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Summary. The hydrodynamical  behavior of one-dimensional scalar Ginz- 
burg-Landau model with conservation law is investigated. The dynamics 
of the system is given by solving a stochastic partial differential equation. 
Under  appropriate space-time scaling, a deterministic limit is obtained and 
the limit is described by a certain nonlinear diffusion equation. 
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1. Introduction 

We shall study a model of the spin configuration S: I R - ~  over the real line 
changing randomly with time. The evolution law is given by a stochastic partial 
differential equation (SPDE) 

dS,(x) = - A 2 St (x) dt + A { U' (St (x))} dt + ~/2 rdwt(x),  

t>0 ,  xEIR; A =d2 /dx  2, V = d / d x ,  (1.1) 
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where wr is a cylindrical Brownian motion on the space LZOR, dx), that is, an 
5~'(N)-valued continuous process such as (we, q~) is a standard Brownian 
motion for every ~o e 5 ~ (N) satisfying [[ q~ [I L2 = 1. Throughout the paper we assume 
the following condition on the self-potential U: IR ~ R.  

U(s)=2s2+V(s) ;  7>0,  V~C~(IR). (1.2) 

The SPDE (1.1) is called the time-dependent Ginzburg-Landau equation (TDGL 
Eq.). 

The purpose of the present paper is to know the macroscopic behavior 
of this model. We introduce the hydrodynamical space-time scaling: t ~ t / e  z, 
x ~x / e ,  e>0,  for the T D G L  Eq. and investigate the asymptotic behavior of 
the scaled process S~(x)= Sv~2 (x/e) as e $ 0. Note that S~(x) satisfies the following 
SPDE, correctly speaking, in the sense of law: 

dS~(x)=-e2AZS~(x)d t+A{U'(S t (x ) )}d t+] /~Vdwt(x) ,  t>0 ,  x ~ .  (1.3) 

We shall prove that S~ converges to a non-random function pt=pdx)  which 
is a solution of the following type of nonlinear diffusion equation 

~?P~-~{d(P~)~x}'St 8x (1.4) 

We introduce some more notations to explain the coefficient d(p). Let H ; =  
- �89  2~IR, be a self-adjoint operator on the space L2(IR, ds) 
and let ~?a be a positive and normalized eigenfunction of H~ corresponding 
to its minimal eigenvalue to(2). Define the mean spin function fi, which is real 
analytic and strictly increasing (see Sect. 2), by 

fi(2)=Isf22(s)ds, 2elR. (1.5) 

Then the diffusion coefficient d(p) is the derivative 

d(p)=2(p),  (1.6) 

of an inverse function 2 = 2(p) of fi = r 
Let C2+~(N), 0</3<1 ,  be the class of all SeC2(IR) satisfying sup {]S'(x) 

-S" (y ) l / l x -y l~;  x, y~lR, I x - y l  < 1} < oo. We can now state our main result. 

Theorem 1.1. Let S~ and Pt be the solutions of the scaled T D G L  Eq. (1.3) and 
the nonlinear diffusion Eq. (1.4), respectively, with same initial value S 6 C~ + ~ (IR). 
We assume 70= ][ V" ]l o~ < min (7, 7a), where 71 is an absolute constant appearing 
in Sect. 10. Then S~ converges to Pt as ~ tends to 0 in the following sense: 
lim P (I S {S~ (x) - Pt (x)} ~o (x) dx] > 6) = 0 for every 6 > O, t > 0 and qo ~ C~ (11). 
e,L O N 

The existence and uniqueness theorems for the Eqs. (1.3) and (1.4) will be 
discussed in Sects. 5 and 11, respectively. 

The SPDE (1.1) has a one-parameter family of invariant measures {#x}z~a 
where/~z is a certain probability measure on the configuration space cg = C(~), 
which is called (U, 2)-Gibbs distribution having constant profile 2 (see Sect. 3). 
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The parameter 2 represents the strength of the external field. The limiting PDE 
(1.4) can be derived quickly if we assume the so-called principle of hydrodynamics 
(see [53): There exists a function 2(t, x) such that for each (t, x)~(0, oe)xlR 
the distribution of S~(x) converges weakly as e + 0 to a probability measure v~(t,x) 
on IR. Here vz is the 1-dimensional marginal distribution of #4 given by va(ds) 
=f2~Z(s) ds. This principle seems plausible, since the hydrodynamical scaling 
makes the system evolve rapidly and it is in result expected that S~(x) converges 
to one of the equilibrium states. However establishing it is not easy. We shall 
follow and extend the method due to Fritz [9, 103 in which the discretized 
version of the Ginzburg-Landau model was discussed. 

The proof of Theorem 1.1 consists of three main parts. In the first part 
we shall introduce a significant class of probability measures {#~.)} on cg called 
spatially inhomogeneous Gibbs distributions and investigate their asymptotic 
behavior under the spatial scaling limit (Sects. 3 and 4). The SPDE (1.3) deter- 
mines a semigroup T~ ~ with a formal infinitesimal generator N~ which is a func- 
tional differential operator of second order. The second task after some prepara- 
tions (Sects. 6 and 7) is proving a formula of integration by parts on the space 
~g based on a probability measure #~(.),~, which is obtained by acting the spatial 
scaling transformation on #~(.) (Sect. 8). This is a key formula which expresses 

the time derivative ~ S T~ ~ 7 ~ d/~(.),~ in terms of the functional derivative DT~" 7 ~ 

for a certain class of functions ~ on cg. Finally we shall prove the compactness 
of semigroups {T~" ~}o<~< ~and their functional derivatives {DTt ~ 7~}o<~<t in a 
proper sense (Sects. 9 and 10). Taking the limit e+0 in the key formula leads 
us to the conclusion of Theorem 1.1 (Sect. 11). 

The results were already announced in [13]. This article explains briefly 
how we can arrive at the PDE (1.4) starting from the principle of hydrodynamics 
and also exposes the outline of the proof of Theorem 1.1 in slightly more detail 
than stated above. The present paper is a result of shortening some tedious 
parts in the proof of my preprint [Fu] (IMA preprint series no. 328, University 
of Minnesota, 1987). These two papers [13] and [Fu], however, must help 
understanding the present paper. 

2. Notations and Preliminary Facts 

In this section we first introduce some notations which will be used throughout 
the paper and then summarize known properties and their simple consequences 
on the so-called Schr6dinger operators on N~. 

2.1 Notations 

(i) Generally for a topological space X, Cb(X ) and ~(X)  stand for the space 
of all bounded continuous functions on X and the space of all Borel probability 
measures on X, respectively. We denote @, ~ ) =  S 4~d# for ~ C b ( X )  and 
# ~ ( X ) .  x 
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(ii) Configuration spaces and their dual spaces. We fix a positive even function 
zeC~(N)  satisfying Z(x)= [xl for x; [x[ > 1 and set O(x, r )=e  -rx(x), reN.  Intro- 
duce a family of Hilbert spaces Hr = L 2 (IR, O(x, r) dx), relR, having norms defined 
by [Sir= { S S(x) 20(x, r)dx} 1/2, Serif.  The space H_ ,  can be identified with the 

dual space H* of Hr. Let He = (~ Hr and H* = U H* be a countably Hilbertian 
r > O  r > O  

space and its dual, respectively. We shall also consider a weak topology 
o-(He, H*) on the space H~. With this topology it will be written by He, w. 
We denote by cg the space C(N) with the usual topology of uniform-convergence 
on each bounded set. Let N~ be a a-field of the space cg generated by {S(x); xeI},  
SsCg, for every subset I of N~. We simply write M for Na and sometimes use 
the same notation Mt to denote the Borel field of the space C(I) for each interval 
I of 1R. Let (gr, r eN ,  be the space of all SeCg satisfying IllSIIIr=suplS(x)l O(x, r) 

x ~  

< oo and set cg e = (~ ~ the countably normed space. We also consider the 
r > 0  

space ~- r ,  r>0 ,  of all (0ecg_r satisfying 

lim [q~(x)[ O(x, - r ) = 0 .  (2.1) 
Ixl--,  oo 

The space ~_~ is a Banach space with norm Ill" III-r. 

(iii) The class of tame functions on the configuration space. Let @ be the class 
of all functions kg on the space cg having the form: 

7~(S) = O(<S, (o1> . . . .  , <S, Ok)), SeCg, (2.2) 

with k = l ,  2, ..., 0 = 0 ( c q ,  ..., ek)eCy(P, k) and (Pl, ..., q)keC~OR), where 
(S, rp) = ~ S(x) rp(x) dx. We also denote by N without distinction the class of 

N 

such functions on cge, H e or H,  etc. instead of cg as introduced similarly as 
above. For  l>0,  @l is the class of all 7JeN of the form (2.2) with qh . . . . .  (0a 
having supports in an open interval ( - l ,  l). We shall sometimes denote by ~z 
again the class of functions kg on the space C([- l ,  l]) or L2([ - / ,  l]), which 
are defined in a similar manner. 

2.2 Schr6dinger operator 

Recall the definition of the operator H a together with its minimal eigenvalue 
x(2) and eigenfunction Ok. The condition (1.2) on U implies that H~ has purely 
discrete spectrum and the function f2x decays exponentially fast, i.e., Ok(s) 
__< const, e -rlsl, sMR, for every r > 0 (see Reed and Simon [20]). 

We can show that x(`t) is real-analytic in 2 e N  and f2~ is strongly differenti- 
able as an Lz(N, ds)-valued function of , teN. These facts follow from Kato- 
Rellich theorem by proving that the family of operators {H~; `t e (9} on a complex 
Hilbert space L 2 (It  ~ II;, ds) is an analytic family in the sense of Kato for some 
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neighborhood (9 of N in the complex plane I12, see Reed and Simon [20, vol. IV, 
pp. 14-17]. Another consequence of this theorem is that inf6(2)>0 for every 

2 E I  

bounded interval I of N, where 6 (2) is the gap between the second least eigen- 
value of H z and x(2). 

Final remark is on the positivity of the diffusion coefficient d(p) defined 
by (1.6). Indeed differentiating both sides of an equality Hzg2a=x(2)f2x in 2 

we obtain (H z -  ~ c ( 2 ) ) ~ = ( s +  ~c'(2))f2 z. This implies ~c'(2)=-~(2) and there- 

00~ ~0~ 2 
fore ~-=(H~--K(2) ) -x~/~ ,  since ~ - e L o ;  the space of all qeL2~k~,ds) such 

that (q, ~Z) -- 0/, ~2~)L2 = 0. Here ~/~=(s--t~(2))O~eL 2 and we consider (Hz 
-K(2))-1 as a positive operator of L 2 --+ L 2. Hence we see d(p)> 0 from 

f i ' (2)=2(sf2~,~)=2(rlz , (Hz-x(2))- lq~)>O. 

3. Spatially Inhomogeneous Gibbs Distributions 

3.1. Definition and Construction 

Let # .. . .  ;y .... x<y,  Sl,S2ff~-~., be a probability distribution on the space 
(C([x, y]), ~[~, yl) of the pinned Brownian motion S =  {S(z); ze[x, y]} with time 
parameter z satisfying S(x)=sl and S(y)=s2. To specify a family of profile 
functions describing the strength of the external field we consider a class A 
of all functions 2eCZ0R) satisfying 2'eCo(N). For  every 2 = 2 ( - ) c A  the local 
specification is a probability measure on C([x, y]) defined by 

{! } x , ,  . - U ( z ,  S(z); X(.))dz # x , ~ , ; r . s 2 ( d S ) ,  #zt.)(dS, Sl, s2)=Y- -1 exp 

for each x < y and sl, SEEN, where U (z, s; 2( ' ) )= U (s)- 2(z) s and ~,'~--~x(.)wl,'~'Y to sz) 
is a normalizing constant. We sometimes regard #~ir)(. ; sl, s2) as a probability 
measure on the space (cg, N) by considering S(z)=sl for z<x  and S(z)=s2 
for z > y under this probability distribution. A probability measure # on (off, N) 
will be called a (U, 2(.))-Gibbs distribution if and only if it satisfies the so-called 
DLR equation: 

x ~ y  . #(AlCC(x,y)o)(S)=#z(.)(A, S(x), S(y)), #-a.e. S, 

for every x < y  and Ae~tx,  y 1. 
The Gibbs distribution can be constructed in the following manner. For  

2(') e A we can find x_ < x + such that 2 ( ' )=  constant on two intervals ( -  o% x_ ] 
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and [x+, oo). Let two functions {O(+)(x, s)} be the solutions of two diffusion 
equations: 

c9 
63 x f2t-+)(x, s)= +/-I~g2t-+)(x, s), xeN~, (3.1) 

with initial (or terminal) conditions f2(+)(x+, s)=f2(x_+, s), where /7~=H~t,) 
-x(2(x) )  and f2(x, s)=f2zt~)(s ). The double signs + are taken in same order. 
The Eqs. (3.1) are used to see 

Z (x )=  ~ Ot+)(x, s)Ot-)(x, s)ds (3.2) 
R 

is independent of x, so that it will be denoted simply by Z. We define/txt.)(A) 
for AENt~,yj, x<y, by 

#2(.)(A)=Z -1 ~ dsl ds2~(-)(x, s1)~(+)(y, s2)p(y--x, sa, S2) 
R2 

�9 E"~.~, .... ~[exp(-f{U(z,S(z);2('))+~c(2(z))}dz);A], 

where p(z, sl, sz) is the transition probability of standard Brownian motion. 
Then the Feynman-Kac formula can be applied to prove that #~(-) is well-defined 
as probability measure on (cg, N), namely/tzt.)(A) is determined independently 
of the choice of x and y. Moreover, it is not difficult to see/tat.) constructed 
as above is a (U, 2(.))-Gibbs distribution; cf. Iwata [15] discussed the case 
of 2( ')  being constant. This is a spatially-inhomogeneous extension of the 
P(q~)x-measure, see Simon [23]. Under  the distribution #~(.), {S(x); x~lR} can 
be regarded as a temporally-inhomogeneous diffusion process with 1-dimension- 
al marginal distribution Z -  10(+)(x, s) O(-)(x, s) ds and infinitesimal generator 

d2/ds2 +J~s log f2t+)(x, s)} d/ds, xEN. Although generally there exist another �89 

p's satisfying the D L R  equation, in the following we mean by the (U, 2(-))-Gibbs 
distribution the probability measure #xt.) which has been constructed in this 
manner. We introduce spatial scalings o-~ and r~ by (a~S)(x)=S(x/e) and 
('c~0)(x)=~(ex), respectively. Define a scaled (U,,~('))-Gibbs distribution by 
#at.),e =#~zt.)o~,- a, 0 < 5 <  1. 

3.2 FKG inequality 

Here we prove the monotonicity property of #zt-) with respect to 2( ')  and derive 
some uniform moment-estimates on {#~t-),~} as its consequence. 

On the space C(I) with interval I of ~ a usual partial order S < S  is defined 
by the relation: S(x)<S(x) for every x~I. Generally for a Polish space X 
equipped with a partial order, let Jir (X) be the class of all monotone-increasing 
~Cb(X).  We say /tl~_~/t2 for # 1 , / t 2 ~ ( X )  if t/t1, ~ )  <( / t2 ,  ~ )  holds for every 
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�9 e~d(X). We also say that # e N ( X )  satisfies an F K G  inequality on the space 
X if (#, ~ )  > (#, ~ )  (#, kg) holds for every ~, kge~g(X). 

For v i ~ ( N ) ,  i=  1, 2, satisfying (vi, 0( ' ,  - r ) ) <  oe for every r > 0  we define 
~'~ �9 Vz )S~(C([x ,  y])) by #~+)(", va, 

#~iY)(" ; V1, V 2 ) =  ~ #~iY)(" ; S1, $2) vl(dSl) v2(ds2). 
Ra 

Lemma 3.1. The probability measures #~i.Y~(" ; sl, S2), #~iY)(" ; 121, V2) and #4(.) each 
satisfy the FKG inequality on the spaces on which these measures are defined. 

Proof The conclusion can be shown by usual method. We first prove the F K G  
condition for the measure on a finite-dimensional space obtained by discretizing 
the interval l-x, y] and then take the limit. We omit the detail (see Simon [22, 
23], Iwata [15]). []  

We recall the definition of v 4 ~ ( I R ) :  va(ds ) = f2~(s)ds, 2 ~ .  

x~ y . Proposition 3.1. (i) For local specifications, we have #~.,(.)( ; S1, S2) 

>#~;~-)('; gl, g2) if Sl~S1, s2~_~g 2 and if 21('),,~2(')~A satisfy ,~1(')~J~2(') in 
the space cg. 

(ii) For Gibbs distributions, we have #4~(.)>#z~(.) if 2~(.), ,~2(-)~A satisfy 
)~a(')>22(') in the space cg. Especially 21__>22 implies an inequality v4~>=va~ 
in the space ~(N) .  

(iii) sup (#a(.),~, ]S(x)lV)(~ p > l ,  2(-)~A. 
xaR, O<c<  1 

Proof The first assertion of (ii) is an easy consequence of the F K G  inequality 
for #4~c.) with the help of the fact: 

which holds for every ~(x.y)-measurable ~b~Cb(Cg), x < y ,  where ~ (S )  

{! } = exp (21 (z) - 22 (z)) S (z) dz is an increasing function on C (Ix, y]) (see Theo- 

rem 6.9 in Simon [-23]). Similarly the monotonicity of #[i.r)(" ; Sx, s2) in 2( ')  can 
be proved. The second assertion of (ii) is shown immediately since v4 is the 
1-dimensional marginal distribution of/~4(.) with 2 ( - ) - 2 .  The assertion (iii) fol- 
lows from the decay properties of f2z~ by noting that (ii) shows #4_ _-< #~(.)--< #4 +, 
where 2_ =inf2(x)  and 2+ = s u p  2(x). Finally we prove the monotonicity of 

x x 

#[i.r)(" ; sl, s2) in (sl, sz). Let vs, v be the Gaussian distribution on N with mean 
2 

s and variance v>0.  Then, since the function ~ (S )=  I~ (dvs, v/dve, v)(S(xi)), xl  
i=1  

=x, x2=y,  is increasing on the space C([x, y]), the F K G  inequality proves 
@~i.r)(" ; v ..... vs~,v ), ~ ) >  (#~i.Y)(- ; v~ .... ve~,~), q~), ~ J / / ( C ( [ x ,  y])) if s 1 > s l  and 
s2 > s2- Therefore the conclusion follows by taking the limit v ~ 0. []  
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Remark 3.1. (i) Iwata [15] proved that #z(.)(cg~)= 1 when 2(-)=constant .  There- 
fore Proposition 3.1 (ii) shows that #z(.)(cg~) = 1 for general 2( ')~A. 

(ii) Since the inclusion map of ~ into He or He, w is continuous, we can 
regard #a(.)e~(H~) or e~(H~,  w) by identifying it with its image measure under 
the inclusion map. 

3.3 Thermodynamical limit 

The (U, 2(.))-Gibbs distribution lia(.) can be also obtained by taking the thermo- 
dynamical limit. 

Proposition 3.2. The probability measure #;~!il(  �9 ;0, O) converges weakly to Pa(.) 
as l ~ oo on the space cg~ for every r > O. 

Proof  Assume 0 < / ' < l  and - l ' < x _  < x +  <l'. Then we have a representation 
for ~z_~-!5~(. ; 0, 0): 

lit(S( - l ')~dsl, S(l')eds2) 

= Zf- l f , ( s l ,  s2) e -( t - t ' )a-  (0, sO e -(z-l')a+ (0, s2) dsl ds2, (3.3) 

where 

ft,(sl, s2) = e v~(z-) + ~+)~ ~h!) Z'(sl, s2) p(2 l', sl, $2) 

Zt=fz(0, 0), 2+=2(x_+), gr+=/Tx~, 

and e-m~(s ,  s') are the integral kernel functions for the semigroup operators 
e -m~ on U(IR, ds). Since it is easy to see that e - l ~  (0, ") converge to c+ O(x+, .) 
in the space L20R, ds) as l ~  oo with some positive constants c+, we can prove 
using (3.3) and the Markov property of the local specifications that inf Zt > 0  

l > l  

and lim lit(A)=#a(.)(A ) for every Ae~(-v ,v) ,  / '>0.  To conclude the proof it 
l~Go 

is now enough to show the tightness of {/~t}z>=a on the space ~, for every r>0 .  
To this end, we show (i) the tightness of {#l}l> 1 on the space cg and (ii) an 
estimate: sup (#t, i iiSiiir)(oe for every r > 0. Indeed (ii) is proved by noting that 

l > l  

Proposition 3.1 (i) implies 

(u', ~5-liz_ (S(- l )>  o, s(/)> o)__< (u~+, ~5 

for every non-negative and ~(_~, t)-measurable function q~edg(cg) and similarly 

(/z ~, ~ ') .#~+ (S(--I)<O, S(l)<O)~ (/zz_, ~ ' )  

for every non-negative and ~t_t,t)-measurable ~' such that _q~,ejC/(cg). We 
note inf #z~ ( •  •  (see Iwata [16]) and (#z~, IllSIllr) < m, 

l__>l 
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r>0 ,  which follows easily from the stationarity of #x~. On the other hand, 
the assertion (i) follows if we can prove for every sufficiently large l' 

(#i, iS(x)_S(y)14} <const. [x_yl2,  - l '  < x  < y <l', (3.4) 

with some positive const, independent of l; l>l'. However simple calculation 
shows 

(sk'.)Z'(s~, s2)#k! )" ("  ; s~, s2), IS(x)-S(y)l +) 
<=const . { l+]Sl -S214} lx-y l  2, - l ' < x < y < l ' .  

Therefore we obtain (3.4) by using the representation (3.3) with the help of 
Markov property of #t and then noting infZ~>0 and the asymptotic behavior 

as l ~  oo of the kernel functions e -m~ (0, ") mentioned above. [] 

4. Law of Large Numbers for Gibbs Distributions 

The purpose of this section is to investigate the asymptotic behavior as e+0 
of the scaled (U, 2(.))-Gibbs distributions #~(.),, constructed in Sect. 3. We define 
a function p e r t  e by p(x)=fi(2(x)), xelR;  see (1.5) for the definition of the mean 
spin function ft. We shall prove the following theorem. 

Theorem 4.1. The probability measure #~(.), ~ converges weakly to the b-distribution 
60 on the space He, w as e ~ O, namely lim (#z(.),~, ~ } = ~ (P) for every ~g ~ Cb (He, ~). 

e$O 

The proof of the theorem will be divided into three parts. 

4.1 Convergence of  I-dimensional Distribution 

_ _  

Let t?~• be two solutions of the diffusion Eq. (3.1) with Hx replaced by - H  x 
e 

having the same initial (or terminal) conditions. These functions play same roles 
for #~(.),~ as O(-+)(x) do for #z(.). For example, the distribution of S(x) under 
#z(.),, is given by Z 21 O~+)(x, s)f2~-)(x, s)ds, where Z,  is a constant defined by 
the right hand side (RHS) of (3.2) with f2 (-+) replaced by Q~+-). 

First we analyze the asymptotic behavior of the solution t/(y, s)=t/,(y, s), 
0 < e < 1, of the diffusion equation: 

~y (y, s) -- ~ I]y q (y, s), 
! 

(x, s) = O(s), 

y > x ,  

(4.1) 

with a given initial value O~L2(N, ds). It is easy to know the existence and 
uniqueness of solutions of (4.1) in the space L20R, ds). Put c~(y)-c~(y; x, O) 
=(t/~(y), f2(y)), where f2(y)=f2z(y) (see Sect. 3). We shall denote the norm and 
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inner product of the space L2(]R, ds) simply by II" II and ( , ) ,  respectively, in 
this section. 

Lemma 4.1. (i) We have two estimates: 

[ce(y)l~l]~l[, ~--yCe(y) ~ll~ll ~y (y) , y~x,e>o. 

(ii) lim IJrl~(y)-c~(y)O(Y)ll =0, y>x. 
e$0 

Proof. The first estimate in (i) follows from the bound IIt/~(Y)II ~/1011, Y > x, which 
is a consequence of non-negativity of the operator H r. The second estimate 
can be shown since H r f2(y)= 0 implies 

Note the differentiability of f2(y) in y; see Sect. 2. To prove the assertion (ii), 
we derive an equality 

O 2 (~3 {c~ f2}, ~) ,  (4.2) ~ll~(y) l I2=-  (I7,~, ~ ) - 2  ~ y  

for ~,(y)=tl~(y)-c~(y)f2(y). Since (~,(y), f2(y))=0, the first term in the RHS of 
(4.2) can be bounded from above by -2allC~ll=/~, where 6 =  inf 6x>O and 

x e [ x _ ,  x + l 

6x is the second least eigenvalue of Hx; see Sect. 2. On the other hand, since 

(i) implies K = sup ~ {c~ f2} < c~, the second term is bounded from above 
y_->x,~>ollOy [I 

and therefore by K { I +  11~112}. These estimates are now summed by 2K ]1r 
up into 

from which one can complete the proof of (ii). []  

Put ~ +) (x) = (f2~ +) (x), f2 (x)). Then the following is an immediate consequence 
of Lemma 4.1. Consider in the reverse direction for f2~ +). 

Corollary 4.1. (i) We have for every x~P.. and e > 0: 

,~-+)(x),____ 1, f--~ ~+-)(x) <= ~x  (x ) . 

(ii) lim I I f2~ -+) (x) - ~ -+) (x) f2(x) ll -- 0, x elR. 
~$0 
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Now we introduce the following additional condition on the profile 2 ( ' ) cA:  

f l = ( x + - x  )sup O 0 ( x )  <1 .  (4.3) 
- x ~ R  ~ X  

Corollary 4.2. Assume the condition (4.3). Then we have 

inf Z~ > 0 (4.4) 
0 < e < l  

and 

lim II Z~- ~ f2~+) (x) f~-)(x) - ~2 (x)II L,(R, ds) = O, 
eJ, 0 

x e N .  (4.5) 

Proo f  Since ~-+)(x+)=I, Corollary 4.1 (i) combined with the condition (4.3) 
proves that ~ -+) (x )> l - f l ,  e>0,  x e [ x _ ,  x+]. We therefore see (4.4) with the 
help of Corollary 4.1 (ii). No w the assertion (4.5) follows also from Corollary 
4.1 (ii) noting (4.4). []  

4.2 Asymptot ic  Independence 

Recall the definition of vze~(lR). 

Lemma 4.2. Under the condition (4.3) we have 

lim [(#~(.),~, 4(S(x)) ~ )  - (v~(x), 4)  (#~(.),~, ~)[  =0 ,  
e,LO 

for  every 4eCb(lR) and Yi(y,z)-measurable bounded funct ion q) on the space cg, 
but we assume (i) x < y < z and y <= x + or (ii) y < z < x and x _  <= z. 

Proo f  We may only discuss the case (i) because of the symmetry. Let 0~ 
= fh(Y, s; x, 4) be a solution of the Eq. (4.1) with initial value #(s)= 4(s)O~-)(x, s) 
for given 4 s Cb OR). Then we have the following representation for the conditional 
distribution: 

E"~, ,,o [4 (S(x)) [ ~ , ~ 3  (S(y) = s) = o~-) (y ,  s ) -  10~(y, s; x, 4), x < y,  

and therefore 

<~.),~, 4(S(x)) ~) 
= Z~ -~ ~ #, (y, s) ~2~ +)(y, s) E"--, , .  [ ~ [ N~,~] (S (y) = s) d s. 

Hence, putting ~ (y ) -g~(y ;x ,  4)= (0~ (Y), f2(y)), we obtain 

I~ --]<#~(.),~, ~(S(x)) qb) -- {~-)(y)} - 1 a~(y) (#z(.), ~, r 

r  1 [l~,~+)(y)]] j] ~11 co i'~. 
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The term I', is defined and estimated as follows: 

I'~ -- I[ ~ (Y) -  {4-)(Y)} -1 a~(y) .O~-)(y)[I 

<= IlO~(y)-a~(y)fJ(y)[I + {4-)(y)} - t  a~(y)[]fJ~-)(y)- 4-)(y) fJ(y)] I . 

Here Lemma 4.i (ii) shows that the first term in the RHS converges to 0 as 
e ~ 0. On the other hand, since 6~-)(y)__> 1 -~8, y _< x +, and [~, (Y) l-<- ]l ~ [I oo, Corollary 
4.1 (ii) proves that the second term also converges to 0. Therefore using (4.4) 
we get lim I~ = 0. Especially this is true for ~ - 1 .  Now these calculations com- 

e$0 
bined with (4.5) lead us to the conclusion. [] 

Use an inductive method to prove the following. 

Corollary 4.3. Assume the condition (4.3). Then we have 

lim~o\#Z(.).~, i=t f l  ~i(S(x3) =,'= (vx(~,), ~ )  (4.6) 

for every x 1 <x2 < ... < x ,  and ~ieCb(]R), 1 < iNn ,  n= 1, 2, . . . .  
x,y o ~--,,x/e,y/et.. Sy)OO-e -1 be the local specifications corre- Let #~(.),~(. ; st, o2j=~,x(.) t , st, 

sponding to the scaled Gibbs distribution #a(.), ~. 

Lemma 4.3. Let 2( ' ) sA be given and assume that we can find another profile 
~ ( ' ) eA  which satisfies (4.3) and coincides with 2(') on an interval Ix, y]. Then 

x,  ~) o .  the convergence (4.6) holds with #).(.),~( ,Sl ,  Sy) instead of #z(.),~ for every 
sl, sz elR, x < xt  <. . .  < x , <  y and ~ie Cb(N). This convergence is uniform in (sl, sy) 
on each bounded subset oflR 2. 

Proof To complete the proof we may assume that the functions ~geCb(~), 
i <_iNn, are non-negative and monotone increasing. Then Proposition 3.1(i) 
proves that 

fe(s1, S2):=(#~iY),e(" ; $1, $2), f l  ~ i ( S ( x i ) ) )  

i=1 

is monotone in (s~, sy)e]m 2. Put c = [ I  (vx~xa, ~i) and denote the 2-dimensional 
i=1 

marginal distribution of (S(x), S(y)) under #ae),, by .x~.),,,tY) ~eN(Rz). Then Corol- 
lary 4.3 shows that the measures f , (st ,  s2) v~Z~!),~(dst dsy) and c2) vz(.),e(ds t ds2) on 
~2  converge weakly to cv~(x)| v~(y) and v~(x)| v~(y), respectively, as e$ 0. Since 
the limiting measure v~(x)| v~(y) is absolutely continuous with respect to the 
Lebesgue measure on ]R 2, every interval I in p 2  is its continuity set (see, e.g., 
Billingsley [-3]). Therefore ~ f~ a,,ty) and o) ~ . ) , ~  v~(.),~(I) converge to cV~x)QV~(y)(I) 

I 
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and vxt~)| respectively, as e~0. However, noting the monotonicity of 
the function f~, this proves lim f,(sl,  s2)= c for every (sl, s2)elR 2. The uniformity 

e $ 0  

of the convergence follows from Dini's theorem. [] 

Lemma 4.4. The conclusion of Corollary 4.3 still holds without assuming the condi- 
tion (4.3). 

Proof. For given x ~ < . . . < x ,  we can find a sequence yo<y~<.. .<ym in such 
a manner that yo<xx<x,<ym,  X~4:Yk for every i, k and there exists a profile 
~k(')eA for each k; l<_k<_m, which satisfies (4.3) and coincides with 2( ')  on 
the interval [Yk- x, Ykl. Then Lemma 4.3 proves that 

m 

L(So, [I sk), 1-1 r �9 ' ' ,  \ / ~ ( . ) , e  k , S k - 1 ,  

k = 1 i; x i e [ Y k -  1, Yk] 

converges to the RHS of (4.6) as e$0 uniformly on each compact set of ~"+~.  
Since Proposition 3.1 (iii) proves that the family of marginal distributions 

{v(]~!),~(dso ... ds,,) = #z(.),~(S(Yo)edso,..., S(y,,)eds,,); 0 < e < 1} 

11 

is tight in ~(R"+~),  the equality (#~.(.),~, I ]  ~i(S(xi))> =/v(") ,, z(.),,,f~) completes 
~=~ 

the proof of the lemma. [] 

4.3 The proof of Theorem 4.1 

Lemma 4.5. For every T e ~ ,  (#~(.),~, iv) converges to iv(p) as e,[O. 

Proof. First we consider the case where T e ~  has the form iV(S) 

= ~( (S ,  qh), ..., (S, ~o,)) with qheC~ (IR) and ~(cq, ..., ~z,)= [I o~ ira,, m i e n  . We 
i = 1  

may assume mi = 1, 1 < i < n, by making n large if necessary. For iv of this form, 
we have 

(#~(-),~, i v ) =  S H tpi(xi i~(.),~, S(xi dxi. (4.7) 
N.n i=  = 1  i = 1  l i = l  

Here we notice that Proposition 3.1(iii) guarantees taking ~i(s)=s, 1 < iN n, in 

(4.6). The RHS of (4.6) becomes I=I p(xi) in this case. Therefore, Lebesgue's 
i = l  

dominated convergence theorem proves that (#x(.),~, iv) tends to iV(p) as e $ 0, 
since Proposition 3.1(iii) again implies that the integrand of the RHS of (4.7) 
is uniformly bounded. It is now standard to show this convergence for every 
iVeN. [] 

Now we are ready to give the proof of Theorem 4.1. First we note that 
the locally convex space He. w is completely regular and a Radon space (Schwartz 
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[21]). Its balls B({br})={SeHe; ISIr~br for every r>0} are compact in this 
space for all sequences {br > 0}, > o (Dunford and Schwartz [6, p. 423]). Converse- 
ly, every compact subset B of He,,~ is a closed set which is contained in some 
ball. Moreover, each ball is metrizable. From these observations, we see that 
Prokhorov's theorem still holds on the space H~, ~ (Smolyanov and Fomin [24]). 
Proposition 3.1(iii) proves the tightness of the family {#~(.),~}o<~< 1 in ~(He, w); 
for every 6>0,  there exists a ball B=B({b,}) such that inf gz(.),~(B)> t--6. 

0 < e < l  

Let # be an arbitrary weak limit of {Pz(.),~} as e$0. Then Lemma 4.5 shows 
that (#, T ) = ( b p ,  T )  for every T s ~  and this proves #=bp  since ~ is a deter- 
mining class for the space ~(He, w). The proof of Theorem 4.1 is completed. 

5. Existence and Uniqueness Theorem for the TDGL Equation 

From the assumption (1.2) on U the TDGL eq. described by the SPDE (1.1) 
can be rewritten at least formally into 

dSt(x)= -AS,(x)dt+A{V'(St(x))}dt+l/2Vdwt(x), t>0,  x e N ,  (5.1) 

where A=AE--yA. The cylindrical Brownian motion wt(x ) on a Hilbert space 
L2(]R, dx) is defined on a probability space (fJ, if, P) with reference family {~} 
and we assume that wt is {fft}-adapted and its increment w , - w ,  is independent 
of ~ ,  for every 0_< u _< t. 

Until now the general theory of SPDE's is developed pretty well and basically 
two approaches are known; the semigroup method (see Dawson [4], Marcus 
[19] and others) and the variational one (see Krylov and Rozovskii [17] and 
references of this paper). Here in this paper we shall adopt the former approach 
and the construction of solutions is accomplished by a usual contraction map- 
ping method. Some parts of the proof are omitted when the argument is quite 
standard. See [Fu] for detail if necessary. Similar calculhtions were developed 
in [11]. 

0 
Let q = q (t, x) be the fundamental solution of the parabolic operator ~-~ + A. 

Then the following estimates are known: 

0J Ok x) j ,+k , - - L  l l  t ] J '  ~ x  kq(t, =<Kit-  - 4 exp 

0<t=<T, xEIR; j = 0 ,  1, k=0 ,1 ,2 ,3 ,  T > 0 ,  (5.2) 

with positive constants Kt  and Lx, which depend only on T (see Eidel'man 
[7]). The mathematical meaning of the SPDE (1.1) will be given by rewriting 
(5.1) again formally into a stochastic integral equation: 

St(x)= S q(t, x, y )So(y)dy-~ i ~ qy(t-u, x, y) dwu(y)dy 
0 R 

+ i ~ qyy(t-u,x,y) V'(S,(y))dudy, t>=O, x~lR, (5.3) 
0 l l  
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where q (t, x, y )=  q (t, x - y )  and the subscripts to q mean derivatives with respect 
to those variables; e.g., qy=Oq/~y etc. The initial data So of the SPDE (1.1) 
accordingly of the integral Eq. (5.3) is always taken from the space H e. 

Let r  be the class of all stochastic processes St={St(x; o~); x~N}, t=>0, 
defined on the probability space (~2, if, P; {~t}), which are {~}-adapted and 
jointly measurable in (t, x, r [0, oo) xP,~ x f2. We call St a solution of the SPDE 
(1.t) if St belongs to the class J -  and satisfies the integral Eq. (5.3) with probability 
one. We denote by J '  the subclass of f consisting of all St such that 
SteC((O, oo), C~e) (a.s.) and sup tl/8[lIStl]lr<oo (a.s.) for every r > 0  and r>0 .  

O<t<=T 

The existence and uniqueness result for the SPDE (1.1) is formulated as follows. 

Theorem 5.1. (i) There exists a solution St of the SPDE (1.1). Every solution 
belongs to the class 3-'. 

(ii) Let St and S; be two solutions of the SPDE (1.1). I f  So=S'o, then we 
have St = S~, t >= 0 (a.s.). 

(iii) Suppose SoeC~, then we have SteC([O, oo), c~) (a.s.). 
For given So,He and S.e f , ,  we denote 

St. 1 (x) ~ St, 1 (x; So) = ~ q(t, x, y) So(y ) dy, 
R 

St, 3(x)=-St, 3(x; S.)= i ~ qy , ( t -u ,  x, y) V'(Su(y))dudy, 
0 

and set 

St, 2(x)= i J" q y ( t - - u ,  x ,  y ) d w . ( y ) d y ,  
o R 

t>0 ,  x~lR. 

Then the following two lemmas can be shown by using the estimate (5.2). 
Remember that V' is bounded. 

Lemma 5.1. For every T >  0 and 0 < ~ < 1, there exists a positive constant C such 
that 

E rl&, ~(x) -s , ,  ~(x')l ~] < c { i t -  t'l '/4 + I x - x ' l ~ } ,  
O<t , t '<T,  x , x ' e lR .  

f, ~s, 3 s.) Lemma 5.2. (i) s u p ( [ ~ - ~  (x; ;O<=t<=T, xelR, S . ~ - . ,  <0% T > 0 .  

(ii) For every T > 0 ,  there exists a positive constant C such that 

IS,,3(x)-Sr,3(x)l<Clt-t'l ~/2, O<=t, t'<=T, xe lR.  

These lemmas imply the following consequence. We use Kolmogorov-Toto- 
ki's regularization theorem (see Walsh [26] for example) for {St, 2} noting that 
it is a Gaussian system. 

Corollary 5.1. The processes St, 2 and St, 3 �9 C([0, oo), (~e) (a.s.) 
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We shall use frequently an estimate which follows from (5.2): 

[. 01c~kot j t?xk q(t, X, y) O(y,r)dy<=Kt--~-k/40(x,r), 

0 < t < T ,  xelR;  j = 0 ,  1, k=0 ,  1,2, 3, (5.4) 

for every reN~ with a positive constant K depending only on r and T. 

Lemma 5.3. (i) I f  So~Cge, then St, 1 =St, a('; So)eC([-0, oo), %). 
(ii) I f  SosH~, then St, aeC((O, oe), %) and sup ?/SlllSr169 for every 

T > 0  and r>0 .  O<t<T 

Proof For SosH~ the usage of (5.2), (5.4) and Schwarz's inequality proves 

ISt,~ (x)l <= ISo 12~{ ~ Iq(t, x, y)l 20(y, - 2 r )  dy} t/2 
N 

<lSo[2~{const. t - t /40(x,  - 2 r ) }  1/2, 0 < t <  T, 

and this implies sup ta/8[][S~,ll[[r<oo, T > 0 ,  r>0 .  Especially we see that 
O<t<__T 

St, 1~cg~ for each t > 0  because St, ~ is easy to be shown. Therefore, if (i) is 
proved, then the semigroup property of St, 1 completes the proof of (ii). From 
now on we assume So~Cg~. Then it is not difficult to show from (5.4) with 
j = l  and k = 0  that St, I~C((O, oe), (g~). We only need proving the continuity 
of St, l e %  at t=0 .  To this end, take a function CeCg0R) ,  0__<~< 1, satisfying 
0 =-- 1 on the interval [ -  1, 1] and put O~(x)= r e>0 .  Then St, l(x) is decom- 
posed into the sum of ~' ~ - St, a (x) = St, a (x; r  So) and S~'t, 2 (x) - S~,a {x; (1 - 0~} So). 
From the next estimation 

e, 2 1, I S,, ~ (x)l <= lll So lll~/= 0(~- r/2) ~ Iq(t, x, y)[ O(y, - r) d y 
R 

<Kl][Soltlr/2 0(5 -1, r/2) O(x, --r), r>O,  

we get 

II188; f [ll~KlllSolllr/2 0(~ -~, r/2), r>O, O < t <  T. (5.5) 

On the other hand, since (5.4) can be used to show 

[[[St, 1][[r~K[]]So][[r, O < _ t ~ T ,  rG]R ,  (5.6) 

we obtain for r > 0 

sup I S~: 11 (x) - (r  (x) l O(x, r) 
Ixl > l 

< sup {const. II[Sol[Ir/20(x, --r/2) O(x, r)} ~ 0  as l--* oo. 
ixl>_t 
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S ~ I x  However, O~.So~Cb(IR) implies lim sup[ t;l( )-(0~'So)(X)l O(x, r )=0  for every 
t ~ o  Ixl<=l 

l, e > 0 (see Arima [-2]). We therefore get lim I IIS~ 211- ~,~ So I11~--0 for every e >0.  
t+0 

This combined with (5.5) now proves the continuity of St, ~ in the space cg~ 
at t=0 .  []  

Lemma 5.4. For every 2 < p < 8 ,  T > 0  and r>0 ,  there exists a positive constant 
C such that 

IIISt,3(.;S)-S~,3(.;~)lllF~C illlS,-~ulllFdu, O~t~r, S , ~ Y .  
0 

Proof. We obtain the conclusion from the following calculation: 

ISt, 3(x; s)-s~,3(x; 5)1 

<70 i IllS,-S, Illrdu I Iqxx(t-u, x, y)l O(y, - r ) d y  
0 R 

t 

<=7oKO(x, --r) ff ( t -u)- l /2l l lSu-S,  II[rdu 
0 

<=?oKO(x, - r )  ( t -u)-" /2du~ ~I IIISu--S, lll~du , 
J LO 

0 < t < r ,  

where 1 < p' < 2 < p < oo such that lip + lip' = 1. Note  that the RHS is finite 
if p < 8 .  []  

Proof of Theorem 5.1. Corollary 5.1 and Lemma 5.3 prove that S ~ Y '  for every 
solution S~ of the SPDE (1.1) if exists. Therefore the uniqueness of solutions 
may be discussed in the class Y-'. However this follows from Lemma 5.4 immedi- 
ately. Lemma 5.4 can be also applied to construct solutions of the SPDE (1.1) 
by using the usual method of successive approximation. The assertion (iii) follows 
from Lemma 5.3 (i). []  

The theorem implies the existence and uniqueness result for the scaled T D G L  
Eq. (1.3). 

Remark 5.1. (i) We did not discuss the equivalence between the integral Eq. (5.3) 
and the SPDE (1.1) or (5.1). See Iwata [14] for such problem. See also Funaki 
[12] for a non-scalar T D G L  eq. (ii) The variational method is also available 
for the construction of solutions of the SPDE (1.1). In fact, let 17V2 m, m=0 ,  2, 4, 
be the class of all generalized functions S on • satisfying that the products 
0(', r)S belong to the Sobolev space W2-m(N). Here we have fixed r>0 .  The 
norm is naturally defined by lISl] w~ -m= ]10(', r)Sll w; ~. Then the application of 
the theory of Krylov and Rozovskii [17] based on a Gelfand triple (V, H, V*) 
_=(~o, ITv-Z2, i~z-4) proves the existence and uniqueness of solutions of the 
SPDE (1.1) satisfying SteV (a.e. --(t, a))) and ~C([0, oe), H) (a.e.-co). 
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6. Approximation Theorems for the TDGL Equation 

In order to develop an infinite-dimensional analysis on the stochastic process 
St, we need to approximate it by finite-dimensional processes. Here we shall 
discuss two types of approximation theorems, namely, finite volume approxima- 
tion and its further approximation using the so-called Galerkin method. The 
result will be applied in Sect. 8. 

6.1 Finite Volume Approximation 

Consider the following SPDE on a finite interval [--l ,  l], l s N :  

dS~(x)=-AtSl(x)dt+A{V'(S~(x))}dt+~/2Vdwt(x), t>0 ,  x e ( - l ,  l), (6.1) 

with an initial condition: Slo=S l on [ - l ,  l]. Here S l e L 2 - I ) ( [ - l ,  l], dx) and 
A~=(-A)2-TA should be understood as an operator defined as a function 
of the self-adjoint operator - A on the space L 2 having the Dirichlet 0-boundary 
condition at _ l .  The precise mathematical meaning of the Eq. (6.1) is given 
similarly to the Eq. (5.1) by rewriting it into an integral equation: 

l t l 

Sit(x)= ~ ql(t, x, y)SZ(y)dy-V2 ~ I q~(t-u, x, y)d%(y)dy 
- l  0 - 1  

+ S qy,(t--u, x, y) V'(S~(y))dudy, t>=O, x e [ - l ,  l], (6.2) 
0 - l  

0 
where qZ is the fundamental solution of the operator & + A  ~. The second term 
in the RHS of (6.2) should be understood as 

t 

--V~ ~ ~ 1[_t,t](y)qty(t--u, x, y)dw,(y)dy 
0 11 

or being defined with the cylindrical Brownian motion on the Hilbert space 
LZz. We note the relation: 

ql(t, x, y)=  ~, {q(t, x - y + 4 n l ) - q ( t ,  x + y + 2 ( 2 n +  1)I)}, 
n = - o o  

x, y~[--1, l], t > 0 ,  (6.3) 

where q = q(t, x) is the function introduced in Sect. 5. In fact, this follows by 
seeing that both sides satisfy the same boundary conditions q(• 
as functions of x. The existence and uniqueness theorem for the Eq. (6.1) can 
be formulated as follows. 

Proposition6.1. (i) There exists a unique solution Stt of (6.1) satisfying 
S~sC([0, oo), L~) (a.s.). 

(ii) I f  the z initial data S ~ C ( [ -  l, 1]) and SZ ( • l) = O, then the solution S~ satisfies 
S~(•  and S~EC([-0, oo), C([- l ,  l])) (a.s.). 
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The meaning of "uniqueness" in the statement of this proposition is the 
same as in Theorem 5.1 (ii). The first assertion is shown by using the Galerkin 
method (see Theorem 6.2 below) and the second one is proved by a similar 
method used in Sect. 5 noting the relation (6.3). We therefore omit the proof 
of the proposition. 

Let S, SZeCg e, l eN ,  be given and satisfy that Sl(___l)=0 and S~---,S as l--* oo 
in the space % with some r > 0. The positive number r will be fixed throughout 
this paragraph. In the following we sometimes regard Slte~ by setting S~(x)=0 
for x ~ l R \ [ - l ,  1]. Denote by P and U the distributions on the space C([0, ~) ,  cg) 
of the solution St of the SPDE (1.1) with initial data S respectively of the solution 
S~ of (6.1) with initial data S t. The purpose of this paragraph is to prove the 
following theorem. 

Theorem 6.1. The probability distribution P~ converges weakly to P as I ~ co on 
the space C((O, co), cg). 

Similarly to the definitions of St, 1, St, 2 and St, 3 given in Sect. 5, we denote 
three terms in the RHS of (6.2) in due order by S~t, 1, SZt,2 and SZt, 3, respectively 
(we neglect the factor - V  ~ for the definition of ~ ~ St, z). We regard St, l, St,2 
and S~,3~cg by se t t ing=0 outside [ - l ,  l] similarly to Sit. The proof of Theo- 
rem 6.1 will be divided into four steps. 

6.1.1 Convergence of  S z t, 1 

We shall prove that S t converges to St 1 in the space C((0, oc), cg) as l ~  oo. t ,  1 

The following estimate is an easy consequence of (6.3): 

-z ~Xk ql(t 'x '  O(y' - - r )dy<er  OJ Ok ~x  k q(t, x, O(y, - -r)dy 

t>0 ,  x e [ - l ,  1]; j = 0 ,  1, k=0 ,  1, 2, 3, (6.4) 

for every r > 0. Although this bound holds only for r > 0, we can derive a supple- 
mentary estimate for r > 0: 

-i Otj Oxk ql(t 'x'  O(y,r)dy<=K't J-k/40(x,r), 

0<t____ T, x~[--1, l], l=>l; j = 0 ,  1, k=0 ,  1, 2, 3, (6.5) 

with a positive constant K' depending only on r and T. Indeed, noting that 
Z is an even function, (6.5) follows from (6.3), (5.4) and 

sup sup ~ O(x+2ml,  r)/O(x,r)<oo, r > 0 .  
l>=l [ x l ' < l  m = - - o o  

The estimate (5.4) combined with (6.4) gives a uniform bound: 

supt~N o_<t__<rsup t j+k/4 OCt j ~ Ok SZ <o%j ,  k=0 ,  1, andthisprovesthefol lowing.  
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Lemma 6.1. The family of  functions {Sit, 1}tEN is relatively compact in the space 
c((o, oo), ~) = c((o, o, oo) x 1R). 

Let cg_~,l, r>0 ,  be the space C ( [ - l , l ] )  with norm [[[~0[[[_r 
= sup Iq)(x)[ O(x, - r )  and let Cg_r, ~ be its subspace consisting of all q) such 

x e [ - l , l ]  

that (p(___/)=0. We denote by e -tA an integral operator with the kernel q(t, x, y), 
which is defined on the space cg_,; i.e., e-*Acp = S,, ~ (. ;~0), ~oeCg_,. Similarly 
e -ta' can be defined as an operator on the space cd_~,~. Let c~_~ be the space 
introduced in Sect. 2. 

Lemma 6.2. (i) {e-tA}t>=o and {e-ta'}t>=o are strongly continuous semigroups on 
the spaces ~_~ and c~_r, i, respectively. 

(ii) With some constants M >  1 and 6 > 0  which are independent of  l and t, 
operator norms of  e -tA' on ~_~, i and of  e -tA on c~_, can be estimated as follows: 

Ille-*A'[[l~Me~*, [[[e-*Alll~Mea*, l eN ,  t > 0 .  

Proof (i) The estimate (5.6) shows that ~oecg_~ implies e - t A f p ~ _ r ,  t~O. How- 
ever, since the condition (2.1) on (pecg_~ proves with the help of (5.4) 

lim sup sup le-tA~o(x)l O(x, - - r )=0 ,  T > 0 ,  (6.6) 
1 ~  ONt<~T Ixl>>-I 

we see that q)e~_~ implies e-taq)~c~_~ and therefore e -tA is a semigroup on 
the space c~_~. The strong-continuity of this semigroup follows from (6.6) and 
the fact that e-tAro converges to q) as t $ 0 uniformly on each bounded interval 
of IR if q~eCb(1R) (see Arima [2]). For the assertion on e -~A', see Arima [2] 
noting that A l is an operator with boundary conditions: (p(+l)= (p"(___/)=0. 
We notice that the uniform convergence of e-tA~q) to (p on [ -1 ,  l] as t$0 can 
be shown by using (5.2), (6.3) and the property (p (_+ l)= 0 of (p e~- r ,  1. 

(ii) Since the estimate (6.5) proves I [ le-~a '~ol l l_r__<g' l l l~ol l l_  ~, 0_< t<r ,  the 
assertion on {e -r follows from their semigroup property, see Tanabe [25, 
Theorem 3.1.1]. Remember (5.6) for e -~A. [] 

Let/Tt, lEN, be a linear operator from c~_r into ~-~,i defined as follows" 

/7 l  ~o (x)  = 

~o(x), [xl_<~, 
l 

(p ( I /2 ){2-2x / l }O(1 ,  - r )O(x , r ) ,  ~<=x<l, 

q~( - I /2 ) {2+2x / l }O(  1 - r ) 0 ( x ,  r), -l<_x<_ - l -  
' 2" 

Then, the operator norm []l//zll[ of/ /~ is equal to 1. We also define a mapping 
1771 from c~_r. t into c~_r by setting Hi-lq~(x)=q~(x), x~[ - - l , l ] ,  and 
= 0, x e l R \  [ - -  l, l], for ~o e (g_ r, l. If q~ e Co (IR) satisfies supp qo c [ - I/2, 1/2], then 
IIi- t H t q) = qo. 
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Lemma 6.3. For  every r, T > 0  and q ~ _ ~ ,  we  have 

lim sup I l l / /F  z e-taZHlq)--e-taq)l[[_r:O. 
1~oo t~[0, T] 
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P r o o f  We use the results in the book of Ethier and Kurtz [-8]. Let D be the 
space of all q~ C ~~ (IR) such that its k-th derivative ~0 (k) belongs to c~_~ for every 
k--0, 1, 2, . . . .  Then D is a core for the generator - A  of the semigroup e -tA 
on the space ~- r  ; use Proposition 3.3 of [8, p. 17] with the help of Lemma 6.2 (i). 
Therefore, noting Lemma 6.2 again, we obtain 

lim sup I l l e - ta ' I l l qo - f i l t e - tAqo l l l_r=O,  T>0, cpEcg_~, 
l-~oo t~[0, T] 

by verifying the condition (c) of Theorem 6.1 of [8, p. 283 (see also Remark 1.3 
of [8, p. 7]). This completes the proof of the lemma with the help of (6.6) and 

sup sup , ~ , , , ~ ,  , u l c p ~ x ) l v t x ,  _ r ) = u  lim 
l~oo te[O,T] 1/2<=[x[<l 

for all cpeC~_r and T > 0 ,  which can be shown similarly to (6.6). [] 

Lemma 6.4. For  every t > O, S l converges to St 1 as l --+ co in the fo l lowing  sense: t, 1 
S z lim < t, 1, ~o) = <St, l, q)>for  all (p~Co(lR). 

l---> oo 

P r o o f  The symmetry of the fundamental solutions q~(t, x, y) and q(t, x, y) in 
the variables (x, y) implies (SZt, 1, (P> ~- < Sl,  f i l l  1 e - t A t  fill q)> and <St, 1, cp> 
= <S, e -tA q~) for every cpECo(lR ) such that supp ~0 ~ [--1/2, I/2]. We therefore 
obtain the conclusion by using Lemma 6.3. [] 

S 1 This lemma shows that an arbitrary limit as l ~ o o  of { t,1} in the space 
C((0, oo), cg), whose existence is guaranteed by Lemma 6.1, coincides with St, 1. 
Therefore we have proved the following: 

Proposition 6.2. In  the space C((O, oo), cg), SI, i converges to St, 1 as l-~ oo. 

6.1.2 Convergence  o f  SI, 2 

Let and sin +ll}. be eigenvalues 

and their corresponding normalized eigenfunctions, respectively, of the operator 
- A  with Dirichlet boundary conditions defined on the space L 2. We denote 

W n by ( ,  >z the usual inner product of L 2. Let { t } , ~  be a system of mutually 
independent 1-dimensional standard Brownian motions defined by w~ 



60 T. Funaki 

= (wt( ') ,  i ~ l  cos {[//~,(. + l)})t (see Ell] for the RHS of this expression). Then, 
using a representation 

t 

Stt, 2 ( I,x, = ~, eZ,(x) ~ ffcz,) 1/2 exp E - ( t - u )  {(K~,)2 +7 ~,}] dw~, 
n = l  0 

simple but somewhat lengthy calculations yield the following estimate. We omit 
the proof ([Fu] explains the detail). 

Lemma 6.5. For every T > 0 and 0 < ~ < 1, there exists a positive constant C inde- 
pendent of I such that 

E[IStr 2(x')12] < C {I t - t ' l l /4  + l x -  x'l~}, 

O<=t,t'<=T, x , x ' e [ - l , l ] ,  l e N .  

Now we can show the convergence of S~, a. 

Proposition 6.3. The probability distribution of  S t t,2 on the space C([-0, oo), cg) 
converges weakly to that of  St, e as l --+ oo. 

Proof Since {Stt,2(x); t>O, xelR} is a Gaussian system and Stt,2(+_l)=O, Lem- 
ma6.5 with the help of Kolmogorov-Totoki 's theorem proves that 
S{, 2 e C([-0, oo), cg) (a.s.) and the family of their distributions on the space C([0, 
oo), cg) is tight. Therefore the conclusion follows from an observation that for 
every t > 0 and 40 �9 C~ ~ (N,) satisfying supp 40 c [ -  I/2, I/2] we have 

E [ ( S$,z-S,,2, 40)2]= i IIr/? 1 e-('-")A' nt  V40 - e - ( t - " )A  V4011~2(~> du 
0 

which converges to 0 as l ~ oo ; see Lemma 6.3. [] 

6.1.3 Convergence of S~, 3 

See Sect. 5 for the definition of St, 3(x)~St ,  3(x , S.). For given S. 
= {St(x)} e C([-0, oo), ~) we define similarly 

i 1 S t S t 3 ( x ; S . )  S t t,a(x) = t, = qrr ( t -u ,  x, y) V (S,(y))dudy.  
0 - l  

Lemma 6.6. For every T > 0  there exists a positive constant C depending only 
on T such that 

IStt, 3 ( x ) -  Stt, 3 (x')[ ~ C {I t -  t'l 2/2 + Ix -x ' [ } ,  

O<t , t '<T ,  x , x ' e [ - 1 , 1 ] ,  l e N .  

Proof The proof can be completed quite similarly to that of Lemma 5.2. We 
use the estimate (6.4) with r = 0. [] 



Hydrodynamical Limit for GL Model 61 

Proposition 6.4. Let functions t {S.}t~N and S.eC([0,  ~) ,  cg) be given and assume 
that S{ converges to S. as l ~ o~ in this space. Then S t 3('" St.) converges to St ("  S.) t ,  , 

in the space C([0, ~) ,  cg). 

Proof. First we note that Lemma 6.6 shows the relative-compactness of the family 
of functions {S[3 (- ; S!)}t~N in the space C([0, ~) ,  cg). Therefore the conclusion 
follows by seeing that for ~oe C~ (~,.) such that supp q~ = [ -  1/2,//2], 

l I(S,,~-st,~, ~o)1 

i (V'(St")' IIi-1 e-{t-~)a~flIAcp--e-U-~)AA(~ du < 

+ i (V ' (S~)-  V'(Su), e-r du 
13 

<tllV'[[~ sup I][Hi-l e-"A'fltAqo--e-UaAcPlll_l ~ O(x, 1)dx 
O<--u<--t JR 

t 

+ sup [lle-uAAq)[ll_a j" du j IV'(S'.(x))-v'(s.(x))l O(x, 1)dx, 
O < u < t  0 P. 

which converges to 0 as l ~ oo for every t > 0 and q~ e C~ (IR); see Lemma 6.3. []  

6.1.4 Proof of Theorem 6.1 

Now we give the proof of Theorem 6.1. Propositions 6.2, 6.3 and 6.4 are com- 
bined to show that the family of joint probability distributions {Pt}t~N of 

t {(S~, Sit, 1, St, 2)}t~N on the space [C((0, oe), cg)]3 is tight. Take its arbitrary weak 
limit Pe~( [C( (0 ,  oo), cg)]3) and a subsequence {/'} such that P " ~ P .  We then 
apply Skorohod's representation theorem to construct [C((0, oe), cg)]3-valued 
random variables S [ = ( ~ ' ,  ~ '  ~' t, 1, St, 2) and St = (S, St, 1, S-t, 2) on a proper probabil- 
ity space (f2, ~ P) in the following manner: (i) Under  P, the distributions of 
g~' and St are p r  and P, respectively, and (ii) S[ converges almost surely to 
gt in the space [C((0, oo),~)] 3 as l'--*oo. Define ~' r . St, 3(= St, 3 ; ~-') and St, 3 
= St, 3 (-', S.), then an equality ~ ' =  $!.' it, - l / 2  ~', 2 + ~'3, holds and Proposition 6.4 
proves that ~,' converges almost surely to S~ 3 in the space C((0, oo), ~). Hence t ,  3 

we obtain s t = s t , ~ - V 2 S t , 2 + s t , 3  . However Proposition 6.3 implies that S~,2 
t 

has a representation S~,2(x)= S ~ q y ( t - u , x , y ) d # ~ ( y ) d y  with a cylindrical 
0 R 

Brownian motion #~ which is defined on the probability space (O, ~,, P) or 
its proper extension if necessary. Therefore St is a solution of the integral Eq. (5.3) 
with wt replaced by wt. This shows that the distribution of St is just given 
by P appearing in the statement of Theorem 6.1, which completes the proof 
of the theorem. 

The following lemma which will be used in Sect. 8 is a consequence of the 
combination of Proposition 6.2, Lemma 6.5 and Lemma 6.6. 
Lemma6.7.  supE[l[S~ll2~]<oe, TeN, t>0 .  

t ; t > f  
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6.2 Galerkin approximation 

In this paragraph we state the results on a finite-dimensional approximation 
to the solution Sit of the SPDE (6.1) with fixed l eN.  Define a sequence of 

N 
L2-valued processes S}m= ~ a~.m(t) e,, N ~ N ,  by solving the following finite- 

n = l  

dimensional stochastic differential equation (SDE): 

da(.N)(t) = -- O. a(.n)(t) d t -  ~c. ( V' (S~N)(" )), e.)z d t - ] / ~ ,  dw~, 

a(,,m (0) = (S z, e,)l, n = 1, 2, ..., N, 
(6.7) 

where 0, = 0z, = n2 + ~ ~:, and t%, e,, w~ are the same as those introduced in the 
paragraph 6.1.2. Then we can prove the following. 

Theorem 6.2. (i) There exists a unique solution St = SI of the SPDE (6.1) satisfying 
S, eC([O, oo), L 2) (a.s.). 

(ii) We have a uniform estimate: 

2 S z 2 E[llS~N)ll@<const.+ ll IFL,~, 

with a positive const, independent of N, t, S l and 

(6.8) 

lim sup E[[IX~m-St[[2pl=O, T > 0 .  (6.9) 
N--*oo O<~t<_T 

We only give the sketch of the proof; cf. [Fu]. First for the construction 
of solutions of (6.1) it is shown that {S~m}N~N forms a Cauchy sequence in 
the space L2(O--* L~) for each t > 0. This is accomplished by deriving estimates 
on E [{a(, N)(t)} 2] and E [{a(, m ( t ) -  a(, N')(t)} 2], 1 _< n < N < N', like 

E [{aff)(t)}2] < CK; 1 + (S l, e,) 2, 

and 

N' 
(N) (N') 2 E K I I S , - S ,  [IL~]<2ea~g ' 

n = N + l  

{ C ~ n  1 -~- ( S  l, e.)2}, 

with some C > 0. Denote by S* the limit of {S} m} and define St = S~e C([0, oo), L~) 
(a.s.) by the RHS of (6.2) with S~(y) replaced by S*(y). We can then prove 
that St is a modification of S* and therefore from definition it gives a solution 
of the SPDE (6.1). During the course, (6.8) and (6.9) are naturally shown. The 
uniqueness of solutions, on the other hand, is a consequence of 

IIS~,s(';S.)-N~,3(';N.)IILF~C i ( t -u)- l /211Xu-X,  llLpdu, O ~ t ~ r ,  
0 

which follows by using the estimates (5.4) and (6.4). 
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7. Integral Equations 

In this section we analyze parabolic equations with measurable coefficients as 
a preparation for Sects. 8 and 9. The technique employed here is not novel. 

7.1 Existence and uniqueness results 

Let ~([0 ,  oo)x N) be a class of all measurable functions on [0, oo)xlR and 
let ~ b =  Nb([0, oo)x IR) be its subclass of bounded functions. We associate with 
each c=c(u, x)s~b an operator ~,---~,,~ = - A + c ( u ,  x)A~, xelR, and consider 
backward equation for Z,,~ = Z,, t (x, (p; c), 0 __ u_< t < oo : 

0 ~z.,t=-~z.,,, ue[0, t], 

More precisely, we consider the corresponding integral equation: 

(7.1) 

Z",t=e-a(~-")~ ~ i e A(~-U){c(v, ")AZ~,~} dr. 
u 

(7.2) 

Before dealing with (7.2), we discuss the following auxiliary integral equation 
for Yu, t= Y,,t(x, (p; c), O<u<_t < 0% cpeC~OR) on the space c#_,, r > 0 :  

Y,, t=e- A('-")(AcP) + i Ae-  A(v-U) {C( v, ") Y~,t} dr. 
u 

(7.3) 

We put D T =  {(u, t)61R2; O<_u<_t<<_ T} and I )T= {(U, t)6DT; u+t}, T > 0 .  

Lemma 7.1. (i) For every r > 0 and T> 0, there exists a solution of (7.3) satisfying 
y, , teC(Dr, C#_r). 

(ii) The uniqueness of solutions of (7.3) holds in the class of measurable func- 
tions Y,,,t satisfying 

sup ]llYu,tll[_r(t- u)l-~ < oo, T>0,  (7.4) 
O N u < _ t ' <  T 

with some 0 < e < 1. 

Proof Denote by Q,,t=Q,,t(Y) the second term in the RHS of (7.3) for given 
measurable Y= Y,,t satisfying the condition (7.4). Then, noting ]Icily<o% the 
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bound (5.4) can be used for the derivation of the following three estimates: 
There exists Cr > 0 depending only on T such that 

t 

IIIQ.,,(Y)III-~CT S(v-u)-l/2111Yv,,lll-~dv, O~u~t~Z ,  
u 

I[[Q.~,~(Y)-Q.~,,(Y)III_~<Cr(u2-uO t/2 sup I[Igv,~lll-r, 
O<~v<_z<_.T 

(7.5) 

O ~ U l < U 2 ~ t s  Ye C(Dr ,  cg_~), (7.6) 

IIIQ.,.(Y)-Q.,,~(Y)III_.<Cr(tz-qW i sup IllY~,,=III-. 
t l  ~ V ~ t 2  

t l  

+CT [. (v-u)-I/aIIIY~,,,- Y~,~2III-rdv, 
g 

O<_u<_tl <t2__< T, g e C ( D r ,  ~_,). (7.7) 

We now use a usual method of iteration in order to construct a solution of 
(7.3) satisfying Y,,teC(DT, cg_,), T > 0 .  Indeed, Lemma 6.2 shows 
e-A(t-")A~oeC(DT,:g_,), while the two estimates (7.6) and (7.7) prove that 
y~C(DT ' Cg_r) implies Q,,t(Y)eC(DT, cg_r). Therefore the iterative scheme is 
accomplished in the space C(DT, <g-,). The limit, whose existence is shown by 
(7.5) noting that Q,,t is linear in Y, gives a desirable solution. The uniqueness 
assertion (ii) is also a consequence of (7.5). 

We return to the Eq. (7.2). Let cg~, 
functions ZEcg_~ such that Z', Z"~cg_~ 
I l lZl lh , - .  = IIIZll l -r+ 111 Z ' [ l l - .  + III z "  I l l - .  

L e m m a  7.2. (i) There exists a solution of 
T > O. The uniqueness of solutions holds in 

[] 

r >  0, be the space consisting of all 
equipped with a norm defined by 

(7.2) such that 2 Z , , t eC(Dr ,  cg_r), r>0 ,  
the class of functions Zu, t satisfying 

sup IIIz.,,llh,_r(t-u)l-~<oo, T > 0 ,  (7.8) 
O<u<_t<_T  

with some 0 < e < 1. 
(ii) The solutions Z,,t of (7.2) and Y,,t of (7.3) are tied up by the relation: 

AZ, , t= Y,,t. 

Proof Denote by P,,t=P~,t(Z) the second term in the RHS of (7.2) for given 
Z, ,~eC(Dr ,  cg-2r), T > 0 .  Then we can show similar estimates on P,,t to (7.5)-(7.7) 
by using the bound (5.4) again. For  example, (7.5) is replaced by 

t 

III P,,,,(z)llh, -~ < c~- S ( v -  u) -  ~/~ IIIZ.,, IIh, -~ d r .  
u 

(7.9) 

Therefore, noting e-A(t-u)9~C(DT, ~2r) , the proof of the assertion (i) is con- 
cluded quite similarly to that of Lemma 7.1. For the proof of (ii) we set Zu. t 
the RHS of (7.2) with AZv, t replaced by the solution Yv, t of (7.3). Then we 
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see easily that Zu , t f fC ( DT ,  c~2_r) , T > 0 ,  satisfies AZ,,~= Y,,, and therefore it is 
a solution of (7.2). The conclusion now follows from the uniqueness of its solu- 
tions. []  

Now consider the forward integral equation corresponding to (7.2) for 2~ 
= 2 d x ;  t/, c), 0 <  t <  o% ~ H e ,  c ~ b :  

t 

2,=e-'Art+ ~ Ae-A('-"){c(u, ")2,} du, t>O. (7.10) 
0 

Let J "  be the class of all 2,sC((0,  Go), %) satisfying sup t*/81112,111.<oo for 
every T, r>0 .  ~ 

Lemma 7.3. There exists a unique solution of (7.10) in the class J-". 

Proof Remind Lemma 5.3 to see that e -*a ~/s C((0, oo), %) and 

Ille-~A~llll,< Kl/~11t-I/sltl[2,, O<t<r .  (7.11) 

Denote by (~dZ. )=0dx;  Z.) the second term in the RHS of (7.10) for given 
Z t e : - " .  Then the estimate (5.4) proves for 0 < t~ < t2 < T: 

[ll(~,l(2.)-0,2(2.)lll~<gllcl[~ sup t ~/s1112,111. 
O<_t<_T 

�9 u-1/s( t2-u)- l /Zdu+ ~ 2u-1/8{( t l -u)- l /2--( t2-u)- l /2  } du , (7.121 
t l  0 

and this especially implies 0t (2 . )e  C([0, Go), oK,). The estimate (5.4) also proves 

t 

1110,(2.)ll[,~KIIcll~ ~(t-u)-l/21[12,111,du, O~t~T ,  2 ~ Y " .  (7.13) 
0 

We can therefore complete the proof from these bounds similarly as before. [] 

Lemma 7.4. (i) For every T, r and C > 0, we have 

sup{?/Sl]12d';tl, c)lll,;O<t<T, rl~ae: I t l [z ,<C,c~b:  I/cHoo<C} < oo. (7.14) 

(ii) For each ~ ~He and r, C > 0, the family {Z,(. ; t/, c); [I c]l ~--< C} is relatively 
compact in the space C((O, oo), c~,). 

Proof The uniform estimate (7.14) follows by using the bounds (7.11) and (7.13). 

For the proof of (ii), we see from (5.4) that ~ (~d'; 2.) 0 < t <  T, is bounded u 
by 

u . ~  

Kllcllo~{ sup ul/Stlt2,111r} i u - i / s ( t -u )  -3/4du 
O<_u<_T 0 

and this proves with the help of (7.14) the equicontinuity of the family 
{(~t(x; 2 . ( . ;  q, e); jlclloo<C} in x. The equicontinuity in t~(0, ~ )  follows from 
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(7.12) and (7.14). We therefore see that the family {Zt(.; n, c); Ilcl[ oo ~ c}  is rela- 
tively compact in the space C((0, oo), cg). However, it is now easy to obtain 
the conclusion by noting the uniform estimate (7.14) which holds for every 
r>0 .  []  

Finally in this paragraph, we notice the continuity of Z t ( ' ;  t/, c) in t /~H,  
and c ~ b .  For  this purpose, we define for c, ~r 

d(c, c--)= sup Ic(t, x ) - ~ ( t , x ) l ( l + l x l )  -1, 
O<_t<- T, x e R  

T > 0 .  (7.15) 

Lemma 7.5. For every T, r and C>O, there exists a positive constant M such 
that 

sup tX/alllZ,(-; t/, c ) - 2 , ( - ;  #, e ) l l l ,<Ml~/ -#12r ,  
O<=t<=T 

t/, # t H e ,  C ~ b :  Ilcllo~<C, (7.16) 

and 

sup IIIZ,(" ; t/, c ) - Z , ( . ;  ,/, ~)lll~Md(c, c-D, 
O<_t<T 

t/~He: 1~12~C, c, ~ b :  Ilcll~o, II~lloo~C. (7.17) 

Proof The estimate (7.16) follows by using (7.11) and (7.13). To prove (7.17), 
assume Ilcll ~o, Ilell oo =< C. Then (5.4) can be used to show 

IIIZ,(" ; n, c ) - 2 t ( "  ; n, c-)lllr 
t 

<=K ~ ( t -u ) -  l/z { CIIIZ,(. ; it, c ) - Z u ( .  ; t/, ~)lllr 
0 

+ad(c, 0 IIIZ,(" ; q, ~)ltlr,} du, (7.18) 

where 0 < r ' <  r and a = sup { 1 + l Yl} O(y, r - r ' ) <  ~ .  The recursive usage of (7.18) 
y e R  

gives (7.17) with the help of (7.14). []  

7.2 Construction of  Fundamental Solutions 

A function Zu, t (x, y) - Zu.t(x, y; c) is called a fundamental solution of the integral 
Eq. (7.2) if its unique solution Zu, t(x, q~)--Zu, t(x, q~; c) can be represented by 
Zu, t(x, ~o)= S q~(y)Z~,t(x, y)dy.  

IR 



Hydrodynamical Limit for GL Model 67 

For the construction of the fundamental solution we define 
=Z("),,t~tx, ,,,," c)}.=o~~ inductively by 

z(O)~ y)=q( t -u ,  y - x ) ,  U,  t I J v ~  

t 

z ( " + ' - ~  Sdv q(v-u,  2-x)c(v,z)A.Z~,(~,y)d~,  . . ,  ,~, y ) =  
u R 

n=0 ,  1, 2, . . . .  

(n) IX ~ . , t ,  , Y) 

(7.19) 

Here q is the function introduced in Sect. 5. Take L* such that 0 < L * < L 1 ;  
see (5.2) for L1. 

Lemma 7.6. An absolutely-converging series 

z.,,(x, y)-Z.,,(x, y; c)= ~ zL"{(x, y) 
r t = 0  

(7.20) 

gives a fundamental solution of (7.2) and has the following bounds: 

O~ c) l +k �9 Z,,t(x, Y; < K*( t - -u ) -~ -e  -L p, 

k=0 ,  1, 2, 3, O<u<_t<T, Ilclloo __< C, (7.21) 

f l x -y l4] l /3  K* 
for every T, C>0 ,  where P = ~ - u  ; and is a constant depending only 
on T and C. 

Proof. The inductive method can be used to establish 

ka y) <= Z (n) (x al'k a2 
I1 

u,,~ , [3 k n\  

l + k + n  �9 
( t_u ) - -x -  -~ e-r  p, 

O<u<t<_T, (7.22) 

for (n, k)=(0, 2) and for n~N,  k=0 ,  1, 2, 3. Here 

as,k = K1 F(1/4) V(1 -- k/4)/F (1/2), 

a2 =K1 F(1/2)licit ~ F, 
F= ~ e-(L1-L*)lzl4/3dz, 

R 

and K1 is the constant appearing in (5.2) (see [Fu] for detail). The estimate 
(7.22) proves the absolute convergence of the series (7.20) itself and its derivatives 
in x up to the third order and the bounds (7.21) on the function Z,,~(x, y). 
Now it is easy to see that Zu,,(x, y) constructed in this manner is the fundamental 
solution of (7.2); use the uniqueness result in Lemma 7.2 taking e = 1/2. [] 

Next we prove the continuity property of Zu, t(x, y; c) in c. 
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Lemma 7.7. The following estimates hold: 

~x k Ok z..,(x, y; c)-T~xk Zu,,(x, y;e) 

T. Funaki 

l+k  
< K * * d ( c , e ) { l + l x l + l y l } ( t - u ) -  4 e-L'o, 

k=0, 1,2,3, O < u < t < T ;  Ilcll~, Ilelloo_-<C, 

where the constant K** depends only on T and C. 

Proof. The conclusion follows by showing 

~ Ok e) 
Z (n) ( X Z (n) i X u .  . , t ,  , Y; c ) - - ~ x ~  . , , ,  , y ,  

l + k . n  < d(c, ~) ax,k gt~ C "-1 (1 + [xl + lYl} ( t -  u ) -~ - -~Ze  -L*", 
/3 k n\ 

for n~N and k=0, 1, 2, 3. Here ~2=2K1F(1 /2 )Fr  and 

f r  = F  + r TM ff Izl exp { -(L~--L*) Iz?/3} dz. 

Use the induction again (see [Fu] if necessary). [] 

Under an appropriate smoothness assumption on the coefficient c Z,,~(x, ~o) 
actually solves the backward Eq. (7.1). Moreover, if we put 

Z,,t(tl, y)--Zu, t (q , y ;c )=~t l ( x )Z , , t ( x , y ; c )dx ,  r/eH~, r>0 ,  (7.23) 

then Z,,~(q~, y) gives a solution of the corresponding forward equation: 

- -  , ~ t, y Z u ,  t ,  & Z , ~ =  * tE[u, oo), 

(7.24) 
Z u , .  = ~o e C ~  (1t) ,  

where ~*r = - A + A r {c(t, y)" }. See Eidel'man I-7]. 

Corollary 7.1. For every ~ H  e and CeCb([O, cO) X ~) ,  we have 

Zo,,07, x; c)= Zt(x; tl, c). (7.25) 

Proof. First we prove (7.25) for ~/~C~(N) and c ~C~176  . Indeed, in this 
case, both sides of (7.25) are solutions of the PDE (7.24) with u =0 and q~ =r/ 
satisfying sup IIIZ~lllr< ~ for every T, r>0.  However, it is known the unique- 

O<=t<T 

ness of such solutions; see Eidel'man [7]. Now the conclusion for general t/ 
and c follows from the continuity of the both sides of (7.25) in t/~He and 
c ~ Cb ([0, oO) X I1.); see Lemmas 7.5 and 7.7. [] 
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8. A Formula of Integration by Parts 

The solution S~ of the scaled T D G L  Eq. (1.3) determines a Markov process 
on the space H~. The (formal) generator ~ '  of this process is given by 

~ v(s)= y, ~ (<s, ~>,... ,  <s, ~o~>) {-~<s, A ~ ~> + <U'(S(.)), A ~o,>} 
i = 1  

k ~2~p 
i , j = l  

- - ( ( S ,  (Pl) . . . .  , (S, q)k))(--A~oi, (pj), S~H~, (8.1) 

t 

for 7Je~  having the form (2.2); especially 7~(S~)- ~ N~ 7~(S~) du is a martingale 
0 

for every 7Je~. We denote Es[gJ(S~)] by Tt ~ 7~(S) or simply by ~(S),  where 
Es['] stands for an expectation with respect to the probability distribution 
of the process $7 starting from SeHe. Assume the profile function 2 = 2 ( - ) e A  
is given and let #x(.),~ be the scaled (U, 2(.))-Gibbs distribution constructed 
in Sect. 3. 

We shall say as usual a real valued function 45 on the space H~ Fr6chet 
differentiable if ~(S+6tl), 5~]R, is differentiable at 6 = 0  for every S, t/eH~ and 

d 
the derivative has an expression ~ ( S + 6 t l ) 1 6 = o = ( D ~ ( ' ,  S), rl), qeH~, with 

some D~(-,  S)eH*. The purpose of the present section is to prove the following 
formula. 

Theorem 8.1. (i) For every t > 0  and 7teN, ~ is Fr6chet differentiable on H e 
and the following formula holds: 

E "~.,,o [f~ T (S~)] = E "~,-,,~ [(A 2 (.), D ~ ( - ,  S))], (8.2) 

where the LHS is an expectation with respect to the distribution of the process 
S7 having initial distribution izz(9, ~ and the RHS is an integration with respect 
to #a(.),,(dS) over the space H e. 

(ii) The Fr6chet derivative D ~ ( x ,  S) of ~ can be expressed explicitly as fol- 
lows: 

~ ~ ] 
D~(x, S)= Z e s [ ~ ( ( S ~ ,  ~o~), . . . ,  (S~, ~o~))Z~(x, q,,; S~.) . 

i =  1 L ~176 
(8.3) 

Here, for (p~C~ (IR) and S . ~ ( [ 0 ,  ~ )  • IR), we denote by Z~(x, cp; S.) the solution 
Z~o,t(x, ~o; V"(S.)) of the integral Eq. (7.2) with c(u, x)= V"(S,(x)) and with A re- 
placed by A ~= e2A--7A. 

The proof of the theorem will be completed after the following three main 
steps: We may assume e = 1 without loss of generality. The first step is to prove 
the corresponding formula for the finite-dimensional process S~meL2= 
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L2([ - I ,  l]) which was constructed in Sect. 6. Then it is derived the formula 
for the solution S~ of the SPDE (6.1) by taking the limit of N --, oe and finally 
we take the limit of l --* oo. 

8.1 A Formula for S} m 

N 

The N-dimensional process s~N)= ~" a(,N)(t)e, eL 2 was constructed by solving 
n = l  

the SDE (6.7). We shall fix N e N  throughout this paragraph. The generator 
of the diffusion process a, = {a(.m (t)}~= 1 eNN is given by 

N [- 6~2 ( / N 

~r162163 Oa. ~ \ 

Define a finite m e a s u r e  ]~(N) on R N by 

~(N) (da) = exp {- -  U a,e.(x d x - 1  N xna da, da= dan, 
- l  n / n = l  n = l  

then/2 (m is a reversible measure for the process at: 

d f  (a) g (a)/~(m (da) = ~ f (a) d g  (a)/~(m (da) 

N Of Og 
= -  Z ~c.I ~(N)(da), 

n = 1 O a , ,  Oan 
(8.4) 

for every f g e C 2 (RN). We set ft (a) - ~(mf (a) = E, [-f (at)], a e R N, t > 0, f e  C b (RN), 
the expectation with respect to the distribution of at starting from a and 

N 

"~'~' [d tmf(a t ) ]  = E~k~)) (2, A e,)l (a , f e  C 2 (RN). L e m m a  8.1.  ~ ~.) 
n ~  

Proof Since ~ (md(N)f=  d (N) ~(mf f o r f e  C g (NN), the conclusion follows by tak- 

ing f = f t  and g = exp (2, e,)l a. in (8.4). []  

N 

Define a mapping /~N:IRN-~IINL~ by /~Na= ~ ane,, a={an}L1,  and set 
n = l  

(/~N~)(a)=gJ(/~Na), aelR N, for functions g~ on IINL ~ (or L~). Here H N is the 
e N orthogonal projection of the space L~ onto its subspace spanned by { .},= 1. 
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Let ~ be the class of tame functions on L 2, which was introduced in Sect. 2. 
We introduce an operator ff(m by 

i = l  

�9 { - ( s ,  A ~ n N  ~0~>, + ( u ' ( s ( - ) ) ,  A n N  ~o,>,} 

~2~,  
S~L 2, 

for T e ~  having the form (2.2). The operators if(N) and ~r are linked by 
the following relation: 

(8.5) 

Let ,,~(.)-,z(.),,(N) _ r,(n) o 7~ be an image measure on FIN L2 of fi~).) under the map- 
ping fiN- The derivative D (m ~(x, S), x ~ [ - l ,  l], S~FINL 2, of a function ~ =  ~(S) 
on the space/-/N L~ (or L~) is defined by 

D(N)q~(X, S)= ~ " " 3(/~N~)" 
n : 1 e, ix) ~ (/~ff 1 S), 

when the RHS exists, where /~I:IINL~--*N N is an inverse mapping of /~N" 
We set TtCN)(S)-= Tt ~N) T(S) = Es [T(S~N))], Sel-IN L~, Te~t ,  which will be some- 
times considered as a function on the space L~ by putting /-/N S instead of S 
in the RHS. Then we have the following proposition as an immediate conse- 
quence of Lemma 8.1 and (8.5). 

Proposition 8.1. For every 7J E ~ ,  

E, '~ ;  E~r (N) ~'(s~N))-I = E"'~7.; E('~('), AD ~N) ~,}N)(., S)>,3. (8.6) 

Before concluding this paragraph we give useful representations of #~!) and 
AD (m Tt(N)(x, S), respectively�9 

Lemma 8.2. With some positive constant cN, we have 

#~!)(dS)=cN exp {(2, S)I - (U(S) ,  1)t} (#olIffl)(dS), SeI-INL~, 

where #=#-t ,0;g,o;  see Sect. 3. 

Proof The conclusion follows from the Wiener's representation of the Brownian 

motion: # is the distribution of S(x; {a,})= ~ a, e,(x), x e [ - t ,  l], which is rea- 
n = l  

 izoaooaprobabilityspa e( , [] 
n = l  
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Consider the following backward integral equation for v(m=..,t v(mt....,t ~,  q); S.), 
O<u<_t< 0% with given q)sC?(-1 ,  l) and S.sC([0,  oe), L]): 

Y.(~) = e - A'(t- .) HN (A (p) + i A e - A'(v -.) Hn { V" (S~) Y~(~) } dr, 
u 

(8.7) 

where A t is the operator on L~ introduced in Sect. 6. 

LemmaS.3 .  (i) The integral Eq.(8.7) has a unique 
Y.!Nt)~C([0, t], l-InL]) for each t >=O. 

(ii) For every Te~ t ,  AD (N) ~(N)(X, S) is represented as 

solution satisfying 

i=l Es [~i~ i ( (S t  , (Pl)l ,  . . . ,  (S~ N), q)k)l) Yo(,Ut)( x, ~~ ; S ! m ) ]  �9 (8.8) 

Proof Through the mappings fin and fl~ 1, (8.7) is rewritten into an equivalent 
linear backward ODE on NN, for which the existence and uniqueness results 
are established easily. For the proof of (ii), let us denote the solution of SDE 
(6.7) starting at time u (instead of time 0) from the point a e ~  N by a.,,(a) 

N 
N ={a.,~;.(a)}.=l, O<_u<t<~.  Put Yr., t ; .(a;(p)=-K. ~ b~, t, ,. ( e,., (p ) and 

m = l  

N 

Y'.,t(a; (p)= ~ Y.,t;.(a; q))e., where b~,t;m=~a.,t;m(a)/Oa., 1 <n, m<N.  Then, de- 
n = l  

b" verify that { -  N riving a backward ODE for the system { .,~;,.}, we can Y.,~;.}.= 1 
y(N) t. satisfies the same ODE as / / ; /1  ~,t ~ , q0; S!m), where S! m is the process deter- 

~.. - 1 S ( N ) .  mined by the SDE (6.7). Therefore we obtain ,,,t(fiN S; q))= Y~)(-, q); 
However, since it is easy to see that AD (m ~(m(x, S) is given by (8.8) with 

~,, -1 Yo(~)( x, r S! N)) replaced by o,t(fiN S; (fit), we have the conclusion. []  

8.2 A formula for S[ 

Let q)~C?(- l ,  l) and S.=St(x)eNz=N([O, oe)x E-l ,  l]), the class of all measur- 
able functions on [0, oe) x [ -  l, I], be given and consider the following backward 
integral equation for yr.,t__ Y~,~(x, (p; S.), O < u < t <  c~, in the space (g-r,t, r > 0 :  

t 

Et.,t =e-A'(t-")(Aq))+ ~ Ae-a'(v-"){V"(Sv) Y),,} dr, O<_u<t (8.9) 
u 

See Lemma 8.6 below for the existence and uniqueness result for this integral 
equation. We define AO~l(x, S), xe[ - - l ,  l], SEL{, for kge~ t by 

A D ~ ( x '  S)=, ~Es~-I ((Stt, q)l)~ . . . . .  (S[, ~Ok)~) Yto,t(x, (P,; S!) , (8.10) 
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the expectation with respect to the distribution of the solution S{ = {SI; t > 0} 
of (6.1) having an initial condition St0 = S. We shall prove the following proposi- 
tion. 

Proposition 8.2. For every T s a r ,  we have 

E~X~!~'(';~176 = E~X~"('; ~ ~ A B e l (  ", S))t]. (8.11) 

The LHS of (8.11) is the expectation with respect to the distribution of SZt having 
initial distribution #~-t.,{(. ; 0, 0), the local specification introduced in Sect. 3, and 
NT(S) is defined by replacing ( , )  with ( , ) t  in (8.1). The proof of the proposi- 
tion will be completed by taking the limit N ~ oQ of the both sides of (8.6). 
In this paragraph we denote the norm of the space L 2 simply by 1[. I[. 

Lemma 8.4. We have the following estimates for each T e ~  with a sequence {fin 
= fin(T) ~ 0}~= 1 and a positive constant C = C(T): 

I~ <N) T(S)-~T(S)I~/~N(I+ [ISII}, S~L~, 

I~T(S)I~C(1-t-IISII), S~L~, 

I~T(Sx)-(#T(S2)[ < C(1 + 1[S1 II + [[S2 II)IlSx - $ 2  [I, S~, S2eL~. 

(8.12) 

(8.13) 

(8.14) 

This lemma can be shown by simple calculations so that we omit the proof. 
Now we can prove the convergence of the LHS of (8.6). 

Lemma 8.5. For every T e ~ l ,  we have 

lim CN 1 E#(x~. )) [~(N)  Ip (sIN))] : ~.~I E#~(z.,) z (-; o, o) [-~ T (S~)], (8.15) 
N--* oo 

where 31= Z;(z.~(0, 0); see Sect. 3. 

Proof. First we note that Theorem 6.2 combined with Lemma 8.4 proves 
lim EnN s IN(N} T(S~N))] = Es [fgT(Slt)] for every SeL~ and T~@l. Therefore we 

complete the proof from Lemma 8.2 by using Lebesgue's dominated convergence 
theorem. [] 

The second task is to show the convergence of the RHS of (8.6). We discuss 
the integral Eq. (8.9). 

Lemma 8.6. (i) For every r > 0 and T > 0, there exists a solution of (8.9) satisfying 
Y~,t~C(Dr, ~-r,t). 

(ii) The uniqueness of solutions of (8.9) holds in the class of measurable func- 
tions Y,l,t satisfying 

sup Il lytt[l l_r(t-u)l-~<oo, T > 0 ,  
O <<_u<_t<~ T 

with some 0 < e < 1. 
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(iii) The following uniform bound holds for every ~oe Cg ( - ~  T), FeN: 

sup {111Y,l,t( ", q0; S.)[[[_r;l>--~(U, t ) eDr ,  S.eNt} < oe. (8.16) 

Here l I I" Ill- ~ denotes the norm of the space rE_ ~, l; see Sect. 6. 

Proof The proof of (i) and (ii) is completed in a quite parallel manner to that 
of Lemma 7.1. Actually we can derive similar estimates to (7.5)-(7.7) by using 
(6.5) instead of (5.4). Note that the constant CT appearing in these estimates, 
especially in (7.5), can be taken independent of I. Therefore we get from Lem- 
ma 6.2 (ii) (see also its proof): 

t 

IIIYd,~lll_~<__Me~rlllA~Plll_~+C T ~(v-u)-~/2111r~,,lll_~dv, O<u<_t<_T. 
u 

The recursive usage of this inequality proves (8.16). [] 

Every solution of (8.9) satisfies Yd, ~( _/)  = 0 and therefore Yd, t e C (D r, ~?-r, l). 
yl We prepare the following estimates on { ,.t}: 

Lemma 8.7. For every T > 0, there exists a positive constant C r such that 

[1Y,t,t II --- CT IIA ~0]l, (8.17) 

IIYd,,llo~ < C r { l  + ( t - u )  -x/8} IlA~ol[, O<u<t<_T. (8.18) 

Proof Since the operator norms of e -  Azt and A e-a ' t  on the space L 2 are bounded 
by i and sup tc exp { - t(tc 2 + V x)} (<  1 / V ~  ) respectively, the bound (8.17) follows 

t r  

easily from the equation (8.9). To show (8.18), we notice that the operator norms 
of e -A~t and Ae-aZt: L 2 ~ ( C ( [ - I ,  l], I1"11~) are bounded by Ct -1Is and Ct -s/s, 
respectively, with C independent of t and leN.  In fact, this is shown by using 
the Fourier series expansions. We can therefore estimate II Y2,,I[~ by (8.9) with 
the help of (8.17). []  

To make initial values clear, we shall denote by SIre(S) and Sit(S) the processes 
determined by (6.7) respectively (6.1) such that S(om(S)= S and S~o(S)= S. 

Lemma8.8.  For every O < u < t  < ~ ,  rpeC~( - l ,  l) and S e L  2, Y.(~) 
= Y(~) (', q~; S tin. (HN S)) converges to yl,,~= Y.l,t (., q9; S! (S)) as N ~ ~ in the follow- 
ing sense: lim E[IlVtN) Vt ,21=0.  ~ g , t  - -  ~ t t ,  l~ll -I 

N ~ m  

Proof By the Eqs. (8.7) and (8.9) we see that (m l IIY~,,- Y.',tll is bounded by the 
sum of I1 = [I (HN--1)A r I I, 12, 13 and 14 defined as follows: 

I2=  S 
u 

Ia = i 
u 

t 

I4 = S 
u 

t 

[ t A e - A ~ ( v - u )  , ,  (~) m )  t HN{V (So)(U,, --Y;,3}lt dv 

[[Ae-A~(v-u) ,, (N) ,, Z HN[{V ( S ~ ) - V  (S~)} Y~,,]ll dv 

IIAe-A'(~-~)(--A)~(--A)-~(I--HN)(V'(S~) Y.~,~)[I dr, 0</~<1 .  
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For deriving a bound on 13, use II A e-a,(~-,) II L~ ~ ~ 1 / ~  and (8.18). Then 
(6.9) proves E [{ I3}2]~0  as N ~  oo. For I4, note that the operator norms of 
( -  A) 1 +P e-A't and ( -  A)-P(I-/-/N): L~ ~ L 2 are bounded by const, t -(~ +a)/2 and 
xff ~, respectively. Therefore we see 14 ~ 0 as N ~ ~ from (8.17). Finally, giving 
an estimate on 12, we arrive at 

EEIIV(~)_Yd,llZq<,~(N)+Ci(v_u)-~/ZEEiiYJ~) ~ zq -v;,,ll dv x u ,  t , - -  

11 

with some 6 (m +0 as N ~ ~ and C which depend only on T, l and q,. From 
this inequality, it is easy to complete the proof of the lemma. [] 

Lemma 8.9. lim c~lEU~?)[(2('), AD (m ~t(m( ", S))l] 
N ~ o o  

=StEU#(~.3'(';~176 AD~t( ", S)>t], ~e~z .  

Proof Recall the expressions (8.8) and (8.10). Then, using (6.9), (8.17) and Lem- 
ma 8.8, we can prove that AD (m ~(m(., 1-1NS) converges to AD~I( ., S) as N---> 
in the space L 2 for every t > 0  and SeL 2. Therefore the proof is completed 
from Lemma 8.2; use the Lebesgue's dominated convergence theorem noting 
a uniform bound sup IIAD (m ~(N)(., HNS)I[ < ~ .  This is obtained by deriving 

N, S 

a uniform estimate on II Y.~)II similarly to (8.17). [] 

Now Proposition 8.2 follows as a combination of Proposition 8.1 with Lem- 
mas 8.5 and 8.9. 

8.3 Convergence of yZ U, t 

Before completing the proof of Theorem 8.1, we need to examine the convergence 
of the solution Yd.t of the integral Eq. (8.9) as l ~ .  We regard Yd, teCg by 
setting y t, t(x) = 0 for x e l R \ [ - -  l, l] as before. 

Lemma 8.10. For every T > 0, r > 0 and q~ e C~ (-T, T), TelN, the family of functions 
{ YJu,t(', q~; S.); l>r,= S . e ~  l} is relatively compact in the space C(I~T, c~_r) equipped 
with the usual topology of uniform convergence on each compact subset of I~ T. 

y . l  Proof First we see that { u,t} satisfies 

supf  ~x Yd, t(x, q~; S.) ; x e [ - l ,  l],l>T,(u, t)eDT, lU-tl>e,S.e~flt< o% 

for every e > 0. Indeed, a bound on the derivative of the first term in the RHS 
of (8.9) is obtained from the estimates (5.4) combined with (6.4); while, as for 
the second term denoted by Q~,t in the RHS of (8.9), we may use (6.5) and 
then (8.16). Especially, {Y,t t(x)} are equicontinuous in x e N  for (u, t)eI~ r. 
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Next we show the equicontinuity of { Yt,,t(x)} in (u, t)el~ r. Actually the first 
term in the RHS of (8.9) is equicontinuous in (u, t), since we see 

t p 

le-a'"Aq)(x)-e-**Aq)(x)l<K'l l lAq)ll l_,O(x,  r) ~ u-* du. (8.19) 
t 

For the second term Q~,t, using (6.5), similar estimates to (7.6) and (7.7) can 
be derived with a constant CT independent of 1 and S.; we may just replace 
Y~ t by yl in the RHS's. The equicontinuity of z {Qu, t} in u follows immediately V~t 

from (8.16) and the estimate like (7.6). On the other hand, the equicontinuity 
in t follows by using the estimate corresponding to (7.7) recursively noting (8.16) 
and (8.19). 

Now we have shown that the family { Y,~ ~} is relatively compact in the space 
C(I~T, ~), since (8.16) proves the uniform-boundedness of {Y,~,t}. The proof of 
the lemma therefore can be completed by noting the following fact: Generally 
if functions Y2t converge to Yu,, as n ~  oo in the space C(I~ r, cg) and a uniform 
estimate sup sup [[l~$,,ll[-,,<oo holds for r '>0  and T>0,  then this conver- 

n (u ,  t ) ~ D T  

gence also holds in the space C(I~ T, off_,), 0 < r < r ' .  [] 

Lemma 8.11. Let {S/te~l}T=l and SteN([0, oo)xN,) be functions satisfying that 
(Fli-l S/t)(x) converges to St(x) a.e.-(t, x)e[0, o o ) x ~  as l--.oo, where IIi -1 is a 
mapping of  Jd z into ~ defined similarly to in Sect. 6. Then Y~,t = Y~,t(x, rp; S[) 
converges to the solution Y,,t= Y,,t(x, q~; V"(S.)) of (7.3) with c(u, x)= V"(S,(x)) 
in the space C(I~T, cg_r), r>0,  as l--* oo for every (p~C~(N,). 

Proof. Take an arbitrary subsequence {l'} of {l} such that Y~t converges to 
some Y,,~ in the space C(I~T, (g-,), r>0.  This is possible from the preceding 
lemma. Note that sup {HIY,,t[II-,; (u, t)~Dr}<OO follows from (8.16). We shall 
prove that Y,,, is a solution of the integral Eq. (7.3) with c(u, x)= V"(S,(x)) and 
this completes the proof because of the uniqueness of its solutions. To this 
end, we may only show the following three equalities for every test function 
~ e C ~ ~  �9 

lim (Y,~t, t / )= (Y~,,, q), (8.20) 
/ ' too  

lim (HI71 e-A,'(~-,)(A q)), tl) = (e-A~t-")(A q~), q), (8.21) 
/ ' t oo  

and 
t 

lim 5 ( V " ( H v  1 r l' - le-a, '(v-u) Sv) Yj,,, II v Atl) dv 
l ' $ o o  u 

t 

= I (V"(S,)Y~,,,  e - a ( " - " )  A t l )dv.  
u 

(8.22) 

However (8.20) is trivially shown and (8.21) follows by using Lemma 6.3. Finally, 
(8.22) follows from Lemma 6.3 and (8.16), since Fl[1S~'(x) converges to Sv(x) 
a.e.-(v, x)e[u, t] x N .  [] 
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8.4 The proof of Theorem 8.1 

For T e ~  having the form (2.2), we define ADTt(x, S), xelR,  SeCde, by 

ADTt(x, S)-=i~=lEs ((St, q;1), ..., (St, Ok)) Yo, t(x, ~o~; S.) , 

where S. = {St} is the solution of the SPDE (1.1) with initial value S and Yo,t 
is the solution of the integral Eq. (7.3)with c(u, x)= V"(S,(x)). We are abusing 
the notation somewhat here. First we show the following result: 

Proposition 8.3. For every 7 t ~ ,  we have 

E u*,-, [~qTJ(St)] = E ~,-, [<2(-), ADTt(., S)>]. (8.23) 

Proof. Let P; and P be the distributions on C([0, oo), cd) of solutions S! and 
S. of (6.1) and (1.1) with initial distributions/~-~!');(. ; 0, 0) and #z(.), respectively. 
Remind Proposition 3.2 and Theorem 6.1. Then Skorohod's representation theo- 
rem can be applied to construct stochastic processes {~} and St on a proper 
probability space (s ~,  P) in the following manner: (i) Under P, the probability 
distributions on the space C([0, oo), (g) of S! and :~. are p1 and P, respectively. 
(ii) S! converges almost surely to S. in the space C((0, oo), (d) as l ~  oo. (iii) 
S~ converges almost surely to So in the space cgr, r >  0. Now we may assume 
T ~ r  with some TeN, because ~ =  ~ ~z. Then the LHS of (8.11), which can 

l~N 

be expressed as E f [(r T (~)], converges to E f [~  7 j (S,)] as 1--* oo. Here we should 
note that (8.14) implies ~TeC(Cg) and (8.13) shows the uniform integrability 
of I~qT(St,)I with respect to /3 because of Lemma 6.7. On the other hand, the 
convergence of the RHS of (8.11) is shown by noting Lemma 8.11 and the 
uniform bound (8.16). [] 

We write simply T~(S) = Tt'(S)[~ = 1. In order to prove its Fr6chet differentiabil- 
ity, we denote the solution of the SPDE (1.1) with the initial value SeHe by 
S,(S)=S,(x;S). Set D~St(x)=D~S,(x;S, r l)={St(x;S+6q)--St(x;S)}/6 for 
0 < 6  < 1 and qeHe. Then we see that D e St is a solution of the integral Eq. (7.10) 
with c(u, x)= V"(X~(x)), where X ~ is some random element of ~([0,  oo) xlR). 
Since D~SteY T M  (a.s.), the uniqueness result for (7.10) implies DoS,(x; S,~I) 
= 2, (x;  ~, v"(x .% 

Lemma 8.12. The function D~ converges to Z,( . ;  ~/, V"(S.(S))) as (~ ~.0 in the 
space C((O, oo), ~), r> O, with probability one. 

Proof. Lemma 7.4 proves the relative compactness of the family {D o St}o <0< a. 
Take an arbitrary limit Z, of D o St in the space C((0, oo), cd,). Then the uniform 
estimate (7.14) verifies that Z teJ -" .  However, since D ~ St satisfies 

D o St = e -ta ~l + i A e - A ( t -  u) { V "  (S u (" ; S)) D o S, (')} du 
0 

6 
+ ~  i Ae-Ar 2] du, 

0 ' 
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with some X,(y)e~([0,  oo)xR), it is easy to see that Z , = ~ , ( . ;  t/, V"(S.(S))) 
by taking the limit. This gives the conclusion. [] 

For 0<6  < 1, { ~ ( S + 6 q ) -  ~(S)}/6 is expressed as 

E ((St(S), q)~>, (St(S), (pk>)(D6St( �9 "S, rl), q),) +R~, 
i ~ " "~  

with the remainder term R6 having an estimate: 

I R ~ I ~  k 02~ 
i,~j= X ~ 0o E [I ( D' S,(" ; S, tl), q~,) ( D' S,(. ; S, tl), %>1]. 

Therefore Lemma 8.12 and Corollary 7.1 with the help of (7.14) show that ~t(S) 
is Fr6chet differentiable on I-I~ and the equality (8.3) with e= 1 holds. Note 
that the RHS of (8.3) belongs to the space H*; see Sect. 7. We have an equality 
(2('), Yo,t)=(A2('),Zo,t> by using integration by parts, since 2(.)eA and 
AZo,t= Yo, t; see Lemma 7.2. Now the formula (8.2) with e= 1 follows from (8.3) 
and Proposition 8.3. This completes the proof of Theorem 8.1 when e= 1. 

9. Basic Estimates 

The purpose of this section is twofold. We derive energy estimates for solutions 
of parabolic equations and then give LP-estimates on the fundamental solutions, 
cf. Fritz I-9, 10]. 

9.1 Energy Inequalities 

Let q*(t, x-y)=q~(t ,  x, y), e>0, be the fundamental solution of the parabolic 
0 

operator ~ + A  ~, A~=eZA2-TA. For t/~Hr, r>0,  we define a function 

co=co(x;t/)e0I-Ir,  by co(0)=0 and Vco=q. For given t/oeH e and 
r t > p  

f=f(x)eCb([O, 0o) x R), we define two functions r/~(x) and ~(x) by 

t 

t/~ (x) = I r/o (Y) q~ (t, x, y) dy + I d u I q~r (t - u, x, y) fu (Y) dy 
R 0 R 

(9.1) 

and 

t 

~(x)= S co(y; r/o)q~(t, x, y ) d y -  ~ du ~ q~(t-u, x, y) f ,(y)dy. 
R 0 IR 

(9.2) 

Lemma 9.1. (i) For every t >O, q~, ~[eH e and V(t-th. 
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d k 
(ii) Assume f eC~( [O,  oo) xll.). Then we have ~eC~~ and 5~.. k ~ e H  e for 

every t>O and k=O, 1, 2, .. . .  

This lemma is easily shown so that we omit the proof. Now we give the 
first energy inequality assuming 70 = II V" II o~ < 7. 

Lemma 9.2. We suppose the condition: 

If~(x)t~7ol~f(x)l, t~0, x ~ ,  0<~<1. (9.3) 

Then there exist positive constants r o, C~ and C2, which are independent of  e, 
r and t, such that 

t 

I Iqgl~du~Celco('; ~/0)lff eC% 
0 

0 < e < l ,  0 < r < r o ,  t > 0 .  

Proof We first assume f~C~( [0 ,  oo)xlR) without imposing (9.3). In this case, 

A" r~ + r is a solution of the parabolic equation ~ - ~  = - ~t 17f Therefore, using 
this equation, simple calculations show 

eC,,~ d {e-C,,'l~;l~} 

_ - < - ( 2 7 - 4 M r )  , 2 2 lrlt Ir + M r l f ,  lr + 2  I I~/~(x)l If~(x)l O(x, r)dx,  
R 

0 < e < l ,  0 < r < l ,  t > 0 ,  

where C1 = M(2+7) .  Here we have applied integration by parts in the variable 
x with the help of Lemma 9.1 and used the estimates 21~7(x)llf,(x)l<l~(x)l 2 
+ If(x)l / and 

~ k  m O(x, r) <-MrO(x, r), k =  1, 2, 3, 4, 0 < r < l ,  (9.4) 

with some M > 0. Hence we obtain 

t 
I { ( 2 7 - 4 M r )  , 2  2 I~t,I, - M r l L I ,  - 2  ~ Irtg(x)l IL(x)l O(x, r)dx} e-C"Udu 
0 R 

< [co(.; t/o)[ 2. (9.5) 

Now we can remove the assumption f ~  C~ ~ ([0, oo) x R)  by the usual approxima- 
tion method and (9.5) still holds for general f The conclusion follows from 
the condition (9.3) by taking ro; 0 < r o < l  in such a way that C f l = 2 7 - 2 y o  
- 4 M r o - M r o 7 2 > O .  [] 

The second task is to give estimates on the fundamental solution Z~,,(x, y) 
=Z~,t(x, y; c), e>0 ,  of the Eq. (7.1) with ~ replaced by .~e~c = --A"+c(u,  x)Ax 
for given c=c(u,  x)eCb = Cb([0, oo) x R). This fundamental solution can be con- 
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structed in a similar manner to the case of e = 1; see Sect. 7. We define Z~,~(q, y) 
by (7.23) with Z, , t (x  , y; c) replaced by Z~,,t(x, y; c). 

Lemma 9.3. There exist positive constants ro, C1 and C2, which are independent 
of  ~, r, t, c and tl, such that the following three estimates hold for every 0 < e < 1, 
O < r N r o ,  t>=O and c~Cb; IIcllo~ <~o: 

i Z~ ; _ ; I o,,,(11," c)lZdu<-CzeC'"tlco(" ~/)l, z, t /eHr ,  (9.6) 
0 

and 

i IZ~o,,(Vtl, "; c)l 2 d u < C 2  e c~t I q l Y ,  q e c w ( ~ ) ,  (9.7) 
0 

i [  Z"o,,, (x," ; c)[z d u <= Cz r - 1 eCl,.t 0 (x, r), 
0 

x e R .  (9.8) 

Proof To complete the proof, we may assume c~C~([0,  oo)xN) .  Indeed, after 
proving the concluding estimates for such smooth c's, we can generalize them 
for ce  Cs by using approximation method with the help of Lemma 7.7. Remind 

" ~ t , y  - -  that qt=Zo,t(q,  c) solves the forward Eq. (7.24) with s r replaced by ~ * -  
- A" + A y {c (t, y).  } if the coefficient c is smooth. Consider the following equation: 

~7~t=~3 ~ _ A ~ + V { c ( t , y )  V~},  t>0 ,  

~'~ = co(- ; r/) + a, a e R .  (9.9) 

Then we have V ~'~- t/t and simple calculations show 

2< 4 M r - - M r T o )  ~~ 2 ~ 2 - -  Iv, I, + C , r  I~;I, ,  
dt  

0 < e < l ,  0 < r < l ,  t> 0 ,  

with C1 = M(1 + 7 + Vo), where M is the same constant appearing in (9.4). There- 
fore, taking r o; 0 < ro < 1 in such a way that Cz 1 = 2 y - 2 Yo - 4 M ro - M ro Yo > 0, 
we obtain 

~]ulr du~=C2 eClrt [co(', r/)+a[~, O < r < r  o. (9.10) 
0 

Now the estimate (9.6) follows by taking a = 0 ,  while (9.7) follows by taking 
V ~/instead of q and a =t/(0) in (9.10), since o)(-; V t/)+ t/(0)= ~/. The third estimate 
(9.8) is a consequence of (9.7); we may take an approximating sequence 
{7. ~ C{ (R)};= x such that Vq, converges to fix in a proper sense. []  
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Lemma 9.4. There exist positive constants ro, C~ and C2, which are independent 
of e, r, t, c, ~ and tl, such that 

i I z ; , . (n ,  ", c ) -  z ~o,.(tl, �9 ; 0 I) d u 
0 

t 

< C2 e c'*t ~ I(c - c)(u) Z~),. (r/,- ; c)12 d u, 
0 

for every O < e <  1, O < r = r  o, t>O, c, geCb; I[cHr ]l~ll o0 ~ o  and ~leH~. 

Proof As in the proof  of Lemma9.3,  we may assume c, ~eC~([0,  oo)xlR). 
We define ~ as in the proof of Lemma 9.3 and also introduce ~, the solution 
of (9.9) with c replaced by & We assume the initial values are same; (~ = ~ 
=co(. ;q). Set Fh=Z~o,t(tl, "; c) and O~=Z~o,t(tl, "; ~). Then we have 

d 7 ' - N  2< _ ( 2 7 _ 2 7 o _ 4 M r _ M r ? o  ) 10~_0~12 d t ~t ~t r = 

I~, -~,1~+I ,  0 < e < l ,  0 < r < l ,  t>0 ,  + r M ( l + 7 + 7 o )  7, ~-~ 2 
where 

I = - 2 j ( c , - e , )  qJ {(q~ - qJ) 0 (x, r) + ( ~ -  ~ )  V O(x, r)} d x. 

Each term in I is estimated as follows: 

"~-~ -~ ~ , - n , I  + ( ~ - ~ o )  I(c,-e,)0~l 2, 2 I (q-g t )  th(qt--th)l _-__(?-7o) [ " -" 2 -1 

~ t  e We e P-e 2 2 I(ct-gt) ~,(~'~-C,)l_-<l~,-C,l +l(c,-~30f[ 2. 

We therefore get the conclusion by taking C t = M ( 2 + 7 + 7 o )  and ro; 0 < r o <  1 
such that C 2 = { M r o + ( ~ - ? o ) - t } { Y - 7 o - 4 M r o - M r o T o } - l > O .  [] 

We may assume the constants ro, C~ and C2 appearing in Lemmas 9.2-9.4 
are common. 

9.2 LP-Estimates on the Fundamental Solutions 

Here we shall show the following type of estimate: 

Lemma 9.5. For every 1 < p < 7 / 3 ,  there exist positive constants 7]P) and Cr p) such 
that, if Yo < ?]P) /x 7, then we have 

t 

du ~ [Z~,,(x, y; c)[ p O(y, r )dy  
0 N 

<= C{2 v) r - (p-  1)/2 r -3v)/4 eC,rt O(x, r), (9.11) 

for every 0 < e < l ,  O<r<(p--1)ro /2 ,  t>O, xe lR  and ceCb; ]]C][oo<?0. Here r o 
and C1 are the constants appearing in Lemma 9.3. 
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To give the proof of this lemma, we regard Z",,t(x, y; c) as a perturbation 
from q"(t-u, x-y)=Z~,,t(x, y; 0). We may consider that Z~,t(x, y; c) is defined 
for every - o e < u < t < o e ,  x, yeN,  by extending ceCb([O, oo)xlR) to ceCb 
�9 ((--o e, oo)xlR) properly. Define an operator Q~ on the space LV=LP(NxlR), 
p > l ,  by 

0(3 

(Q~h)(u,x)= ~ dt ~ Z~,t(x,y;c) h(t,y)dy, (u, x)e/Rx~-~, heL p, 
u R 

and set Q"= Q~ (Q~ with c - 0 )  and R~= cA Q~ (= (~,c-L~~ Let L~., TeN, 
be the class of h eU' such that h ( t , . ) - 0  for t > T. Note that, if p > 5/4, (Q~-)(u, x) 
determines a continuous operator of L]. --* N for each fixed (u, x); use Lemma 7.6. 

Lemma 9.6. (i) There exist positive constants CI,p, 1 < p<_ 3, and C2,p, p> 1, which 
depend only on p, such that 

i du ~ {q"(u, x)}'dx<C~,pt ta-p'/2, 1 < p < 3 ,  (9.12) 
0 R 

IlA~hllL,~C2,pllhlt.,, p>l ,  (9.13) 

for every 0 < e < 1 and t >= O. 

(ii) Assume Yo Cz,p< 1 and p[cf[ o~_-<7o- Then ( 1 - R ~ ) - I =  ~ {R~} n exists as an 
n = 0  

operator on L p and its operator norm is bounded by (1-y0C2,p) -1. I f  helfr 
with some TMR, then (1-R~) -1 h(t, y)elfr. 

Proof We notice that q~(t, x) is given by a convolution {q~l~. q~2)} (x) of funda- 

mental solutions q~l) and q~Z) of--~-0 +AZ respectively a t ~ - ? A .  Therefore (9.12) 

follows by using Hausdorff-Young's inequality and by the facts; ][q~e)l[[p(m 
=p-1/2(27rtT) (1-p)/2 and sup I[q}l)llL,tm< oe. For the proof of (9.13), we need 

t > O  

to give estimates on singular integrals. However, these can be derived by similar 
argument in the proof of Lemma 5 of Fritz [10]. The assertion (ii) follows by 
using Neumann series expansion. [] 

Proof of Lemma 9.5. Assume Yo C2,p < 1 with p = 2 ( p -  1)- 1. Then, for every h e L{, 
we have 

I Q~ h (0, x) ] = I (2~ (1 - R~)-I h (0, x) I 

t y) dy 
= s ~ 

N (Cl.p') 1/p' t(7- 3P)/4( 1 --70 C2,p)-1 I[hll.~, (9.14) 
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with p ' = 2 ( 3 - p )  -~. Here we have used Lemma9.6  and H61der's inequality. 
The first equality in (9.14) is a consequence of 

T 

Q*{R~}" h(u, x)=  ~ dt ~ ~'~) Z., t (x, y) h (t, y) d y, 
u R 

n=0,  1, 2 . . . . .  (u, x ) ~ , .  • R ,  

where t .,t j .=o are the functions defined by (7.19) with q replaced by q'. Note  
that /5>5/4. Now consider functions h [ , ~ L  p, t > 0 ,  x~P,, defined by h[,~(u,y) 
=sign{Z[, . (x,  y; c)} IZ~o,,(x, y; c)l "-~ O(y, r) for O < u < t  and =0,  otherwise. 
Then we see Q[ h~,~(0, x ) = " t h e  LHS of (9.11)" and (9.8) verifies 

IlhT.~llL~ = ~ IZka(x , ' ;  c)l~d <=(C2/rff)l/g'e c'rt O(X, r), 
~ - 0  

if 0 < r/~ < to. Therefore we obtain the conclusion from (9.14) by taking ~,tP~- r--  - -  g l  - -  ' ~  2 , p  

and C~ p) = (CI,p,)I/P' (1 - To C 2 , / ~ ) -  1 ( C 2 / f f ) 1 / ~ .  [] 

10. Compactness Argument 

We need to investigate, for every ~ ,  the compactness of the family 
{~[(S)}o<,<~ introduced in Sect. 8 and their Fr6chet derivatives 
{D ~u[(., S)} o <, < ~ as continuous functions of S s He,~. For  this purpose, however, 
it is more convenient to treat their Laplace transforms defined by R~ g-'~(S) 

= e -at gJ~(S)dt and R,D~"(x ,  S)= ~ e-atD gJ~(x, S)dt, a > 0 .  We also study 
0 0 

the compactness of {gJ~(S)}o<~< ~ regarding as functions of t. Denote by S~(.; S) 
the solution of the scaled T D G L  Eq. (1.3) to make its initial value SeI-Ie clear 
as before. We assume 7o-IIV"l[~<min(~,  71) taking ? ~ -  sup ~P~, where 7~ p~ 
is the constant appearing in Lemma 9.5. 2 <p< 7/3 

10.1 Compactness of  {R a ~ ;  0 < e < 1} 

The following Lemma 10.1 is an immediate consequence of Lemma 9.2. 

Lemma 10.1. For every 0 < e <  1, 0 < r < r o ,  t >O and S, S~He, we have 

t 

IS~(" ; S) -S~(-  ; g)l, = du< C2 la~(" ; S - S ) I  2 e c'rt. 
0 

Lemma 10.2. For every ao>O, there exist positive constants C=C(ao, ~t') and 
~= ~(ao) such that 

IRa~P~(S)-Ra~P~(~)I~CIog(.;S-~)I . O < e < l ,  a>=ao, S ,S~He.  
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Proof Since the function ~ of the form (2.2) has a bound: 

I~(SO-~(S2)l~Cr(~) 15~-$21. r>0, (10.1) 

with some constant Cr(7 ~) > 0, we obtain from Lemma 10.1 

IRa ~(S)--Ra ~(S)l 

[; ' ] <Cr(~)E a e-atdt ~ ISg( ' ;S) -S~( ' ;S) Irdu  
o o 

<_Cr(~P ) C(a, r)leo(" ; S - S ) b ,  

O0 

where C(a, r )=a]/ /~  I ] / / t texp{- t (a-C1 r/2)} dr, a > 0 ,  O<r <2a/C 1. There- 
o 

fore the conclusion follows by taking f; O<f<roA2ao/C 1 and C 
=C~(~P)sup{C(a, r3; a_->ao}<oo. [] 

We regard R, g~(S) as real-valued functions of (a, S)e(0, oo) x He.w. Remind 
that the set B({br})={SeHe, w; I S b = b , , r > 0 }  is compact in He, w for every 
sequence {br > 0; r > 0}. 

Proposition 10.1. For every 0 < a o < a l < oo and {br > O; r > 0}, the family of func- 
tions {Ra ~(S) ;  O < e <  1} restricted on [a o, a l l  x B({br} ) is relatively compact in 
the space C(Fao, a l l  x B({br})) having the usual uniform-convergence topology. 

Proof Since the uniform boundedness of the family {Ra 7~(S)} follows from 

and the equicontinuity in a follows from ~V~R a IRa T'~(S) l < ll~ll~/a 7J~(S) 

~ll~tll~/a 2, the proof is completed if one can show the equicontinuity in S 
of this family. For this purpose, note that the fundamental system of neighbor- 
hoods of 0~He,~ consists of all subsets U of H~,~ having the forms: 

U -  U~(th, ..., q,)= {S~He, w; I(S, qi)l<a, i=1,  2, ..., n}, (10.2) 

with neN,  c~>0 and t/i~H*, i=1,  2 . . . .  ,n. Therefore, with the help of Lem- 
ma 10.2, we may only prove that for every 6 > 0  there exists a set U of the 
form (10.2) such that sup {I co(-; S)b; S e U n B({2 br})} < & However, this is not 
difficult. [] 

10.2 Compactness of {RaD ~P"; 0 < e <  1} 

The first task is to show the relative-compactness in the space H_~ of the family 
{R a D 7~"( ., S); 0 < e < 1, a > ao, S EHe}, a o > 0, with some f = f(ao) > 0. The follow- 
ing lemma gives a criterion for the relative-compactness of a subset in the Hilbert 
space H- r ,  r > 0. The proof is easy and omitted. 

Lemma 10.3. A subset g is relatively compact in the space H-r if it satisfies 
the following two conditions: 
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(a) sup{lffl-~,; ~eg} < oo with some r'>r. 
(b) For every bounded interval I of N, the family of restrictions {~[i; ~eE} 

is relatively compact in the space L 2 (I, d x). 

Lemma 10.4. For every ao > O, there exists a positive constant ?=  r(ao) such that 
{R,D ~ ( ' ,  S); 0 < ~ <  1, a~ao, SeH~} is relatively compact in the space H_ r 

Proof. We show that two conditions (a) and (b) of Lemma 10.3 hold for g 
={RaDTJ~( ", S); 0 < e <  1, a>ao, SeH~}. First, using Theorem 8.1 (ii) and then 
(9.6), we obtain for every t/sH~: 

I(R~DtP~( ", S), rl>l 

<C~(70 ae-"' dt Es [ o,~(tl, ; S~.)[~d 
0 

_-<C,(7 j) C ( a , r ) l o ) ( ' ; q ) l ~ , 0 < e < l , 0 < r < r o A 2 a o / C l , a > a o ,  (10.3) 

where C~(70 and C(a, r) are the same constants in the proof of Lemma 10.2. 
However, it holds 

leo(" ; ~)1~< C~.~, I~1~,, 0 < r ' < r ,  (10.4) 

with some constant C~,~, and therefore we obtain for every 0 < r '<  r o A 2 a/C~: 

]R~D~"(',S)I_~,< inf {C,('P) C(a,r)C~,~,}, 0 < e < l ,  a>=ao, SeH~. (10.5) 
r; r > r '  

Now take f= f (ao )  such that O<f<roA2ao/C 1. Then, since sup{C(a , r ) ; a  
_>_ao}<Oo for r<2ao/C 1, we get the condition (a) with r = f  from (10.5) by 
taking r': f < r ' < r  o a 2ao/C 1. 

Secondly to show the condition (b), we see for every q e C~ OR): 

[<RaD~P~( ", S), V~>I < C~(~ ) C(a, r)[tl[ ~, (10.6) 

holds for 0 < e <  1, 0 < r < r  o/x 2ao/C~, a>ao and SCH~. This follows by a similar 
calculation as above using (9.7). Since it holds I~/I~ < 11'7 I[ L~(~, r > 0, for ~ satisfying 
supp r /~I ,  (10.5) and (10.6) imply 

suP{k~=ollVkR~DTJ~(',S)llL~tx);O<e<l,a>=ao, S~He}<oQ, 

where V is the derivative in the distribution's sense. This proves the condition 
(b) with the help of Rellich's theorem (see, e.g., Adams [1]). []  

The second task in this paragraph is proving the equicontinuity of 
{Ra D 7 ~ (., S); 0 < e < 1} as H_  rvalued functions of (a, S). The assumption 7o < 71 
will be used to show the following lemma. 

Lemma 10.5. For every ao>O, there exist positive constants f=f(ao) ,  ~=f(ao), 
C=C(ao, ~) and O < a <  1 such that 

[R,D ~ ( . ,  S)--RaD ~ ( . ,  S)1_~<= C{]co(- ; S-S)[~ + ]co(.; S -  S)l~}, 

holds for every 0 < ~ < 1, a ~ a o and S, S~H e. 
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Proof Positive constants ~ and ~ will be chosen later. Theorem 8.1 (ii) shows 
for every ~/~Hf: 

]<RaD ~'(', S ) - R . D  T'( ", S), t/>] 

~ d t i { I ]  ()+1'2 ( )}d  = ~'= 0 e l f - a t  0 ,i U ,i U . , 

where 

I ] , i ( t )  = E [ {  ~(S~) - ~(S~)} (ZD.t(q, �9 ; S:), go,>], 

Ie2,,(t)= E [~(,.~) < Zeo,t(q, "; Se.)- Z~oa(q, "; S~.), go,>], 

~ ( S ) = ~ - ~  (<S, go1>, ---, <S, gok>), i= 1, 2 ..... k, 

and S~ = Sf(- ; S), E~ = Sf(" ; S). Est imat ion on a term inc lud ing I ] , i  goes as fo l lows:  

t [ { i  } l [2~ t  .}1/21 
oS e ~e 2 Z ~ . e I],i(u)du <Cv(70 E ISu-Sul ,  d .  S< o,u(l~,', S.), goi> 2 d 

~.o 
__<c,(~ C2 c~,,, I god-,, I~('; S-g)l, I~l~exp{C~ t(f+~')/2}, 

0 < e < l ,  O<~<ro ,  O<~<~ '< ro .  

Here we have used Schwarz's inequality and (10.1) for the first line and then 
(9.6), (10.4) and Lemma 10.1 for the second line. To estimate the term including 
Y 2a, we fix 2 < p < 7 / 3  in such a way that ~,o <?~ p) holds. Then we have 

' < aq~ 
~o Ie2"i(u) du = ~ 

< a~k 

t 
s e . I go, l-~ w E [IZS,,(q, . , 'S . ) -Zo,u(~ ,  , S:)I,] d .  

o 

[goi[_~ t V ~  2 e  c '~ ' t /2  

[{ Cl �9 ~ I { v  (s.(-))- v"(~:(.))} z k , ( ~ , - ;  S.)l~ d 

<=1 ~ o~ I~,]-, V t C2 e c''t/2 E[{l~,i(t)} '/" {l~,,(t)}'/v], 

O < e <  1, O<~<ro ,  

with q > 2 such that 1/p + 1/q = 1/2, where 

and 

t 
{v  (S.(x))- v (S.(x))} o(x, ~) ax, 

o R 

t 
Z ~ I~,i(t)= ~ du ~ ] o,,(rh y, S~.)p O(y, ~dy. 

0 Ir 

(10.7) 
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We have used Schwarz's inequality and then applied Lemma 9.4 for the second 
inequality in (10.7). We estimate further as follows using Lemma 10.1 : 

I~,i(t) <(2yo) q-:  ~f, C2 Io~(" ; S-S)[~ e c'~t, 

where ~,, = II V'"ll oo On the other hand, 

t 

Z ~ I~,~(t)<lul~ [du j" I o,.(', Y; S~)I%0(Y, r")dy 
0 N 

<lq[~ M F ' - r  

t 

�9 ~ O(x, -pF ' /2 )dx  ~du ~ ]Z~o,,(x, y; S~.)I p O(y, r')dy 
R 0 R 

<lql~ M [ P~ (~"-r) M ( F - p f " / 2 )  C(2 p) f--(p--1)/2 t(7--3p)/4 eClt~, 
= \p - -2  

O<f<=(p--1)ro/2, 0 < f < F ' < 2 ~ / p ,  

where M(r)=~O(x, r)dx< oo if r>0.  We have used H61der's inequality for the 
second inequality and Lemma 9.5 for the third inequality. Now the combination 
of these estimates leads us to the conclusion by taking ~ = 2/q, choosing F and 
f in  such a way that O<pf/2<f<{ao/C~ ^ (p -  1) to/2}. [] 

We may assume that two f(ao)'S appearing in Lemmas 10.4 and 10.5 are 
common. 

Proposition 10.2. For every 0 < a o < a ~ < c ~  and {b~>0;r>0}, the family of 
H_rt,o)-valued functions {R~DT~( ., S); 0 < e < l }  restricted on [%, a~] x B({b~}) 
is relatively compact in the space C([ao, a~] x B({b~}), H_n~o) ) equipped with the 
usual uniform-convergence topology. 

Proof We apply Ascoli-Arzel~'s theorem using Lemmas 10.4 and 10.5. We note 
that the equicontinuity in a follows from 

sup { ~--~ R, D T~(', S) _~(~o); a~[ao, a,], O<e < l, SeHe}< ~ ,  

which can be shown similarly to (10.5). Therefore the proof can be completed 
in a similar manner to that of Proposition 10.1. [] 

10.3 Compactness of {~t~(S); 0 < e <  1} 

We prepare the following. 

Lemma 10.6. For every r there exist positive constants C1 and C2 
= C2 (c#) such that 

Es [(S~, q~)2-] _<_ C2 (1 +IS 1,2) {e cl"t + t 2} 

holds for every 0 < e <  1, 0 < r <  1, t >__O and SeHe, where S~=S~(" ; S). 
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~S" ~3 be three functions defined similarly to 3 {St, i}i= 1, which were Proof Let t t, iJi= 1 
introduced in Sect. 5; we replace q by q~ and, in addition, So by S for S~,~ 
and S,(y) by S~,(y) for S~,3. We may derive estimates on I~-=Es[(S~,i, ~o)2], i=  1, 
2, 3, individually. For  I],  we see 

I (St, l, cp)[ = [(S, q"(t, ")*q))l 

_-< IS Ir I[ ~o Jtl, -r  II q~[l~, - ,  II q}2)II1, - , ,  

by using Hausdorff-Young's inequality, where I]" II 1,-r stands for the norm of 
the space U(IR, O(x , - r )dx ) .  However, it is not difficult to show [Iq~[ll,-r 
<KeL% Ilq}2)llL_,<KeL% for every 0 < e <  1, 0 < r <  1 and t > 0  with some K, 
L>0 .  Therefore I(S~,I, q~)l is bounded by ISIr Ilq)l[1,-rK2e 2L'. The estimates 
on I~ and I~ can be derived similarly and we get the conclusion; cf. [Fu]. []  

Proposition 10.3. (i) sup {1 ~"(S)]; 0 < e < l ,  t=>O, SeH~} < oo. 
(ii) As functions of t, a family {~(S) ;  O<e < I, SEH~: ISl~<b} is relatively 

compact in the space C([0, oo)) equipped with the usual compact-open topology 
for every 0 < r < 1 and b > O. 

Proof The assertion (i) is trivial. For the assertion (ii), we may only prove 
the equicontinuity in t of this family. Indeed this follows by showing 

sup{[Es[ff"~I'(S[)]l;O<~<l,O<t<T, lS[,<b}<o% T>0 ,  (10.8) 

0 ~ (S )=Es[ f# ,  ~(S[)], t>0 .  However, (10.8) can be proved by since we have 

using Lemma 10.6. []  

We conclude this section by making the definition of an operator D more 
restrictive. With fixed f > 0 ,  the domain N(D) of D consists of all 7J~C(He,~) 
which are Fr6chet differentiable on H e and satisfy D ~ C ( H e ,  w,H_r). For 
T ~ ( D ) ,  we set D 7~( -, S )= the  Fr6chet derivative of T at S. The proof of the 
following lemma is not difficult so that we omit it. 

Lemma 10.7. The operator D defined as above is "closed '" in the following sense: 
Let { ~ } o < ~ < 1 ,  7~C(H~,w) and ~ C ( H  . . . .  H_f) be given and satisfy that 
7 j" and D gt~ converge as e+O to gt and ~, respectively, uniformly on each compact 
ball B({b~}) of H~,~. Then we have ~Pe~(D) and D 7 t = q~. 

11. The Proof of Main Theorem 

We conclude the proof of Theorem 1.1 dividing it into three steps. We assume 
70 < min(7, 71). 

Step I : Convergence of ~ and D 7 j" 

We fix an increasing sequence of compact balls {B, = B({b~")})}~= 1 in He, w satisfy- 

ing U B ,=He ,  w. Take any aoe(0, oo) and subsequence {e'~0} of {e}. We set 
n = i  

simply f =  ~;(ao), the constant appearing in Proposition 10.2. 
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Lemma 11.1. (i) There exist ~ta(1)(S)GCb([ao, OQ)• He,w) , ~a(2)( ", S)~Cb([ao, co) 
XHe, w,H_e) and a subsequence {e"~,0} of {g} such that R,~P~"(S) and 
R, D gJ~"(.,S) converge to ~(1)(S) and ~(2)(., S), respectively, uniformly on 
[%, aa] x B, for every al; a, >ao  and n e N  as e"+O. 

(ii) ~(1)e~(D) and D ~1)( . ,  S)= ~(2)(., S) for every ae[ao, oo), 

Proof The assertion (i) is a consequence of Propositions 10.1 and 10.2. We only 
remark that the boundedness of the limit functions ~(a)(s) and ~(2)(., S) follows 
from I~.(~)(S)l= limlR. T~"(S)I< H~'lloo/a and (10.5), respectively. For the proof  

~"$0 

of (ii), use Lemma 10.7 noting R,  {D 7~( ", S)} = D Ra 7~( ", S). [] 

Lemma 11.2. For every 2(.)~A and a~[ao, o~), we have 

lim E "~(-).~'' IRa T~" (S)] = ~ ) ( p ) ,  (11.1) 
e "  ,~ 0 

limEU~,+~"[(A 2(-), RaDT~"( ", S))] = (A 2('), ~(~)(', p)), (11.2) 
e " $ O  

where p =-p(')= fi(2(')) and fi is the mean spin function. 

Proof Since ~1)~  Cb(H~,w) for every a > ao, Theorem 4.1 implies 

lim [E u~'.',~'' [ ~ ) ( S ) ]  -- ~ ) ( p ) [  = 0. 
E"$O 

Therefore, for the proof of (11.1), we may only show I~"-]E"~(.~.o"[{R~g ~'' 
-~ , (1 )}(S) ] [~0  as e"+0. However, U '  is bounded by the sum of I]'in 
=sup]{RaTJ~"--~l)}(S)] and U'2,.=2 [[~n~#z(.),~,,(B~,)/a for every n s N .  Lem- 

S~Bn 

ma 11.1 implies limI~'i,=O, n~N.  On the other hand, P'Z,n is bounded by 
~"$0 

2 I1~'11~ {b~n)} -2  Eu~'"'~"[ISI~]/a, which converges to 0 as n--*oo uniformly in e"; 
see Proposition 3.1 (iii). Therefore we obtain (11.1). The convergence (11.2) can 
be shown similarly. []  

Lemma 11.3. For every S e l l  .... ~"(S) converges to some ~(1)(S)eCb([-0, OO)) 
uniformly on each bounded interval of [0, oo) as g"~O and it holds ~,(~)(S) 
= R~ 7J(1)(S). 

Proof Let ~(~)(S)e Cb([0, 00)) be an arbitrary limit of {~"(S)};  recall Proposi- 
tion 10.3. Then, taking the limit, it holds R, gm)(S)=~,(1)(S), ae[a o, oo), and 
this proves from the uniqueness of the Laplace transform that the limit T(1)(S) 
is determined uniquely. Therefore we get the conclusion. [] 

Step 2: Derivation of the Limit Equation 

Lemma 11.4. For every a > 0 ,  0 < e <  1 and )c(.)~A, 

a E u~(-'.~ JR, gt~(S)] = E u~'.'.~ [-T(S)] + E u~ .̀,,~ [(A 2(0, RaD ~P~(', S))] .  
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Proof Since ~Y(S~) - J if' ~Y(S~) du is a martingale, we have, 
0 

a e ,  tw(S)=a ~ e - " t ~ ( S ) d t + a  e -" td t  Es[f f  "tP(S~,)]du 
0 0 0 

= ~(s)+ ~e -~  ~ ~(S~)] dt. 
0 

In this calculation, we have used integration by parts by noting the result of 
Lemma 10.6. Now the conclusion follows from Theorem 8.1. [] 

The following is an immediate consequence of the above Lemmas. 

Proposition 11.1. For every a >= a o and p = p (') e fi (A), we have 

aR ,  7~(~)(p)= 7-'(p) + (A {2-(p (.))}, DR= 7J~ ", p)), (11.3) 

where 2 is an inverse function of the mean spin function fi and 

p(A)= {p(.)= ~(~(-)); ~(-)~A}. 

Now we prepare the following lemma. 

Lemma 11.5. lira fi(2)= + oo. 
A--~ -F oo 

S 2 and/4w = n o  + W Proof Consider self-adjoint operators/7 o =-�89 2 + ~  

defined on the space L2(R, ds) for a bounded function W and let Ow be a 
positive and normalized eigenfunction of / tw corresponding to its minimal eigen- 
value ~(W). Then Rayleigh-Ritz principle (Simon [23, p. 199]) proves I~(W) 
-~7(0)1< ]lWll~o. Using this estimation, similar argument employed by Reed 
and Simon [20, IV p. 251] shows 

~,~W (S) = et{,,~(w)+ [] w H ~} e - t { [ I w +  I[ w [I ~o} ~'~w (s) 

<= et(.-~(o) +2 ]1Wlj ~1 e-t~o (2w(s)" 

The RHS can be estimated further by noting JIt)wll,.2=l and using Mehler's 
formula and finally, by taking t = 1, we obtain 

~w(S)<-_C2exp{21lWll~o-Cxs2}, se~(, (11.4) 

with some positive constants C1 and C2 which are independent of W and s. 
Now we look at the mean spin function fi(2). Since Oz(s)=~v( .+~/ , (s-2/y  ), 
we have the conclusion from (11.4) and 

sQv(. am(s) dsl 

<C~e  41rvll~ [. Isle-2C~2ds<oo. [] 
R 

Lemma 11.6. The equality (11.3) holds for every a > a o and p e C~ OR). 
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Proof First we note that Lemma 11.5 proves fi (A)= A, since the function fi = fi(2) 
is real analytic and strictly increasing in 2. For  every p EC~(N), we can take 
a sequence {p, eA}2= 1 in such a manner that (a) p. converges to p in the space 
H~,w (i.e., for every neighborhood U of p, p . e U  for all sufficiently large n) 
and (b) A{2-(p,(.))} converges to A {~-(p(.))} in the space H e. Therefore we 
obtain the conclusion from Proposition 11.1 because R,~g~ and 
D R, tP(~)(',')eCb(H .. . .  H-r).  []  

Step 3: Identification of the Limit 

See the book of Ladyzenskaya, Solonnikov and Ural 'ceva [18, Theorem 8.1] 
for the following result on the nonlinear diffusion Eq. (1.4). 

Theorem. Assume the initial value Po~ C~ + p ~ ) ,  0 < fl < 1. 
(i) There exists a classical solution Pt of (1.4) belonging to the class 

H2+#'1+#/2(~• [0, T ] ) f o r  every T > 0 ;  see [18, p. 7] for the definition of this 
class. 

(ii) The classical solution of (1.4) satisfying the condition 

suP{k~=oJVkpt(x)l;t~[O,T],xEF,~}<oo , T > 0 ,  

is unique. 

We denote by pt(p)=pt(. ;p) the unique solution of (1.4) with initial value 
peCk+pat). 

Lemma 11.7. ~(1)(p)= T(pt(p)) holds for every t >O and p~C~+P(R). 

Proof Put f ( t ) = R ,  T(l)(pt(p) ) with fixed a>ao and peC~+P(R). Then, using 
Lemma 11.6, we have 

and therefore 

e-at f ( t )=Ra ~ m ( p ) _  i e-"" ~(p.)du. 
o 

After letting t--* oo in this equality, we now obtain R,  Tt l ) (p)=R a {T(p.(p))} 
for every a>ao and peC~+POR). This verifies that ~(1)(p)=T(pt(p) ) for a.e. 
t and consequently for every t > 0, since the both sides are continuous in t. [ ]  

Theorem 11.1. (i) Assume SeC~+~(rR) with some 0 < f l < l .  Then Es[T(S~) ] con- 
verges to T(pt(S)) uniformly in re[0, r ] ,  r > 0 ,  as e$O for every PeN .  

(ii) Assume 2 ( . ) e A n C ~ + ~ 0 R  ) with some 0 < f l < l .  Then Eu~-~.~[T(S~)] con- 
verges to T(pt) uniformly in te[0,  T], T > 0 ,  as e~O for every P e N ,  where Pt 
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Proof (1) is a consequence of Lemmas 11.3 and 11.7; note the limit function 
~P(pt(S)) is independent of the subsequence {d'}. For  the proof of (ii), we first 
notice the relative compactness of the family {E "~.~,~ [~(S~)]; 0 < e < 1} in the 
space C([0, ~));  combine Propositions 3.1 and 10.3. Then the conclusion follows, 
since we see from (11.1), Lemmas 11.3 and 11.7: 

limR, EUa""~ 7J(p.), a>ao. [] 
~$0 

It is not difficult to see that Theorem 11.1 (i) implies the assertion of Theo- 
rem 1.1. 

Acknowledgement. The author expresses his sincere gratitude to Professor J. Fritz, who introduced 
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