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Summary. Two nonparametric estimators of the slope of a regression line
with error on both variables are considered, each of them being defined
as the zero-crossing of a stochastic process whose sample paths are mono-
tone. Their asymptotic behaviour is derived from the local asymptotic behav-
iour of the underlying processes. One of the estimators is a nonparametric
version of Wald’s (1940) estimator.

0. Introduction
This paper deals with the estimation of the coefficient a in the following model:

(X, 1)), ..., (X,, Y,) are observed, with
Y, =Y*+n;
X;=X¥+s
Y*¥=aX¥+b, i=1,...,na=*0,

where a, b are unknown, X%, ..., X¥ Y, ..., Y.*¥ are unobservable real numbers
(the “true” values) and ¢, ..., ¢,, %y, ..., j, are real-valued random “errors.”
We shall assume that the &’s are ii.d., the #’s are ii.d. and that the two sets
of errors are independent.

In 1940 Wald proposed an estimator which turns out to be consistent and
asymptotically normal under a rather restrictive assumption about the model
but without assumptions about the error variances. See Wald (1940) and
Chap. 29 of Kendall and Stuart (1973). In the present paper a nonparametric
version of Wald’s estimator is proposed. Under an assumption (assumption
A below) analogous to that of Wald consistency and asymptotic normality are
obtained. The role of assumption A is then illustrated in a special case. When
the errors are symmetrically distributed about the origin a rank estimator is
also investigated.
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Each one of the estimators is defined as the zero-crossing of a monotone
stochastic process and their asymptotic normality is derived from a local asymp-
totic linearity property of the underlying processes.

A consistent estimate for the asymptotic variance of one of the estimators
is also given and its rate of convergence is obtained by establishing a central
limit theorem for the related process. More precisely a sequence T,(t) of processes
in D[—1,1] and a sequence d, of real numbers are obtained such that
n'2(T,(t)—d,t) converges weakly to a linear process with quadratic drift.

The paper is divided in six sections: 1. The estimators; 2. Asymptotic linear-
ity; 3. Asymptotic behaviour of the estimators; 4. Relative efficiences; 5. About
assumption A4; 6. Variance estimation and rate of convergence.

Notation

The indicator of a set C is denoted by I(C). Given a vector (zy, ..., z,), z;; means
the difference z;—z; and R(z;) the rank of z; in {z,, ..., z,}. The integer part
of a real number z is denoted by [z]. All distribution functions defined below
are assumed to be absolutely continuous with respect to Lebesgue’s measure
on the real line. We denote by F, G, F*, G*, H, the respective c.d.fs of 5, &1, 1,
—H,. 81— &y, 1 —agy, with respective densities f, g, %, g%, h,.

1. The Estimators

(1.1) The estimator 4, is defined as any value of 4 minimizing the absolute

value of
Y, Y,
R (A)= If2—2<4)-12
"( ) i=1z,:,, m { (th_Xti_ ) /}
j=m+y1,.,‘.,n
where m is the integer part of n/2 and  is the vector of antiranks of (X, ..., X,).

We shall investigate the asymptotic behavior of 4,, under the crucial
Assumption A. If M={i=1,...,n|R(X¥)<m} and N=M'={i=1,...,n|
R(X¥)>m}, then {1y, ..., T,,} = M and {71, ..., T,} = N.

This assumption means that we can divide the observations according to
their size in two groups independently of the errors. See also Wald (1940), Moran
(1971). Its importance shall be illustrated in Sect. 5.

Note that 4,, could more generally be defined by taking m=[an] for some
0<a=1/2 in the definition of R,(4). If the set N in assumption A is replaced
by {i=1, ..., n|R(X}¥)>[(1 — ) n]} the results below, which are stated for a=1/2,
can be straightforwardly generalized to any o. Not surprisingly the efficiency
of the estimator increases with o.

Instead of working with the variable 4 and the process R,(4) (see for example
Bhattacharya, Chernoff, Yang (1983)), we shall work with a new variable t,
connected with A by the relation A=a+tn~ /> (where a is the slope) and the
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process Y,(t):=n"¥?R,(a+tn"'/?). Using the structure of the model and
assumption 4 we get

YO=n32 % {I(n;—as;=tn” '2(XH+e)— 1)

(i, )eM XN

(1.2) The estimators 4,, and 4%,.
Suppose that the intercept b is known (we assume WLOG that b=0). Then
we define 4,, as any value of 4 minimizing the absolute value of

M=

R(|Y;—AX;]) sign(¥,— 4X)).

1

il

i

Suppose that b is unknown but that we have a W-consistent (preliminary)
estimate b, for b (see the end of Sect. 3). We then define A%, as any value
of 4 minimizing the absolute value of

Y R(Y,—4X;—b,))sign(¥;— 4X,—b,).

i=1

By the same transformation as in (1.1) and since b, is W—consistent, we are
then led to the process

U,(t, s)=n"3? Z R(m—ag—tn™ " (X¥+e)—sn 12|

i=1

-sign(m;—ag;—tn~Y2(X¥+e)—sn” 12,

If b=0, the process of interest is U, (¢, 0).
We shall investigate the asymptotic behaviour of 4%, for f and g symmetric
about the origin and under the following

Assumption B.Vie{l, ...,n}, X¥*>0 and Xia_'zi'O.

Assumption B entails the monotonicity of the process U,{, s} (see Sect. 2)
and hence the fact that 4,, and A%, are well defined.

Note that each of the two assumptions A4, B implies that &, has a bounded
support.

Remark. For practical purposes assumptions A, B appear to be rather restrictive.
However, in many physical experiments the quantities of interest are positive
and assumption B would then cause no trouble. Concerning assumption 4 there
are physical situations such as some calibration problems where the points
of measurement are choosen by the experimenter and where the assumption
could be met.
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2. Asymptotic Linearity

Notation. For t,seR¥, t<s means that the inequality holds componentwise.
We write {,) for the usual scalar product on R*. For 6>0, a é-net of AcR
is a finite set of points a, <a, <...<ay of A such that

max (a;+7—a)=é and U[ai’aiJrl]:A'
i=1,.,N=1 i

For f: R*>R and Ac=R*, we write || f] 4 for sup|f(x)|. For AcR, A*cR*
xeA

is the k-fold cartesian product of 4. Let I IR be a compact intervaland R . (R_)

the set of strictly positive (negative) real numbers. For u, veR¥, u<v, [u, v]
k

means the product [] [u;, v;].
j=1

(2.1) Lemma. Let (X (t)),erx be a process whose sample paths are nonincreasing
(nondecreasing) with probability one and such that | X||, , is measurable for
each [u, v]<I*. Let ceR* (R¥) and define Z(t)=X (t)— X (0)—<c, t>. Let 5eR¥,
and Il be a Synet of I,i=1, ..., k. Then

uznlk—nznﬁ;é'qq, & with |e|=(ecyly ... lcyl)

i=1

Proof. Let X(t) be nonincreasing (say). It is enough to show that for [u;, v;] <1,
j=1, ..., k, we have

1Z 1,01 1 Z gy = <lel, v—u)

k
where {u, v} =[] {«;, v;} and that the exception set does not depend on u or
j=t

v. We distinguish two cases

L AZ]w,0= Sup]Z(t) 2. !lZIi[u,u]=tsup](—Z(t))
t

elu, v elu, v

I shall consider the first case. The second is analogous.
(i) Suppose that Z(u)=0 and let te{se[u, v]|Z(s)=0}=:[u, v],.. Then
|Z(O)|—1Z ()] < {lc|, v—u)> by the monotonicity of X(+) and the fact that t=u.

Note that the exception set does not depend on u, v or ¢.
(i) Suppose that Z(u)<0. For te[u, v],, X(O)—X(0)=<{c, t)=<{c,v) and
by the monotonicity of X (+), <c, 1D 2, )X (H)— X=X )~ X (0)<<{c, w),

which implies Z(2) = <c, ud>—<{c, vy ={|c|, v—ud.
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Therefore, for all te[u, v],., Z(t)—|Z (u)|a§'<|c|, v—uy where the exception

set is independent of u, v and ¢.
Now we can write

0= 1 Z 0 sy = 12l oy S U Z Ny — 1 Z@) = sup Z(B)—|Z ()| = el v—ud. [

telu, vls

(2.2) Lemma. Let (X,(t)),crx be a sequence of monotone processes as in (2.1).
Suppose that | Var(X,(*)—X,0)|=0(1) as n—oo and that there exists
ceR* (R%) such that | E(X,(*)—X,(0)—<c," Y| p=0(1). Then | Z,||p=0p(1) as
n— 00.

Proof. Assume WLOG that I =[0, 1] and let, for meIN*, I, = {jm™'; j=0, ..., m}.
By Lemma (2.1),

5=

k
a.s.
1Z | =N Zylpg = m™" Y leyl.
j=1

k
Given &>0 let moeN be such that mg' ) |c;/<é/2. Then P{||Z,}>¢}
j=1
gP{HZ,,HF}%>s/2} and it is enough to show that |Z,| 5 =0p(1) for any fixed
meIlN*. Using triangle’s inequality and the second hypothesis we have for n
large enough

P{Z,] s>} S P{IX,(")— X,(0)— E(X, (") — X, (O} s > ¢/2}
< Y P{IX,(0—X,0)— E(X,()— X,0)|>¢/2} =o(1)

telk

by Chebyshev’s inequality and the first hypothesis. []

Asymptotic Linearity of Y,(t) and U (t, s)

Henceforth we shall assume that the X*s are uniformly bounded and that

n

po=limn=? %  X¥ and p,=limn~ ') X} exist whenever used. Under
n=© (i,)e M XN n=o i=1

assumption A4, Y,(¢) is for each n a nondecreasing function of ¢ with probability
one. If moreover f satisfies a Lipschitz condition of order >0, it is a matter

of straightforward calculation to show that

sup Var(Y,(t)— Y,(0)=0(m""%) and sup|EY,(t)—dt|=0(1),
tel tel

with d=p, {f*(ax)dG*(x). As a consequence we get by lemma (2.2)

(2.3) Propeosition. If assumption A is fulfilled and if f satisfies a Lipschitz condition
of order >0, then sup|Y,(t)— Y, (0)—dt|=0p(1). [
tel



24 P. Milasevic

By a result of Van Eeden (1972), under assumption B, U,(t, s) is for each n
a nonincreasing function of (¢, s) with probability one. If moreover f satisfies
a Lipschitz condition of order >0, then for f and g symmetric about zero,
sup Var(U,(t, s)— U,(0, 0))=0(n"/?) and sup |EU,(t, s)—d, t—d, s|=0(1), with

t,sel t,sel

dy=—2p, [ h2(x)dx and d, = —2 [ h2(x) dx. Therefore we get by lemma (2.2)

(2.4) Proposition. If assumption B is fulfilled, if f and g are symmetric about
the origin and if f satisfies a Lipschitz condition of order >0, then

sup |U,(t, )= U,(0, 0)—d;t—d,s|=o0p(1). [

t,sel

(2.5) Corollary. Under the hypotheses of (2.4) and if b, is a W—consistent estima-
tor of b,

sup I Un(ta nllz(bn_b))_ Un(O’ 0)_d1 t_dan/Z(bn_b)l ZOP(I)'
tel

The proof of the corollary follows from (2.4) and the fact that l/;l(bn——b)
=0p(1).

Remark. Propositions (2.3) and (2.4) still hold if, for example, F is everywhere
differentiable with bounded derivative f, or if F is the uniform distribution on
some interval and g is square-integrable.

3. Asymptotic Behavior of the Estimators

We first give a result about zero-crossings of monotone processes. This result
is a modification of a theorem by Jurekova (1971) and can be proved much
the same way.

(3.1) Let (X,(% 5))¢,ser2 be a sequence of processes satisfying the conditions
of lemma (2.2) for some c=(c,, ¢;) and such that (X,(0,0)),5, is tight. Let
L,(t,8)=X,(0,0)+c t+c,s and t,(s) be defined by L,(t,(s), s)=0. For (s,),»:
a tight sequence of real-valued r.v.’s such that X (¢, s,) is measurable for each
n and t, let t,=t,(s,) and define

D,={teR|t minimizes |X,(-, s,)|}.

Then sup|t—t,|=o0p(1).

teD,

Note. This result is of course also valid in the case of one-parameter processes
(with 5,=0).

Propositions (3.2) and (3.4) below are now immediate consequences of (3.1)
and (2.3), (2.4), (2.5).

(3.2) Proposition. Under the hypotheses of (2.3) n*/*(A,,—a)= —d ~* Y,(0)+0p(1)
with d=p, [f*(ax)dG*(x). O
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By Hajek’s projection method (Héajek (1968)) it is easy to see that
Y,(0)—Z> 470,48 ') and we get

(3.3) Corollary. Under the hypotheses of (2.3) n”z(Aln—a)nTyog
(0481472, [

(3.4) Proposition. (2) Under the hypotheses of (2.4) and if b, is a ]/ﬁ—consistent
estimator of b,

n'2(4%,—a)= —d; ' U,(0,0)—d; "dyn'? (b, —b)+0p(1)

withdy = —2p, [ h2(x)dx, dy=—2 [ hZ(x)dx.
(b) Under the hypotheses of (2.4) and if b=0,

n'*(43,—a)=—d; ' U,(0,0)+0p(1). O

Since U, (0, 0)—2— 4"(0, 1) we get

n—>w

(3.5) Corollary. Under the hypotheses of (24) and if b=0, n''*(4,,
—a) 2o /' (0371d ). [

Remark. In the case where b is unknown we used a consistent estimator of
b to define A%,. It seems difficult to estimate b without estimating the slope
as well. Moreover it seems impossible to estimate a and b consistently without
any additional information (see also Moran (1971)). We give below an estimator
of (a, b) when replicate observations are available.

Let &,, ..., ¢, be positive r.v’s independent of the &'s and the #’s s.t. &
— X%, ..., &, — X} are 1id. with zero expectation. If we define (@,, b,) as any
value of (4,, 4,) minimizing

i=1

Y &Y —4,X,—4,50)— 1},
i=1

it can be shown by the method used earlier (see also JureCkova (1971)) that

—

.. d,—a . .
under some conditions n'/? (5 b) follows asymptotically a bivariate normal
—

distribution and that 4%, with b, used as a preliminary estimate for b is asymptot-
ically normal with asymptotic variance larger than the one of &,.
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4. Relative Efficiencies
4.1. ARE of 4., with respect to Wald’s estimator

Assume for simplicity that n=2m. Under assumption 4, Wald’s estimator can

be written as
SY-Y

jeN ieM
Wo—JeN  ieM
n .
Z XJ'_ Z Xi

jeN ieM

Therefore, provided {x?h,(x)dx < oo, we have

nV2(W,—a)—Z> 4 (0,47 3 2 [ x? hy(x) dx).

n—oo

Since [ f*(ax)dG*(x)=[ hZ(x)dx we obtain from corollary (3.3) that
ARE(4;,, W,)=12[x*h,(x)dx( hZ(x)dx)*.

Since the latter expression is invariant under scale transformations of the form
(x, y)— A{x, y) one can prove as in Lehmann (1983) that ARE(4,,, W,)=0.864.

4.2. ARE of 4,, with Respect to 4,, when b=0

Under assumptions 4 and B, we get from (3.3) and (3.5) that ARE(4A,,,4,,)
=4pip; 2 If m™'Y X¥—b, and m™ 'Y XFf—>b; as n—>oo with by>b,,
jeN ieM

ARE(A,,, 4,,)=(by—b)?* (b, +b;) ?<1.

5. About Assumption 4

The estimator 4,, has been defined in Sect. 1 as zero-crossing of the monotone
process R,(4). Under assumption A, ER,(a)=0 and this definition seems to
be reasonable. Would E R,(a) be different from zero, one should consider instead
zero-crossings of R,(4)— E R,(a). We investigate in this section a particular situa-
tion in which assumption A is not fulfilled. We obtain that ER,(a)~xn> for
n large, where unfortunately x depends upon the parameter a that we want
to estimate. The alternative mentioned above is therefore not practicable and,
on the other hand, one cannot expect that 4,, be consistent for a.

(5.1) Proposition. Let XF be 0 or 1 according to i<m={[n/2] or i>m and let
&, be uniformly distributed on [0, 1+ 6], with 0>0. Assume that f* is strictly
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positive on a neighborhood of the origin. Then n~*ER,(a) =K, where
K=x(a, f, 8) has the same sign as a.

In the proof of this result we shall use a corollary of the following lemma.

(5.2) Lemma. Let ¢, ¢,, ... be independent and uniformly distributed on [0, 1 +4§],
with 6>0. Let X;=¢; for i=1,...,m and X;=1+¢; for i=m+1,...,n Then

Y2 (X gy~ 20) —2> (0,271 52,), where X is the m™ order statistics of

(X1 .., X)) and zo=1+2714.
Proof. We assume for simplicity that n is even, i.e. n=2m. Define
TH(E Xy, - X)= Y, {10172},
i=1
Then X, =inf{t|T*(; X, ..., X,)=0}. Since T*(t; X4, ..., X,) is a right-con-
tinuous function of t we have
P{nl/z(X(m)_Zo)§Z}:P{Tn(zn_l/z)éo}

where T,(z)=T*(z; X, — 2o, ..., X,—Zo). From Liapunov’s CLT and since

ET,(zn"Y?)(Var E(zn‘1/2))1/2=]/5(520)'1/22+A (z) with 4,(z)—>0,

n—>w

we obtain P{T,(zn~"?)20} —— (]/i(ézo)’”zz) where @ is the c.d.f. of the
standard normal distribution. [J

Proof of (5.1). We shall consider a>0 (say). Define Z(i, j)=1(n;;<ag;)—1/2.
Then R,(@)=) Z(r;,t;), where the sum extends to all (,j) in
MxN={1,...,m} x{m+1, ...,n} (here) and 7 is the vector of antiranks of
(X4, ...» X,). We now have

R@)=) Z(v;, 1) I(t;eM, t;e M)+ Z(1;, 7,)I(z;eN, 7;€N)
+3 Z(z;, 1) I(1;eN, 1,e M)+ Z(t;, t) I (r;e M, 1,€N).

WLOG, we may assume that (X, ..., X))=(61, ---» &> L+ s 1, -.r 1+6,).
(i) The first term. Let e=(gy, ..., &,), 1=, ..., n1,) and, for (i, )e M X N,

AtJ:{ue]Rnlpia p]ém

where p is the vector of antiranks of (ug, ..., U, 1 +tpsq, ..., 1+u,)}. Then,
for (i, j))e M x N,
E[Z(t;, t)I(1;:€ M, 1,6 M)]= | E[Z(1;, t)le=u]dG(u,) ... dG(u,)
Aij
= | [F*(a(u,,—u,)—1/2]1dG(u,) ... dG(u,) =0
A;j

=0

since 7 is independent of ¢, T and because ue 4;; entails u, —u, =0.
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It follows that the expectation of the first term is nonnegative. Using the
same procedure, one can sce that this is also the case for the second and third
terms. Concerning the latter, note that (t;, t;)e N x M entails &, —e, =1

(i) The fourth term. Let’s call it S,. We have

S,= Y Z(,t)lmeM,;eN)= Y Z(, )I(R(X)<m, R(X;)>m).

(i, )eM x N (G heM xN

Let (Y,)n>1 be a sequence of positive real numbers converging to 0 and such
that P{|Xm—2zo|>V,} -5 0. The existence of such a sequence is guaranteed

by lemma (5.2). Now

ES,=E[I(Xme[zo— Vs Zo+¢n])zz(iaj)l(xi§20“l//nsngzo‘*“ﬁn)]+0(”2)
ZEEZZ(i’j)I(Xiézo_lpm Xj320+‘ﬁn)]+0(n2)
=E[Zz(i7j)I(Xi§ZO’ngzo)]+0(n2)
=n*4"'(1+6)"2 [f [F*(a(y—x))—1/2]dydx+o(n?)

A(9)

by the symmetry of F* about the origin, where

A)={(x, y)eR?*|xe[0,27 5], ye[27' 5,1+ 6]}
U{(x, y)eR?|xe[2716,14+27168], ye[14+2716,1+5]}.

Our hypothesis on f* entails that this integral is strictly positive and thus the
result follows, with k>47'(1+6)"2 (| [F*(a(y—x))—1/2]dydx. O

A@)

Note that k=0 if and only if 6=0.

6. Variance Estimation and Rate of Convergence

Under assumption A and for f smooth enough 4,, is asymptotically normal
with asymptotic variance 48~ 'd ™2, where

d=limn~2 Y  X}{{f*(ax)dG*(x)(see Sect. 3).

n=o (i, j)eM x N

To construct a confidence interval for a based on 4, we need a consistent
estimate for 4. Such an estimate is provided by

gn =n_3/2 I:Rn(Aln-l_n__ 1/2)_Rn(A1n)]'

The consistency of d, follows from proposition (2.3) and the fact that
n'2(4y,—a)=0p(1).
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Now write Y for ) and define

(i, )eM XN

A,O=n"? (Y, ()= Y, 0)=n"") 4;()
with

A0 =I(n;;—ae; <t~ Y2 (e;+ XF)—1(n;;—ae; £0),
and

Zn(t) = An(t) - EAn(t)
If we assume that assumption A is fulfilled, that

=Y Y XEXE4Y, Y XEXE]-y* as n—oo,
KeM j¥l leN i+p
Jj.leN i,peM

in which case y*>0 by definition of M, N (Sect. 1), we can state the following
results.

(6.1) Proposition. Let [ be differentiable with bounded derivative. Then the
sequence of processes (Z,(t))c(-r,n» With r>0, converges weakly in D [ —r, r] (see
Billingsley (1968)) to the process (tZ),.( -, .1, where Z is a centered normal variable
with variance o3=%J+y*(J,—J3), where J,={hZ(x)dx, J,=[h}(x)dx and J
=E(e12¢13 jf(y+312)f(J’+813)dF(J’))-

(6.2) Proposition. Let f be differentiable with continuous bounded derivative. Then
the sequence of processes

nY2(Y,(8) = Y, (0)— dyDyeg—r.y  with dy=n"2Y X% f*(ax)dG*(x)

converges weakly to the process (tZ+ct?), -, With Z as in (6.1) and c
=112 [ X[ ¥ (ax)dG* (x).

Proof of (6.2). Note that by Lebesgue’s dominated convergence theorem the
assumptions on f imply that the same properties hold for f*. Now, using the

facts that f*' is continuous, that the X*’s are uniformly bounded, that G*
has a compact support and that f* is symmetric about the origin, we get

EA,(y=n"?d,t+1*n"2Y X§[xf* (ax)dG*(x)+1*o(1)
and since n'2(Y,(t) = Y,(0)—d, )= Z,(t) + EA,(t)—n''?d,t, the result follows from
©6.1). O
(6.3) Corollary. Under the hypotheses of (6.2), n*>(d,—d,)=0p(1). []

Proof of (6.1). It is enough to show (see Billingsley (1968)) that

I. The finite-dimensional distributions of (Z,(t)), converge weakly to those of
(tZ),.

II. Ye>0, lim limsup P{wy,,(0)>¢e}=0 where for xeD[—r, 7], «.(5)

>0 nrn—ow

=Sup [x(6) = x(s)].

[t—s|<d
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We first approximate Z,(t) by its Hajek projection Z,(f) with respect to
(815 11)s .., (€4, 1) (see Hajek (1968)). We have

Z,(t)=n"1 >y {Ha,n,t(ﬂk_aak_t”_1/2(3k—ij))“Ha(ﬂk—aak)_Ekj(t)}

keM jeN

+ntY Y {H,m—ag)—H,, (m—ag—tn " (g+X5)—E, (1)}

leN ieM

where E;;(t) stands for EA;;(t) and H, , , is the c.df. of n; —(a+tn~'?)e,. For
f as in (6.1), there are constants A>0, B>0 such that for all ¢, se[ —r, 7] and
for each neIN

Var(Z,(t)— Z, ()=t — s [yF (J,—ID+47 T]+7,(, 5)
with |r,(t, s)| £ A|t—s|n~ 12, and
Var(Z,()—Z,(s) =t —sP [vE(J, =D +4 7 T1+4,(, 3)

with |7,(t, 5)| £ B(t—s)*n~ 12,

Since Var(Z,(t)—2Z,(t))=Var(Z,(t))—Var(Z,(t)) (see Hajek (1968)), it fol-
lows that there is a constant D>0 s.t. for all ¢,se[—r,r] and each n
Var(X,()—X,(s)) £Dn™ Y2|t—s|, where X, (t)=Z,(1)— Z,(¢t).

In particular, Var X, () <Dn~Y2|t| for each t.

Next, define

Z,=n"3? z z Lo+ X5 (ha (e —ag) —J )]

keM jeN

+n732 % Y [+ XH(ho(m—ae) —J1)]

leN ieM

where o, = [y f (1.~ ag,+ay) dG (V) — & halim,— asy), w= —oq.
If f is bounded (it is the case under the hypothesis of (6.1)) and considering
that Eo, =0, Varog=J, the X*’s are uniformly bounded and G has compact

support, the Liapunov CLT yields Z, ;:% (0, 63) with o3 as in (6.1). Moreover,
for f as in (6.1),
Var(Z,(t)—tZ,)=t*0(n"") foreach t.

The convergence of the finite-dimensional distributions follows now from the
Cramér-Wold device (e.g. see Billingsley (1968)).
To prove 1I one can proceed as in Antille (1972). [
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