not on k, e '= 1 - ] / 1 - e .  
What remains to show is, that if p > 1 is small enough, then 

B(p, 5, e)= (1 - ( 1  - V ~) ~/p(1 - e,))2 > 1 + q5 (3.25) 
p5 

with some q~ > 0. But (3.25) is equivalent to 

1 - ( 1  -~ /6 )  ~#p(1 - e') > (1 + ~9)1/~ (3.26) 

(with a convenient ~h > 0). (3.26) holds if 

1 
(3.27) 

1 -g(1-1 /~)  + ff VS" 

Being 0 < 6  < 1, for an arbitrary e' > 0  one can choose a small enough ~h such 
that the right-hand side of (3.27) should be greater than 1. Thus one can choose 

a p > 1 satisfying (3.27), hence (3.25). This implies the convergence of ~ P(Ak). 
k = l  

Divergent part: 

Let 0 < 5 <  1 fixed. Choose an ~(5)>0 such that (1 + ~--~)) K(5)< 1. 

Let rk=e ~176 where p will be chosen later on. One has to show that for 
any e > 0, 0 < e < e (5) for the events 

Ak:  { inf,~ L(y, Try)< (1 + e)K(6)rk} 
lY[ < 2 l o g i o g r k  

P(Ak i.o.) = 1. (3.28) 
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To this end first observe that 

inf L(y, T~+ ,) 
l Y l <  ~ r k + l h  

l o g l o g r k  + 1 

=< inf (L(y, T~+ ~) -- L(y, T~)) + sup L(y, T~). 
r k + l ~  

Y < 2 l o g l ~ k  + 1 Y 

For  the second term one can easily show from 

(3.29) 

furthermore 

(which is a simple consequence of property (A)) and the Borel-Cantelli lemma 
that for any e '>  0 and big enough r 

and 

supL(y,  T~)<r(logr) ~+~' a.s. (3.31) 
y 

First we show that if p is chosen appropriately in the definition of rk, then 

sup L(y, T~) < rk+ ~ ~ K(6) (3.32) 
y 

if k is big enough. To see (3.32), observe that according to (3.31) 

sup L(y, T,~) < r k (log rk) ~ + ~' = e ~ logk(p k log k) 1 + '' 
y 

rk+X 2 K(6)>(ePtk+ X"~ 2 K(~) 

(pk logk) 1 +~' < (eP'~ 2 K(6) = k p 2 K(6) 

if p is big enough, implying (3.32). 
On the other hand the events 

Bk= ~ inf (L(y, T~,+I)--L(y, T ~ ) ) < ( l + 2 ) K ( b ,  rk+,}, 

and independent, and 

P(Bk) = P ( inf 
\ rk+ lt~ 

[Y] < 2 l o g l o g r k  + I 

(3.33) 

(3.34) 

(3.35) 

k = 0 ,  1,2 .. . .  

_ _  L(y, T~k+l_r~)<(1 + 2 ) K ( f ) r k + l } .  (3.36) 

P(supL(y,  T~)> rh) = 1 ( h > l )  (3.30) 
O < y  
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In order to get a lower estimate for P(Bk) we use Lemma 2.8. Using again 
property (E) we get that if k is big enough, then 

( 6 rk+a , ( 1 + 2 ) K ( 6  ) r-k+~ ] (3.37) 
P(Bk) > 3 F 2 log log rk + 1 rk + 1 -- rk rk + 1 -- rk/ 

where F(h, cO was defined in Lemma 2.7. Observe first that 

rk+ 1 

rk+ l - - r  k 
- - - - l + t / k  where t /k~0.  (3.38) 

This implies by (2.11) with a small enough 5" and k >  ko(e*) that 

P(Bk)> C exp 6 (1 +e*) log log rk+ 1 (3.39) 

To see that ~ P ( B k ) =  +cO we have to show that for any 0 < 6 < 1  fixed, and 
k 

for an arbitrary 0 < e  < e(6), one can find a small enough 5" > 0  such that 

6 (1 + 5*)< 1. (3.40) 

As 0 < 6 < 1 and r/k ~ 0, it can be easily seen that (3.40) holds if k is big enough 
and e* > 0 is small enough. Thus for k big enough 

1 
P(Bk)> C exp {--log log rk+ 1} = p(k+ 1) log(k+ 1) (3.41) 

implying the divergence of ~P(Bk).  Thus P(B k i.o.) = 1. This together with (3.29) 
and (3.32) implies (3.28) and hence the theorem. 

Proof of Corollary I. According to Lemma 2.9 b, for any r/> 0, p > 0 

T~ =< r2 (log r)2 (log log r) 2(1 +q)p (3.42) 

if r >  ro(CO). On the other hand from Theorem 5 we have, that for every 5> 0, 
0 < 6 < 1  

inf L(y, T~)>K(6)(1--e)r 
r6 

[Y[ < 2 loglogr 

if r > ra (m). (3.43) 

Consequently 

inf 
r6 

]Y] < 2 loglogr 

L(y, r 2 (log r) 2 (log log r) 2 C l + ~)p) > K (6)(1 -- e) r. 
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Denoting r2(logr)2(loglogr)l+~p=u and taking into account that p can be 
chosen arbitrary small we get that 

_• 
P(lim inf L(y, u) u 2(log u)(log log u) 1 +7 = + oo)= 1 

u~oo lY[<Vu(logu)-l(loglogu)-2-'l 

and this was to be proved. 

Proof of Corollary 2 is similar to the proof of Corollary 1, the only difference 
is that one has to combine Lemma 2.9a, with the convergent part of Theorem 2, 
keeping in mind that 
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