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Summary.  Two nonparametr ic  estimators of the slope of a regression line 
with error on both  variables are considered, each of them being defined 
as the zero-crossing of a stochastic process whose sample paths are mono-  
tone. Their asymptot ic  behaviour  is derived from the local asymptot ic  behav- 
iour of the underlying processes. One of the estimators is a nonparametr ic  
version of Wald 's  (1940) estimator. 

O. Introduction 

This paper  deals with the estimation of the coefficient a in the following model:  

(X1, Y1), ..., (X,,  Y,) are observed, with 

Yi = Yi* + qi 

X i  = X *  + el 

Yi* = a X *  + b, i = 1  . . . .  , n ,  a4:O, 

where a, b are unknown, X* . . . . .  X*,  Y* . . . .  , Y* are unobservable real numbers  
(the " t rue"  values) and 81, . . . ,  5,, 71, - . . ,  7, are real-valued random "errors." 
We shall assume that  the e's are i.i.d., the q's are i.i.d, and that  the two sets 
of errors are independent. 

In 1940 Wald proposed an estimator which turns out to be consistent and 
asymptotically normal  under a rather restrictive assumption about  the model 
but without assumptions about  the error variances. See Wald (1940) and 
Chap. 29 of Kendall  and Stuart (1973). In the present paper  a nonparametr ic  
version of Wald 's  est imator is proposed. Under  an assumption (assumption 
A below) analogous to that  of Wald consistency and asymptot ic  normality are 
obtained. The role of assumption A is then illustrated in a special case. When 
the errors are symmetrically distributed about  the origin a rank est imator is 
also investigated. 

This research was supported by the Swiss National Science Foundation 
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Each one of the estimators is defined as the zero-crossing of a monotone 
stochastic process and their asymptotic normality is derived from a local asymp- 
totic linearity property of the underlying processes. 

A consistent estimate for the asymptotic variance of one of the estimators 
is also given and its rate of convergence is obtained by establishing a central 
limit theorem for the related process. More precisely a sequence T, (t) of processes 
in D I--1,  1] and a sequence dn of real numbers are obtained such that 
nt/2(T,(t)-d,t)  converges weakly to a linear process with quadratic drift. 

The paper is divided in six sections: 1. The estimators; 2. Asymptotic linear- 
ity; 3. Asymptotic behaviour of the estimators; 4. Relative efficiences; 5. About 
assumption A; 6. Variance estimation and rate of convergence. 

Notation 

The indicator of a set C is denoted by 1(C). Given a vector (Zl . . . . .  z,), z~j means 
the difference zj-z~ and R(zi) the rank of zi in {zl, ..., z,}. The integer part 
of a real number z is denoted by [z]. All distribution functions defined below 
are assumed to be absolutely continuous with respect to Lebesgue's measure 
on the real line. We denote by F, G, F*, G*, Ha the respective c.d.f.s of th, el, t/1 
- - q 2 ,  g l -  82,  ~ 1 -  a g l ,  with respective densities f ,  g, f * ,  g*, ha. 

1. The Estimators 

(1.1) The estimator At,  is defined as any value of A minimizing the absolute 
value of 

t i= t ...... \ X ~ j -  X~, = 
j = m + l  ... . .  n 

where m is the integer part of n/2 and z is the vector of antiranks of ( X  1 . . . .  , X n ) .  

We shall investigate the asymptotic behavior of A t ,  under the crucial 

AssumptionA. If M={i=l , . . . , n IR(X*)<=m} and N = M C = { i = l , . . . , n [  

R(X*) > m}, then {zt . . . .  , zm} ~'S'M and {~,, +1, ..., ~,} a.s.U. 

This assumption means that we can divide the observations according to 
their size in two groups independently of the errors. See also Wald (1940), Moran 
(1971). Its importance shall be illustrated in Sect. 5. 

Note that A t ,  could more generally be defined by taking m = [an] for some 
0<c~<1/2 in the definition of R,(A). If the set N in assumption A is replaced 
by {i = 1, ..., n lR (X*)> [(1 - ~ ) n ] }  the results below, which are stated for ~ = 1/2, 
can be straightforwardly generalized to any e. Not  surprisingly the efficiency 
of the estimator increases with e. 

Instead of working with the variable A and the process R,(A) (see for example 
Bhattacharya, Chernoff, Yang (1983)), we shall work with a new variable t, 
connected with A by the relation A = a + t n  -1/z (where a is the slope) and the 
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process Yn(t):=n-3/2Rn(a+tn-1/2 ). Using the structure of the model and 
assumption A we get 

Y,(t) = n 3/2 ~ {i(thj_aelj<tn-1/Z(Xij+eij))_~}. 
(i, j ) ~ M  x N 

(1.2) The estimators Azn and A~,. 
Suppose that the intercept b is known (we assume WLOG that b =0). Then 
we define A2, as any value of A minimizing the absolute value of 

R([ Yi-- AX~[) sign(Yi- AXi). 
i = 1  

Suppose that b is unknown but that we have a ]//n-consistent (preliminary) 
estimate b, for b (see the end of Sect. 3). We then define A*, as any value 
of A minimizing the absolute value of 

~ R ( [  Y~-AX~-b,[) sign(Y~-AXi-b,). 
i = 1  

By the same transformation as in (1.1) and since b, is ~/n-consistent, we are 
then led to the process 

U,(t, s)=n -3/2 ~, R(lql-aei-- tn-1/z(x* +ei)-sn-1/z[) 
/ = 1  

�9 sign (t h -  ae i -  tn-  1/2(X* + ~i) -- sn- 1/2). 

If b = 0, the process of interest is U,(t, 0). 
We shall investigate the asymptotic behaviour of A*, for f and g symmetric 

about the origin and under the following 
a .s .  

Assumption B. Vie{l, ..., n}, X*>0  and Xi > O. 
Assumption B entails the monotonicity of the process U,(t, s) (see Sect. 2) 

and hence the fact that A2, and A*, are well defined�9 
Note that each of the two assumptions A, B implies that el has a bounded 

support�9 

Remark�9 For practical purposes assumptions A, B appear to be rather restrictive�9 
However, in many physical experiments the quantities of interest are positive 
and assumption B would then cause no trouble. Concerning assumption A there 
are physical situations such as some calibration problems where the points 
of measurement are choosen by the experimenter and where the assumption 
could be met. 
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2. Asymptotic Linearity 

Notation. For  t, seN. k, t<s  means that the inequality holds componentwise. 
We write (,> for the usual scalar product  on R k. For  ~>0 ,  a a-net of A c l R  
is a finite set of points a~ < a 2 < . . .  < a N of A such that 

max (ai+l--ai)<6 and [_)[ai, ai+~]=A. 
i = 1  . . . . .  N - 1  i 

For  f :  R k ~ R  and A c N  k, we write I[fllA for suplf(x)[.  For  A c R ,  A k c ~  g 
x q A  

is the k-fold cartesian product  of A. Let I c R be a compact interval and R § (N_) 
the set of strictly positive (negative) real numbers. For  u, vslR k, u<v, [u, v] 

k 

means the product  1--I [ui, v~]. 
j = l  

(2.1) Lemma. Let (X(t))t~r,~ be a process whose sample paths are nonincreasing 
(nondecreasing) with probability one and such that [IXIIt~,~ is measurable for 
each [u, v] ~ I k. Let celR~ (Nk+ ) and define Z (t)= X ( t ) -  X (O)-(  c, t >. Let g)elRk+ 
and F i be a 6i-net of I, i =  1 . . . . .  k. Then 

a . s .  

I[Zlll~-IlZllyi<(Icl,~ > with Icl=(lexl, ICkl). 

Proof. Let X(t) be nonincreasing (say). It is enough to show that for [uj, vii c1 ,  
j = 1, ..., k, we have 

a . s .  

IlZllt~,vj-JlZll(,,v~ ~ <lcl, v-u> 

k 

where {u, v} = YI {u j, vi} and that the exception set does not  depend on u or 
j = l  

v. We distinguish two cases 

1. [IZllt~,vl= sup Z(t) 2. [IZl[tu, vj= sup (--Z(t)) 
~e[u, v] t~[u, v] 

I shall consider the first case. The second is analogous. 
(i) Suppose that Z(u)>O and let te{s~[u,v]lZ(s)>O}=:Eu, v]+. Then 

a . s .  

IZ(t) l - IZ(u)l  < (Icl, v-u> by the monotonici ty of X( . )  and the fact that t>u. 

Note that the exception set does not  depend on u, v or t. 
(ii) Suppose that Z(u)<0.  For  t~[u,v]+, X(t)-X(O)>=(c, t )>(c ,  v) and 

by the monotonici ty of X(.), (c, v) < (c, t) < X( t ) -X(O)< X(u) -X(O)< (c, u), 
a . s .  

which implies Z(t) < (c, u ) - ( c ,  v ) =  (Icl, v-u>.  
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a .s .  

Therefore, for all te[u, v]+, Z(t)-IZ(u)l ~ <lcl, v -u> where the exception 

set is independent of u, v and t. 
Now we can write 

a.s .  

0~ IlZllt.,vl-IlZll{~.vl~ IlZlit.,~l-IZ(u)l= sup z(t)-IZ(u)l ~ <lcl, v-u>. [] 
t e [ u , v ] +  

(2.2) Lemma. Let (X,(t))t~a~ be a sequence of monotone processes as in (2.1). 
Suppose that IIVar(X,(')-X,(O))]]i~=o(1) as n--,oo and that there exists 
celR k_ (IR k) such that II E(X.(.)- X.(O))- <c," > I1~ = o(1). Then HZ, ILI~ = op(1) as 
n - - *  (3o. 

Proof Assume W L O G  that I = [0, 1] and let, for meN* ,  Fm= {jm- 1 ; j = 0 ,  . . . ,  m}. 
By Lemma (2.1), 

k 
a.s .  1 

I[Z.lll~-IIZ.LIr~ < m  ~ Icjl 
j = l  

k 

Given e > 0  let moEN be such that m g l ~  Icjl<e/2. Then P{IJZ, Ili~>e} 
j = l  

<P{llZ, llr~o>e/2 } and it is enough to show that ]l/,llr~--oe(1) for any fixed 
meN*.  Using triangle's inequality and the second hypothesis we have for n 
large enough 

P { IIZ.IIr~ > e} <=P { IIX,(')-- X,(O)-- E(X,( ')--  X,(O))llr.~ > e/2} 
<= ~ P{lX,(t)-X,(O)-E(X,(t)-X.(O))l>e/2}=o(1) 

t e F ~  

by Chebyshev's inequality and the first hypothesis. [] 

Asymptotic Linearity of Y~(t) and U,(t, s) 

Henceforth we shall assume that the X*'s are uniformly bounded and that 

#2 = lim n -2 ~, X* and P l = lim n-1 ~, X* exist whenever used. Under  
n ~  o~ ( i , j ) e M  x N n ~ ~ 1 7 6  i = 1 

assumption A, Y,(t) is for each n a nondecreasing function of t with probability 
one. If moreover f satisfies a Lipschitz condition of order > O, it is a matter  
of straightforward calculation to show that 

supVar(Y~(t)- Y~(O))=O(n -1/2) and sup[EY~(t)-dtL=o(1), 
t e I  t e l  

with d =  #2 Sf*(ax) dG*(x). As a consequence we get by lemma (2.2) 

(2.3) Proposition. I f  assumption A is fulfilled and if f satisfies a Lipschitz condition 
of order > O, then sup lYe(t)- Y~(0)- dt[ = OF(l). []  

t e I  
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By a result of Van Eeden (1972), under assumption B, U,(t, s) is for each n 
a nonincreasing function of (t, s) with probability one. If moreover f satisfies 
a Lipschitz condition of order > 0, then for f and g symmetric about  zero, 
sup Var(U.(t ,  s ) -  U.(0, 0)) = O(n- 1/2) and sup [EU.(t, s ) - d  1 t - d z s  [ =o(1), with 
t, s ~ I  t, s ~ l  

d 1 = - 2 #1 ~ h2 (x) dx  and d2 = - 2 ~ h 2 (x) d x. Therefore we get by lemma (2.2) 

(2.4) Proposition. I f  assumption B is fulfilled, if f and g are symmetric about 
the origin and if f satisfies a Lipschitz condition of order > O, then 

sup [U,(t, s)-U,(O, O)-dl t-d2sl=oe(1 ). [] 
t ,  s ~ I  

(2.5) Corollary. Under the hypotheses of(2.4) and if b, is a ~/n-consistent estima- 
tor of  b, 

sup I U, (t, n 1/2 (b, - b)) - U, (0, 0) - d i t - -  d2  n 1/2 (b, - b)[ = Op (1). 
t e l  

The proof  of the corollary follows from (2.4) and the fact that ]//n(b,-b) 
= Oe(1). []  

Remark. Propositions (2.3) and (2.4) still hold if, for example, F is everywhere 
differentiable with bounded derivative f or if F is the uniform distribution on 
some interval and g is square-integrable. 

3. Asymptotic Behavior of the Estimators 

We first give a result about  zero-crossings of monotone processes. This result 
is a modification of a theorem by Jure~kovfi (1971) and can be proved much 
the same way. 

(3.1) Let (X,(t, s))(t,s)~2 be a sequence of processes satisfying the conditions 
of lemma (2.2) for some c=(cl ,  c2) and such that (X, (0, 0)), >=1 is tight. Let 
L,(t, s)=X,(O,O)+Clt+C2S and t,(s) be defined by L,(t,(s), s)=0. For  (s,),__>l 
a tight sequence of real-valued r.v.'s such that X,(t ,  s,) is measurable for each 
n and t, let t, = t, (s,) and define 

D . = { t e N [ t  minimizes IX.(. ,  s.)[}. 

Then sup l t -  t,I = or(l). 
t~Dn  

Note. This result is of course also valid in the case of one-parameter processes 
(with s. - 0). 

Propositions (3.2) and (3.4) below are now immediate consequences of (3.1) 
and (2.3), (2.4), (2.5). 

(3.2) Proposition. Under the hypotheses of(2.3) n a/a (A 1, -- a) = -- d-  1 1i, (0) + oe (1) 
with d=#2~f*(ax)dG*(x) .  [] 
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By H~ijek's projection method (Hfijek (1968)) it is easy to see that 

Y,(0) ~ X(0,48 - 1) and we get 

(3.3) Corollary. Under the hypotheses of (2.3) nl/2(Al _a)  se , 
. ~  o9 

Jff(0,48-1 d-2). [] 

(3.4) Proposition. (a) Under the hypotheses of (2.4) and if b, is a ]~n-consistent 
estimator of  b, 

nl/Z ( A * , - a ) =  - d ;  1 U,(O, O) -dx  X dz nl/Z (b . -b )  + oe(1) 

with d 1 = --2#1Sh2(x)dx, d z = - 2 S hZ,(x)dx. 
(b) Under the hypotheses of(2.4) and if b = O, 

n l / 2 ( A e , - a ) = - d ~  1U.(O, O)+op(1). [] 

Since U, (0, O) ~ J~ (0, �89 we get 

(3.5) Corollary. Under the hypotheses of (2.4) and if b=O, nl/2(A2. 
--a) ,~-ff-V~ X (0,3- i d[-2). [] 

Remark. In the case where b is unknown we used a consistent estimator of 
b to define A*,. It seems difficult to estimate b without estimating the slope 
as well. Moreover it seems impossible to estimate a and b consistently without 
any additional information (see also Moran (1971)). We give below an estimator 
of (a, b) when replicate observations are available. 

Let 41, ..., 4, be positive r.v's independent of the e's and the q's s.t. 41 
- X *  . . . .  , 4 , - X *  are i.i.d, with zero expectation. If we define (4,, 5,) as any 
value of (A 1, A 2) minimizing 

= 0 ) - k }  " 
,= + 

it can be shown by the method used earlier (see also Jure~kovfi (1971)) that 

under some conditions n 1/2 (gtn-a'~ \ 5 , - b ]  follows asymptotically a bivariate normal 

distribution and that A*, with 5, used as a preliminary estimate for b is asymptot- 
ically normal with asymptotic variance larger than the one of 8,. 
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4. Relative Efficiencies 

4.1. ARE of  A1, with respect to Wald's estimator 

Assume for simplicity that n=2m.  Under  assumption A, Wald's estimator can 
be written as 

2Y,-EY  
j e N  ieM 

w.= Z x j -  Z x," 
j e N  ieM 

Therefore, provided ~ x 2 h,(x) dx  < o% we have 

n l /2 (W, -a )  -f-f-~oo Jff (O,4-1#2Z ~ x2 h , (x )dx  ). 

Since S f *  (a x) d G* (x) = S h 2 (x) d x we obtain from corollary (3.3) that 

ARE (Aln, W,) = 12 ~ x 2 h, (x) d x (~ h 2 (x) d x) 2. 

Since the latter expression is invariant under scale transformations of the form 
(x, y)~--~2(x, y) one can prove as in Lehmann (1983) that ARE(Aa, ,  W,)>0.864. 

4.2. ARE  of  A1, with Respect to dzn when b=O 

Under  assumptions A and B, we get from (3.3) and (3.5) that ARE(AI. ,Az.  ) 
=4#2#1-2. If m - 1 2 X * - - - ~ b 2  and m -~ Z X * ~ b l  as n ~ o e  with b 2 >b l ,  

j~N i~M 

ARE(A1. ,  A2 . )=(b2-bO2(b2 + bO- 2 < 1. 

5. About Assumption A 

The estimator A in has been defined in Sect. 1 as zero-crossing of the monotone 
process R.(A). Under  assumption A, ER. (a)=O and this definition seems to 
be reasonable. Would ER,(a)  be different from zero, one should consider instead 
zero-crossings of R, (A)--E R, (a). We investigate in this section a particular situa- 
tion in which assumption A is not fulfilled. We obtain that E R , ( a ) ~ c n  2 for 
n large, where unfortunately x depends upon the parameter a that we want 
to estimate. The alternative mentioned above is therefore not practicable and, 
on the other hand, one cannot expect that A 1, be consistent for a. 

(5.1) Proposition. Let X*  be 0 or 1 according to i<~m=[n/2] or i > m  and let 
e 1 be uniformly distributed on [0, 1+6] ,  with 3>0 .  Assume that f *  is strictly 
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positive on a neighborhood of the origin. Then n -2ER, (a ) , -v~ tc ,  where 
tc = ~c(a,f 6) has the same sign as a. 

In the proof  of this result we shall use a corollary of the following lemma. 

(5.2) Lemma.  Let el, e2, ... be independent and uniformly distributed on [0, 1 + 6], 
with 6 > 0 .  Let X i = e i f o r  i = l , . . . , m  and X i = l  +e i for  i = m +  l , . . . , n .  Then 

nl/2(X(,,)-Zo) ~-~JV'(O,2-16Zo), where X(,,~ is the m th order statistics of 

(X1, ..., X,) and z o = 1 + 2-10. 

Proof We assume for simplicity that  n is even, i.e. n = 2m. Define 

T*(t; X l ,  ..., Xn)= ~ {I(Xi<-_t)-- l/2}. 
i = i  

Then X(,,)=inf{t[ T*(t; X1 . . . .  , X,)>0} .  Since T*(t; X I  . . . .  , X,)  is a right-con- 
tinuous function of t we have 

P {n 1/2 (X~,.I - Zo) < z} =- P { T~(z n-  1/2) ==_ 0} 

where T,(z)= T~* (z; X 1 - Z o  . . . .  , X,--Zo). From Liapunov's  CLT and since 

E T,(zn-1/z)(Var T,(zn-1/2))l/a=]//2(6Zo)-l/Zz + A,(z ) with A , ( z ) ~ O ,  

we obtain P{T,(zn-1/2)>0} ~ ~(V2(6Zo)-1/2z) where ~ is the c.d.f, of the 

s tandard normal  distribution. [ ]  

Proof of  (5.1). We shall consider a > 0  (say). Define Z( i , j )=I(rh j<aei j ) - l /2 .  
Then R , ( a ) = ~ Z ( z i ,  zj), where the sum extends to all (i,j) in 
M x N = { 1 ,  . . . , m } x { m + l ,  . . . ,n}  (here) and z is the vector of antiranks of 
(X1, ..., X,). We now have 

R.  (a) = ~ Z (zi, ~j) I (~i e M, rj e M) + ~. Z (zi, z j) I (zi e N, "cj ~ N) 

+ z( i,  j)I( iei,  jeM)+  jen). 

WLOG,  we may  assume that  (X1, ..., Xn)=(~ 1 . . . .  , e,,, 1 +e , ,+ l ,  ..., 1 +e,). 

(i) Thefirst term. Let ~=(el ,  .. . ,  e,), q =(t/1 . . . . .  1/,) and, for (i , j)EM x N, 

Aij= {u~lR~lpi, pj <=m, 

where p is the vector of antiranks of (ul, ...,urn, l+Um+l  . . . .  , l+u , )} .  Then, 
for ( i , j )eM x N, 

E[Z(z , ,  T j ) I ( ~ M ,  zj~M)3 = ~ E[Z(z~, ~j) le=u]  dG(ua) ... dG(u,,) 
Aij 

= ~ [F*(a(upj--u,,))-- 1/2] dG(ul) . . ,  dG(u,)>=O 
A~j 

since q is independent of e, z and because u E Aij entails uoj -  uo, >= O. 
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It follows that the expectation of the first term is nonnegative. Using the 
same procedure, one can see that this is also the case for the second and third 
terms. Concerning the latter, note that (%, "cj)~N • M entails e~-e~  > 1. 

(ii) The fourth term. Let's call it S,. We have 

S.= ~ Z(%, zj)I(%eM, zjEN)= ~ Z(i,j)I(R(Xi)<=m, R(Xj)>m). 
(i, j ) E M  x N (i, j ) ~ M  x N 

Let (0,),> 1 be a sequence of positive real numbers converging to 0 and such 
that P{IX(m)-zol >0 ,}  ~ 0 .  The existence of such a sequence is guaranteed 

by lemma (5.2). Now 

E S, = E [I (X(m)m [Zo - 0, ,  Zo + 0,]) ~ Z (i, j) I (Xi < Zo - 0 , ,  X j-> z o + 0,)] + o (n z) 

= E [ ~  Z (i, j) I (X, < z o - 0 , ,  Xj > z o + 0,)] + o (n z) 
= E [Z Z (i, j) I (Xi < Zo, X~ > Zo)] + o (n 2) 

=nZ4-1(1+6)  -2 ~ [F*(a(y--x))- 1/2] dydx+o(n 2) 
a (3) 

by the symmetry of F* about the origin, where 

A(6)={(x, y ) s ~ Z l x s [ 0 ,  2 - i  6], yE[2-16, 1+6]} 

u {(x, y)ERZlx~[2-16, 1+ 2-a 6], y~[1 +2 -16 ,  1 +6]}. 

Our hypothesis on f *  entails that this integral is strictly positive and thus the 
result follows, with ~ > 4 - 1 ( 1 + 6 )  -2 ~ [F*(a(y-x ) ) - l /2]dydx .  [] 

A(~) 

Note that • = 0 if and only if 6 = 0. 

6. Variance Estimation and Rate of Convergence 

Under assumption A and for f smooth enough A 1, is asymptotically normal 
with asymptotic variance 48-1 d-2, where 

d= lim n -2 ~ X*~f*(ax)dG*(x)(see Sect. 3). 
n ~  ( i , j ) c M •  

To construct a confidence interval for a based on A i ,  we need a consistent 
estimate for _d. Such an estimate is provided by 

~, = n-  3/2 JR. (A1, + n-  1/2)_ R. (A 1.)3. 

The consistency of ~, follows from proposition (2.3) and the fact that 
nl/Z(A1,-a)=Oe(1). 
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Now write ~ for ~ and define 
(i, j)eM x N 

with 

A n ( t )  = n 1/2 ( Yn ( t )  - -  Yn (0 ) )  = 11 - 1 2 A ij (t) 

A u (t) = I (~lij - -  a ~ij ~ t n - 1/2 (13i j q_ X ~ ) )  - -  I (q u - a e u <= 0), 

and 

z .  (t) = A. (t) - EA.  (t). 

If we assume that assumption A is fulfilled, that 

Z Z * * - +  X k j X k l q -  Z Z X i~IX~l  3 7* 
k~M j4:l leN ieep 

j, leN i, peM 

as n--+ oo, 

in which case 7">  0 by definition of M, N (Sect. i), we can state the following 
results. 

(6.1) Proposition. Let f be differentiable with bounded derivative. Then the 
sequence of  processes (Z.(t))t~E_r, rl, with r > 0, converges weakly in D [ - r ,  r] (see 
BiIlingsIey (1968)) to the process (tZ)t~E_r, rl, where Z is a centered normal variable 
with variance crz=�88 where J t=Sh~(x )dx ,  J2=Sh~(x )dx  and J 
=E(e12e13 ~ f (y + e12) f (y + s13)dF(y)). 

(6.2) Proposition. Let f be differentiable with continuous bounded derivative. Then 
the sequence of processes 

nl/Z(Y.(t) - Y.(0)-d.t)t~E-r, rl with d . = n  -2 ~ X *  ~ f*(ax)dG*(x)  

converges weakly to the process (tZ+ct2)t~t_r,r], with Z as in (6.1) and c 
= #2 ~ x f * ' ( a  x) d G * (x). 

Proof of (6.2). Note that by Lebesgue's dominated convergence theorem the 
assumptions on f imply that the same properties hold for f* .  Now, using the 
facts that f * '  is continuous, that the X*'s are uniformly bounded, that G* 
has a compact support and that f *  is symmetric about the origin, we get 

EA.(t)=nl/Z d. t  + t2n-  Z ~ X *  I x f * ' ( a x ) d G * ( x ) +  t2 o(1) 

and since n 1/2 ( y. (t) - Y~ (0) - d. t) = Z.  (t) + E A. (t) - n t/2 d. t, the result follows from 
(6.1). [] 

(6.3) Corollary. Under the hypotheses of(6.2), nl /2(d , -d , )=Op(1) .  [] 

Proof of(6.1) .  It is enough to show (see Billingsley (1968)) that 

I. The finite-dimensional distributions of (Z,(t))t converge weakly to those of 
(tz),. 
II. Ve>O, limlimsupP{~oz.{.)(6)>s}=O where for x~D[--r,r ] ,  ~o~(6) 

6---> 0 n~ov  

= sup Ix( t ) -x(s ) l .  
[ t - s l<6  
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We first approximate Z,(t) by its Hfijek projection 2 , (0  with respect to 
(el, ql) . . . . .  (e,, r/,) (see Hfijek (1968)). We have 

Zn(t) =n-1  ~ Z {H .... t(tlk--a8k--tn-1/2(ek--X~j))--Ha(tlk--aek)-- Ekj(t)} 
keM  j e N  

+n-1  Z Z { H a ( t h - a e l ) - H  .... t(th--aet--tn-1/2(et+ X~t))-Eu(t)} 
feN ieM 

where Eli(t) stands for EAij(t) and H .... t is the c.d.f, of t h - ( a + t n - 1 / z ) e l  . For 
f as in (6.1), there are constants A>0 ,  B > 0  such that for all t, s e [ - r ,  r] and 
for each h e n  

Var (Z, (t) - Z ,  (s)) = ( t -  s) 2 [7* (J2 - Jx z) + 4-1 j ]  + r, (t, s) 

with I r. (t, s) l _-< A I t -  s l n -  1/2 and 

Var (2, ( t ) -  Z .  (s)) = ( t -  s) 2 [7* (J2 - j2) + 4-1 j ]  + ?, (t, s) 

with [P.(t, s)l <=B(t-s)Zn -1/2. 
Since Var(Z , ( t ) -Z , ( t ) )=Var(Z , ( t ) ) -Var(2 , ( t ) )  (see Hfijek (1968)), it fol- 

lows that there is a constant D > 0  s.t. for all t, s e [ - r , r ]  and each n 
Vat (X, ( t ) -  X,  (s)) < D n-  1/2 [t - s I, where X,  (t) = Z .  (t) - 2 ,  (t). 

In particular, Var X , ( t ) < D n -  1/2 ]tl for each t. 

Next, define 

Z.  =n-a/2 ~ Z [ek + X~j(ha(tlk--aek)-- Jx)] 
k e M  j~N 

+n -3/2 ~ ~ [ei+ X*(ha(q l -ae , ) -  J1)] 
leN ieM 

where c~ k = ~ y f (rlk -- a ek + a y) d G (y) - e k ha (rlk -- a ek), e'k = -- O~k. 
I f f  is bounded (it is the case under the hypothesis of (6.1)) and considering 

that Eek=O, Varc~k=J, the X*'s are uniformly bounded and G has compact 

support, the Liapunov CLT yields Z ,  ~ Y(0 ,  o't)with O-o 2 as in (6.1). Moreover, 
for f as in (6.1), 

Var(Zs  -1) foreach t. 

The convergence of the finite-dimensional distributions follows now from the 
Cram&-Wold device (e.g. see Billingsley (1968)). 

To prove II one can proceed as in Antille (1972). [] 
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