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Summary. In this work, one considers two stochastic integral equations 
indexed by some parameter e and one studies the contiguity of their solutions 
when the parameter converges to some ~0- Two types of behaviour are 
described; they lead to the notion of regular and singular perturbations. 
The method which is used also enables a study of the rate of convergence. 
Applications to time discretization of equations are given. 

1. Introduction 

On a probability space (s d ,  IP), consider the differential equation 

dXf=b(X~_)dt+g(X~_)dYt~; X~o=~. (11) 

In this equation, b and g are ' regular '  functions and Yt ~ is a process depending 
on a parameter e belonging to some Haussdorf  topological space; its paths 
are assumed to be cfidlfig (right continuous with left-hand limits) and to have 
finite variation. Suppose that, as e ~E0,  the noise process Yt ~ converges to a 
Wiener process Yt; what is the behaviour of X~? This question has been studied 
by several authors in the past years, and can actually be decomposed into 
at least three different problems, according to the type of approximation one 
looks for: weak convergence, pathwise convergence or convergence in probabili- 
ty. A powerful theory is now available for the first problem: one knows several 
sufficient conditions for the tightness of the laws of X ~ and it is generally not 
very difficult to identify the limit of a converging subsequence. In the second 
problem, one assumes that with probability 1, the trajectories of Y~ converge 
to those of y, and one wonders whether the trajectories of X ~ also converge 
almost surely; if the approximations Yt ~ are continuous and one-dimensional, 
then it is well-known since [-33] that X ~ does converge to the solution of the 
Stratonovich equation 

dxt=b(xt)dt+g(xt)odyt; Xo=~. (1.2) 
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In the multidimensional case, it follows from [7] that the same result holds 
if the vector fields associated to the columns of g commute. 

However, the condition of [7] is rather restrictive, so we are led to the 
third viewpoint: assuming that Y" converges in probability to y, does X ~ con- 
verge in probability and what is its limit ? It is well known that the convergence 
holds at least for some special Y". The two most classical, and probably simplest 
cases are the Euler stepwise approximation studied in [25] and the polygonal 
interpolation of y. These two approximations are defined respectively by Yt ~= Yk~ 
for k e < t < ( k + l ) e  and by 

t - k 8  
Yt~=Yk~ + (Y(k+t)~--Yk~) for k e < t < ( k + l ) ~ .  (1.3) 

The convergence can be proved for these two cases, and the limit of X" is 
respectively the solution of 

dxt=b(xt )dt+g(xt )dyt ;  x 0 = ~  (1.4) 

and that of (1.2); some further results in this direction are given in [26] in 
the framework of the McShane stochastic calculus. Another  classical example 
of continuous approximation Y~ is the so-called class of mollifiers described 
in [23] and which appears to behave like the polygonal interpolation. On the 
other hand, as it was already noticed in Sect. VI.3 of [26], one may also meet 
a different behaviour; for instance, when Y" is in the class described in Sect. 6 
of [11], then X ~ converges in probability and the limit x is solution of an 
equation of the type 

dxt = (b + c)(xt) d t + g(xt) d yt. (1.5) 

The function c is often equal to the It6-Stratanovich corrective term, but may 
be different. The same type of problems is dealt with by weak convergence 
techniques in [18]. In this work, we will say that an approximation scheme 
is regular if It6's equations are stable with respect to it; thus the Euler scheme 
is regular; when a corrective term has to be added in the limit equation, we 
will say that the approximation is singular; singular approximations will also 
be divided into symmetric ones - their limit is (1.2) and non symmetric ones 

- their limit is (1.5) for a function c which is generally not the It6-Stratonovich 
corrective term. 

Several authors have also considered more general semimartingales Y~ and 
Yr- When Yt is continuous, one can check theorems which are similar to the 
Brownian case; for instance, a Euler discretization scheme is used in [16] and 
approximations which are close to the polygonal interpolation are considered 
in [28, 15]. Semimartingales with jumps have also been studied; approximations 
which converge to y for some strong topology on the space of semimartingales 
are shown to be regular in E8, 30]; other approximations, which are close to 
those used in this work are studied in [-2, 3]. The problem of singular approxima- 
tions is considered in [24, 31] and more recently by Maekevi~ius: see [19] 
for continuous processes and E21, 221 for the general case; the idea used in 
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[-22] will be basic in our study of singular approximations; some of his results 
are generalized in [9]. 

The first aim of this work is to give a systematic study of the regularly 
perturbed system 

X~ (co) = R~ (co) + i F~ (s, co, X] _ (co)) d VV~ ~, 
0 

(1.6) 
t 

x~ (co) = r~ (co) + ~ f f  (s, co, x]_ (co)) d w~. 
0 

In this system, the c/tdl/tg processes R ~, r ~, the semimartingales W ~, w ~ and the 
random functions F ~, f f  depend on e, and the underlying filtrations also depend 
on ~ and are not necessarily the same for the two equations; the coefficients 
will not be assumed to be Lipschitz but only asymptotically monotone;  we 
will suppose that as 5 ~ e o ,  R~--r ~, U - f f  and W ~ - w  ~ converge to 0 for some 
topology and we will look for conditions which ensure the convergence of X ~ -  x ~ 
to 0 for the same topology; this topology may be the convergence in probability 
for each fixed time t, the convergence in probability of sup l" I, or may be interme- 

t 

diate between these two possibilities; moreover, we will give conditions ensuring 
convergence in L q. Note  that both processes X ~ and x ~ depend on 5; in particular 
they are not necessarily defined on the same probability space, so that the 
situation is more general than the classical case (studied in [3]) where the equa- 
tion for x ~ does not depend on 5. Applications to the Euler discretization scheme 
including results of [2] will be given. Allowing both equations of (1.6) to depend 
on e leads to new results: we prove that the convergence of the Euler scheme 
is uniform over some families of equations and this technique may be applied 
to other situations. Our second aim is to take advantage of our framework 
in order to show that singular perturbations may often be reduced to regular 
ones; consider 

x ;  (co) = x ~  (co) + F ~ (s, co, X~_ (co)) d W~ ~ + j" G ~ (s, co, X~ _ (co)) d Y~, 
0 0 

t t 

x~ (co) = x~ (co) + ~ f f  (s, co, x~_ (co)) d w~ + ~ g* (s, co, xs-  (co)) d y~ 
0 0 

+ i h*( s' co, X~s_ (co)) dz]. 
0 

(1.7) 

In this system, the semimartingales W ~ and w ~ will behave as in (1.6) but Y~ 
will be a singular approximation of y"; roughly speaking, the singularity generally 
comes from the fact that the variation of the finite variation part of Y~ explodes 
as e ~ eo. We will prove that for a good choice of the coefficient h ~ and the 
semimartingale z ", the process X ~ -  x" again converges in probability to 0. Note 
that in the singular case the driving processes R~ and r~ are replaced by initial 
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conditions. Note also that we will assume more regularity on G ~ and g~ than 
on U and f~; in particular the dependence of G~(s, o3, x) on (s, co) may not  
be quite general; in [22], the coefficient was a function of x only; a more general 
case involving some semimartingale dependence is dealt with in [-9] and here, 
we will generalize [22] in another direction. Examples will include polygonal 
interpolation of continuous semimartingales and approximations of Brownian 
motion consisting of absolutely continuous Gaussian processes. Another  impor- 
tant problem is the estimation of the rate of convergence of X ~ -  x ~ to 0 in 
Lq; with additional smoothness conditions on the coefficients, we will prove 
that the rate of convergence of the various data of (1.6) or (i.7) is transmitted 
to the solutions. The particular case of absolutely continuous approximations 
of a Brownian motion is studied in [-29] and we will give some additional 
results here. 

In Sect. 2, we will first introduce the topology for which our convergence 
results will be proved and will give the definitions used in this paper; then 
we will state the results concerning regular perturbations (1.6) and will apply 
them to the Euler discretization scheme. We will also mention some applications 
to weak convergence problems. The proofs of these results will be detailed in 
Sect. 3. In Sect. 4, we will study the singular perturbations (1.7) and some exam- 
ples. The rate of convergence will be dealt with in Sect. 5. 

Throughout  this paper, we will adopt  the following notational convention: 
since nearly all the functions and processes depend on e, we will drop the super- 
script e in the notation; the word 'family'  of processes, filtrations . . . .  will mean 
that the object depends on ~. If Z is a cfidlfig process, the process of its left-hand 
limits will be denoted by Z_  with the convention Zo = Z o ,  and AZt will denote 
the jump Z t - Z t - .  The filtrations will always be assumed to satisfy the usual 
conditions (they are right continuous and contain the negligible sets of (~2, N, P)) 
and ~ ( ~ )  will denote the a-algebra of R +  x~2 consisting of ~ predictable 
events; when dealing with semimartingales, we will always suppose that they 
are cfidlfig and special: they can be canonically decomposed into the sum of 
a predictable process with finite variation and of a local martingale; moreover, 
we will assume that the local martingale parts of these semimartingales are 
locally square integrable. In (1.6) and (1.7), the processes Xt, Wt and Yt, as 
well as xt, wt and y~ will be vector-valued and their respective dimensions dl ,  
dE and d3 will be fixed integers. The constant numbers involved in the calcula- 
tions will be denoted by C, though they may change from line to line. The 
convergence in probability will also be called convergence in L ~ If U is a nonne- 
gative variable and K > 0 ,  the mean of exp KU will be called the exponential 
moment  of U of order K. For  all technical details concerning the general theory 
of processes and semimartingales, we refer to [5, 6] or to [13]. 

2. Regular Perturbations 

In this section, we first give the definitions which will be involved in all our 
subsequent results: more precisely, in Sect. 2.1, we define the topology of conver- 
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gence in probability or in L q on the stopping times of some filtration; in Sect. 2.2, 
after listing some domination properties for semimartingales Wt, we study the 

t t 

convergence of S 0~ d Vr as ~ ~ 0; in Sect. 2.3, the problem of comparing S 0~ d W~ 
o 0 t 

and ~ ~9~dw~ when W and w are close is taken up, and in Sect. 2.4, we state 
0 

the main convergence theorems for regularly perturbed systems; the technical 
proofs will be given in Sect. 3; in Sect. 2.5, as an application of these results, 
we get the convergence of the Euler scheme for stochastic integral equations, 
the coefficients of which are monotone;  in Sect. 2.6, the results of Sect. 2.4 are 
also applied to the simultaneous discretization of a family of equations. 

2.1 Description of the Topologies 

Let us fix the probability space (f2, d ,  ~') and let W t c d  be some filtration; 
for T >  O, let J ( W ,  T) be the set of ~ stopping times which are uniformly 
bounded by T. If Zt(co ) is a measurable process and q >  1, we put 

IZ[~,q,r=Sup{ l[Z~l[q; "c~Y-(~, r)} (2.1.1) 

where II'llq denotes the Lq(f2, d ,  IP) norm. This defines a seminorm on the sub- 
space of processes where it is finite and we consider the topology defined by 
the family of these seminorms as T > 0 :  the resulting topological space will 
be denoted Lq(~r it becomes a Haussdorf  space when restricted to left continu- 
ous or right continuous processes. A family of processes Z depending on 
converges as ~ ~ e o to a process z in Lq(,Jg ~) if and only if for any uniformly 
bounded family of ~ stopping times % Z~-z~ converges to 0 in Lq; if we have 
only the convergence in probability of Z~-z~, we will say that Z converges 
to z in L ~  this is equivalent to 

lira sup {IP[IZ~-z~I>#];  ~Eg-(~t~, r)} = 0  (2.1.2) 

for any T and # > 0. Then let ~ ( J g ,  T) be the subset of J - ( ~ ,  T) consisting 
of ~ predictable times; we define 

IlZ[be,q,r=Sup { llZ~llq; "ce~(~,  T)}. (2.1.3) 

If T describes (0, oe), we obtain a space/Lq(J/:); we can also define as previously 
a space IL ~ (J/F). 

If the filtration ~ t  also depends on e, we can still study the convergence 
of IZ -z [ j r . q , r  to 0; if it holds, we will still say that Z converges to z in L%;4~), 
though this is not a convergence in a topological space; we apply the same 
convention for L~ lLq(o~), ]L~ If both Z and z depend on e, we obtain 
the notion of contiguity. 

Definition 2.1.1. Let Ntbe  a family of filtrations, Z and z be families of measurable 
processes; for q > l  or q=0 ,  we will say that Z and z are contiguous in Lq(~) 
(resp. in ]Lq(J/C)) if for any fixed T and any family of times ~ in ~-'(~, T) (resp. 
in ~p(~,  T)), the variables Z , - z ,  converge to 0 in L q. 
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Subsequently, except otherwise stated, the filtration ~ t  will always be allowed 
to depend on e. We now give some properties of these notions. First note that 
the choice of ~ t  enables the study of different types of convergence: the bigger 
~ t  is, the stronger the topologies are; for instance, if ~ is almost surely trivial, 
we get a notion of convergence on deterministic times; on the other hand, 
if Z and z are ~/f0 measurable, we have 

IZ--zI~,q,T= [IZ--z[I~O ~,T= Ilsup IZ~--z,I I1~. 
t < T  

(2.1.4) 

We now prove that a result of the same kind holds when Z and z are only 
assumed to be ~ optional or predictable. 

Lemma 2.1.2. Let ~tt be a family of filtrations indexed by e. 

(a) For any family Z of ~t  optional processes and any T > O, one has 

P[sup IZr ~eY-(~, T)} (2.1.5) 
t < T  

for # > 0 and 

I/sup I Z~1114, ~ C IZI~,~,T (2.1.6) 
t<=T 

for l <q' <q. 

(b) I f  Z and z are ~tt optional processes, then the contiguity in L~ is 
equivalent to the convergence in probability of sup lZ t -  zt] to 0 for any T; more- 

t < T  

over, for q > l ,  the contiguity in Lq(~)  implies the convergence of sup JZ~-z~l 

to 0 in Ig' for every q' < q. t<_ r 

(c) I f  Z and z are ~tt predictable, analogous results hold for IL~  and 
1L~(~). 

Proof. We are going to prove (a); (b) is an immediate corollary and (c) is proved 
with a similar method. Fix T and # > 0 ;  since the set {IZ~(o2)[>p} is optional, 
we deduce from the optional section theorem (Theorem IV.84 of [51) that for 
any ~ > 0, there exists a ~ stopping time v < T such that 

�9 [sup IZtl _->#] _-< r'EI Z~l _->#] +c~ (2.1.7) 
t<=T 

so the non trivial part of (2.1.5) is proved. Let us now check (2.1.6); assuming 
that the right-hand side is finite, one gets from (2.1.5) and the Bienaym6-Cheby- 
chev inequality 

�9 [supjZ, l># ]  < JZ[~,q,r/x 1. (2.1.8) 
t <  T # q  

Thus 
~3 

Ilsup I q' 'S  F [ sup  d # <  q_~qq, Ztl [Iq, =q  IZr ~ # ]  #q,-1 IZ I~,~,~ 
t<=T 0 t<=T 

(2.1.9) 

so the proof is complete. [] 
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If our processes are not ~ optional, we have to put additional assumptions 
to get results similar to Lemma 2.1.2. We will consider cfidl~tg processes, so 
let D" be the space of cfidl~tg functions defined on [0, oo) and with values in 
R";  it is endowed with the Skorohod topology and we choose some bounded 
compatible metric d. We also let C" be the subset consisting of continuous 
functions. The next lemma implies that even if d~ is trivial, the contiguity in 
IL ~ (did) and the tightness in D" imply the contiguity in probability in D". 

Lemma 2.1.3. Let Z and z be families of measurable cddlfig processes. 

(a) We suppose that the laws of Z and z considered as probability laws on 
D" are tight and that for all but a countable number of times t, Z t - z ~  converges 
in probability to O. Then d(Z, z) converges in probability to 0; if moreover z 
is C" tight, then sup IZt -z t l  converges in probability to O. 

t<=T 

(b) Suppose that for some q > 1, p > 1, and some monotone deterministic contin- 
uous function ~b(t), one has 

F, EIZ,-  Z~lq ~ I ~ ( t ) -  ~(s) l v. (2.1.10) 

Suppose also that Z o is bounded in U. Then for any q' < q, sup I Zt I r is uniformly 

integrable. ~ <= T 

(c) I f  Z and z satisfy (2.1.10), and if for all t, Z t -  zt converges in probability 
to O, then sup ] Z t -  ztl converges to 0 in U" for any q' <q. 

t < T  

Proof Consider the space D"x D" with its product topology and let (~1, 42) 
be its canonical process. The laws of (Z, z), considered on D"x D" are tight; 
so let (Z', z') be some subsequence, the law of which converges to some probabili- 
ty Q. Then except on a countable subset of [-0, 00), (Z', z;) converges in law 
to (~ ,  ~ )  (considered under Q); thus Z',-z't  converges in law to ~ _ ~ 2 ,  but 
it also converges in probability to 0 so ~ =42 Q-a.s., and therefore ~1 =42 
Q-a.s.; in particular, the mean of d(Z', z') converges to 0. This proves the conver- 
gence in probability of d(Z, z) to 0. Now if z is C" tight, 42 is continuous 
so Q (C" x C") = 1 ; since the map 

t N T  

is continuous at each point of C" x C", we can deduce the convergence in proba- 
bility of sup ]Z ' t - z  ~ [ to 0. Thus (a) is proved. If the family Z t satisfies (2.1.10), 

t < T  

we can deduce from the proof of Theorem 12.3 of [4] that 

C 
]P [sup ]Zt] > # ]  (2.1.11) 

~_<r_ --< #q" 

By using this inequality in the first line of (2.1.9), we get (b). Since (2.1.10) 
implies the C" tightness of Z ,  the statement (c) is a consequence of (a) and 
(b). []  
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Assuming again that our processes are cfidlfig, we now give a result which 
permits to compare the left-hand limits of Z and z when they are contiguous 
in L~ or Lq(~).  

Lemma 2.1.4. Let Z be a family of measurable cddlfig processes; for q > 1, 

IIZ-II~o,qx r ~ ]z [)r,q,r (2.1.12) 
and for every I~ > 0, 

sup{lPElZ~_l >/~]; z e ~ ( ~ ,  r)} < s u p { P [ l Z , [  > # ] ;  z e ~ ( ~ ,  T)}. (2.1.13) 

Proof We prove (2.1.12), the other inequality is similar. Fix e and z e J p ( ~ ,  T); 
there exists a nondecreasing sequence of Jct~ stopping times Zk which converges 
to z and such that z k < z on {z >0}. Then Z~k converges almost surely to Z~_, 
so from Fatou's lemma, 

IIZ~-[Iq <l im inf IlZ~k Jlq. (2.1.14) 
k~oo 

The conclusion is then easy. [] 

Since stopping times are limits of nonincreasing sequences of predictable 
times, we can also check that the topologies of Lq(~/g) and lLq(~) coincide 
on right continuous processes. 

2.2 Estimation of Stochastic Integrals 

Suppose that we are given a semimartingale W~ and a family of adapted processes 
~p~ indexed by e which converges in some sense to 0 as e ~ So. To prove the 

convergence of the stochastic integrals i ~s dW~ to 0, we can use a stochastic 
0 

dominated convergence theorem (Theorem VIII.14 of [6]); the aim of this sub- 
section is to study the same convergence when Wt also depends on e, provided 
that it satisfies some domination properties; we will state a general theorem 
in a form which will be convenient for subsequent results; the proof of this 
theorem will be given in Sect. 3.2. 

We first need some definitions which make precise some domination proper- 
ties. The first one is the basic 

Definition 2.2.1. (a) A family Zt of vector-valued measurable processes will be 
said to be bounded in probability if for any T 

lim sup �9 [sup t Zt [ > #3 = 0. (2.2.1) 
#-+oo e t <= T 

(b) If ~ is a family of filtrations, sequences of ~ stopping times ~ will 
be said to be admissible localization times if for any T 

lim sup ~ [zk < T] = 0. (2.2.2) 
k$oo 
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Let Zt be measurable processes; if there exist admissible localization times 
Zk such that IZ~^~l is less than k on {Zk>0}, then Zt is easily shown to be 
bounded in probability. If Z t are ~t predictable, the converse also holds; if 
Zt is only ~ optional, it holds for instance when the jumps of sup [Zsl are 

S<=t 
uniformly bounded, but not in the general case. 

Now consider a filtration o~ and a o~ semimartingale W~. Our semimar- 
tingales will always be assumed to be special so that they have a canonical 
decomposition W t = V t + Mr, where V~ is a ~ predictable process with finite varia- 
tion and Mt is a local ~ martingale; if W is such a semimartingale, I Wlt will 

denote i IdV~l, ~W, W~t will be the trace of the symmetric matrix [W, W I  and 
0 

((W, W))~ will be ~M c, Mqt, where M c is the 'continuous martingale' part of 
M. If M is locally square integrable (and this will be always assumed), (W, W)t 
and ((W, W))t will be the predictable compensators of [W, W], and ~W, W~,. 
For l < q <  oe, if ~, IA I/V~I q is locally integrable, the process ((W))~ q) will denote 

S<=t 

its predictable compensator and actually, the local integrability of ~ I A W~ I q will 
be implicitly assumed whenever we refer to (( W))I q). The processes I WI~, ((W, W))t 
and ((W))I q) will be sometimes called predictable characteristics of Wt. If 2 < q' N q, 
one has 

xq" N C(x 2 + x q) (2.2.3) 

for x>0 ,  so it is easy to deduce that the increments of ((W))~ q') are dominated 
by the sum of increments of ((W, W))~ and ((W))~ q) (with a multiplicative positive 
constant number). Now we can set the 

Definition 2.2.2. Fix two families J t  and ~r of filtrations. 

(a) A family of admissible ~ dominating processes will be a family of 
predictable right continuous nondecreasing processes L~ which satisfy L0 =0  
and Lo~ < 1. 

(b) A family of o~ semimartingales Wt will be said to be ~ dominated if 
there exist ~ dominating processes Lt and admissible ~ localization times 
Zk such that the process 

a,--I  WIt+((W,, W))t (2.2.4) 

is absolutely continuous with respect to Lt and for any k, there exists p >  1 
such that 

i" dA~ P sup E ~ t  dLt< oo. (2.2.5) 

The above definition may be completed by the following one; a family of 
semimartingales Wt is said to be prelocally o~t dominated if for any T and 

c~ > 0, there exist ~ dominated ~ semimartingales l~t such that 

PI-3t =< T, w,4= ~3  __=. (2.2.6) 
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Generally, one looks for semimartingales l~t which have uniformly bounded 
jumps, so that one constructs I~t from Wt by eliminating the big jumps (see 
the classical truncation method in [13]); for instance, if W~ is nondecreasing 
and [Wit is ~ dominated, then W~ is prelocally ~ dominated. Most subsequent 
convergence results may be proved for prelocally dominated semimartingales; 
however, in order to avoid too awkward statements, we will consider only domi- 
nated semimartingales (the generalization is not hard). The class of ~ dominated 

semimartingales is of course stable by stopping at o~ times. Note also that 
if Wt is ~ dominated, then the process At defined in (2.2.4) is bounded in 
probability; the converse statement is not always true but it holds when ~ =  4 ;  
in this case, the above definition may be simplified by means of the 

Proposition 2.2.3. Let Wt be o~t semimartingales such that the process At defined 
in (2.2.4) is ~ predictable. 

(a) Suppose that At is bounded in probability; then Wt is ~ dominated. 
(b) I f  I Wlt is bounded in probability and if there exist admissible localization 

times Zk such that 

E [sup ] W t -  W0] 2] <k, (2.2.7) 
t ~ k  

the semimartingaIe Wt is ~ dominated. 

Proof In order to prove (a), choose L t = arctan At, define 

~k =inf{t; At > k} (2.2.8) 

and let "Ok be admissible localization ~tt stopping times such that Zk < ik (such 
a family exists since Zk are admissible localization ~tt predictable times); then 
A t ̂  ~ is less than k, so (2.2.5) is easily checked (this procedure using the predict- 
ability of At will be often applied subsequently). Let us prove (b); since ]Wit 
is o~t predictable and bounded in probability, there exist (from the above argu- 
ment) localization times z~ such that I Wl~ is less than ~/k; put Zk' 

=Zk A Z'k. If W= V + M  is the canonical decomposition of W, the process M 
stopped at z~' is therefore a square integrable martingale and 

~,, 

E((w, W))~,=EI ~ , -  WolZ-2E ~ I ~ _ -  WoldV~ 
0 

__<E sup I w , -  Wo 12 + 21/kE sup I W, - Wol 
t<~k t<~k 

< 3 k. (2.2.9) 

Since z~' are admissible localization times, the process At=[ WL+((W, W))t is 
bounded in probability, so the proof is complete. [] 

Remark. In place of (b), if one assumes only that W~ and J WIt are bounded 
in probability, one can check that W~ is prelocally ~ dominated, but it is not 
necessarily ~ dominated; as an example, let e>0  and %=0,  consider W~= 
(N~t-N~'t)/e where Nt and N~' are standard independent Poisson processes, and 
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let ~ be the filtration generated by W~; then I WIt=0, {W, W))~=2t/e and 
W~ is bounded in probability. 

Then our stochastic dominated convergence theorem (proved in Sect. 3.2) 
can be stated as 

Proposition 2.2.4. Let o~ and ~ be two families of filtrations, W a family of 
p, d2 valued ~t semimartingales and (& a family of ~tt predictable locally bounded 
processes with values in N, al | d~ . 

(a) For 2 < q <  oo, there exists a constant number C depending only on q 
such that 

IE sup I wtlq < C1E.[I w lq  + ((W,, W>>~2 -~- <<W>>~)]. (2.2.10) 
t < T  

(b) Consider 2 < q < oo, suppose that there exist admissible ~ dominating pro- 
cesses Lt such that 

s u p E  d<(W,_W)>, v/2+ d((W>>lq)p/q] 
dLt ~ / d L t <  co (2.2.11) 

for some q <p < oo (when p = oo, the above condition means by convention that 
the three densities are uniformly bounded by a constant number). Then 

suPt<_r i ~dW~ q~Cll~ll~,q,,T (2.2.12) 

where C does not depend on ~, and 1/q = 1/p + 1/q'. 

(c) Suppose that @t is bounded in probability and that W~ is ~ dominated; 
t 

then ~ ~9,dW~7 is bounded in probability. I f  moreover ~t converges to 0 in 1I~~ 
o I f  " "" then sup /a  ~ d ~ converges to 0 in probabdzty. 
t < T l o  I 

Remark 1. When ~ t  = o~, the last statement says that for o~ dominated semimar- 
tingales, the convergence of sup l~,l to 0 implies the convergence of 

t#~dW~ to 0; this property can actually be proved to be equivalent to sup 

the condition (*) of [32] on the family W~ ̂  r (see also [14]). 

Remark 2. Proposition 2.2.4 (c) is immediately extended to prelocally ~ domi- 
nated semimartingales Wt (see the discussion following Definition 2.2.2). 

The role of the filtration ~ t  may be emphasized by means of the above 
convergence result: the bigger octet is, the weaker the assumptions on Wt are 
and the stronger the assumptions on Ot are; moreover, if one studies the rate 
of convergence with (2.2.12), it is desirable to choose ~ as small as possible 
in order to improve the rate. As an application, we are going to check that 



394 J. P i c a r d  

if the family of semimartingales is dominated, then its convergence to 0 implies 
that its quadratic variation also converges to 0 (see also Theorem VI.6.1 of 
El3]), 
Corollary 2.2.5. Let Wt be a family of ~ semimartingales which are ~ dominated. 
I f  Wt converges to 0 in L~ then for every T, {W, W~T converges to 0 in 
probability. 

Proof We apply Proposition 2.2.4(c) twice: firstly with ~t= 1 in order to show 
that Wt is bounded in probability, secondly with Or= W~_ which converges to 

r 
0 in IL~ from Lemma 2.1.4; thus we have proved that S W~*_ dW~ converges 

0 
in probability to 0. Then, developing [W r[ z with It6's formula, we easily deduce 
that [[W, W~T converges to 0. [] 

Corollary 2.2.5 implies that if W and w are ~ semimartingales which are 
o~t dominated and contiguous in L ~ (~),  then their continuous martingale parts 
are strongly related: the quadratic variation of their difference must converge 
to 0; for instance, under this framework, a non constant continuous martingale 
cannot be approximated by a process with finite variation. This is why we 
will consider subsequently processes W and w which are semimartingales with 
respect to different filtrations; as we will see, this allows much more general 
approximations. 

2.3 Approximation by Step Processes 

In previous subsection, we have stated results concerning the continuity of the 
t 

stochastic integral S Os d W~ with respect to ~; we now want to obtain the conti- 
0 

nuity with respect to W.. This will be achieved by approximating the stochastic 
integrals by means of Riemann sums; thus, we are going to use classes of pro- 
cesses ~Pt which will be uniformly approximated by step processes, as in the 
classical Riemann theory of integration. 

Definition 2.3.1. Let ~ and ~ be two families of filtrations; a family of ~ predict- 
able processes z t will be said to be ~ Riemann if for any T and 6 > 0, there 
exist an integer N bounded uniformly in e, families of N c~ ~t  stopping times 
z i and z'i, i< N, such that z' i is fft and ~ predictable, families of variables q5 i 
and ~b} which are respectively ~, and fr measurable such that if 

then 

N N 

~t= ~ 1( . . . .  )(t)Oi+ ~ lmj(t)qYi, (2.3.1) 
i = 0  i = 0  

]EEIz~-~ I  A 1]__<~ (2.3.2) 

for any z ~ ( ~ ,  T). 
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The class of ~ Riemann processes is linearly stable; in particular, one can 
study each component of z separately. One can also check that if z is left continu- 
ous and ~ Riemann, one can always choose cYi=O on {z'i>0} (because if i~ 
satisfies (2.3.2), then f t -  also satisfies it). If ~ N ,  from Lemma 2.1.2, one can 
replace in the Definition (2.3.2) by 

1E[sup ]z,--~t[/x 1] ~r (2.3.3) 
t<_r 

We will prove in Sect. 3.1 that the processes described in the following proposi- 
tions are Wt Riemann. 

Proposition 2.3.2. Assume that the Wt optional projection of a ~t optional process 
is ~ optional and let zt= x t - ,  where xt are ~ adapted real c~dlgtg processes such 
that 

(i) the process xt is bounded in probability, 

(ii) for every real numbers u < v, the number of upcrossings of x from u to 
v on a time interval [0, T] is bounded in probability. 

Then z is Ht Riemann. In particular, if xt are ~ semimartingaIes such that x t 
and [x ]t are bounded in probability, or if the laws of xt are tight for the Skorohod 
topology, then z is ~ Riemann. 

Remark. Conditions (i) and (ii) exactly mean that the law of x t satisfies the 
tightness criterion for the pseudopath topology given in the corollary of Theo- 
rem 2 of [27]. 

Proposition 2.3.3. Assume that the ~ t  optional projection of a ~ predictable process 
is both ~ and ~ t  predictable; if zt are l~dlglg (left-hand limited and right-hand 
limited at each time) ~ predictable processes which are zero except for a countable 
number of times, and if for any T and ~ > O, the number of times t <= T such 
that ]ztl >= (~ is bounded in probability, then zt is ~ t  Riemann. 

If now z t are general lfidlfig processes, one can try to apply Proposition 2.3.2 
to z t - ,  and Proposition 2.3.3 to z t - z  t_ ; in particular, if z is 1/tdlfig and does 
not depend on e, it is ~ t  Riemann. Note also that the assumption about 
and 2~t in Proposition 2.3.2 is satisfied for instance when ~ 2 ~ t  or ~ t t~N;  
in Proposition 2.3.3, it is satisfied when ~ tD~t  or when ~ t  is a.s. trivial. We 
are now going to get the continuity of the stochastic integrals with respect 
to the driving semimartingales; with reference to the discussion following Corol- 
lary 2.2.5, we consider two families of semimartingales with respect to two fami- 
lies of filtrations; assuming that the semimartingales are contiguous as e ~ e o ,  
we prove that the stochastic integrals are also contiguous. 

Proposition 2.3.4. Let ~t, fit and 2~t be families of filtrations such that fit ~ t .  
Let zt be a family of fit predictable ~tt Riemann processes which are bounded 
in probability and let W t and w t be families of respectively ~ and fit semimartingales 
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t 

which are ~ dominated. I f  W and w are contiguous in L~ then ~ z~dW~ 
t 

and ~ z~dw~ are also contiguous in L~ I f  ~t and wt do not depen~ on e, 
0 

the condition 'w is ~t  dominated' can be removed. 

Remark. One must notice that the same expression ' ~ t  dominated'  is actually 
used for two different classes: a class of ~ semimartingales and a class of ~t 
semimartingales; in particular, the localization times involved in Definition 2.2.2 
are respectively ~ and ~ stopping times. 

Proof Since the processes z are predictable and bounded in probability, by 
stopping them, we can assume that they are uniformly bounded by some K > 0. 
For  any e and 6>0,  let ~t be an approximation of zt of the form (2.3.1); we 
can also choose it bounded by K. From the form of ~, if ~ is a family of Y-(~,, T) 
(indexed by e), 

~sdW~- ~. ~dw~ <=K(N+ I)IW~-w~I 
0 0 

N N 

+ K  ~ [(W~,-w~,)I(~,__<~}I+K ~. IA(W~-w~)I(~__<~I. (2.3.4) 
i = 0  i = 0  

Let us fix 5; then the right-hand side of (2.3.4) converges in probability to 

i 0 (the last term is estimated with Lemma 2.1.4). Thus gsdW~ and S ~sdw~ are 
0 0 

contiguous in L~ T) as e ~ e  o for c5 fixed. On the other hand, from Proposi- 
tion 2.2.4 (c), the variable 

sup i zsdW~- i QdW~ 
t < T  0 0 

converges in probability to 0 as (e, &)~ (Co, 0); if w is ~ dominated, the same 
method can be applied to integrals with respect to w, and if w does not depend 
on ~, the convergence holds from the stochastic dominated convergence theorem 
(Theorem VIII.14 of [6]). We can deduce the proposition from these three con- 
vergences. [] 

2.4 The Main Theorems 

This subsection is devoted to the stability theorems concerning the regularly 
perturbed system (1.6). We will state convergence results in L~ We first 
make precise the assumptions about our model. 
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Definition 2.4.1. Let ~ be a family of filtrations and let F(t, w, x) be a family 
of functions defined on [0, oo)x t2 x lR d~ with values in Rd ' |  d2, measurable 
with respect to N(~-) |  

(a) We will say that F satisfies IH o if 

IF(t, co, x) l _-< pt(co)(1 + [xl) (2.4.1) 

for a family Pt of ~t  predictable processes which are bounded in probability, 
and 

[F(t, co, x)-- F(t, co, Y)I--< P;(co, K, ]x--y[) (2.4.2) 

for Ix[ =<K, ]y[__<K and p't(K, 6) a family of processes which are nondecreasing 
in t and 6 and such that for any t and K, p't(K, 6) converges in probability 
to 0 as (6, e) ~ (0, ~o). 

(b) We will say that F satisfies IH; if it satisfies (2.4.1) and 

IF(t, co, x ) -  F(t, w, Y)I <=Pt(co) [x-- yl (2.4.3) 

for ~ predictable bounded in probability processes Pt. 
(c) If Wt is a family of ~ semimartingales, we will say that (F, W) is asymptot- 

ically monotone if for any x, y, 

2 ( x -  y)* (F (t, x ) -  F(t, y))d Vt + Trace ((F (t, x ) -  F (t, y))* (F (t, x) 

- F(t, y)) d (W, W)t)<=]x- yl2 dAt + dA~ ~'y) (2.4.4) 

where V is the predictable finite variation part of W and A, .~(x,y) are families 
of nondecreasing right-continuous bounded in probability ~t  predictable pro- 
cesses such that Ao=0,  A(oX'Y)=0 and A}x'Y) converges in probability to 0 as 
e ~ eo for any t. 

It is of course clear that the Lipschitz assumption IH; is stronger than No 
and if moreover I Wlt and ((W, W))t are bounded in probability, it also implies 
(2.4.4) with .4~x'Y)= 0. More generally, (2.4.4) with A}~'Y)= 0 means that the equa- 
tions that we are going to consider are monotone in the sense of [12] uniformly 
in e; it is assumed in [3]. However, adding a small term Z~ ~'y) may be useful 
(see the application to the Euler discretization scheme in Sect. 2.5). Here is the 
framework of the theorems of this subsection. 

Assumption 2.4.2. We are given three families of filtrations 4 ,  N and ~tt such 
that ~t c ~t; we suppose that the o~t optional projection of a ~t optional process 
is ~t optional; we consider families Wt and wt of respectively o~t and N IR d2 
valued semimartingales, families R, and r t of respectively ~t and ~t adapted 
c~tdl/tg R e' valued processes, families of functions F(t, co, x) and f ( t ,  co, x) meas- 
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urable respectively with respect to ~(o~) |  a') and N(N)| we 
assume that F and f satisfy IH o and that (F, W) is asymptotically monotone. 
Finally we suppose that (X, x) is solution of 

t 

Xt (co) = Rt (co) + ~ F (s, co, X~_ (co)) d Vr (co), 
0 

t 

xt(co) = rt(co) + ~ f (s, co, x s_ (co)) d ws(co). 
0 

(2.4.5) 

Remark. Since we suppose that (X, x) is a solution of (2.4.5), we implicitly assume 
the existence of a solution; however, the assumptions of [12] are generally 
not satisfied for e fixed, so we do not know anything about the uniqueness. 

We now state the two main stability theorems which will be proved in 
Sect. 3.4: the first one is concerned with the contiguity, and the second one 
with the convergence (i.e., the case where the equation for x does not depend 
on s, which is also considered in [-3]). Then we will deduce a result which 
is particular to the case ~ = 4 .  

Theorem 2.4.3. Under assumption 2.4.2, suppose that W, w and A (involved in 
(2.4.4)) are ~ dominated, that Rt and r t are bounded in probability, that r t_ 
is ~ Riemann and that for every fixed z, f ( t ,  z) is ~ t  Riemann; suppose also 
that firstly R and r, secondly W and w are contiguous in L ~  and that F( ' ,  z) 
and f ( . ,  z) are contiguous in lL~176 Then X and x are contiguous in L~ 
For l <j<d2,  if  WJ=w ~, the 'Jut~t Riemann' assumption on the j th  column of 
f can be removed; if W = w  and F = f  both '~ t  Riemann' assumptions on r and 
f can be removed. 

Theorem 2.4.4. Under assumption 2.4.2, suppose that r, f w do not depend on 
~, that W t and At (involved in (2.4.4)) are ~ dominated, that Rt is bounded in 
probability and that f is Igtdlgtg in t; suppose also that R and W converge respective- 
ly to r and w in L~ and that F( . ,  z) converges to f ( ' ,  z) in L ~  Then 
X converges to x in L~ 

Up to now, we have assumed that F and f have at most linear growth 
as ] x l ~ o o ,  so that X~ and xr do not explode as e ~ Co. However, in the case 
~ =  4 ,  it is sufficient to assume that one of the two processes does not explode; 
such a condition is satisfied for instance in the convergence case, so that we 
can weaken conditions (2.4.1) and (2.4.4). 

Theorem 2.4.5. Assume that the conditions of Theorem 2.4.4 are satisfied with 
Jt~t=~, except (2.4.1) for F and f and (2.4.4) for (F, W). These conditions are 
replaced by: 

(i) for any k>O, the supremum in Ixl<__k of If(t,  co, x)l and IF(t ,w,x) l  is 
bounded by some predictable processes p~k) which are bounded in probability; 

(ii) condition (2.4.4) holds for Ix I and I Y l < k and a process At depending on k. 
Then sup I X t - x ,  [ converges in probability to 0. 

t<=T 
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Sketch of the proof. Consider some positive k and let "c k be the first exit time 
of X or x outside the ball of center 0 and radius k; then one can verify with 
the technique developed for previous theorems that  the processes X and x 
stopped at time z k are contiguous in L~ so sup [Xt -x t [  converges in 

t ~ k / x  T 

probabil i ty to 0 (one can also apply the truncation technique of Lemma  4 of 
[10] and use Theorem 2.4.4). Thus, to obtain the proposition, it is sufficient 
to prove 

lim lim sup IP [z k < T] = 0. (2.4.6) 
k ~  ~ o  

On the set {z k < T}, we have either ] x~ [ > k, or 

Thus 

k~ [X~l __<sup IX, -x , l  + [x~l. (2.4.7) 
t~Tk  

[ k 
IP[zk<T]<lP,suplxtl>--k_l+lP[ sup I X t - x t l ~  �9 (2.4.8) 

Lt<T - - 2 J  [t<vkAT 

The first term does not depend on e and converges to 0 as k--too and the 
second one converges to 0 as e ~ s o for every k, so we have proved (2.4.6). []  

2.5 Time Discretization of a Single Equation 

In this subsection, we apply our results in order to obtain a convergence theorem 
for the Euler discretization scheme for stochastic equations driven by semimar- 
tingales which are not necessarily continuous and with coefficients which are 
monotone.  Let us first define our framework. We are given a filtration N, a 
cfidl/tg ~ adapted process rt, a ~ semimartingale wt and a ~ ( f f ) |  d') measur-  
able function f which satisfies t-I o. If vt is the predictable finite variation part  
of w, we assume also that 

2(x--y)* ( f  (t, x)-- f (t, y)) d vt + Trace ((f  (t, x ) - f ( t ,  y))* ( f  (t, x)-- f (t, y)) d (w, w) O 

<=]x- yl2 dat (2.5.1) 

for a nondecreasing right-continuous N predictable process a t such that a o = 0. 
Let xt be the solution of 

t 

x t=rt+ ~ f(s ,  xs-)dws. (2.5.2) 
0 

Then for each ~, let (tk, k=>0) a stochastic subdivision of [-0, o9) consisting of 
stopping times, such that to=0 ,  tk<tk+l, lira tk = Oe and sup{tk+I --tk, tk<= T} 

k 

converges in probabil i ty to 0 as e ~ e o ;  define the variables X ( 0 ) = r o  and for 
k=>l, 

X(k  + l)=X(k)+rtk+,--rtk + f(tk,X(k))(w,k+l--wtk). (2.5.3) 
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Theorem 2.5.1. Suppose that f is left continuous in t; then the variable 

sup{lX(k)--xtk[; tk<= T} 

converges in probability to O. 

Such a result was first obtained in a particular case in [.-25]; it is generalized 
in [-2]; here, we use more general discretization times t k and our scheme is 
slightly different (so that we need more regularity on f with respect to t). In 
order to prove this theorem, it is convenient to introduce a family of filtrations 
-~t to which we will apply our theory; this is the aim of the following lemma. 

Lemma 2.5.2. For every time t, put 

o~= {B; Vk, B c~ {t < tk} e fftk}. (2.5.4) 

Then this defines a filtration which satisfies the usual conditions; moreover ~ c ~ 
and for any k > 1, 

fft~ = ~ _  =o~t~_ 1 . (2.5.5) 

In particular, tk is a o~t predictable stopping time. 

Proof Since ~=( r  it contains all the negligible events, and it is clear from 
its definition that it is right continuous. The inclusion f f ~ c ~  is also easy 
(apply the definition of fits), so we now prove (2.5.5); we will check 
o~k_l c ~ -  = fft~ = o~_1. The first inclusion is trivial, the second one comes from 
the definition of ~ k -  (it is generated by the events B ~ {t < tk} with B ~o-~i, which 
are in fftk). Finally, to prove the third one, let B ~ ;  then for every j > k ,  the 
events B, {tk_l<=t) and {t<tj} are all in fftj, so B ~ { t k _ l ~ t < t j }  is in ~j ;  
i f j < k ,  this set is empty, so it is also in ~j;  this implies that Bc~{tk_l<t} 
is in 4 ,  so B is in ~k_ 1- The proof of (2.5.5) is therefore complete. In particular, 
tk is ~ _ 1  measurable, so it is predictable. [] 

Proof of Theorem 2.5.1. First note that the proof can be reduced to the case 
wt=wo for t<t l :  if this property does not hold, one can consider a family 
~(e) of positive numbers converging to 0, replace all the processes zt by it=Zo 
if t < a, ~ = z,_, if t > ~ and use the family of discretization times 0, a, tk + ~; 
the conclusion of Theorem 2.5.1 for these new processes will imply the theorem 
for our original processes. If zt is some c/ldl~ig process, we will call the right 
discretization of z the process Zt defined by 

Zt = ~ ztk+l lttk,t~+~)(t)- (2.5.6) 
k = O  

If z t is N adapted, then its right discretization is adapted to o~t. Let Wt, Rt 
and xt be the right discretizations of wt, rt and xt; define 

Xt= ~ X(k+  1) 1Et~.t~ + 1)(0 (2.5.7) 
k = O  

and 
t k+ 1 

I (f(s,x _l-f(t ,xt lldw  (2.5.8) 
k = O  t k  
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where the integral from tk to tk+a has to be understood as an integral on 
(tk, tk+ 1]- All these processes are o~ adapted and to get the theorem, it is sufficient 
from Lemma 2.1.2 to prove that X and 2 are contiguous in L ~ Using our 
assumption w,, = wo, one easily verifies that (X, if) is solution of 

Xt=R,+ i f(s,X,-)dW~ 
0 

t 

x , = R t + f t +  ~ f(s, 2~_)dW~. 
0 

(2.5.9) 

Thus to apply Theorem 2.4.3 (with F = f, W =  w and x/t~, = ~),  we have to check 
that W is a ~ semimartingale such that ]W]t and ((W, W))~ are bounded in 
probability, that sup ]ftl converges in probability to 0 and that (f, W) is asymp- 

t < T  

totically monotone. By 
bounded I w[t, ((w, w))t, 
it is evident that the step 
sition Wt = Vt + Mt given 

localization, the proof can be reduced to the case of 
at and Pt (involved in lHo). Since tk is ~ predictable, 
process Wt is a ~ special semimartingale with decompo- 
by Vt = V,~ for t k < t < tk + 1 and 

N N 

k = l  k = l  

N 

k = l  

This implies 

N N 

k = l  k = l  

(2.5.11) 

Thus the mean of [Wit is uniformly bounded by DElw]o~, so it is bounded in 
probability. Similarly 

SO 

N 

<W, W)t,,= ~ lE[(wt,~+,-w~,,)(wt,,+,-wt,,)*l~,,], (2.5.12) 
k = l  

((W,W))~,= Z IE 2 j (Ws_--W,k)*dv~+((W,W))tk+I--((W,W))~kI~ (2.5.13) 
k = 1 tk 

and therefore 
IE ((W, W)), < E [((w, w)) ~ + 4 I w 1oo sup I ws I]. (2.5.14) 

s 
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Thus it is also bounded in probability, so that W is ~ dominated from Proposi- 
tion 2.2.3 (a). Let us now prove (2.4.4). Denoting 

f l  (t, x, y)= 2 ( x -  y)* ( f  (t, x)-- f (t, y)) 
and (2.5.15) 

f2(t, x, y)= (f(t ,  x ) -  f (t, y))*(f (t, x ) - f  (t, y)), 

we have from (2.5.1), (2.5.10) and (2.5.12) 

f ,  (tk, X, y) A Vtk + Trace (fz (tk, X, y) A < W, W)tk) 
tk+l 

<IE ]x-y]2(at~+ --at~)+ ~ (fl(tk, x,y)--fx(t,x,y))dvt 
tk 

+Trace  (tk, x,Y) I (w,_--wt~)dv* + dvt(wt_-wt~)* 
tk tk 

tk+ I ] 
+Trace  ~ (fz(tk, X, y)--f2(t, X, y)) d(W, W)tlN~ �9 (2.5.16) 

tk 

Thus if At and A}~'Y) are the step processes which take on [tN, tN+ 1) the values 

and 

N 

A,~,: ~ E[at~+l-at~lNJ (2.5.17) 
k=l 

irk+ 1 
_,~,X (~'')-- IE S I f l ( t ,x ,y) - f l ( tk ,  x,y)ldlwlt 

k = 1 tk 

tk+l 
+2lfe(tk, x,y)] ~ [w~--wtkldlwlt 

tk 
tk+ l ] 

+ I If2(t,x,Y)-f2(tk, x,y)ld((w,w}}tl~ 
tk 

(2.5.18) 

then the estimate (2.4.4) is valid. It is easy to check that At is bounded in 
probability, so let us prove that .~x.y) converges in probability to 0; for any 
time t, let ~ (t) be equal to tk for tk < t < tk + 1 ; then 

[; IE~, ')N]E ]f l( t ,x ,y)-f , (r(t) ,x,y)] dlwlt 
kO 

+ 2  ; ]f2(z(t), x, y)] ]wt- --we(t)] d ]wlt 
0 

+ I ]f2(t, x, y)-f2(~(t) ,  x, y)[ d((w, w)), . 
0 

(2.5.19) 
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As e--*e0, for any t, z(t) converges to t on the left, and f, and therefore also 
f l  and f2 are left continuous, so the convergence to 0 follows from the Lebesgue 
dominated convergence theorem. In order to prove the convergence of ft to 
0, we apply the classical stochastic dominated convergence theorem [6]; it is 
sufficient to prove that f (z( t) ,  x~m ) converges to f ( t ,  x t - )  for every t. But from 
the left continuity in t of f and (2.4.2), we obtain that f ( t ,  x) is (almost surely) 
jointly left continuous in t and continuous in x, so that the limit as sT'rt of 
f ( s ,  x~) is f ( t ,  xt-);  the proof  of the theorem is now complete. [] 

Corollary 2.5.3. With the assumption of Theorem 2.5.1, consider the processes Xt  
and Xt defined by (2.5.7) and 

s  ~ X(k)  l[,k,,~+o(t ). (2.5.20) 
k=O 

Then X and X converge in probability for the Skorohod topology to x. 

Sketch of the Proof. Let us prove the result for X: the convergence of )7 is 
checked in a similar way, or one can prove the contiguity of X and )~ for 
some compatible metric. F rom Theorem 2.5.1, we only have to prove that 
converges to x for the Skorohod topology; since the convergence holds for 
fixed times t, from Lemma 2.1.3 (a), it is sufficient to verify that the laws of 
2 are tight. But the tightness of 2 on D([0, T]), where T is a continuity point 
of x, can be deduced from Theorem 15.3 of [4] and the remark 

sup {I ~s-&l IA 1&-&21; sl ~s~s2,  s2 - s l  ~a} 

< sup {Ix , -x , ,  I A I x , -  x,=l; s, ~s~_~$2, $ 2 - - S  1 ~ t~-t-sup(tk+ 1 --tk) }. 
k 

[] 

(2.5.21) 

With a prelocalization argument, it is not hard to prove Theorem 2.5.1 when 
the semimartingale w t is not special. More complicated discretization operations 
can also be performed with this method; for instance, the equation 

t 

x , =  r , +  S L(~, x~_)dw~+ y, i #.~(s, x,_) a[w', w,~]s 
0 i , j O  

(2.5.22) 

may be discretized with the scheme 

X (k + 1) = X (k) + rt~ +1 - rtk + f l (tk, X (k))(w,k +1 - wt~) 

+ Z fjJ(tk, X (k))(w~+, - w~)(wlk+, -- wl~). 
i , j  

(2.5.23) 

This example uses the convergence of the discretized quadratic variation to 
[w, wit (Theorem 1.4.47 of [13]). 
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2.6 Time Discretization of a Family of Equations 

In Sect. 2.5, we have studied time discretization of a single equation, and have 
obtained a convergence result. We would now like to prove the same result, 
but for equations which depend on e; the previous proof  cannot be directly 
applied: for instance, one cannot  use the Lebesgue dominated convergence theo- 
rem to estimate ft. However, such an extension may be useful; suppose for 
instance that xl are solutions of stochastic integral equations depending on 
some parameter e and let X~ 'e be the result of the Euler scheme with discretiza- 
tion step 6. Then the next theorem will imply the contiguity of x~ ~) and X~ ~)'~ 
as 6 ~ 0  for any family e(6); thus we will obtain the contiguity of x~ and XI '~ 
as 6 ~ 0  uniformly in e. Such a result can for instance be applied to some 
weak convergence results (see the end of this subsection). 

Theorem 2.4.3 is still convenient for this problem but we will need more 
stringent assumptions on the equations. With reference to [2], our assumptions 
concerning the coefficients are stronger, but more general discretization times 
are allowed. We will limit ourselves to the case of Lipschitz functions f We 
will use the notion of asymptotic uniform quasi-left continuity (AUQL): we 
will say that a family of N adapted c/Ldl~g processes zt is A U Q L  if for any 
families ~ < z' of times of Y-(~, T) such that z ' -  z ~ 0 in probability as e ~ ~o, 
z~,-z~ converges in probability to 0; this notion is often used in order to prove 
the tightness of processes for the Skorohod topology (see [1]) and when zt 
is bounded in probability, our definition can be proved to be equivalent to 
the classical one where z ' - z  is assumed to be deterministic. 

Theorem 2.6.1. Let ~ be a family of filtrations, and suppose that we are given 
a family of ~ semimartingales wt, a family of cgtdlfig Nt adapted processes rt 
and a family of ~ ( N ) |  d~) measurable functions f;  we suppose that Iwl. 
((w, w)) t and r t are bounded in probability, that w t and rt are AUQL,  that f 
satisfies Ill' o and that f ( t ,  x) is ~ Riemann and right continuous for every x. 
Then let (tk) be a family of subdivisions consisting of ~ stopping times such that 
t 0 = 0  , tk < tk + l , lira tk= oo and s u p  { tk + l - -  t k ,  t k ' (  T} converges in probability to 

k 

O. I f  x is solution of (2.5.2.) and X(k)  is the family defined by (2.5.3), then the 
variable sup {IX(k)-xtk  1, tk <= T} converges in probability to O. 

Sketch of the Proof The proof  is divided into two steps. A particular case 
is dealt with in step 1, and the general case is deduced in step 2. 

Step 1. In this step, we suppose moreover that t k is ~t predictable and that 
the processes r and w do not jump at t k. As in Sect. 2.5, we reduce ourselves 
to the case wt = Wo for t N t~. Consider the o--algebra 

4 =  {B; Vk, B n  { t<  tk} ~fft~- }. (2.6.1) 

One can prove like in Lemma 2.5.2 that this defines a filtration satisfying the 
usual conditions, that N c o ~  and Nk- = ~ k -  =~*~-, .  As in Sect. 2.5, let X, be 
given by (2.5.7) and let W~ and R t be the right discretizations of w, and rt; 
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since we have assumed that r and w are left continuous at times tk, the processes 
R~ and Wt are ~tt adapted. We are going to apply Theorem 2.4.3 to the system 

t 

X , = R t +  ~ f ( s ,  X~_)dW~, 
0 

t 
x t = r t +  ~ f ( s , x~_ )dw~  

0 

(2.6.2) 

where these two equations are respectively relative to the filtrations ~ and 
~ .  The process Wt is indeed a ~ semimartingale and ] Wit, (W, W)t are defined 
by formulas of type (2.5.11) and (2.5.12), but with fqt~ replaced by ~ _  ; in particu- 
lar, they are ~ predictable. They are also bounded in probability as in Theo- 
rem 2.5.1, so Wt is fr dominated and (f, W) is monotone. The contiguity in 
L ~ (~) of r, R and of w, W directly follows from our asymptotic uniform quasi-left 
continuity. Finally, since r, is A U Q L  and bounded in probability, the family 
of its laws is tight for the Skorohod topology from [13, so rt- is ~ Riemann 
from Proposition 2.3.2. Thus we can apply Theorem 2.4.3 and obtain the conti- 
guity of X and x in L ~ Then consider the right discretization 2 of x; for 
any family of ~ stopping times z, let ~' be equal to t, + 1 on tk < z < tk + a ; then 

lw. ~o)(t)=~, l(tk_<~ <t~+ 1~ l[t~ . . . .  )(t) (2.6.3) 
k 

and since {tk < Z < tk+ 1} is ~k+1 - = Nk+~ - measurable, 1E~, ' o~)(t) is N predictable, 
so z' is N predictable; on the other hand 

X ~ -  2~ = X~,_ - x~,_ (2.6.4) 

and since X and x are contiguous in L~ this expression converges to 0 
from Lemma 2.1.4, so X and 2 are contiguous in L~ but they are ~ adapted, 
so sup [Xt -2 t [  converges to 0; by restricting to the times t= tk ,  we get the 

t<_T 

statement of the theorem. 

Step 2. Now consider the general case. For  e>0 ,  put t~= t k + e  for k >  1 and 
let e describe the set of positive numbers such that with probability 1, the 
processes r and w do not jump at times t~; consider any family e(e) of such 
numbers converging to 0 as e ~ Co; then we can apply the result of step 1 to 
the discretization times t~ (~). This means that (with evident notation) sup IX~(k) 
-xt~[ converges to 0 as (a, e)~(O, e0). But for ~ fixed, from the right continuity 

of f r and w, s u p [ X ' ( k ) - X ( k ) ]  is easily shown to converge to 0 as ~--,0, 
and sup]xt~--Xtk I also converges to O; these three convergences imply the theo- 
rem. [ ]  

Other sets of assumptions are possible: if ~ is the almost surely trivial 
filtration, if w is ~ dominated, if f is ~ t  Riemann and if the times tk of the 
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subdivisions are deterministic, the asymptotic uniform quasi-left continuity can 
be replaced by an asymptotic uniform continuity on deterministic times. 

These results can be applied to get an approach to some weak convergence 
problems. Let us assume that w (") and r (") are sequences of processes such that 
their finite dimensional distributions - the distributions of ,-~ltw("), -sir("), ..., "'~,u'(") r~"]) 
- converge weakly to the finite distributions of w (~~ r (~~ and let x ("), x (~176 be 
the solutions of the corresponding equations. For any 6 > 0, consider a subdivi- 
sion (tk) with step 6, and let X ~n'o) be the solution of the discretized equation. 
If the assumptions of Theorem 2.6.1 are satisfied, by using the theorem as 
explained in the beginning of this subsection, one can deduce that for any t, 
the variable x~")-X~ "'~) converges to 0 in probability as 6 ~ 0 ,  uniformly in 
n; on the other hand, for any fixed 6, the finite distributions of X ~"'~) converge 
weakly to X (~'6), so that one can deduce that the finite distributions of x (") 
converge weakly to those of x ~). Of course, classical weak convergence methods 
can often be also applied for this problem. 

2.7 Convergence of  Moments 

In Sect. 2.4, we have stated theorems concerning convergence in probability; 
if now one looks for convergence results in L q, one has to study uniform integra- 
bility of the solutions (X, x) of (2.4.5). This is the aim of this subsection. 

Definition 2.7.1. Let ~ be a family of filtrations, let Rt be ~7, adapted processes, 
let Wt be ~tt semimartingales and let F(t, o~, x) be N ( ~ ) |  a') measurable 
functions. For q > 2, we will say that the family (R, F, W) satisfies ~Iq if for 
some q" > q, the following properties hold; 

(i) the variable sup [ Rt [ is bounded in L q'' (uniformly in e); 
t<_T 

t 

(ii) the semimartingale ~ F(s, x)d W~ admits the decomposition 
0 

F(t, x) dWt= Ft (t, x) dWt 1 + F2 (t, x) dWt 2 (2.7.1) 

where F1 and F2 are N ( ~ ) |  al) measurable, satisfy 

[Fx(t,x)[<=l, [F2(t,x)]<(l +Jx[) (2.7.2) 

and Wt 1, ~ are ~ semimartingales; 

(iii) the variables [ W 1 ]r, (( W1, W1))r and ((W~))~ '') are respectively bounded 
in L q'', U ''/z and L~; 

(iv) either the exponential moments of I W 2 It, ((W 2, wa))r  and ((WZ))~q) 
are bounded and q">q,  or these variables are uniformly bounded by some 
constant number and q"=  q. 

Recall that the definition of ((W)) ~q) was given in Sect. 2.2 and that when 
we refer to it, we implicitly assume that ~ lA W~ I q is locally integrable. 
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Proposition 2.7.2. For q > 2, assume that (R, F, W) satisfies ]Hq and suppose that 
X is a process satisfying 

X t = R t  + i F(s, X~_)dW~. (2.7.3) 
0 

Then for any q' < q, sup ] Xt Jq' is uniformly integrable as e --+ e o . 
t < T  

By using jointly theorems of Sect. 2.4 and Proposition 2.7.2, we obtain conti- 
guity results in Lr in Theorem 2.4.3, suppose that (R, F, W) and (r,f, w) 
satisfy Hq; in Theorem 2.4.4, suppose only that (R, F, W) satisfies Hq. Proposi- 
tion 2.7.2 will be proved in Sect. 3.3. 

3. Technical Proofs 

In this section, we prove the theorems which were only stated in Sect. 2. We 
first study the examples of ~ t  Riemann functions of Sect. 2.3, then obtain the 
generalized stochastic dominated convergence theorem of Sect. 2.2, the integrabil- 
ity results of Sect. 2.7 and the contiguity results of Sect. 2.4. 

3.1 Examples of Riemann Functions 

In this subsection, we prove Propositions 2.3.2 and 2.3.3; we will use the notation 
liE[. ]~t] for the optional projection on ~r 

Proof of Proposition 2.3.2. First note that if there exist admissible localization 
times Vk such that for each fixed k, z,,,v~ is ~ Riemann, then zt is ~ Riemann; 
one can indeed choose k such that Vk> T with probability 1 - 6 / 2  for every 
e; then if ~ is a step process satisfying 

IE[]z~^ v,--:~l A 1] <6/2 (3.1.1) 

for z~@(.~,  T), then (2.3.2) is satisfied. Thus in order to prove Proposition 2.3.2, 
we can localize z t, or equivalently, prelocalize xt; since xt is assumed to be 
bounded in probability, we can assume that it remains in some bounded interval 
[ - L ,  L]. Fix some 6>0.  The process zt of Definition 2.3.1 will be taken of 
the form St- with 

N--1 

)z,= F, l~ .. . . . . .  )(t)x~,. (3.1.2) 
i=0 

In this expression, z; is defined by induction by "c o = 0 and 

and 
Zi+l=inf{t>=zi; EUlx,-x~,l  A 1 I ~ ]  > 6/2} 

N = inf{i;  �9 ['F i < T] < 6/2}. 

(3.1.3) 

(3.1.4) 
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We will actually prove that N is finite. One checks by induction on i that 
the ~ optional projection involved in this definition is also N optional, is cfidlfig 
(because the optional projection of a cfidlfig process is cfldlfig: Theorem VI.47 
of [6]) and that ri is a N c~ ~ stopping time. Then 

N - 1  

I x , - ~ l  A 1 = ~ lt~,,~, +,)(t)(Ix~-x~,l A 1)+ l t~ ,  ~)(t)(Ix, I A 1). 
i = 0  

(3.1.5) 

From the Definition (3.1.3), the ~ t  optional projection of this process is domi- 
nated by 6/2 on {t <-oN} so if z e J - ( ~ ,  T), 

IE [[x~--2~[/x 1] _-< ~/2+ ~ [ z  > ~N] __<6. (3.1.6) 

The estimate (2.3.2) then follows from Lemma 2.1.4. The only thing which is 
still to be proved is that N is bounded uniformly in e. Since the optional projec- 
tion in (3.1.3) is right continuous, we deduce that 

1E[r x~,+,-x~,l A 1 t ~ + ~ ]  >6/2  (3.1.7) 

on {r~+ 1 < oo}, and therefore on {~+ 1 < T}; thus, by taking the expectation, 

IE [I x~, + ~ ,, r -  x~, A r l A 13 > P [~i + 1 < T] 6/2 > 62/4 (3.1.8) 

for i+  1 < N (recall (3.1.4)). We remark 

lE[]x . . . . .  r -x '~" r ] /x l ] - -< lP  IX~+~^T--X~'^rI> -~ 8 '  (3.1.9) 

and deduce 

lP[ ,x~+~^r-x~,Ar,>~-]>6---8 (3.1.10) 

for i + 1 < N. Defining 

~:=@ / < N - - l ;  Ix . . . . .  r--X~,Arl>--_ , (3.1.11) 

we have for any integer No 

62 
( N - 1 )  y < ] E ~  < No + ( N - 1 ) I P E ~ >  No]. (3.1.12) 

On the other hand, 

l p [ ~ > N o ] < l P [ 3 0 < t l < t , ~ < t 2  , < . . .  , < t 2 =  <tNo<T, Vi,[x(t'~)--x(ti)l>6Z/8]. (3.1.13) 

Now consider a discretization of the space I - -L,  L] with a grid (~k) of step 
size 62/16; on the event described in the right side of (3.1.13), the sum over 
k of the numbers of downcrossings or upcrossings of x from ~k to ~k+l or 
vice versa is at least equal to No. But the assumption (ii) implies that these 
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numbers are uniformly bounded in probability. Thus the right-hand side of 
(3.1.13) converges to 0 as NoToC uniformly in e, so we can choose No such 
that its value is less than 02/8; thus N is bounded from (3.1.12) and we get 
the result of the proposition if x t satisfies (i) and (ii). If x~ are N semimartingales 
such that x~ and [x I~ are bounded in probability, (ii) can be proved by applying 
the results of [27] and if the laws of x~ are tight for the Skorohod topology, 
it follows easily from Theorem 15.2 of [4]. [] 

Proof of Proposition 2.3.3. Fix 6 and put 

N - 1  

fit= ~ lt~a(t)% (3.1.14) 
i = O  

where z~ is defined by induction with ~o = 0 and 

r~+t = inf{ t=z~;  lE[ sup [z~] A 1[24~t] >6/2} ,  
~ < s < t  

(3.1.15) 

and N is defined by (3.1.4). The term sup z~[ is cfidl~g - the only non trivial 
~ i < s ~ t  

point is the right continuity at % which holds because the right limit of z, 
at any time is 0 - so its optional projection is also c~idlfig and we prove as 
in Proposition 2.3.2 that "c, is a ~c~ J4~ stopping time; moreover, since sup [z,[ 

~i<s<=t 

is N predictable, the ~ t  optional projection is from our assumptions N and 
~ t  predictable, so z~ is N and ~tt predictable: it is indeed the beginning of 
a right continuous predictable set. We also have 

N - - 1  

Iz~-~,l A 1 = ~ l(,,~,+~)(t)(lzt[ A 1)+ 1( . . . .  )(t)(lz, I/x 1) 
i = 0  

(3.1.16) 

so by taking the expectation at any time z of Y(Jct ~ T), it follows from the 
definitions of ~i and N that (2.3.2) is satisfied. Let us now prove that N is 
bounded; on {ri+~ < oo}, 

6 
IE[ sup IZ~IAII~,+,]~, (3.1.17) 

so we can prove like previously that if 

4 = #  / < N - - l ;  sup Izsl~,~i+l~ , (3.1.18) 

then (3.1.12) holds; from our assumptions, IP[~>No] converges uniformly to 
0 as N o t oe, so we can conclude. [] 
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3.2 Proof of the Stochastic Dominated Convergence Theorem 

The aim of this subsection is to prove Proposition 2.2.4. We will study separately 
the case of nondecreasing processes and the case of martingales. The following 
lemma is basic for all subsequent results. 

Lemma 3.2.1. Let 3~tt be a family of filtrations. Consider 1 < q <p < oo, ~Pt a family 
of positive measurable processes and At a family of nondecreasing processes such 
that 

T dAt p 
suplE~ o ~ - t  d L t < ~ 1 7 6  (3.2.1) 

E 

for some admissible ~ dominating processes Lt. Then for T > O, there exists C 
which does not depend on t) such that 

T 

~o OtdAt s 
with 1/q = 1/p + 1/q'. 

Proof Put c~t=dA,/dL t in (3.2.1); then 

(3.2.2) 

IF, [ O, dA~ ~ ~ O~(a~dL~. (3.2.3) 
0 0 

On the other hand, consider the change of time 

z t=inf{s;L~>t} .  (3.2.4) 

Then the vt are ~ predictable stopping times and 

T l 

q q q q dt. (3.2.5) 
0 0 

If 4) is bounded, we can immediately deduce (3.2.2) with q = q' and if p < c~, 
we apply H61der's inequality and notice that 

1 T 

IE ~ ~ l(~<=r~dt=lE ~ ~ d L ~  (3.2.6) 
0 0 

is uniformly bounded. [] 

The following result says that in a decomposition Wt= V t + M ,  the predict- 
able characteristics of the local martingale Mr are dominated by the characteris- 
tics of W,. 
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Lemma 3.2.2. Let q > 2. I f  the semimartingales W~ admit the canonical decomposi- 
tion Wt = Vt + Mr, then the increments of ((M, M))t and ((M))~ q) are dominated 
by the corresponding increments of ((I/V,, W))t and ((W))~ q) (with a multiplicative 
positive constant number depending only on q). 

Proof It is sufficient to study the increments of ((M))~ q) and ((W))} q) for q > 2 ;  
this will indeed imply that the increments of ((M, M))~ are dominated by the 
increments of ((W, W))~ because 

((W, W)) t -  (( M, M))t= (( W))~2' - (( M))~ 2). (3.2.7) 

We can decompose the two processes ((M))~ q) and ((W))I q) into a continuous 
part and a countable sum of jumps at predictable times. The continuous parts 
come from the totally inaccessible jumps of M t and Wt, so since W t - M t  is 
predictable, they coincide; thus we have to compare A((M))~ q) and A ((W))~ ~) 
for z ~ predictable. By localization, we can suppose that ~IA W~ I q is integrable. 

Then 

SO 

A M,= A W~- IE[A I/V~I~_ ] 

A <<M)>~ q) =IE [IA M,? 14-3 ~ C~E [l~ W~I~I ~ _ 3  = Cd << W>>~). 

(3.2.8) 

[] (3.2.9) 

If M is a local martingale and z is a stopping time, classical Burkholder- 
Davis-Gundy estimates relate the integrability of sup [Mtl to ~M, M~;  the next 

result explains how it can also be related to the predictable processes ((M, M))~ 
and ((i))~q~ 

Lemma 3.2.3. Let q > 2 and let M be a locally square integrable ~ martingale 
such that Mo = 0 and ~ [AMs[ q is locally integrable. Then there exists a constant 
C which depends only on q such that for any ~ stopping time z, 

gsup I M, 1~3 ~ C XE [ ((M, M))~/2 + ((M))?)3. 
t ~= "C 

(3.2.10) 

Proof It is sufficient to prove the result for ~ = oo. From the above discussion, 
in order to get (3.2.10), the only thing we have to prove is 

EEM, M~g 2 = C ~ E((M, M))g 2 + ((M))~U (3.2.11) 

The continuous part of ~M, M~ is easily estimated, and for the purely discontin- 
uous part, we are reduced to prove the following result: if D, is an adapted, 
nondecreasing, purely discontinuous, locally integrable process with D o = 0, and 
if for q '>  1, D~ q') is the predictable compensator of ~IA Ds I q', then 

rlDoo ]J~, ~ C FIDe)Ha, + C PlD~')ll I/q'. (3.2.12) 

One indeed uses this result for D=~,IAMs[ 2 and q'=q/2. We are now going 
to check that (3.2.12) is a corollary of Theorem VI.99 of [6]; first, by a localiza- 



412 J. P icard  

tion argument and Fatou's lemma, we can reduce ourselves to the case of an 
integrable process D; we recall that the left potential of D is defined by 

Z, -- E [D ~o I &-] --Dr_ 

=E[Do~--Dt[~t]+ AD t 

= IE[D~)- D~I)I ~-~-J + A Dt 
< IE[D~)+ sup IAD~I [~-]. (3.2.13) 

s 

Thus from [6], 

IkDo~ II~, ~ C I[D~)llq, + C Ilsup IADsl [la, (3.2.14) 
8 

and this implies (3.2.12). [] 

Proof of Proposition 2.2.4. We get from Lemma 3.2.3 

1E sup [ Wtlq =< CEI  W[~-+ C E  sup ]Mt] q 
t<=T t < T  

<CIEI WI} +CIE((M, M))~2 +CE((M))~q ). (3.2.15) 

By means of Lemma 3.2.2, we can estimate the characteristics of M with those 
of W and obtain (a). The result (b) follows from (a) applied to the stochastic 
integral and Lemma 3.2.1. Finally, let us prove (c). Since the result that we 
want to prove is local, we can suppose that the localization times zk involved 
in Definition 2.2.2 are + oo ; since Ot is bounded in probability and predictable, 
we can also reduce ourselves to the case where it is uniformly bounded; in 
particular, its convergence in IL~ will imply therefore its convergence in 

t 

ll ,q(~) for any q. We decompose the integral S O~dW~; from Lemma 3.2.1, if 
o T 

we define ql by l=l /p+l /q l ,  the L 1 norm of S I~,~ldlWl~ is dominated by 
o 

II~llJe,ql,T so the finite variation part of the integral converges to 0; on the 
other hand from the part (b) and Lemma 3.2.1, if we define q 2 = 2 q l ,  the L 2 

norm of sup i O~dMs is dominated by II~'ll~e,~2,T so the martingale part also 
t<=T 0 

converges to O. [] 

3.3 Estimation for Stochastic Integral Equations 

We now derive lemmas which will be used with Proposition 2.2.4 to prove the 
results of Sect. 2.4; as a corollary, we also prove Proposition 2.7.2. Suppose 
that we want to estimate a family of stochastic integrals 

t 

Ut-- I #~dW~ (3.3.1) 
o 
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such that #t is dominated by some quantity depending on Ut_ ; for instance, 
Ut may be the solution of a stochastic integral equation; then Proposition 2.2.4 
is no more sufficient to estimate it, but we rather need Gronwall-type results. 
The proofs of the following lemmas are partly based on [-101. 

Lemma 3.3.1. Let Wt be a family of N. ~2 valued ~ semimartingales, Z t and #t 
families of ~t predictable locally bounded processes which take their values respec- 
tively in (0, oo) and l R d ' |  a~, and Ut the processes defined by (3.3.1). We suppose 

for some constant C O . 
1 = q/q" + lip and put 

I/~t [ < Co (] Ut- [ + Zt) (3.3.2) 

Fix q>2,  l < p < o o ,  l < q ' < q ,  T > 0 ,  define q" by 

At = I WIt + (( W, W)) t + (( W))~ q). (3.3.3) 

We suppose that for some admissible glut dominating processes Lt, relation (3.2.1) 
holds. There exists a K > 0 depending only on Co, q, q' such that if the exponential 
moment of order K of Ar  is bounded, then one has 

Ilsup [U~I IPq, < Cl IlZll~e,q,,,r, (3.3.4) 
t<= T 

for some constant C1 depending neither on e nor on the family Z. I f  p = oe and 
c 4 ,  one can take q' = q = q". 

Proof. For some fixed 2 > 0, let Et be the solution of 

Et= 1 +2  i E~ dA~. (3.3.5) 
0 

Then E t is a ~ predictable process and/~t"=E7 1 is solution of 

Et= 1 - 2  i EsdA~. (3.3.6) 
0 

We write the integration by parts formula 

t 

[ utlqEt = i]Us - IqdEs + S Esd(] Uslq), (3.3.7) 
0 0 

the differential of E t is given by (3.3.6) and that of I Utl q can be deduced from 
It6's formula; after some calculation, we obtain 

t t 

I u~I~E,= -,~ j" Esl us_ IqdAs+q I E~[ Us_ [q-2 Us*- #~dW~ 
0 0 

t 

+ q  Trace ~ E~] U~-lq-2#*gsd(W,, W)~ 
0 

q- q(q--2) Trace i Esl Us_ 1"-4 #*s Us_ Us*-/~d(W, W ) ;  
2 0 

+ • Es [A (1 Us [ q) -- q [ Us _ I q - 2 Us* A Us]. (3.3.8) 
S ~ t  
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Let us estimate the terms of the right-hand side. Using the canonical decomposi- 
tion W =  V + M ,  the integral with respect to W can be decomposed into two 
parts; the 'finite variation'  part can be estimated by means of 

l Us-[q- l l/~sl < C(I Us_ [q+Zs q) (3.3.9) 

which is a consequence of (3.3.2); the two integrals with respect to (W, W )  ~ 
can be estimated in a similar way. For  the jumps, we have 

IN (I U~I~)-q I Us - I ~-2 Us*_ A U~[ __< C(IA U~I=I U~_ I q-2 + IA U~I ~) 

<C(IU~_lq+Z~)(Izl~lZ+lAWsl~). (3.3.10) 

From all these estimates we get 

t t 

0 0 

t 

+q ~ E~IU~_Iq-2U*_mdM~ 
0 

+ c ~=~ E~(I g~ _ I~ + zg( I /W~l  ~ +IA W~I ~ ) 

- I E~([ Us_ [q+Z~)(d((W))(~e)+d((W))~ q)) . (3.3.11) 
0 

Note that in all the calculation, the constant numbers C do not depend on 
2 so we can now choose it greater than C. Let us take the mean at time t = z  
for a o~ stopping time z__< T. By choosing stopping times Zk which reduce the 
local martingales involved in this formula, by writing the formula at time z/x z k 
and using Fatou's lemma in the limit, we can check that the martingale parts 
of Wt, ~ IA W~] 2 and ~ IA W~I q can be neglected. Thus we obtain 

I ] ~EEIU~I~EJ=<- c E  S E~Z~dA~ . 
kO 

(3.3.12) 

Now notice that s < 1 and estimate the integral with respect to A with Lem- 
ma 3.2.1; this yields 

(3.3.13) 

If q' <q,  choose q '<  q t < q and define q2 by 1/qt = 1/q + 1/q z; we derive from 
H61der's inequality 

l[ U~llql ~ [I u~E~/% [/g~/~llo2 ~ CEffE~2/~] 1/~2/IZII~,~,,,T. (3.3.14) 

On the other hand, 

E r = e x p  2 Ar  I-I (1 + 2AA~)e- )'~A~<exp 2Ar 
s < T  

(3.3.15) 
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so by choosing K = 2 q 2 / q ,  the exponential integrability of order K of AT implies 

IF U~lr ql ~ c IlZll~,q-,T. (3.3.16) 

Thus we can deduce (3.3.4) from Lemma 2.1.2(a). Now suppose that p =  ~ and 
~ t t c~ t .  Then q"=q and E r is uniformly bounded so we deduce from (3.3.13) 
that 

[ Ul~,~,r__< C IlZll~,~,r. (3.3.17) 

On the other hand, from Proposition 2.2.4(b) applied to the stochastic integral 
(3.3.1), we have 

IlsuplUAllq<Cll#l]je,q,r<CllU_l[#,q,r+CllZH~e,q,r. (3.3.18) 
t<=T 

From Lemma 2.1.4, [1 U_ [[av,q,r is dominated by [ Ul~e,q,r and this last quantity 
is estimated by means of (3.3.17), so that we get (3.3.4) with q'=q= q". [] 

Proof of Proposition 2.7.2. Consider the processes 

t 

Ur=X,--R,- ~ F~(s, X~_)dW~ ~, 
0 

#t=F2(t, Xt-). 
(3.3.19) 

Consider also the number q" of Definition 2.7.1, some q' < qt < q and the number 
p defined by 1 =q/q"+ lip. Then it follows from the assumptions that we can 
apply Lemma 3.3.1 with J ~ =  ~ ,  W~= Wt 2 and 

We deduce that 

"AI- t - -  
Z t = l  +[R~-I ~ Fl(s, Xs_)dW~ ~ (3.3.20) 

0 

Ilsuplg~lllql~C(l+llsupletl l l+ sup i F~(s,X~_)dW~ ~ q,,). 
t < T  t<=T t < T  0 

(3.3.21) 

From (3.3.19), the L q' norm of sup ]Xt[ is also dominated by the right-hand 
side of (3.3.21); moreover we hdve assumed that the L r norm of sup [Rtl 

is bounded and we easily deduce from Proposition 2.2.4(a) that the Lr 
of the stochastic integral with respect to W 1 is also bounded. The family of 
variables sup ]Xt[ is therefore bounded in L q' so its q'th power is uniformly 
. t < T  
antegrable.- [] 

We now describe, in the case q = 2, a modification of condition (3.3.2) which 
implies the same type of result; when applied to stochastic integral equations, 
this will correspond to the case of monotone coefficients as considered in [12] 
or [10]. 
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Lemma 3.3.2. Let Wt be a family of IR a~ valued ~ semimartingales, Z t and #t 
families of non-negative and p,a, | valued ~t predictable locally bounded pro- 
cesses, and Ut the processes defined by (3.3.1). We suppose that 

2 Ut*- #t d V~ + Trace (#* #t d < W, W>t) < ]Ut - [2 dA't + Zt dA;' + dA't" (3.3.22) 

where Vt is the predictable finite variation part of W and A't, A'/, A'(' are families 
of nondecreasing fit predictable processes. Let 1 < p < ~ ;  we suppose that the 
exponential moments of A'T are bounded and that A'( satisfies (3.2.1) for some 
admissible ~ dominating processes Lt. Then for 1 < q '<  2, there exists C such 
that 

Ilsup I U~I I1~, < C IIZ[l~,q,,,r + C I[a~'ll a (3.3.23) 
t<_T 

holds for 1 = 1/p + 1/q". 

Proof Consider processes E' and E' satisfying (3.3.5) and (3.3.6) for 2 =  1, but 
with A replaced by A'. The It6 formula (3.3.8) can be written in this case as 

i t I g~l= E;= - s163 
0 0 

+ Trace j ~-' * Es#s #sd<W, W>~+ ~ E's IA U~I 2 
0 s<=t 

t 

EslU~_I2dA'~+2 #~dV~ S --t --t * EsU~_ 
0 0 

i --t , + Trace Es #s #s d < W, W)s + {local martingale} 
0 

t t 

< S Fp EsZsdAs + ~ -' ,,, = Es d A s +  {local martingale} 
0 0 

(3.3.24) 

from (3.3.22). The end of the proof is similar to previous lemma: we take the 
mean at a ~ stopping time z~J - (~ ,  T); since the local martingale can be ne- 
glected, we deduce that if q' < ql < 2, 

SO 

[1 u~l12 ~ CEI-I u~12 E'j  ~ c E  ZsdA's'+A'~" 
' ,0 

I Ul~,ql,r_2 <CIIZll~,q,,,r+Ctla'~'Nl, 

(3.3.25) 

(3.3.26) 

and we use Lemma 2.1.2 to prove (3.3.23). []  
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3.4 Proof of the Main Theorems 

Theorems 2.4.3 and 2.4.4 will be easily proved from the lemmas of this subsec- 
tion. First, we explain how the process ,~(x,y~ in Definition 2.4.1 (c) can be chosen 
uniformly dominated for (x, y) in a bounded subset of 1R el x IR <. 

Lemma 3.4.1. Let F(t, co, x) be a family of ~ ( ~ ) |  d~) measurable functions 
and Wt a family of ~t semimartingales such that F satisfies IH o, I WI, and ((W, W))t 
are bounded in probability and (F, W) is asymptotically monotone. Then for any 
K >0,  there exists a nondecreasing right-continuous ~ predictable process X}K) 
such that firstly AI re) is bounded in probability and converges in probability to 
0 as e--* ~o and secondly, for Ix] and ]y]=< K, (2.4.4) holds with A}x'Y)= ~to. 

Proof It is sufficient to prove the lemma for t < T, where T is any fixed number;  
fix also K > 0, let Br  be the ball in N<  with center 0 and radius K and consider 
Gk= {ca . . . .  , ek} where {e~, i eN}  is a dense subset of BK; one can construct 
by induction on k a sequence Nk of neighbourhoods of e 0 which decreases to 
{Co} as kToe and such that if one defines the family G = G(e)= Gk for eeNk\Nk+ 1, 
then ~, A(r ~'y) converges in probability to 0 as e ~ e0. Now if one considers 

(x ,y)EG x (7;- 

the left-hand side of (2.4.4) for x and y in BK, one can first approach x and 
y by x' and y' in G and then estimate the result of this approximation with 
A}~"Y'). The final result of this method involves the process 

~ K) .~  ~x,y) + sup inf ][x -y]2-[x ' -y ' [2 lA t  
(x,y)~O x G (x , y )~BK x BK (x' ,  y ' ) eG  x G 

+ 2 sup inf sup [(x--y)*(F(s, x)--F(s, y)) 
( x , y ) e B K X B I (  ( x ' , y ' ) e G x G  s<=t 

--  (x' - -  y')* (F  (s, x ' ) - -  F (s, y')) [ [ W It 

+ sup inf sup II F (s, x ) -  F(s, y) ]2 
( x , y ) e B K x B K  ( x ' , y ' ) e G x G  s<=t 

-IF(s, x')-t(s, y')121 ((W, W)),. (3.4.1) 

It is then easy to deduce from our assumptions the convergence of ,~c) to 
0. []  

As another lemma, we give an a priori estimate on the solution (X, x) of 
(2.4.5). 

Lemma 3.4.2. Under Assumption 2.4.2 (without (2.4.2) and (2.4.4)), if Rt, rt and 
the predictable characteristics of Wt and wt are bounded in probability, then the 
processes X t and x t are also bounded in probability. 

Proof The two processes are estimated in a similar way so we will study Xt; 
the proof  will follow from a localization argument and Lemma 3.3.1. First, there 
exist admissible localization ~ times ~; such that [W[~, ((W, W))~ and P ,^~  

are bounded (where P, is the process involved in (2.4.1) which controls the 
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growth of F); we define z~' as the first time at which the process ]R[ is above 
k and put Zk = Z~/X Z~'; then z k are admissible localization times; next consider 

Wt(k) =Wtt  ^ ~k' R~ k) = hk (Rt),  F (k) (t, X) = F (t, x) l(t <= ~ (3.4.2) 

where hk is a bounded continuous function such that hk(X)=X for Ix] <k.  Then 
the equation 

x ( k )  _ l~(k) _~ f y ( k )  ] d W (k) t - - " t -  a F(k)(s , . .~- , - , ,~  (3.4.3) 
0 

has a solution which coincides with Xt on [-0, Zk). Moreover by applying Lem- 
ma 3.3.1 to Ut=X}k)-R~ k), we check that sup IX} k)] is bounded in L 2, so since 

t<_T 

IP [-sup I Xt I > K]  < IP [sup I Xlk) I > K]  + ~' [zk < T], 
t<=T t<_T 

(3.4.4) 

we complete the proof by noticing that the 'lim lim sup' of the right-hand 

side is0. []  k ~  K ~  

Lemma 3.4.3. I f  F = f and Wt= wt, the statement of  Theorem 2.4.3 holds without 
the '~tt Riemann'  assumption on rt- and f 

Proof  This lemma will again be proved by means of a localization argument; 
so let g}k) be the process constructed in Lemma 3.4.1 and in view of Defini- 
tion 2.2.2, let z~ be admissible localization ~ stopping times such that for every 
k, At^~,  ]W[~^~ satisfy (3.2.1) for some p >  1; we can also choose z~ such that 

A X(k) and Pt ̂  ~ are bounded. On the other hand, let t A Z ~ ,  ~xtA'C~ 

"c~' =inf{t;  [R,I v Ir,] v [Xt Iv [x,I >k}. (3.4.5) 

From the assumptions and Lemma 3.4.2, z~' are admissible localization times, 
so z k = z~ A Z~' are also admissible. Then define 

Wt ( k ) =  Wt . . . .  R~ k )= hk(Rt)  , r} k )=  hk(rt) , F(k)(t, X) = F(t, x) l{t__<~k } (3.4.6) 

where hk is a bounded Lipschitz function such that hk(x ) = x for Ix I< k. Consider 
n o w  

t 

= RI + F (s, d 
0 

(3.4.7) 
t 

X~ k) = r~ k) -b- f F (k) (s x (k) ~ d W~ (k) 
3 \ ~ s - - ;  s " 
0 

This system has a solution (X~ g), x~ k)) which coincides with (Xt,  xt) on [0, Zk); 
moreover 

t 
x ~ k ) - - x ~ k ) = R ~ k ) - - r l k ) q  - ~ (F(k)(s ,X~k)_)--F(k)(s ,x(k)_))dWs (k) (3.4.8) 

0 
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and it turns out that Lemma 3.3.2 can be applied to this equation: defining 

Ut = X~ k) - x} k) - R} k) + r} k), 

#t = F(k)( t, X ~ ) -  F(k)(t, x}~), 
(3.4.9) 

the estimate (3.3.22) is indeed satisfied for 

' " A r t '  - -  ~ ' (k)  At=2At^ .k ,  At = A t ^ . . + l  WIt^~., ~. -~- t  . . . .  

Z t = 2 *'t-R(k) --'t-r(k), 12 _.- a lR}~ - r}~ }(1 + p, ,, ~). 
(3.4.10) 

For  k fixed, since R (k) and r (k) are contiguous in Lq(~) for any q and since 
Z ~ , ~  converges to 0 in L 1, one can deduce that X (k) and x (k) are contiguous 
in L 1 (~ ) ,  and therefore in L ~ (~ ) .  But (X} k), x} k)) and (Xt, xt) are equal on {t < Zk} SO 

sup {IPEIX~-x~l > C]; z ~ J ( ~ ,  T)} 

<=lP[zk <= T]+sup{lP[IX~k)-x~)l>C3; z e J - ( ~ ,  T)}. (3.4.11) 

By taking 'lira lim sup' on both sides, we obtain the contiguity in L~ P) of 
M o o  ~--'~o 

X and x. []  

In Lemma 3.4.3, we have considered the case where only the driving processes 
rt are perturbed, and we now want to deal with perturbations on the driving 
semimartingales and the coefficients; let us explain how the general situation 
can be reduced to this case. Consider the process 

t 

6 = r t +  ~ f ( s , x~_)dw~-  i F(s, Xs-)dW~. 
0 0 

(3.4.12) 

Then the system (2.4.5) can be written as 

X t = R t  + i F(s, Xs_)dW~ 
0 

t 

x ,=6+  ~ F(s, xs_)d~ 
0 

(3.4.13) 

so that we are in the restricted framework of Lemma 3.4.3. In order to use 
this lemma, we still have to prove the 

Lemma 3.4.4. Under the assumptions of Theorems 2.4.3 or 2.4.4, the stochastic 
integrals 

t 

i F(s, x s_ )dW s and ~ f(s ,  xs_)dws 
0 0 

are bounded in probability and contiguous in L ~ (Yf). 
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Proof We only give the proof under the main assumptions of Theorems 2.4.3 
or 2.4.4 (the case of weakened assumptions given at the end of Theorem 2.4.3 
is easily checked with the same method). First note that for each fixed x, the 

processes ~ F(s, x)d W~ and ~ f(s, x)d W~ are contiguous in L ~ ( ~ )  from Proposi- 
0 0 

tion 2.2.4 (c), and that the processes ~ f(s, x)d VV~ and [. f (s, x)dws are contiguous 
0 0 

from Proposition 2.3.4; thus ~ F(s, x)d W~ and ~ f(s, x)dws are contiguous. Now 
0 0 

fix some terminal time T. Under the assumptions of Theorem 2.4.3, from Lem- 
t 

ma 3.4.2, xt is bounded in probability, so the semimartingale It= [. f(s, xs-)dws 
o 

and [I It are also bounded in probability (use Proposition 2.2.4(c)); thus from 
Proposition 2.3.2, the process It- is ~ t  Riemann and therefore z~=xt_ is also 
~ t  Riemann; this property also holds from Proposition 2.3.2 under the assump- 
tions of Theorem 2.4.4. We want to prove that ~F(s, z~)dW~ and ~f(s, zs)dw~ 
are contiguous; by localization, we only have to consider the case where the 
processes z t are uniformly bounded; denote by K a bound for it; for any 6>0,  
let zt be a process satisfying (2.3.1) and (2.3.2) with (a'i=O on {-c'i>0}; we can 
suppose that I~tl<g (otherwise replace it by its projection on the ball); we 
can also modify the subdivision z i so that zi<-_'ci+l and we put rN+l=oo .  Fix 
6 and let G be a finite subset of IR dl such that there exists a measurable function 
0 defined on IR ~1, with values in G and such that I4,(x)-xl<6 as soon as 
[xl<K. By proceeding as in the proof of Proposition 2.3.4, we can reduce the 
contiguity of integrals off(s ,  zs) and F(s, z~) as e ~ So to the contiguity of integrals 
o f f ( s ,  0(~)) and f(s, 0(ffs)) as e ~ e o  for any fixed 6; if ~ is a family of times 
of Y-(~, T), we have 

i ~ ~, (e~)) d F (s, @ (~)) d W~- ~ f (s, Ws 
0 

< F(s,y)dW~- f(s,y)dws. (3.4.14) 
i = 0  yeG t i A z  ZiAZ 

Since ~ F(s, y)dW~ and ~f(s, y)dws are contiguous in L~ the right-hand 
0 0 

side of(3.4.14) converges in probability to 0 as e---> e o. [] 

The contiguity of X and x, as stated in Theorems 2.4.3 and 2.4.4, is now 
easily proved from Lemmas 3.4.3 and 3.4.4. 

4. Singular Perturbations 

W e  are n o w  going  to consider some cases where the It6 differential equat ions  
are no more  stable, so that one has to add some corrective terms. W e  will  
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consider equations of type (1.7) which contain both regularly and singularly 
perturbed semimartingales. We will first study the case where the coefficients 
G of the singularly perturbed semimartingales do not depend on time; we will 
explain how it can be reduced to a regular perturbation problem; as an example, 
we will study the polygonal interpolation (1.3) for general subdivisions and 
continuous semimartingales. Then we will consider some more general cases, 
more precisely the case of a nuclear coefficient G(t, x) (when the processes are 
continuous). Finally, we will give some examples of singular perturbations of 
a Brownian motion. The basic idea in our method comes from [22]. These 
results have numerous applications; of course, they are interesting for numerical 
computations; moreover, in ]-20], this type of techniques was applied in order 
to obtain a generalization and a new proof of the Stroock-Varadhan theorem 
about support of diffusions processes; in [29], we also apply singular perturba- 
tions to prove that the classical sufficient condition of [7] for the existence 
of robust solutions of stochastic differential equations is actually also necessary. 

4.1 Introduction 

In the beginning of this section, we will be concerned with equations of the type 

t 
X , = X 0  + S F(s, Xs_)dW,+ i G(X~_)dY~. 

0 0 

(4.1.1) 

In this equation, F and W are families of stochastic functions and of ~ semimar- 
tingales which satisfy the assumptions of last section; G and Y will be families 
of p a, | valued deterministic functions and of IR d3 valued o~ semimartingales, 
but unlike W, the characteristics of Y will not be assumed to be dominated, 
so that our previous convergence results are no more valid. What can we do 
in this case? Suppose that G is of class C 2, so we can apply It6's formula 

i t Gij(x,) = G j ( X 0 )  + ' 1 ,, Gi/(X ~_) dX s + ~ Trace S Gij(Xs-) d (X, X)~ 
0 0 

+ y, (4 Gj (x3-  Gj(x~_)Ax3. 
s<t 

(4.1.2) 

In (4.1.2), G'ij is the line vector of first derivatives of Gii, and G'~ is the Hessian 
matrix of second derivatives. Thus, with the usual summation convention, we 
can write G(Xt) in the form 

G(x,)= a(Xo)+ i u,(s, iaG 
o o 3 ~ x i  

s < t \  OXi  
(4.1.3) 
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where H i are functions, the components of which are components of G'i~F, 
F* G~jF," va* ~,_,a".t~ G* Gij" G, and St is a semimartingale, the components of which 
are components of W, (W, W)  ~, (W, Y)~ and (Y, Y)C. On the other hand, assume 
that Y is contiguous to some family of semimartingales Y; we can write 

G(Xt)(~- Yt) = G(Xo)(Yo- Yo)+ i G(X~_)d(~- Y~) 
0 

+ i dG(Xs)(~_ - Y~_)+ [G(X), Y -  Y]t 
0 

(4.1.4) 

where dG(X~) is expressed by means of (4.1.3). Thus 

t t 

Xt=G(Xt)(Y, - ~)-G(Xo)(Yo-Yo)+ Xo+ ~ F(s, X~_)dW~+ ~ G(X~_)d~ 
0 0 

+ i dG(X~)(~_ - Y~_)+ [G(X), Y -  r ] , .  (4.1.5) 
0 

Defining the processes 

s<_t \  O X i  

(4.1.6) 

Rt = Xo + G(Xt)(Yt- ~)-- G(Xo)(Yo - Yo) + i H,(s, Xs-)(~- -- Y~-) dS~ 
0 

t 

+ ~ dZs(~_ - Y~_)+ Z AZs(A ~ - A  Y~), (4.1.7) 
0 s < t  

and 

F,= i d Y~(~_ - Y~_)* + [Y, Y -  Y]t (4.1.8) 
0 

At= [W, Y -  Y] ,  (4.1.9) 

we can write (4.1.5) in the form 

t 

Xt=Rt+ S F(s, X~_)dW~+ i G(Xs_)d~ 
0 0 

t ~G t t~Gk 
+ I G,(Xs-)drs/k+ S  F,j(s, Xs_)dAi k 

0 G X i  0 

(4.1.10) 

where G k is the kth column of G. We have transformed equation (4.1.1) into 
(4.1.10); we could not apply directly the theorems of Sect. 2 on the former equa- 
tion, but we are going to put assumptions which will imply that the study 
of the latter one becomes a regular perturbation problem. 
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4.2 A Contiguity Theorem 

Let us first enumerate the set of assumptions about the model which was intro- 
duced in Sect. 4.1. Note that unlike W and w in Sect. 2, Y and Y must be 
semimartingales with respect to the same family of filtrations; otherwise, one 
cannot write (4.1.4). 

Assumption 4.2.1. We are given two families of filtrations ~ and Jt~t, families 
Wt~Rd2, y~Re3 and Yt~N d3 of ~ semimartingales, a family of Yo measurable 
variables Xo, a family of ~ ( ~ ) |  d~) measurable functions F(t, o,x) and 
a family of deterministic C 2 functions G(x). We also consider the matrix-valued 
processes Ft and A t defined by (4.1.8) and (4.1.9). We suppose that F satisfies 

IF(t,e),x)l<=Pt(e)), IF(t ,e) ,x)-F(t ,  co, y)l<-_pt(og)lx--y [ (4.2.1) 

for ~ predictable processes pt which are bounded in probability and that G(x) 
and its first and second derivatives are bounded uniformly in (x, e). We suppose 
that Xt and )~ are solutions of (4.1.1) and 

t t 

X t = X o  + I F(s, Rs_)dW,+ ~ G(X~_)d~ 
0 0 

d- !t OG kOxi Gi'(Xs., -)d~Jk-I- oi ~xlt?G~ Fij(S, Xs_)dAJsk. (4.2.2) 

Theorem 4.2.2. Under Assumption 4.2.1, suppose that Wt, ~, F~, At and ((Y, Y))t 
are ~ dominated, that Y, Yo and X o are bounded in probability, that Y and 
Y" are contiguous in L~ and that sup [A ~ - A  Y~[ converges in probability to 

t<=T 
0 for any T. Then X and X are contiguous in L ~ (~).  

Proof In order to apply Theorem 2.4.3, it is sufficient to prove that the process 
Rt defined by (4.1.7) is bounded in probability and contiguous in L~ to 
the constant process Xo. We study separately the terms of the right side of 
(4.1.7) and only the three last ones are not trivially estimated. The functions 
Hi are bounded and the semimartingales S i are ~ dominated, so from Proposi- 
tion 2.2.4(c), the 'sup' of the first stochastic integral is bounded in probability 

t<T 
and converges to 0. One has 

AZ~<= C [AX,] 2__< Cp2t A ~W, W~t+ CA mY, Y~, (4.2.3) 

and the processes ((W,, Wb~ and ((Y, Ybt are ~ dominated, so Zt is prelocally 
dominated (see the discussion following Definition 2.2.2) and therefore the 

integral with respect to Zt is bounded and converges to 0 in L ~ Finally, the 
jumping term is dominated by 

I ~, (A ~ - A  YAAZsI <sup IA ~--A Y~I Z, (4.2.4) 
s < t  s < t  

which also converges to 0. [] 
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Remark I. The assumption IF(t, x) l < Pt can be removed in some cases. We have 
supposed it because if F(t, x) has linear growth as ]x ]~  co, some of the functions 
H i may have quadratic growth; however, if (I/V,, W)~=0, the semimartingales 
S i corresponding to the coefficients H i which have quadratic growth are zero, 
so we are reduced to the case of functions H i with linear growth which can 
be dealt with. Moreover, the condition (4.2.1) and the boundedness of G and 
its derivatives can also be localized as in Theorem 2.4.5. 

Remark 2. From Proposition 2.7.2, we can also prove the contiguity in Lq(~)  
with integrability assumptions on the semimartingales. 

Remark 3. As a second step, one can apply the techniques of Sect. 2 to (4.2.2); if 
the processes Wt, Yt, Ft and A t converge in L~ (3/t ~ to semimartingales wt, Yt, 7t, )ct, 
if X o converges to Xo, if the functions F, G and the first derivatives of G converge 
to f, g and the first derivatives of g, we can get the convergence of Xt to 

t 

xt = Xo + ~ f (s ,  xs-)  d w~ + i g(x~_) dys 
0 0 

t 

+ S agk Aj(s,x~_)d,~k. ~ x  gu(x~-)dTJs k+ i agk 
o oa~Xi 

(4.2.5) 

With this remark in mind, our result can be viewed as a generalization of [22]. 
In particular, one can recover several previously known results ([23, 28, 11]). 

We now give some properties of the processes F~ and At involved in Theo- 
rem 4.2.2. 

Proposition 4.2.3. Denote by ' ~-' the contiguity in L~ Assuming that W and 
I" are ~ t  dominated, that W, Y and ~" are bounded in probability, that Yt ~- ~,  
we have 

and 
Ft + F,*'-" [Y, Y ] t - [ Y ,  Y]t  (4.2.6) 

t t t 

Ft ~ - ~ Y~_ dye*-  ~ ~_  d~*, At--- ~ W~_ dYe*- i I/V~_ dR*. (4.2.7) 
0 0 0 0 

Proof Write It6's formula 

(~- ~)(~- ~)*= i (g- - ~ _ )  d Y~* 
0 

t 

+ ~ d Y~(Y~_ - Y~_)* - Ft-  Ft* + [Y, Y ] t -  [Y,, Y I .  
0 

(4.2.8) 

By applying Proposition 2.2.4 to the two stochastic integrals, one deduces (4.2.6). 
The estimates (4.2.7) are checked with a similar method by applying It6's formula 
to Y~(~- Y~)* and W~(~- Y~)*. [] 



C o n v e r g e n c e  in S t o c h a s t i c  In t eg ra l  E q u a t i o n s  425 

Note that the behaviour of F~ and At is closely related to the behaviour 
of the double integrals of W, Y and Y. The second part of (4.2.7) means that 

t 

W~_ dYe*+ [W, Y]t~- i W,_ d~* + [W, ~-]t. 
0 0 

(4.2.9) 

This relation may surprise because it is generally admitted that the Stratonovich 
integrals are more stable than It6's ones and here, since there is no coefficient 
1/2 multiplying the brackets, we obtain the stability of another type of integral 
- a sort of backward integral; however, this phenomenon will be soon explained. 
Let us consider the process Ft; the contiguity relation ~---Yt will be said to 
be symmetric if F t is asymptotically symmetric; from (4.2.6) this means that 

Ft-~ ([Y,, Y],-- [Y,, Y]~)/2 (4.2.10) 
and in this case 

t t 

I Y~- dye* +�89 [Y,, Y]t~- ~ ~ -  d~* +�89 [Y, Y]t- (4.2.11) 
0 0 

Then, with the framework of Sect. 2, if ~ converges to some Nt semimartingale 

Yt, (4.2.11) converges to ;y~_ dy*+�89 y], and the processes Y~ will be said 
0 

to be symmetric approximations of Yt; in this case we get the stability of integrals 
which coincide with the Stratonovich integrals in the continuous case and which 
will be called symmetric integrals (see [22]); they are defined by 

t t t 

AZ~ AZs. = 1 2 1 d Z 2 _ . l _ l [ Z l ,  Z 2 ] t = ~ Z l s _ o d Z 2 s + � 8 9  1 2 

0 0 0 s<t  

(4.2.12) 

In the general case (non symmetric contiguity), the difference between the sym- 
metric double integrals of Y and Y~ is asymptotically skewsymmetric. Now, if 
Yt -~ ~ is symmetric and if one considers the contiguity relation (W~, Yt) ~- (Wt, ~), 
it appears that it is symmetric if and only if A t converges to 0; in such a case, 
one can put any multiplying coefficient in front of the brackets of (4.2.9), so 
that both It6's and symmetric integrals are stable; however At does not converge 
necessarily to 0 and this explains why we do not get in general the stability 
of symmetric integrals in (4.2.9). 

Note  that if Ft is asymptotically symmetric, then the solution of 

t 

Xt=Xo + ~ F(s, Xs-)dl/V~+ i G(X~_)dY~ 
0 0 

1 ~ G + ~  i aGk Gij(X~_)dEYl, yk]s + ~ O GkFij(s, Xs_ld[W~i, yk]~ 
0 0 OXi  

(4.2.13) 

and the solution X~t of the same equation with Y replaced by Y are contiguous" 
(4.2.13) is stable for symmetric perturbations on Y. The same result holds for 
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non symmetric approximations when the vector fields associated to the columns 
of G commute. 

To conclude this subsection, let us explain briefly how some more singular 
perturbations can be studied. We have proved in Sect. 3 that if an equation 
is regularly perturbed, the limit of the approximating semimartingales directly 
enters the limit equation; in this subsection, we have proved that for some 
other types of perturbations, it is not sufficient to know the limit of the approxi- 
mations Y, but one also has to look for the limit of iterated integrals of order 
2. Now if Ft is no more dominated but converges to a dominated semimartingale 
7t, we can repeat the technique used in Sect. 4.1 and apply the integration by 
parts formula to express the integral with respect to F~ in (4.1.10); in some 
cases this leads to a limit theorem involving iterated integrals of Y of order 
3. This procedure can be repeated, so that we can say that the order of singularity 
of the approximation is characterized by the maximal order of iterated integrals 
which have to be considered; however, in this work, we will not go beyond 
the order 2. 

4.3 Example 

We want to apply previous results and prove that the polygonal interpolation 
used with stochastic subdivisions and for equations driven by a continuous 
semimartingale Y, is a symmetric approximation; if Yt is a one-dimensional Brow- 
nian motion, this result follows directly from [33]; when Y, is a more general 
multidimensional continuous semimartingale, it is proved in [28] in the case 
of deterministic subdivisions. So let ~ be some filtration, Y, a ~ continuous 
semimartingale and g a C 2 function. Let (tk) be a family of subdivisions satisfying 
the conditions of Sect. 2.5, consider the polygonal interpolation 

t - -  t k 
Yt=Ytk -F (Ytk+l--Ytk) for tk <=t<tk+ 1 (4.3.1) 

t k  - 1 - -  t k  

and the solution of 
t 

X t = x o +  J" g(X~)dY~ (4.3.2) 
0 

for some fixed fgo measurable variable Xo. 

Theorem 4.3.1. Let xt be the solution of 

xt = Xo + i g(xs)  o dys. (4.3.3)  
0 

Then sup IX t -  xt[ converges in probability to 0 as ~ ~ %. 
t < T  

Proof Consider the filtrations ~ defined in (2.5.4); then Yt is an ~ adapted 
absolutely continuous process. Let ~ be the right discretization of Yt: it is equal 
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to Yt~+, on [tk, tk+l) ; ~ is a family of ~ dominated semimartingales and it 
is contiguous to Yt in L ~ (from the continuity of the paths of Yt). In order 
to apply Theorem 4.2.2, we still have to study the process F~ defined by (4.1.8). 
On { t ,< t< t ,+ l } ,  we have 

SO 

tn+ l - - t  1 
1--Yr.), ~ - - -  (Yt. + 1--Yt.) (4.3.4) 

tn+ l - - t n  

l n - - 1  

Ft= ~ ~ (Yt,r ~ -- Yt,,)(Ytk+ ~ -- Y,k)* 
k=O 

1( (t.+1-021, ,, 
+ ~  1 (t~+ ~t,)z)tyt.+,--yt,)tyt.+~--yt.)*. (4.3.5) 

Let/~ be the right discretization of Ft; it is equal to [Y, Y]]2; write it in the form 

t 

/~=�89 Yt Yt*-�89 ~ ~ -  d ~ * - � 8 9  i dY~ Y~*_. (4.3.6) 
0 0 

Since ~ is a regular perturbation of y~, we can deduce from Theorem 2.4.4 
that/~ converges in L ~ (~ )  to the process 

t t 

yt=�89189 ~ y~dy * - 1  ~ dy~y*=�89 Y)t, 
0 0 

(4.3.7) 

and therefore Ft also converges to this process. By proceeding similarly, we 
t 

can prove that ~ I dF~l is ~ dominated, so F~ is a ~ dominated semimartingale. 
o 

Thus, by applying Theorem 4.2.2, Xt is contiguous in L ~ (~ )  to the solution of 

x =Xo+ I g(X _)dg+ S giJ(X -)dr? k 
0 0 

(4.3.8) 

and from Theorem 2.4.4, Jft converges to x t in L ~ (~).  []  

Remark 1. By localizing as in Theorem 2.4.5, we can replace the assumption 
g s C  2 by g e C  2, provided that we assume that the solution of (4.3.3) does not 
explode. 

Remark 2. The polygonal interpolation becomes a regular perturbation when 
it is restricted to continuous processes with finite variation. Thus, if some of 
the components of y~ have finite variation, the corresponding columns of g 
can be assumed to be only Lipschitz. 

Remark 3. If Yt is not continuous, the preceding method cannot be applied; 
actually, even for simple processes such as yt = l(t>=l}, the convergence of Xt 
does not hold uniformly in the neighbourhood of the jump time, and the limit 
process xt is solution of an equation which is quite different from (4.3.3). This 
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type of approximation is considered in [24] and will not be studied here. With 
reference to the end of Sect. 4.2, we can say that this perturbation has an infinite 
order of singularity. 

Remark 4. As in Sect. 2.6, one can consider the case of a process y~ depending 
on e, and therefore obtain a convergence which is uniform over a family of 
equations. 

4.4 The Case of a Time-Dependent Coefficient 

In Sect. 4.2, we have considered equations in which the coefficient of the singular- 
ly perturbed semimartingale depends only on x; what happens when this coeffi- 
cient has the form G(t, co, x)? If it has the form G(U, x) for some family of 
o~ semimartingales U~ and if G is C 2,z, one can apply previous results by increas- 
ing the state dimension and adding the components of U~ to those of Xt; in 
this case indeed, we can write the It6 formula for G(U, X~); if U~ has bounded 
variation (for instance U~= t) one only has to suppose that G is C 1'2. However, 
we are going to show in this subsection that one can also manage with some 
less regular functions; this will be applied in the next subsection to some approxi- 
mations of the Brownian motion. Another point of view is given in [9]. 

So let us consider a family of ~ ( ~ ) |  dl) measurable functions G(t, ~o, x) 
and the equations 

t t 

X t = X o +  ~ F(s, X~_)dW~+ ~ G(s, Xs_)dY~ (4.4.1) 
0 0 

where F, Xo, W and Y satisfy the set of Assumptions 4.2.1. First suppose that 

N 

G(t, o9, x)= Y' G(1, x) fit(l, co) (4.4.2) 
/ = 1  

where fit(l) are ~ predictable processes and 5(1) a r e  C 2 functions; by replacing 
t 

processes Y~ by a vector consisting of the semimartingales S fls(1)dY~, 1 < l<N, 
o 

we can write (4.4.1) in the form (4.1.1); consequently, with some contiguity 
assumptions about  these integrals, we can sometimes extend the results of 
Sect. 4.2 and get the asymptotic behaviour of Xt. Generally, the contiguity of 

i t Y~ and ~ does not imply the contiguity of fls(l)dY~ and S fls(1)dY~, so that 
0 0 

we have to take into account a new corrective term. In this subsection, we 
are going to study the case (4.4.2) with N =  oo. The vector consisting of the 

t 

integrals ~ fl~(l)dY~ is in this case infinite-dimensional, so that we will rather 
o 

use the theory of random fields. In order to simplify the results, we will limit 
ourselves to continuous processes and assume that W~ has finite variation (so 
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that At = 0). At the end of this subsection, we will give some hints for verifying 
the conditions which are given below; examples concerning the Brownian case 
will be dealt with in Sect. 4.5. 

Assumption 4.4.1. We are given two families of filtrations ~ and o~t, families 
W~EN. d~, YtelR d~ and ~e lR  a~ of ~ continuous semimartingales, a family of ~'~o 
measurable variables Xo, three families of ~ (~ - ) |  ~) measurable functions 
F(t, co, x), G(t, co, x) and G(t, co, x). We suppose that the ~ t  optional projection 
of a ~ optional process is o~ optional, that Wt has finite variation, that F 
satisfies (4.2.1) and that G and G are C a functions defined by 

G(t, co, x)= ~ G(/, x) fit(l, co), G(t, co, x)= ~ G(l, x) fit(l, co), 
/ = 1  / = 1  

(4.4.3) 

where the series converge in L~ fit(l), fit(1) a r e  ]Rd4@IR da valued ~,~ predictable 
processes and G(1) are ]Rd'| d4 valued C 2 functions (d4 is a fixed integer); 
we suppose that 

sup ~ sup [ 7J(l, x)] < oo (4.4.4) 
e 1 x 

is satisfied for 7J(/)= G(1), OG(l)/Ox k or a2~(/)/c~x j Ox k. We let Ft be defined by 
(4.1.8), and we also define the processes 

and 

i i,  - -  t - -  t Ft(/, l') = fl,(1)d f l , (1)dY,-  ,(1)d 
0 0 

t 

+ i fl~(1)d<Y,, Y)sfl*(l ')- j fls(/) d<Y, Y)~fl*(l') (4.4.5) 
0 0 

fit(l, l')= i fls(l) dF~fi* (l'). (4.4.6) 
0 

We suppose that there exists a family of admissible localization times Zk such 
that for every k, 

and 

suplEsup Iflt(l)l-t-lflt(l)] ~ ( l )d~  <oo (4.4.7) 
~ , l  t=~kL 0 

sup IE(I F(l, 1')1~ + ((F(I, l'), F(l, l,)))1/2) < oo. (4.4.8) 
e , l , l '  

Finally let Xt and Jft be solutions of (4.4.1) and 

J f t = X o  + S F(s,X~)dVV~+ ~ C(s,X~)d~+ ~ Gq(s, Xs)dF~ jk. 
0 0 0 

(4.4.9) 
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Theorem 4.4.2. Under Assumption 4.4.1, suppose that Wt, ~, Ft, Ft(l, l'), /~(l, l') 
and ((Y,, Y>>t are ~ dominated and that Xo is bounded in probability. Assume 

t t 

that ~ fl~(1)dY~ and ~ [f~(l)d~, Ft(l , l') and fit(l, l') are contiguous in L~ Then 
0 0 

X and X are contiguous in L ~ (~).  

We have put in the following lemma some results which will be used in 
order to prove Theorem 4.4.2. 

Lemma 4.4.3. Under the assumptions of Theorem 4.4.2, the processes consisting 
of the suprema over x of the norms of G(t, x), G(t, x) and their first and second 

L 

derivatives are bounded in probability; if GL(t, x) is the truncated sum ~ G(l) fl(l), 
/ = 1  

the supremum over x of [G(t, x)--GL(t,x)[ converges to 0 in L~ as (e,L) 
(Co, oo) and a similar property holds for the derivatives of G and G L. Moreover, 

there exist ~(~) |  a') measurable functions D(t, (o, x) and D(t, a), x) which 
are C 2 with respect to x, such that for every fixed x, 

t 

D(t,x)= S G(s,x)dY~, /)(t, x)= i G(s,x)d~. (4.4.10) 
0 0 

The suprema over x of D(t, x),/)(t ,x) and their first and second derivatives are 
bounded in probability, the processes D(t, Xt) and D(t, Xt) are contiguous in L~ 
and a similar property holds for the derivatives of D and D. Finally, if one defines 
the process 

Zt = i / 3/) 3D 
o 

+ ~ Gis(s, X3d<yj  ' ?k>_ i ~Gk o o ~ r  GiG X3 d<Y s, r~>s, (4.4.11) 

Z t = i ~ , G i j ( s ,  Rs)dFjk, (4.4.12) 

Z~= ~ 'OG , ,,t,= l ~o ~i- ( l  ,Xs) 6is(l, Xs)dF~Jk(l, l'), (4.4.13) 

t 

ZtL= ~ ~G~ G~(s, X~)dFj k, 
o 3xi 

(4.4.14) 

then these processes are ~ Riemann for each L fixed; moreover, Zt and Z~ 
on one hand, Z t and Z~ on the other hand are bounded in probability and contiguous 
in L~ as (e, L)-o(eo, oo). 
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Proof If 71(I) is 8(/) or one of its derivatives, it follows from (4.4.4) and (4.4.7) 
that 

sup ~ 7t(l,x)fl~^~,,(1) 
x I = L  

converges to 0 in'L 1 ( if)  as L ~ oo, uniformly in ~. Since Zk are admissible localiza- 
tion times, we easily deduce that the series ~ tP(l, x)fl(l) defines a function, 
the supremum of which over x is bounded in probability; we also check from 
classical theorems about limits of functions that for the different choices of 
7q/), we obtain G(t, x) and its derivatives; the contiguity of G and G L is also 
easily verified. By considering similarly 

Z ~(t, x) f,(t), Z~'(t,x) iflAt)dY~, 
l t 0 l 0 

we check the same properties for G(t, x), D(t, x) and/)( t ,  x). Moreover 

D(t, Xt)-D(t, Xt)= ~, G(l, Xt) fl,(l)dg- fi,(l)d 
/ = 1  0 

(4.4.15) 

where the convergence of the series holds in L I ( ~ )  o n  { t ~ Z k }  , uniformly in 
e; since each term converges to 0 in L ~  as e ~ e o ,  we deduce the contiguity 
of D(t, Xt) and D(t, Xt); we prove in a similar way the contiguity of the deriva- 
tives of D a n d / )  taken at (t, Xt). The processes Z L, Z L and Zt are ~ Riemann 
from Proposition 2.3.2. By developing the functions D, D, G and G in the Defini- 
tion (4.4.11) of Zt, a calculation shows that Zt is the limit of Z~ as L ~ o o  
for each fixed e; on the other hand, we can deduce from (4.4.8) that this conver- 
gence is uniform in e and that ]Zlt and ((Z, Z))t are bounded in probability, 
so in particular Zt is ~ Riemann from Proposition 2.3.2. Finally, since GL(t, Xt) 
and G(t, Xt) as well as their first derivatives are bounded in probability and 
contiguous as (e, L) ~ (Co, oo) and since F, is ~ dominated, we deduce the boun- 
dedness in probability and the contiguity of Z L and Z t. [] 

Proof of Theorem 4.2.2. The analogue of (4.1.4) consists of developing/)(t ,  Xt) 
-D(t, Xt); we deduce from Lemma 4.4.3 that we can apply an It6's formula 
for random fields (see for instance Theorem 1.8.1 of [17]); we obtain 

t 

D(t, X,) = D (0, Xo) + ~ G(~, X,) d r~ + e--D-D (s, X,) dX~ 
0 0 ~ x i  

+�89 ~D ~ ( s ,  X3d(X',X%+ ~ OGj s o ~ ?  ( ' X~) d ( X  i, rJ)s (4.4.16) 
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and a similar formula for/)( t ,  Xt). Then, if one defines 

Rt=D(t, Xt)--D(t, Xt)+/)(0, Xo)--D(O, Xo)+ ~o ( ~xi 

1 +~ i ( ~D 82D ~ . 
o \a~UxJ ax~a#) (s'xs)d(x'x~)~' 

•)r•j(s, d ~  X~) 

(4.4.17) 

we deduce from (4.4.1), (4.4.11), (4.4.16), the similar equation for / ) ( t ,  Xt) and 
(4.4.17) that 

t 

X,=Xo+Rt+Zt+ ~ F(s, Xs)dW~+ i C(s,X~)d~. 
0 0 

(4.4.18) 

Now consider some integer L, put RL=zt--Z L SO that 

t 
X~=Xo+Rt+RtL+ ~ F(s,X~)dW~+ i G(s,X~)d~ 

0 0 

L ~ OGk , 
~-l,l~,=l ! ~ (l'x')~ij(l'ss)dF~jk(l'l')' (4.4.19) 

and let X~ be the solution of 

)~L = X o  + R L +  i F(s'XL)dW~ + i G(s'XL)d~ 
0 0 

I , / ' =  1 0 

(4.4.20) 

From Lemma 4.4.3, the process Rt is bounded in probability and converges 
to 0 in L~ the process R L is bounded in probability and ~ Riemann for 
L fixed and the function G satisfies ~q;; thus we deduce from Theorem 2.4.3 
that for L fixed, Xt and g "L are contiguous as e ~ Co. On the other hand, note 
that the last term of (4.4.20) is zL; if one defines /~L=Zt--Z~, it appears that 
the Eqs. (4.4.9) and (4.4.20) can be written in the form 

i i t x,=Xo+~,~+ F(s,X~)dW~+ C(~,X~)d~+~ aG~G~(~,X~)drsJ~, 
0 0 0 ~ x i  

(4.4.21) 
) ( L = X o + R ~ +  S F(s, XL) dW~+ ~ G(s, XL)d~ + 8G~GL(s, XL)dF~ jk" 

o o o ~xi 
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From Lemma 4.4.3, Rt L a n d / ~  are bounded in probability and contiguous in 
L~ as (e, L)--* (eo, c~), so from Theorem 2.4.3, Jft and J ~  are also contiguous. 
Thus Xt  and )(t are contiguous as e ~ eo. [] 

Remark 1. When ~ = 4 ,  condition (4.4.4) can be localized as in Theorem 2.4.5. 

Remark 2. Suppose that fit(l)=o'~t_ (l) for cfidl/tg ~ dominated semimartingales 
at(/) such that co(/)= 0. From the integration by parts formula 

t t t 

~t(1)(~ - Yt) = I f l s ( 1 )d~ -  I fi~(l)dY~+ I d a ~ ( l ) ( ~ -  Y~) + (a(l), Y -  Y) t ,  
0 0 0 

(4.4.22) 

we deduce that if ~ and Yt are contiguous and if one can find processes fit(l) 
such that 

t t 

/~(l) d Ys= ~ fi~(l)d~+<a(1), Y ' - Y ) t ,  (4.4.23) 
0 0 

t 

then ~ fi~(1)dY~ and fis(l)dYs will be contiguous as requested in Theorem 4.4.2. 
0 0 

The representation (4.4.23) is often made possible by increasing the dimension 
t 

d 3 of Y: if the semimartingales at(l) can be written as ~ r for some semi- 
0 

martingale N~, then one can add to the components of Y~ and ~ the components 
of ( Y -  Y, N)t;  the process fit(l) is then defined to be equal to fit(l) on the old 
components and to 0 on the new ones, and fit(l) is defined to be equal to 
fit(l) on the old components and to Or(l) on the new ones. Admitting (4.4.23), 
we also deduce from (4.4.22) that 

so that 

dc~~ F~(I, l ')= ~ fi~(1)dY~ ' - - - Y.) 
0 0 

+ i fis(l)d(Y, Y'- Y>~fi*(l') (4.4.24) 
0 

s -  

~(l, l')-~(l, r)= i fis(l)d~ j (~,-  V,)* d~,*(l'). 
0 0 

(4.4.25) 

By using an integration by parts formula for this last expression, since j fi~(/)d Y~ 
0 

is bounded in probability, we also get the contiguity of Ft(1, l') and ~(l, l'). 

Remark 3. In examples, one is given the function G(t, x) and one has to find 
a representation formula (4.4.3) so that assumptions of the theorem are satisfied. 
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Taking d4=d3,  one can choose for G(l) a complete or thonormal  system of 
L2(N al | a~) multiplied by some coefficient cl such that (4.4.4) holds; then 

~,(l) = ~ (G(t, "), G(I, " ))t2(~dl@~d3) (4.4.26) 

where I is the identity matrix of Nn~. If G is regular enough with respect to 
x, the processes fit(l) will not explode as 1--,oo and we will be able to verify 
the assumptions of the theorem; in particular, if G(t, x) is, for each x, a semimart- 
ingale, then fit(l) is (with some boundedness assumptions) also a semimartingale, 
so that we can apply Remark 2 and recover some results from [9]. However, 
we can sometimes also study some functions G(t, x) which are not semimart- 
ingales; this problem is dealt with in next subsection for some approximations 
of the Brownian motion. 

4.5 Absolutely Continuous Approximations of a Brownian Motion 

We now consider the case where Yt are absolutely continuous o~ adapted pro- 
cesses which are contiguous as 0 < ~ ~ eo = 0 to some Ytt Brownian motions Y, 
(which may depend, as well as the filtration, on e); more precisely, we will 
study a class of approximations Yt which are Gaussian processes included in 
the Gaussian space generated by Y; we want to make easier the application 
of the theorems of Sects. 4.2 and 4.4 - for Sect. 4.4, we will limit ourselves 
to deterministic functions G(t, x). We will use some assumptions which are not 
all necessary for the contiguity but which will be useful for the study of the 
rate of convergence in Sect. 5. Let us fix a constant terminal time T. An example 
of such an approximation is the delayed polygonal interpolation 

t - k e  - 

Yt=0 for t<e 

for ke<_t<_(k+l)e, k > l  
(4.5.1) 

or more generally, if A is a d3 x d 3 matrix, the delayed quadratic interpolation 

(~ t - k e  

( t-ke)((k+ 1 ) e -  t) ( ~ _  Y(k-1)~)) l~k~=<,<(k+ 1)~(t). (4.5.2) 
+ A  e2 

One can also consider the solution of the equation 

~ = A ( y _  ~), Yo =0 , (4.5.3) 
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where A is a stable d 3 • d 3 matrix. Note  that all these examples can be included 
in the framework 

u 

Y'= i }-udu= i du ~ L(u,s)d~ (4.5.4) 
0 0 0 

where L(u, s) is a family oflRa3| a3 valued measurable maps which are square- 
integrable on [-0, T] x [0, T] and satisfy L(u, s )=0  if u < s ;  for (4.5.2), one has 

L(u,s)= 1 • (I+A (2k+ e - -2u  
g k = l \  - �9 l { k ~ < _ u < ( k + l ) e } l ( ( k _ l ) e < s < k e  } (4.5.5) 

and for (4.5.3) 

L(u,s)=--Aexp A ( u - s )  if s<u. (4.5.6) 

Before the study of these approximations, let us explain briefly how one can 
deal with cases which do not satisfy L(u, s)=0 for u < s  i.e. which are not 
adapted. The first method is similar to the one used in Sect. 4.3 for classical 
polygonal interpolation (1.3); if indeed Y, is ~7,+~ measurable, one can firstly 
compare the equations driven by Yt and ~+~, and secondly notice that gt+~ 
is a regular perturbation of Y, (see Theorem 4.5.6 below). If this trick cannot 
be applied, another method consists of using the Skorohod stochastic integral 
and the stochastic calculus which was recently developed for it: this technique 
is developed in [29]. 

In all this subsection, ~ will be the filtration of deterministic events; first, 
we want to find a sufficient condition on L for the contiguity of Y and Y; 
since these processes are Gaussian, note that the contiguity in L~ implies 
the contiguity in Lq(Y) for every q. It is easily seen that 

t i - -12  IE[ Yt- ~[2 = 0~ L(u, s)du ds (4.5.7) 

so the contiguity in LO(Jt ~) of Yt and ~ is equivalent to the convergence to 
0 of the above integral uniformly in t__< T. Henceforth, we will assume 

sup E[ Yt- ~12=O(e) . (4.5.8) 
O < _ t < ~ T  

This is easily verified in the case of approximations (4.5.2) and (4.5.3). Another 
assumption which will be used in the following one; we will suppose that 

ir(t, u)l____ + ~ (L~_~), (4.5.9) 
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for some positive bounded function 7 ~ defined on IR such that 7J(z)=0 for 
z < 0  and 

~g(z) ~/z d z < oe. (4.5.10) 
0 

This condition means that ~ is nearly independent from old values of Y and 
it is satisfied for the examples (4.5.2) and (4.5.3): one can take for ~g on [0, oo) 
an exponential function ~V(z)--C e x p - # z  with some # > 0. 

Definition 4.$.1. A family of processes Y~ of type (4.5.4) will be called an admissible 
perturbation of ~ if it satisfies (4.5.8) and (4.5.9). 

Let C 1/2 be the space of real functions defined on [0, T] which are H61der 
continuous with coefficient 1/2 and consider on it the norm 

I,~,-~1 1~1,/2 = sup I~,1+ sup (4.5.11) 
0 <- tNT O<=s < t < T  ~ S  

If q5 is a family of deterministic elements of C 1/2, we now study the contiguity of 

Xt = i ~b~ d Y~, X,= i ~b,d ~. (4.5.12) 
0 0 

Lemma 4.5.2. I f  Yt is an admissible perturbation of ~ and if c~t is a family of 

i functions which are bounded in C 1/2, the processes Os d Ys and ~ c)s d Ys are contig- 
0 0 

uous in L 2 (~,  T) and their difference is of  order ]//~e. 

Proof. We estimate the difference of Xt and X t in L 2 (~ ) .  We have 

IE I X t L(s, u) c~ d s - 4) 
0 

t t 2 

t t 2 t t 2 

<2! ,,[ L(s'u)ds-I ICkul2 du+ 2 [.o .I L(s'u)(4s-4")ds du 

( 2) 
_-<21q~1~/2 EIg~-gl2+o~ Ig(s,u)l slfff~-uds d . (4.5.13) 

From (4.5.9), we deduce 

iC(s,u)l/s-uds=<! [ v scues lAI v(z)/ az 
u ~ u 

(4.5.14) 
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so the last integral of (4.5.13) is of order e and therefore 

EIX,-~tl2~Cgl~12/2. [] (4.5.15) 

Of course, this implies the contiguity in Lq(~)  for every q; it turns out 
that the contiguity also holds in Lq(~-). This is the aim of the following lemma 
which is also useful for the estimation (4.4.7). 

Lemma 4.5.3. I f  Yt is an admissible perturbation of Yt and if Cfit is a family of 

sup i q~sdY~ uniformly bounded functions, the variables are bounded in L q for 
t<=T 0 

every q; moreover if Ot is uniformly bounded in C 1/2, 

sup i q ~ d Y ~ - i q ~ d ~  
t<=T 0 0 

converges to 0 in L q. 

Proof. We have for t I ~ t2, 

t2 2 i T <=s<t2} ds  2 d u  IE ,( (o, dY~ = o5 L(s,u)(a~l{t, 

T 

_-<ci il 
0 [tl,  t2] 2 

[ L(sl , u)l [L(s2, u)[ ds Ids  2 du. 

Note that (4.5.9) implies 

(4.5.16) 

with 

[L(sl, u)l [L(s2, u)[ du<__ 1 ~' (4.5.17) 
0 g 

7*(z) = S ~(z + z') tP(z') dz'. (4.5.18) 
0 

From Fubini's theorem, one can prove that ~ ~(z)dz < ~ and from (4.5.16), 

]E ~c~sdY * <=-- ~ ~ d s l d s 2 < C ( t 2 - t O  [~ ( z )d z .  
t l  ~ [tl ,t2] 2 ~ ~ ]  0 

(4.5.19) 

Since the processes are Gaussian, this implies that for every q > 1, 

i2 q IE (asd < C ( t 2 - t O  q/2 
tl 

(4.5.20) 
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so we can deduce from Lemma 2.1.3(b) the boundedness in L q' for q'<q. Since 
t 

~b~d ~ satisfies an estimate similar to (4.5.20), we also deduce the contiguity 
0 

from Lemma 2.1.3 (c). []  

We now want to study the process 

Ft= i ~(~--  Y~)* ds (4.5.21) 
0 

for Yt an admissible perturbation of ~.  

Lemma 4,5.4. If  Yt is an admissible perturbation of Yt, then Ft and lEFt are contigu- 
ous in Lq(~, T) and their difference is of order ]//~. 

Proof We have 

Ft= ds L(s,u)dL dY* I - I g ( v , u ) d v  . (4.5.22) 
0 0 0 - u 

We first consider the case q = 2 ;  we have to estimate the variance of Ft; by 
an elementary calculation, we get 

ul t s - I  d s  2 varr,____C fI duldu2 I IL(s, ul)l IL(v, u2)dv 
[0,812 v u2 u2 

~--~ C IIIl dul du2 dsl ds2 ] L ( s l '  U])[ IN(s2,  Ul) [ I{U2~Sl A82} 
[0,8] 4 

Sl 
�9 ~ L (v ,u~ )dv - I  ~ i2I"(v 'u2)dv-I  

C I~f duds  I as 2 In(s1, u) ll g(s2, u) llI ~ ,  - g ,  II 2 II v~2- g2ll 2 

[O,t] 3 

'~ [0,8]2 

-<_ C ~ (4.5.23) 

with the Definition (4.5.18) for ~. In order to prove the case q>2 ,  we are 
going to see that since Ft--IEFt is in the second Wiener chaos of the Brownian 
motion ~,  its L q norm is dominated by its L 2 norm; studying separately each 
component,  it indeed appears that if one notes 

s 
Ft~J-EF~ ~= i dR* I h(s, u)d•, (4.5.24) 

0 0 
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using the inequality 

\q/2 - q/2 d S 
0 \0 

(4.5.25) 

valid for positive functions es and fl~, one deduces 

E I ~ J - E / ; / J l  q 

= ~ S, bt 
0 

( i  i S) -l+q/2 i Sh(s 'u)d q ( i  )l-q/2 <=C ]h(s,u)12 dud E Y, Ih(s,u)[2 du ds 
0 0 0 

<C Ih(s,u)12 duds (4.5.26) 
0 

and the term of the last line is just II~iJ-Ig~Jll~. [] 

After Lemma 4.5.4, we still have to study asymptotically the mean of F t, 
t 

or equivalently from Proposition 4.2.3, study the mean of ~ Y~ ~* ds; the pertur- 
o 

bation will be symmetric if it converges to It~2, and if it converges to another 
function 7t, the difference ? t - I  t/2 will be skew-symmetric. Let us consider our 
two examples. For  the delayed quadratic interpolation, one has 

( ( 2 k + l ) e - 2 t )  
E ~(Y,-- Y,)* = I4  A 

E 

( ( k + l ) e - t  ( ( k + l ) e - t ) ( t - k e ) ) *  
�9 e e2 A (4.5.27) 

for e<ke<_t<_(k+ 1)e, so 1EFt converges to 

It  t 
7, = ~ - +  g (A -A*) .  (4.5.28) 

Thus the approximation is symmetric if and only if A is symmetric - for instance 
for the non perturbed case A = 0  which was considered in Sect. 4.3. For (4.5.3), 
one can prove that E F  t converges to 7t = - A K t  where K is symmetric and 
solution of A K + KA*+ I = 0 (see [29]). The approximation is symmetric if and 
only if A is symmetric. 

We will apply Sect. 4.4 with fit(l)= fi,(1)= qSt(1)I for real-valued functions qSt(1), 
so in order to study Ft(1, l'), we still have to consider double integrals of the 
form 

~t = 4)sdY~ ~ ~" d ( L -  Y,)* (4.5.29) 
0 o 
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where (at and (a't are real-valued functions. We want to prove that their variation 
is bounded in D - in order to obtain (4.4.8) - and that they are contiguous 

to i (as (a'~dF~. In the following lemma, we also prove that the contiguity of 
t 

0 

Ft and its mean holds in L q (~-). 

Lemma 4.5.5. Let Yt be an admissible perturbation of Yt; then for any families 
of functions (a t and (a't which are bounded in C 1/2, for every q, the process ~t 

i (a~lEF~ds, and 
t 

defined by (4.5.29) is contiguous in Lq(o ~ )  to (as(a'~dF~ and ~ (as ' " 
0 0 

~ is bounded in L q. 

Proof One easily deduce from (4.5.9) that I] ~llq is of order 1/~/e, so from Lem- 
ma 4.5.2, 

Y~ll2q i (a~d(Y~- Y~) 2q El~,ll,_-<l(a,I l[ " ' - < C l ( a , I  I (a ' l , /2 .  (4 .5 .30)  
0 

The case (a -= (a' =- 1 yields the same estimation for ~. In particular 

IdlJe,2,r==-Cl(all/21 (a'11/2 (4.5.31) 

so the bilinear map((a, (a')~--~ is continuous from C 1/2 x C 1/2 into L2(~)  uni- 
formly in e; the maps 

t t 

((a,(a')~-+~(a~(asdF~ and ((a,(a')~-*I (a~(aslEF~ " 
0 0 

satisfy the same continuity property. On the other hand, consider families of 
C ~ functions ((a, (a') which are uniformly bounded as well as their derivatives; 
applying two integrations by parts, we get 

i ~,= (a, (a; dr~- (a; S (a,d~(to-Yo)* 
0 0 

t r t S 

- ~ (a~dY~ ~ ( ~ -  Y~)*d(a's+ ~ i (audY. (L-Y~)*d(a '  ~ (4.5.32) 
0 0 0 0 

( so ~ and ~ (as(a'~dF~ are contiguous in LZ(Jf) use Lemma 4.5.3 to estimate 

i (asd ; from Lemma4.5.4, these processes are also contiguous with 
0 

i(as ' C 1 (a~EF~ds. Since is dense in C 1/2, by approximating ((a, (a') by such fami- 
o 

0 

lies, we get the contiguity in L2(Nf) for all ((a, (a') in C ~/2. Finally, from Lem- 
ma 2.1.3 (c) and (4.5.30), we check the contiguity in Lq(~). [] 

By putting together previous results, we obtain the 
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Theorem 4.5.6. Let Yt be a ~,~ Brownian motion, put ~=Yt  or Yt+~-Y~, suppose 
that Yt is an admissible perturbation of the Brownian motion ~,  and that X t 
is the solution of 

2 , = V ( t ,  Xt)+G(t,  XO~,  X o = Y  (4.5.33) 

where ff is a family of ~o measurable variables with bounded moments, F(t, x) 
is a family of  ~ predictable functions which are uniformly bounded and Lipschitz 
with respect to x, and 

G(t, x)= ~ fir(l) G(1, x). (4.5.34) 
/ = 1  

We assume that G(l) and its first and second derivatives satisfy (4.4.4) and that 
fit(l) is a family of deterministic real-valued functions which are uniformly bounded 
in Ca~2; suppose also that the mean of the variable Ft converges to some function 
7t, that Z converges in the spaces L q, q> 1, to a variable ~ and that x t is the 
solution of 

dx t=F(t ,  x t )dt+~Gk Gij(t, xt)~[kdt+G(t, xt)dyt, Xo= ~. (4.5.35) 
~xl 

Then for every q > 1, the variable sup ] X t -  xt [ converges to 0 in L q. 
t<_T 

Sketch of the Proof. Let ~ be ~ or ~+~, so that ~ is a J~ Brownian motion. 
From Lemmas 4.5.3 and 4.5.5 one can verify that one can apply Theorem 4.4.2 
with flt(I)=flt(1) (the filtrations ~ and ~ of this theorem are taken to be ~t); 
thus one gets the contiguity in L ~ ( if)  of X t and the solution of 

d X t = F ( t , X ~ ) d t + ~ G i j ( t ,  Xt)dFt+G(t, Xt)dYt, J~o =Z .  (4.5.36) 

Then one uses Theorem 2.4.3 in order to get the contiguity of )~t and xt in 
L~ Moreover, the variable sup[xt[ is easily shown to be bounded in the 

t 

spaces L q, and to prove the theorem, it is sufficient to prove the same property 
for sup [X~[. One writes the equation for Xt in the form (4.4.18); the two 

t 

integrals with respect to W t = t and ~ are easily estimated; from the development 
of D(t, x) and Lemma 4.5.3, one deduces that the suprema over x of the norms 
of D(t, x) and its derivatives are bounded in L q, so sup ]R~[ (given by (4.4.17)) 

t 

is also bounded in L~; finally, by writing Z~ as the uniform limit as L--,oo 
of Z f  (given by (4.4.13)) and using Lemma 4.5.5, one also proves that sup [Zt[ 

t 
is bounded in L q. [] 

In particular, if the perturbation is symmetric, we obtain the stability of 
the Stratonovich equation. As it was explained previously, the case ~ = y~ +~-  y~ 
leads to anticipating approximations of Yt (such as those of [11]); for instance, 
in example (4.5.2), we obtain the quadratic interpolation without delay of Yt- 
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5. Rate of Convergence 

When a Brownian motion is perturbed, the rate of convergence of the approxi- 
mations can often be estimated; for instance, for the approximations of Sect. 4.5, 

this rate is of order ~//~. The problem which is dealt with in this section is 
to study how this rate is transmitted to the solutions of the SDEs driven by 
the Brownian motion and its approximations. We will consider this question 
for equations driven by general semimartingales as studied in Sects. 2 and 4, 
and will estimate the rate of convergence in Lq(Jg) for q = l .  Of course, our 
regularity assumptions will be more stringent than in the previous sections. 
The cases of regular and singular perturbations will be respectively dealt with 
in Sects. 5.1 and 5.2; applications to the Euler discretization scheme and the 
approximations of Sect. 4.5 will be given. 

5.1 Regular Perturbations 

We are going to use the framework of Sect. 2; however, we will assume that 
~ = N ,  as well as some regularity conditions; for instance, we will not study 
the general case of monotone coefficients but will ask them to be at least Lip- 
schitz; actually, the monotone case can also be dealt with, but the resulting 
rate of convergence is generally worse (compare (3.3.4) and (3.3.23), or look 
at the rate of convergence in I-2]); in this section, we have chosen to study 
only smooth situations in order to get sharper estimates. We first consider the 
basic case where only rt is perturbed (situation of Lemma 3.4.3). 

Theorem 5.1.1. Suppose that we are given two families of filtrations ~ and Jf~, 
a family of ~ semimartingales Wt, two families of ~ adapted c?tdI?tg processes 
Rt and rt and a family of ~ predictable functions F(t, o9, x) such that 

IF(t, o~, x ) -  F(t, o9, y)[ < Co [ x -  yl. (5.1.1) 

Suppose that (X, x) is solution of 

Xt=Rr + i F(s, Xs_)dW~, 
0 

(5.1.2) 
t 

xt=rt+ I F(s, x,_)dW~. 
0 

Fix T>0,  q=>2, 1 <=q' <q, p> 1 and define q" by 1 =q/q" + 1/t); suppose that 

At = [Wl, + ((W, W))t + (<W))I q) (5.1.3) 

satisfies (3.2.1)for some admissible ~ dominating processes L t. Let ~1~ be a family 
of positive numbers converging to 0 as e ~ eo. Then there exists a K > 0 depending 
only on Co, q, q' such that if the exponential moment of order K of Ar is bounded, 

IR-rl~e,q,,,r=O(tl~)=~lX- xl~r,q, r=O(rl,). (5.1.4) 
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I f  dA]dLt is uniformly bounded by some constant number (case p = oo and Yft ~ ~--O, 
then one can take q '=q=q";  moreover, if A t is uniformly bounded (case p=oo 
and ~ t  = ~-~), 

]lsup IR~-r,l I1~= o(~3 ~ Ilsup I X , - x , l  IIq = o(t/~). 
t<_T t<=T 

(5.1.5) 

When one writes equation 

t 

X t - - x t - - R t + r t =  ~ (F(s, X~_) -F(s ,  x~_))dVV~, 
0 

(5.1.6) 

this theorem is an easy corollary of Lemma 3.3.1. As an example, we now apply 
this result to the Euler scheme of Sect. 2.5 when the predictable characteristics 
of the semimartingale wt are strongly dominated by a deterministic function. 

P r o p o s i t i o n  5.1.2. Consider the equation 

t 

xt=rt+ ~ f(x~_)dw~ (5.1.7) 
0 

for a Lipschitz bounded function f, a semimartingale wt and a cgldl~g process 
r t such that the moments of sup [rt [ are finite. Fix q >= 2 and suppose that 

t < T  

at = I w[t + ((w, w))t + ((w))} q) (5.1.8) 

satisfies a t -  as < 4 -  ~ for s < t for some deterministic function 4. Consider as 
in Sect. 2.5 a family of discretizations (tk), define X(k)  by (2.5.3) and let N be 
an integer-valued random variable such that tN is a ~ stopping time which is 
less than T. Let z(t) be the greatest time tk such that tk < t. Then 

[Isup IX(t ) -x t~l  Ilq~ C sup II Ixt-x~(ol l(t__<t~}l[q. 
k<=N t<=T 

(5.1.9) 

Remark. For classical SDEs driven by Brownian motion and dt, we recover 
the classical bound ~/e for the rate of convergence of the Euler scheme with 
discretization step e; more generally, we can consider equations driven by semi- 
martingales with independent increments. 

Proof By stopping equation (5.1.7) after time tN, we can suppose that tN= T 
and that wt and rt are constant after T; as in Sect. 2.5, we can also suppose 
wt=wo for t < t  1. We will use the notations of Sect. 2.5 and will verify that 
we can apply Theorem 5.1.1 to the system (2.5.9) with X t = ~ ,  L t=arc tanAt  
and p =  oo. Formulas (2.5.11) and (2.5.13) provide us with I wit  and ((W,, W))t, 
and one checks similarly 

N - 1  

((w))~)= ~; E[Iwt~+l-wt~rql~j. (5.1.1o) 
k = l  
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By developing the q th power with It6's formula and using some inequalities 
as in the proof  of Lemma 3.3.1, we deduce 

N - 1  i- tk+~ 

tk+ 1 ] 
+ [. [w,_-%l"-adlwl~+((w))~Z~+,-(w))}Z)l~. (5.1.11) 

tk 

Thus if one defines At by (5.1.3) and if one uses the domination of at by ~, 
one gets 

N--1 tk+ 1 

At<GET +C Z ~ E[lws--wt~l+lw~--w,kl ~-1 
k =  1 tk 

+ ]w~- --wtkl q-2 [NJ  d~. (5.1.12) 

Since ar  is bounded by some constant number, we can also deduce that the 
variables 

IE[- sup Iws-wtklq'l~J 
t k < S < t k +  l 

are also uniformly bounded for q' =< q (conditional form of Proposition 2.2.4 (a)), 
so A t is uniformly bounded. Thus we can apply Theorem 5.1.1 and (5.1.5) yields 

C t!(f(x~_)-f(x~(s_)) ) dws q. Ilsup IXt-X,I IIq~ sup 
t<_T k<=N 

(5.1.13) 

The left-hand side is equal to the left-hand side of (5.1.9) and to estimate the 
right-hand side, we can use Proposition 2.2.4 (b) with p = Do and ~ the filtration 
of deterministic events. []  

In Theorem 5.1.1, the assumption concerning exponential moments of At 
may seem too strong and is sometimes difficult to prove. We have seen in 
Sect. 2.7 that if this condition is weakened for the bounded part of F, the conti- 
guity in Lq'(Yg) is preserved. We now verify that the rate of convergence is 
also sometimes preserved. 

Proposition 5.1.3. Assume the conditions of Theorem 5.1.1 except the boundedness 
of the exponential moments of At, and let p' < Do such that 1/q' > 1/q + lip'. 

(a) Suppose that (R, F, W), (r, F, W) satisfy ~Iq (see Definition 2.7.1) and that 
for any K > O, there exists a family of ~t stopping times "c such that for any T, 

IP [z < T] = O (r/p') (5.1.14) 

and the exponential moments of order K of AT ̂ ~ are bounded. Then (5.1.4) holds. 
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(b) I f  there exists a family of ~t predictable nondecreasing processes Pt such 
that Po > O, the exponential moments of order K of Pt are bounded and 

l p [ 3 t < T ,  A t > P t ] =  0 v' = = ( ~ ) ,  (5.1.15) 

then one can find a family z satisfying the conditions of (a). 

Proof We apply our assumption with the order K obtained in Theorem 5.1.1. 
Define q~ by 1/q'=l/q~+l/p' .  Then q~<q and if-c' is a family of times of 
~--(~, T), 

_-< IIX~,,, ~-x=, ^~JIq, +(IXl~e,o~, r +  Ix [~,~, T)IP U~ < T] ~/~'. (5.1.16) 

Let Xr~ and 2~ be the solutions of an equation similar to (5.1.2), but with W~ 
replaced by Wt^~; then (Xt, x~) and (Xt, xt) coincide on I-0, "c], so 

1 

+ l X l~,~,  r + l ,21~,q~ , r) lP E~ < Z]  ~/''. (5.1.17) 

The first term is of order t/~ from Theorem 5.1.1 and for the second one, one 
applies Proposition 2.7.2 and (5.1.14), so that one gets (a). To prove (b), define 

z~ = inf{t; A, => Pt}. (5.1.18} 

The stopping time zl satisfies (5.1.14) and is predictable (it is the beginning 
of a right continuous predictable set), so there exists another stopping time 

< z l  which also satisfies (5.1.14); since A~,,~ is dominated by P~, its exponential 
moment of order K is bounded. [] 

Let us now describe a SDE where the coefficients, the semimartingales and 
the initial condition are all perturbed. In order to avoid multiplicity of the 
exponents, we will not give the more general statement. 

Theorem 5.1.4. We are given two families of filtrations ~t and ~ ,  two families 
of ~ semimartingales Wtt and wt, a family of o~t predictable functions F(t, co, x) 
satisfying (5.1.1), a family of deterministic C~ functions f (x) (with bounds uniform 
in e), a family of ~t adapted cddlgtg processes R t and a family of Yo measurable 
variables x o. Let (X, x) be the solution of 

t 

X~=R,+ ~ F(s, Xs_)dWs, 
0 

t 

xt=xo + ~ f(xs-)dws.  
0 

(5.1.19) 
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Let q > 2 and q' < q. Defining A t with (5.1.3), assume that the exponential moments 
of  A, are bounded and that A~ satisfies (3.2.1)for every p < oo ; define also 

a, = [w l, + ((w, w)), + ((w))~ zq) (5.1.20) 

and assume that it satisfies (3.2.1) for every p< oo. I f  the Lq(~, T) norm of  R. 
--x0, sup [ F ( ' , x ) - f ( x ) l ,  W - w  and of the variation of r w - w ,  w] are of order 

x 

tl~, then [X-xlae,q, r is also of order rl~. 

Remark. The condition concerning exponential moments of At can be modified 
as in Proposition 5.1.3. 

Proof We have 

x t = x o +  I f (x~_)d(w~- W~)+ ~ ( f ( x ~ _ ) - F ( s ,  x~_))dW~+ F(s, x~_)dW~. (5.1.21) 
0 0 0 

Using an integration by parts formula in order to express the integral of f(x~_) 
with respect to w~- W~, we deduce that if we put 

r, = Xo + f ( x t ) ( w , -  Wt) + ~ df(x~)(W~_ - ws_) 
0 

t 

+ [f(x),  W - w ] , +  ~ ( f ( x s _ ) - F ( s ,  xs_))dW~, 
0 

(5.1.22) 

we are in the framework of Theorem 5.1.1; choosing 2 v q' < q l  <q,  W~ satisfies 
the assumptions of this theorem for every p<oo  and with q replaced by ql; 
thus we only have to prove that R - r  is of order q, in L~2(o~, T) for some 
q2>ql ;  we will choose q x < q z < q .  The last integral of (5.1.22) is estimated by 
means of Proposition 2.2.4 (b). From It6's formula, 

t 

+ C ~ I W~ _ - ws- [ d ~w, w~s. (5.1.23) 
0 

These two terms are again estimated with Proposition 2.2.4 (b): for the second 
one, note that the predictable compensator of ~w, w~, is ((w, w))t, that the com- 
pensator of its bracket is ((w))~ 4) and that the compensator of its q th power 
jumps is ((w))~ 2q). Finally, by studying separately its continuous and discontin- 
uous parts, the bracket of f ( x )  and W - w  is easily estimated by the variation 
o f [ W - w ,  w]. [] 

Nevertheless, one has to remark that the assumptions are here much more 
restrictive than in Sect. 2, because we want the processes W and w to be semi- 
martingales with respect to the same family of filtrations ~ .  As it was noticed 
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in Corollary 2.2.5, this implies a rather strong convergence of W - w  to 0; thus 
perturbations on absolutely continuous processes will be dealt with this method, 
but for perturbations on more general semimartingales, we will generally need 
singular perturbation methods. 

5.2 Singular Perturbations 

Here, we use the framework of Sects. 4.1 and 4.2 (we will limit ourselves to 
the case of time-independent coefficients G) and explain how the rate of conver- 
gence can be deduced from Theorem 5.1.1. 

Theorem 5.2.1. Under Assumption 4.2.1, suppose that the functions F(t, o3, x) are 
uniformly Lipschitz and bounded. Fix q > 2, q' < q and define 

A,=I WI, + ((W,, W)),+((W))~2q)+l 'YIt + ((?,, ?-55, + ((-~))}2q~ 

+((g, y)),+((y))}2q3+ i l k -  - Y~-Idl YIs 
0 

t t 

+~IYs_-Y~_I2d( (Y ,Y) )~+~I~_-Y~_Iqd( (Y) )~  q). (5.2.1) 
0 0 

Suppose that the exponential moments of At are bounded and that (3.2.1) is satisfied 
for every p< co. Let tl~ be a family of positive numbers converging to 0; assume 
that the L q (~, T) norm of ~'-- Y and that for any p the L v norm of sup [A Ys-- A Y~ I 

s<= T 

are of order tl,; then the Lq'(~, T) norm of . f , - -X  is also of order tl~. I f  one 
removes the conditions concerning exponential moments of At but if for any K, 
there exist stopping times z satisfying the conditions of Proposition 5.1.3, then 
the conclusion still holds. 

Sketch of the Proof The equation of X t is (4.2.2) and we write the equation 
of Xt in the form (4.1.10). Consider ql such that 2 v  q '<q l<q;  we first have 
to verify that the semimartingales Wt, ~,  Ft and A t satisfy the assumptions 
of Theorems 5.1.1 with q replaced by ql and for every p < o o ;  actually it is 
not difficult to prove that the increments of their predictable characteristics 
are dominated by the increments of the process At defined in (5.2.1). Then, 
as in the proof of Theorem 5.1.4, we check that for ql<q2<q,  the Lq2(~,, T) 
norm of R - - X  o is of order t/g: in (4.1.7), the integrals with respect to St and 
Zt are estimated by means of Proposition 2.2.4 (b) (one notes that the variation 
of Zt is dominated by the sum of increments of ~W, W~t and ~Y, Y~t); for the 
last term, we use the assumption on sup lA ~ - A  Y~[. The generalization con- 

s 
cerning exponential moments of At is obtained from Proposition 5.1.3 and by 
proving that the Eq. (4.1.10) of X t satisfies IH~ for any c7 < q. [] 

Then, if Wt, ~, F~ and A t are regular perturbations (in the sense of Sect. 5.1) 
of wt, y~, % and 2t, we can estimate the difference between X t and the solution 
xt of (4.2.5) by applying Theorem 5.1.4. All these results can be applied to the 
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approximations of Brownian motions by absolutely continuous processes, in 
particular the examples of Sect. 4.5 and (4.5.33) when F(t, x) and G(t, x) depend 
only on x. In this case, one takes for ~ the filtration of deterministic events; 
actually, the rate of convergence in Lq(~ -) can also be estimated but it is generally 
slower (it is related to the modulus of continuity of the Brownian motion); 
note that if Y~ is an admissible perturbation of ~ (see Definition 4.5.1), the 
Lq(~, T) norm of Y -  Y is of order V~ from (4.5.8), so we want to deduce a 
similar rate of convergence for the process X, of Theorem 4.5.6. 

Theorem 5.2.2. Suppose that F(x) and G(x) are families of uniformly C 2 and 
C~ functions and that E and ~ are ~o measurable variables such that 3 - ~  is 
of order ]//ee in the spaces L q, q >= 1. Let Yt be a Brownian motion, ~ = Yt or Yt +~-- Yt, 
let Yt be an admissible perturbation of the Brownian motion ~ (see Definition 4.5.1) 
and suppose that besides (4.5.9), the estimate 

__< 7-' (5.2.2) 
S 

is satisfied for s <= t. Suppose that 7t is a deterministic absolutely continuous function 
such that EFt-- yt is of order V~e. I f  x t and xt are solutions of 

)~t = f (X 0 + G (Xt) ~,  X o = 3, (5.2.3) 

~Gk k 
dxt=F(x t )d t+~xi  Gij(xt)~ dt+G(xt)dyt, Xo=~, (5.2.4) 

then for any q < oo, the L q norm of ]Xt-- xt [ is of order ~ ,  uniformly on bounded 
time intervals [0, T]. 

Proof. Let X t be the solution of 

dX, = F (Y*3 d t + ~ ,  Gij(X~) ~jk d t + G (XO d Y, (5.2. 5) 

with X o = E .  We will first estimate X - X  with Theorem 5.2.1; then we will 
estimate X - x  with Theorem 5.1.4, We have Wtt=t and the process A t of (5.2.1) 
reduces to 

a t = 2 t +  i IP~lds. (5.2.6) 
o 

Since [t~][, is bounded, A t satisfies (3.2.1) for Lt=aretant and any p <  oo; let 
us now study its exponential integrability. For K > 0, 

lEexp K ! l ~ l d s  =to< l iEexp(Kt ]~ ] )ds  

1 i (  ** Y~ ) ds. (5.2.7) E e x p K e t l V l 2 E e x p K t ]  __~12 1/2 < _  
= t  
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On the other hand, ~ Ys and ( ~ -  Y~)/~/e are Gaussian variables, the variances 
of which are bounded as e ~ 0; thus from standard estimates, for any K, the 
last line of (5.2.7) is shown to be uniformly bounded if t is at most equal to 
some number 6 which does not depend on e; however, the problem of the 
exponential integrability for larger t does not look easy so we are going to 
avoid it with Proposition 5.1.3; thus we now construct the process P~. For  any 
s<=t, let ~s  be the o--algebra generated by Y,-Y~ for s<_u<_t; consider some 

> 0 (which will be chosen later) and define the process 

t 

u,=E[~l~*-a3= 5 L(t,s)d~. (5.2.8) 
t - 6  

By comparing with (4.5.4) we deduce 

t - 6  

~EIU~-~I 2= S IL(t,s)l 2ds 
0 

<-<- e~ o 

<- -  7 '2 (z) d z. (5.2.9) 
8 61e 

Since 7-' is bounded, 

oo 

; ; ! 6 iz .z, 
u u 

(5.2.10) 

so from (4.5.10), the L z norm of U t - ~  is therefore of order ~-:/4; since it 
is a Gaussian variable, its L p norm has the same order for any p < m.  Define 

t - O  

(5.2.11) 

By means of (5.2.2), we deduce from a calculus similar to (5.2.9) that the L p 
norm of V~- ~ +  Yt is of order ea/4; thus if we define 

t 

~= 5 Us V** ds, (5.2.12) 
0 

we deduce that the L p norm of ~ - ~  is of order E 1/4. Define also 

P t = 2 t  + f I~lds+ 1. (5.2.13) 
0 
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Then the L v norm of P,-A, is of order e 1/4, so 

lP[3t<=r, At>=Pt]<= P t -  d t>l  
L0 d 

T ~ ~ /7 
~ IA~-P~ldt p 
0 

= 0 (e/,/4). (5.2.14) 

Since this is true for any p, in order to use Proposition 5.1.3(b), we only have 
to verify the exponential integrability of P~. Fix K; from the Cauchy-Schwarz 
inequality, 

T 
lEexpK ~ I~lds 

0 

(k+ 1)~ (k+ 1)~ )1/2 
< E e x p 2 K  2 l I~[ds.lEexp2K 2 I I~lds (5.2.15) 

k even k 6  k odd k6 

where the sums are limited to k such that k6< T. But for k6<_s<(k+ 1)6, the 
variable ~ is ~J(~- t)~ measurable so the different terms in each sum are indepen- C'(k + 1)3 
dent, so 

T ( (k + 1)3 S)1/2 
lEexpK~l~lds< I-[ lEexpZK ~ [~[d . (5.2.16) 

0 k < T/f i  k 6  

By means of an estimate of type (5.2.7), one can prove that one can choose 
6 > 0 such that each term of the product is bounded ( ~  Ut and VJ]//e are indeed 
Gaussian variables the variances of which are bounded uniformly in e and 6); 
with this choice of 6, the conditions of Proposition 5.1.3(b) are satisfied. Thus 
we obtain the result of Theorem 5.2.1, so the Lq(~, T) norm of X - J r  is of 
order 1~. In order to conclude, first suppose that we are in the case ~=Yt.  
From Lemma 4.5.4 and the assumption about 7t, Ft-Tt is of order ~e  and 
it is not difficult to use Theorem 5.1.4 and obtain that X ' - x  is also of order 
V~(i t  is in the application of this theorem that we need third derivatives for 
G, so that the coefficient of Yt is Cg). If ~ = Yt +~-Y~, we consider the solution of 

Gk jk 
aYt=F(yOdt+ ~x~x G~J(Yt)~t+~dt+G('Yt)d~, ~o=x~. (5.2.17) 

Then X ' t - 2  ~ is of order ]/e from Theorem 5.1.4 and xt=Yt_~ so xt-Yt  is also 
of order V~. [ ]  

Some further questions concerning approximations of Brownian motions 
are dealt with in [29]; in particular, it is explained how the rate ~ can be 
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improved with some additional commutativity conditions; some tools of the 
stochastic calculus of variations are used with this aim. 

Acknowledgement.  The author thanks the referees for some corrections and several helpful comments. 
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