
Probab. Th. Rel. Fields 82, 419-433 (1989) erobabmty 
Theory 
�9 Springer-Verlag 1989 

A Tagged Particle Process in the Boltzmann-Grad Limit 
for the Broadwell Modell* 

K6hei Uchiyama 

Department of Mathematics, Hiroshima University, Higashi Senda-machi, Hiroshima 730, Japan 

Summary. We study a tagged particle process for a model dynamical system in 
which identical particles move deterministically with discrete velocities, initially 
starting from a random configuration. We pass to the Boltzmann-Grad limit so 
that the tagged particle process converges to a nontrivial process (for short 
times). We can show that recollisions are vanishing in this limit, and this fact 
may have one expect that the limiting process would be Markovian. Never- 
theless it is not Markovian, for which claim we give intuitive reasoning as well as 
a mathematical proof. 

O. Introduction 

The model dynamical system we shall examine in this article is a modification of that 
studied in the previous paper [2]. The original dynamical system consists of "hard"  
squares in R 2 whose diagonals are of length e and parallel (or orthogonal) to the 
coordinate axes. The particle (i. e., the square) moves in one of the four directions 
pointed by its corners with the unit modulus of speed. The collisions are defined in a 
trivial way (not to violate the above constraints); there are two distinct types of 
collisions, one called "head-on" and the other "side-to-side". In the present paper 
we call this dynamical system Model  I. Now let us modify it as follows: keep the 
head-on collision unchanged; but suppress the effect of the side-to-side collision by 
interchanging the label of two colliding particles after a collision (see Fig. 1). This 
modified dynamical system, which we call Model  I I, is though very much 
unphysical still interesting from a mathematical viewpoint because of the fact 
mentioned below. 

As in [2] we discuss the Grad limit (or Boltzmann-Grad limit) : set e = 1/n and 
consider the n-particle system whose phase is randomly distributed by a symmetric 
density function, fn say, which is chaotic with the limiting one-particle density f,  so 
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~ k 

before a collision after a collision 

Fig. 1. In the modified dynamics the velocities are kept unchanged while positions are exchanged 
between colliding particles at the time of a side-to-side collision 

that the m-particle-marginal density at time t, denoted by u, lm(t), converges to a 
limiting probability density (for short times). It should be noted that our 
modification of the dynamics does not change the marginal densities (because of 
the symmetry of f ,) .  Our interest here is in the behavior of a tagged particle; more 
specifically the Markovian nature of its limiting process. The crucial difference 
between the two dynamics is the difference for the probability of recollisions: 
though persistent in the Model I it is negligible in the Model II. Accordingly, while 
the limiting process must be non-Markovian for the former, one may expect that it 
would be Markovian for the latter. On the contrary, it is non-Markovian even for the 
Model H (in any short time intervals) unless f corresponds to the local equilibrium 
state, which claim to prove is our main purpose of this paper. (In the case of hard 
sphere dynamics the circumstance stands quite differently: there the tagged particle 
motion converges to McKean's non-linear Markov process (at least for short 
times) [1, 3].) 

We have observed in [2] that the Boltzmann equation (the Broadwell model), 
which reads 

0 
aT u(4 q, v) + v. ~ u(4 q, v) 

= 4 {u(t, q, w)u(t, q, - iv)  -u( t ,  q, v)u(t, q, -v)} (0.1) 

(see the first part of Sect. 1 for the notations used here), formally appears in the 
Grad limit but does not in the actual limit, i.e., the limit ofu,  i 1 (t), which agress with 
the density of the tagged particle distribution (for both dynamics), does not solve 
the seemingly associated Boltzmann equation (0.1). The present conclusion 
mentioned above must be connected with this fact. Indeed the former implies the 
latter (cf. [1, 3]), while the converse implication would not so definitely be 
proclaimed. Anyway it is the series expansion, of u,i ~ (t) obtained from the BBGKY 
hierarchy - the same machinery that brought the latter to the surface - that we 
employ to prove the former. The series expansion may be described by means of a 
sort of perturbed system in which extra particles are added (or born) in a random 
fashion by the sides of existing particles alongside the action of the flow subject to 
our dynamics backward in time. In this perturbed system recollisions persist in the 
Grad limit for the Model II as well as Model I which fact essentially proves both 
claims. So as it might be, this persistence of recollisions does not so convincingly or 
directly account for the present claim as for the other one. 

The reasoning of why the limiting process is not Markovian is somewhat 
different between the Models 1 and II : it is much subtler for the latter than for the 
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former, as might be suggested by the somewhat simpler fact that in the equilibrium 
situation the limitin9 process is Markovian for the Model H (durin9 the time interval 
[0, 1/3]), but not for ModelI, provided that the particles move in the flat torus 
RZ/z 2 rather than the whole R 2 so that equilibrium densities can be at once 
probabilities. 

We shall prove the main claim in Sect. 1. The tagged particle in the Model I will 
be briefly dealt with in Sect. 2. In Sect. 3 we shall advance another way of reasoning 
to our result, which is more intuitive than the proof  given in Sect. 1. 

1. A Tagged Particle in the Model II 

In this section we first give a precise description of the Model I and hence of the 
Model II, then formulate the main result, and lastly prove it. 

1.1. Description of Model I 

We shall use the same notation as in [2]. Let A be a square (a closed domain) in R 2 
whose four vertices are ( +  1, 0), (0, • I). A particle is a square in R 2 which is a 

translation of the shrunken square ~ A (e > 0) ; thus a particle located at q is a 

square whose vertices are q + (+_ s/2, 0), q + (0, • e/2). Each particle moves with a 
constant speed v where 

/) E s : = {(_+ I ,  0), (0, + ~ ) }  

between successive collisions. A collision between two particles takes place when 
they properly contact each other with their sides, i. e., they come into such positions 
q and ql that 

l: --1 (q l -q)~A\{(+_l ,0) , (O,  _+1)}. 
e 

For  the extremal case l~ {(+ 1, 0), (0, _+ 1)} the whole system is stopped and sent to 
the extra state 0 at the moment of contact. Let/)  and/)a be the velocities of two 
particles before the collision. For  a possible collision it holds that l./)> 0. The 
velocities v*,/)* after collision are defined by 

/)* = aw, /)* = at/) 1 if /)'/)1 = - 1 (HC) 

/)* =O-l/) ,  V~ : --O'IV 1 if v ' v  1 =0  (SC) 

where t denotes the rotation operator which rotates a two-dimensional vector by 
re/2 around the origin counterclockwise and 

a = l  or - 1  according as (tv).l<O or (w) . l>O.  

We shall call collisions of the type (HC) [resp. (SC)] head-on [resp. side-to-side]. The 
multiple (i. e., triple or higher order) collision is undefined and when the system 
comes into a configuration of the multiple contact it is sent to 0. This virtually 
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defines the dynamical system of n particles whose phase space is 

f2, = f2(, ~) : = {x  = (x  1 ;. . .  ; x , )  : ~ - 1 (qk -- qj ) r A \ ~A if k ~ j  } 

where Xg = (qk, Vk), qk E R 2, V k ~ S. The boundary of ~2, is given by 

~(2,= {x=(x  1 ;... ;x , )~f2,  : e - l ( q g - q j ) ~ O A  for some k : # j } .  

Let Ttx= Tt(~)x, t E R  be the left continuous version of the trajectory in f2,w{#} 
drawn by the system starting at x ~ f2, at time zero (the left continuity is asserted as 
long as the system is in f2,). Let dv stand for a discrete measure on the velocity space 
S which charges each point with unit mass and put dx = d x  I dx2. . ,  d x , ,  dx j  = dqjdvj .  
Then the n-particle phases which eventually (in past or future) lead to multiple 
or corner-to-corner collisions form a dx-null set, and the flow T~ preserves the 
measure dx. 

1.2. M o d e l  H and  the S t a t e m e n t  o f  T he ore m  

We modify the Model I (the dynamical system described above) in such a way as 
stated in Introduction: thus, whenever the particle labeled " k "  makes a side-to-side 
collision, in the modified system we trace its partner particle after the collision and 
label the latter " k "  until it undergoes the next side-to-side collision (otherwise no 
change). We call the new dynamical system obtained in this way M o d e l  H. Let 
X"( t ,  x) = X " ( t )  = (X~( t )  . . . .  , X ~ ( t ) )  be (the left continuous version of) the trajectory 
drawn in ~2~) by the n-particle system that starts from x and evolves according to the 
new dynamics of the Model II. We shall pursue the first particle as a tagged particle. 
Set e = 1/n. Let f ,  be a probability density on f2~ 1/"), i. e., f ,  > 0 and S f ,  dx = 1, which 
is symmetric, i.e., invariant under the permutation of particles, and consider the 
motion of the first particle XI '( .)=X['( . ,  x) as a stochastic process defined on the 
probability space ((2~ 1/"), f (x)dx) .  The probability density for (X~")(t) . . . . .  X~")(t)) 
(m__<n), which exists, is denoted by U,l,.(t); u,lm(0) agrees with f ,  lm the m-particle- 
marginal of f , .  

Let us assume the following assumptions (AI) and (AII). 

(AI) e s s s u p f ,  l m < C M m  for m < n ,  n = l , 2  .... with some constants C and M 
.Q~/n) 

which are independent of m and n; 

(AII) there exists a continuous function f on (2 ~ such that ess sup If, l,, - f " |  ~ 0  
K 

(n--* oe) for m =  1,2 .... and for every compact set K of f2~  

where fro| is the m-fold outer product of f ,  ~'~~176 • S )  m and 

_ _  0 d , , - { x e  (2,, " q j = q k  for at least one pair j=t=k}. 

Then it is shown that there exists lira u,i 1 (t, x) = : u(1)(t, x )  (0 < t < I/8M), which is 
continuous in (t,x), and the sequence of processes X['(t), O < t < t  o is weakly 
convergent with respect to the Skorohod topology of D[[0, to],Q1] if to< 1 / 8 M  
(cf. [2] and Sect. 7 of [3]). As a little reflection might convince us the conditional 
probability 
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P(~") [the j-th particle or its descendants make a head-on collision with the first 
particle in the time interval (t, to) [ thej-th and the first particle makes a head- 
on collision between them at time t] 

converges to zero in the Boltzmann-Grad limit (cf. Proposition 2 of Appendix in 
[2]). From this one may expect that in the limit the changes of the velocity of the first 
particle in the past would not affect those in the future if the present velocity is 
known, so that the limit process would be Markovian. The fact, on the contrary, is 
that the limit process of the first particle is not generally Markovian as asserted by 

Theorem. In addition to (AI) and (AII) assume 

(AIII) f (q, v) f (q, - v) =~ f (q, zv) f (q, - tv) for some x = (q, v) ~ (2 ~ . 

Then for any T <  1/8M the limit process of  X~(t), 0 <t  < T, is not Markovian. 

Remark 1. If U ~  = f  o T2_ t (Tt ~ denotes the free motion) is Maxwellian for all t, 
i.e., for all t and x e f2 ~ 

f ( q -  tv, v) f (q + tv, - v) = f ( q -  try, w) f (q + try, - tv) 

(which obviously contradicts (AIII), then the limit process of X~(t) is Markovian. 
This condition holds if and only if u(t, x) : = f ( q  - tv, v) is a solution (a Maxwellian 
solution) of a weak version of the Boltzmann equation (0.1). 

Remark 2. Set v k = ~k (1, 0), k = 0, 1, 2, 3, and fk (q) :=  f ( q ,  vk), and write q = (q l  q2) 
for q ~ R  2. Then U ~  is Maxwellian for every t if f is of the form 

fo(q) =9(q  ~ +q2 )h(ql  _qZ)c~(q2), f2(q)=~(qa +q2)~(ql _qZ)/o:(q2), 

f l ( q ) = g ( q t  +qZ)~(qt_qZ)/3(q~),  f3(q)=~(q~ +qZ)h(q~ _q2)//3(q~) 

where g, 9, h, ~', c~ and/3 are continuous functions on R and e and/3 are positive. 
Conversely the Maxwellian solution is necessarily given by f of this form, provided 
that f > 0 .  In fact let f be positive and U l ( t ) f  Maxwellian for all t in a 
neighbourhood of zero, and assume that fk's are smooth, which gives rise to no loss 
of generality because of the linearity of the relation to be satisfied by (log fk)'s. 
Taking the logarithms of the both sides of the assumed identity, and then 
differentiating them by t on the one hand and independently of it by qX on the other 
hand two times each, we observe that the function 

H,(q) : = log fo(q a - t, q2) +log f2 (ql + t, q2) 

satisfies the wave equation (O/Oql)2Ht - -  (~/~q2)2//~ (for each t). Differentiating this 
wave equation by t and by ql once more each together with simple manipulation of 
subtracting shows that (0/~q a) log fo (q) also satisfies the wave equation, so that fo 
must be of the required form. 

Remark 3. The Theorem above implies that the process (ptI), X ( s ) , s > t )  is not 
necessarily determined by u(1)(t) (which fact follows also from the fact that u(1)(t) 
does not solves the Boltzmann equation), but for the converse implication we would 
need to closely examine the mechanism that brings the latter fact into being. 
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1.3. Proof of  the Theorem (Divided into Three Steps) 

Step 1. Let ~ = ~(*) denote the flow for the Model II so that ~ x  = X" (t, x), and U, (t), 
~ , ,  _Mk({)~ etc. the corresponding operators, some of them that are relevant to this 
proof  being to be defined later (cf. [2] or [3] for the definitions of  the original 
operators). We denote by (pC:,), X"(t)) and (P(f), X(t)), respectively, the deter- 
ministic process with the initial density f ,  and the limit process of J(~(t) (the first 
component of X" (t)); by E (:~) and E (:) the corresponding expectations; and finally, 
for a sequence g,,E C(f2(,, ~/")) (m= 1,...,n), let the expression lL~({gm}~,=~) stand 
for the sequence whose m-th entry (m = 1 ..... n) is 

n - - "  

:,, ~ ok:~(:/,)~(1/,)~k:Ffa/,)~ ~,~ ~:~ .,Xm ) (1.1) 
V ~ - - , , ~ l k L ,  k ~  *x I k ~ m + k k ' ) ~ " + k l k ~ X 1 ,  " .  

k = 0  

(this sum is nothing but the series expansion for u,l,,(t ) if {9,.} ={f,l,.}; an 
alternative expression for (1.1) will be given later which may be taken as the 
definition in the present paper). Then for 4)6 Co(• ~ and 0 <s  < t<  t o 

H: {4) } (x) : = FY~ [(4)/u")(s)) (X(s)); X(t )  6 clx]/& 

= lira E (:") [(4)/u (1) (s)) (Xf (s)); X~ (t) 6 dx]/dx 
n--e t~ 

= lira [lL"({(4)/u(1)(s))u,l,,(s)}~,=,)],, (x6f2 ~ 
n ~ o o  

where [{-}11 stands for the first entry of the sequence {. } (cf. [2, 31). For a Borel set A 
of x=(q ,v )  

5 HT{H~ dx 
A 

1 
= ~ (E(:)[4) (x(0));  X(s) 6 cly]/cly) u(l~(s, y~ P(:) IX(s) 6 ely, X( t )  ~ A ] 

= 5 E(:) [4 ) (X(0)); X(s) 6 dy] P (:) [X(t) 6 A IX(s) =y]. 

If (P(:), X(t)) were Markovian, the last integral above must have been equal to 

E (f) [4)(X(O));X(t) 6 A] = 5 H~ {4)f} (x)dx. 
A 

Such equality fails to hold except for special f ' s .  In fact we shall prove 

lim t -~ [H:/2 {H~ {4)f}} (x) - H ~ {4)f} (x)] 
t , 0  

= 5 ~  {4)(q,v)F(v)+~ F(w)+~ F(- tv)]+14 4) (q , - v ) [FOv)+F( -w)]  
9 

1 1 
2 4)(q' w) [F(v) + F(,v)] - ~ 4)(q, - w )  [F(v) + F (  -w)]}  

(1.2) 
where 

F(v) = Fq (v) : = f (w) f ( -- w) f ( - v) [ f  (v).f ( - v) -- f (w) f ( -- w)] 
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(the argument q is suppressed from f a n d  F). If we take this relation as granted, 
the proof  of Theoem is ready. In fact it proves that if F(v)~=O for some x, 
then the limiting process X( t )  is not Markovian in any short times. Even when 
f ( v ) f ( - v ) f ( w ) f ( - w ) = O  for x satisfying (AIII), we have F(t)(v)+O for very 
sufficiently small t where f(t)(v) is defined as above but with u(l)(t) in place o f f  and 
hence the same conclusion. 

If the condition of Remark 1 is satisfied (i. e., U ~ ( t ) f  is Maxwellian for all t), 
then any collision in the addition-backward flow evolution effects no change of 
f(,,+k)| s v~ that persists in the Grad limit. This combined with the k ~  - - t §  k , A  ~ 2  

fact that the set of parameters A that cause the first - not the o t h e r -  particle a head- 
on collision other than those forced by the operations of adding particles in the 
perturbed flow is negligible in the Grad limit enables us to follow the arguments of 
[1] and [3] to see that X(t )  is Markovian. (Note that in the series expansion of 
H ~ {q~f} the argument of 4 is always the phase of the first particle.) 

The relation (1.2) will be proved through the following two steps. 

Step 2. In this step we derive an expression, given by (1.3) below, to the difference in 
the bracket [ ] on the left hand side of (1.2). First let us introduce some notations. 
For  x e f~) ,  I s 0A, v e S and j = 1,2 ..... m put 

C~'~x= (x t ;... ;xi_ 1 ;qj, v* ;xj+ 1 ;... ; x , , ; q j - d , v * )  

Cs,1 "'z x -- (x 1 ,..." ; x,, ; qj + el, v), 

if v . l < 0  and v j . l > 0 ;  

C j v ,  l - -  g ~ v , l  v , l  __ ,0x- ,~j ,  l x = 0  if v ' l > O  or vi . l<O; and C j , ~ 0 - ~ ( a = 0 , 1 )  

(0 is an extra point). For  k =  1, 2 .. . . .  n - m ,  x e~2~ ) and a set of multivariables 
A = (s,l,v, ~,j) where Ie(0A)  k, a~{0,  1} k, v=(v , ,+a , . . . , v , ,+k)eS  k and 

s=(s~ .... ,Sk)E[O,~)k  with s t < s  2 < . . . < s  k 

]=(/'1 .... ,Jk) with l < j v < m + p - 1  ( p = l , . . . , k ) ,  

put Mo(~)~ x = x and 

l ' ' ' ~ j l ,61  ~ - - S l + $ O  a 

where so=O. Then, by writing [al = Z j c j ,  the sum in (1.1) can be written as 

r e + k - 1  

:c 
k = l  a j k = l  j i l l  

t Sk S2 

x I dsk I . "  f dsl I g'~+k(T-'+~l(kC)X) dldv" 
0 0 0 (OA)k x S k 

,,__, %;t(~) ,, is made up of successive applications of operation of the The mapping . . . .  k, ~ 
time reversed flow T~_~ and operation C~,'~ of adding a new particle beside the j-th 
particle. Correspondingly we shall be concerned with a particle-history of an 
evolving system during a time interval [0, t], determined by t, A and x ~ f2~ ), which 
starts at x at time zero and ends in (~) ^ (~) " T~ t + Sk mk t, A X at time t. In this system new particles 
are added according to the applications of C~,'~ at times s~ .... , s k so that the number 
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of  particles increases and the system evolves by the time-reversed flow iP!~] o f  m + j  
particles during each time interval [sj, sj +: ], j = 0, . . . ,  k (s o = 0, s k + 1 = t). 

Put  
3-~k={A ----(s,v,l,j, a ) : s = ( s  I . . . . .  Sk) etc., 1 <=j: <=rn, sk <t } 

(m indicates the number  o f  componen ts  o f x  to which Mk, A should be applied, and k 
the number  o f  the particles added by 3~tk, ~). Given 0 < s < t and x e t? ~ we shall use 
the following abbreviat ions:  for A e ~ t k ~  and A ' e  ~--kS+l,k , 

and 

X ~ { x } =  lira ~(1/,) A~r(1/,),~ - - ( t - s ) + s k  k ,A  "~ 
.-+ oo 

yA' {X} = lim ?(1/,) /] ' / t(1/n)v- (for A '  "- ~ s  ~ - s + s ~ : , ~ k ' , d  " ~  ~ ~" l , k ' ]  
n ~ o o  

YA'X~ {x} = lira ]~(1/,) F/t(:/,) ?(1/,) s 
_ s + s i ~ , ~ , ~ k , , A ,  ~ _ ( t - s ) + s ~ : ~ . ~ k , A  

XO{x}=TO _s)x ' yO{x}=TOsx yOX~{x}- l im @(:/,) F/t(:/,),, - -  a _ t + S k ~ r a k ,  A J~ . 

lira [lLT_~({gk}~=l)]l = ~ ~ dAgk(X~). 
n~oo  k = O  ~Tt s 

1,k 

Os (x) = H ~ {(of } (x)/u(1)(s, x) 

and making use o f  IL~'= lL~'_s o IL~, we have 

I~, , :=H~{H~162176 

= l i m  [ ~ L ~ t _ s ( { ~ s b l n l k ( S ) } k =  1 ) - -  ] L  t -  s ( ] L s ( { • L l k } k  = l  ) ) ] 1  

= ~ S dA [, dA'{O,(X~)--r174 a) 
k , k ' = O  ~lt, k s Jks+ l , k ,  

where X A = X~ {x} denotes the phase o f  the first particle (i.e., the particle which 
starts at x) in XA{x} (and similarly for YI~). Here and below x is suppressed. 
Recalling u (1) (s, x) = H ~ {f}  (x), we have 

~s(X~) - (a(r~' x ~ ) = [H ~ { r  (X~) - r X~)H ~ {f}  (X~)l/u (~) (s, X A) 

and, substituting the expression 

H~ = ~ [, dA"'/(Y~"{X~})f(k"+:)| 
k"=0 ~:~,, 

Now,  setting 

where the sum runs over all v = ( v , , + :  .... , Vm+k), etc. Then 

i Sk 82 

dAg~= " (0a)~ 0 0 o - 
j r  m,~ (gO if k = 0  

Also we write as follows: for  a funct ion g 4 of  A 
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with )~-q5 and 1, 

 s,t: dA S dA' 1 
k , k ' , k "=O glt~ s Jks+ .~11 sk t, 

• 

(1.3) 

Step 3. We must compute the limit of  t-4It/2,t as t$ 0. Put s=t/2. The m-th order 
term of Is, t= It/2,t as a function of t is well represented by the sum of those terms on 
the right-hand side of  (1.3) for which k + k '+ k '=  m. If  the effect of interactions 
diminishes to zero in the Bol tzmann-Grad limit, then such a sum vanishes for each 
m. This is the case for m __< 2. The sum is zero also for m = 3. To see this we have 
merely to consider the contribution to the sum by those (A, A ', A") for which Y~'X ~ 
involves an interaction of the head-on collision. But this last condition for 
(A, A', A") entails another condition that k + k ' =  3 (i.e., k" =0)  and then these two 
conditions together imply Y~"{X~}=T2sXI~=Y~'X ~, showing that the cor- 
responding contribution vanishes. 

Let us now compute the fourth order term. Thus we look at those terms on the 
right-hand side of  (1.3) for which 

k + k ' + k " = l .  (1.4) 

Given a A, we denote by A(A', A") the integrand of the triple integral in (1.3). I f  
k = 0, then A (A ', A")+ A (A", A ' ) =  0 and therefore the corresponding integral over 
A' and A" under (1.4) vanishes. 

Let us consider the case k = 3. Let the expression A ' e  ~ denote that A' adds 
extra particles only beside the first particle or its descendants born by the 
application of A '. If  k '  = 1, k" = 0 and A' ~ ~ ,  then A (A ', A") = 0. Thus the integral 
of  A(A', A") over A' and A" under (1.5) with k = 3  is reduced to that over 

k ' = 0  and k " = l ;  or k ' = l ,  k"=O and A'~Juf .  (1.5) 

I f  A' E J-~ k then we can naturally consider A' as a member of  J-~,+ j k (J> i). Since 
k = 3, one' can easily ascertain that if A"e )-~1,  then Y~"X a = Yi ~'~ {Xi ~ }. Noting 
this relation we see that  the integral of  A(A', A") over (1.4) can be written 

dA" [O( Y~" { X~ } ) - O ( Y~ X~)) U2| ( Y~" { xA } ) f4| ( Y~ X ~) 

+ (qS(Y~ {X~ })--4)(YI~"{xA}))f(YO{xA})fS| 

= 

x [fZ|174176176174 (1.6) 

I f  Yf '  {X~ } 4= yo {X~ } (i. e., A" represents the addition of a particle in a position 
of the head-on collision with a~ = 0), then the operation of A" does not cause a new 
interaction in YA"xA s o  that the second factor of  the integrand in the last integral 
vanishes. Therefore the integral itself vanishes. Consequently the integral of  
A(A' ,A')  is zero if k = 3 .  
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As 

(i) 
(ii.l) 
(ii.2) 

(ii.3) 
(iii.1) 
(iii.2) 

for the case k = 2, we divide it into the following subcases. 

k ' = 0 ,  k"=2 .  
k ' = 2 ,  k"=O and A'eNg. 
k' = 2, k" = 0 and A' adds one particle beside the first particle and the other 
beside one of the remaining two particles in X A. 
k '=2 ,  k " = 0  and A' adds no particle beside the first particle. 
k ' = k " = l  and A'~Ng. 
k ' = k " = l  and A'~24(. 

The integral over (ii.3) trivially vanishes. By the same reasoning as advanced for 
(1.6) the integral over (iii.l) vanishes. To treat the case (ii.2) we introduce some 
notational convention. Namely we denote by A~ the part ofA'  which adds a particle 
beside the first particle and by Aj the other part of A', and write A '=  (A~, Aj) for 
convenience. Then making A' run over (ii.2) amounts to making Aj and Aj run 
independently of each other over 

Aj~y3s, l~Ng and AjEY* \ ~  3 ,1W "~ �9 

Then the integral of A(A', A") over (ii.2) and (iii.2) is reduced to 

f aA" I 

x [ f (  IiO {X A })fs  | ( y(~",a')X~ ) _ f 2  | (y~" {X~ })f4| (ya '  X A)], 

where ~--~,~ c ~  naturally is identified with ~-2,1, This vanishes for every A as is 
easily seen. 

Finally the integral over (i) and (ii.l) equals 

aA:= I dA'[~)(Y~'{X~})-~a(Y~ 

x [ f3|174176176174 

(~--~,2 C~X/F is identified with ~--[,2), which this time does not vanish for appropriate 
A's (see Fig. 2). 

1 

F ig .  2. H e r e  is i l l u s t r a t e d  a t y p i c a l  c o n f i g u r a t i o n ,  w h i c h  c o n t r i b u t e s  to  t he  i n t e g r a l  o f  a a w i t h  ~ = (1, 1), 
j = (1 ,2 ) ,  v = ( - v, v), a n d  a '  = (1 ,0 ) ,  j '  = (1, 1), v '  = ( - v, v), j u s t  a f t e r  t he  l a s t  a d d i t i o n  o p e r a t i o n  is m a d e  

For k = 1 the computation is carried out similarly. It is readily seen that there is 
no contribution to Is, t from subcases of k =  1 other than the following three: 

1) k ' = 2 ,  k" = 1 and A' is decomposed as A '=(Aj ,  Aj) where A~ adds a particle 
beside the first particle and Aj beside the other one of X ~ ; 
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2.1) k ' = l ,  k " = 2  and A ' ~ 3 f ;  
2.2) k ' =  3, k" = 0 and A' is decomposed as A' = (A[, A;) with A' 1 e ~--2s,2 ( 3 d ~  and 

The integral of A(A', A') over i) is 

b~:= 5 dA i ~ dA~ ~ dA'[d?(Yf'{XA})-(a(Y~I{X~})] 

Set r YA = = d -~1,1 : ~1 = 0} (the operation of A e y~]o changes the velocity of the 
first particle) and ~7-,,a _~7~ \ ~7-~,o Then ~ ' 1 , 1  - -  1 ,1\~"  1,1 " 

b ~ =  I dA; f dA'~ I dA"[O(YA"{X~})-O(YfI{X~})] 

x [f2|174 ~) 

_ f~Q ( r~; { x~ } ) f~| ( y(~",~'~ x~)] . 

The integral over 2.1) and 2.2) together is 

b d =  y dA'2 f dA ' [4(Y~"{X(} ) -4(Y~ 
GT,\Je G7~ 

x [f~ | (g~" {x~ })f~| (Y~iX ~) _f(yo {x~ })f~| (Y(~", ~a~x")]. 

Observe that the range of the inner integral above can be reduced to the set of 
A"=(s ' , l ' , . . . )~J -~ ,  2 such that a [ '= l ,  o-~=0 (i.e., the first particle changes its 
velocity by and only by the second addition of a particle in the operation of A"). 
Then a little reflection proves that b~ +b~ =0. Consequently 

l~,,= y u(1)(s, XA)-l  dAaA +O(tS).  

An elementary calculation shows that the integral above with s=t/2 equals 
B( t ) [ -h(v)  +�89 (h(w) +h( -w))] where 

h (v) = h (q, v) = {�89 [0 (q, w) + (o (q, - w)] - (a (q, v)} F(v) 
and 

B(I)=4A ! ds 2 ds  1 dt 2 dq I = t*. 

(A is the same constant as in the proof of (1.9) of [2]). This proves the relation (1.2) 
and hence completes the proof of the Theorem. 

2. A Tagged Particle in the Model I 

We briefly present reasoning of why 

for the Model I the limiting process of  a tagged particle is not Markovian 
even in the equilibrium situation. (2.1) 
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Intuitively this is convincingly explained by the persistence of recollisions: if the 
tagged particle makes a side-to-side collision with another particle, then it will 
repeat side-to-side collisions with the same particle with a good probability that 
does not vanish in the Grad limit. Here must be noticed the crutial role played by the 
head-on collisions that the partner particle of the side-to-side collision makes. 
Indeed if we suppress the head-on collision (in a way analogous to the case of  the 
side-to-side collision), then the recollisions of course still persist in the Grad limit 
but they do not affect the Markovian nature of the tagged particle process, since the 
effect of collisions on the tagged particle for this dynamical system is essentially the 
same as those for the dynamical system in which side-to-side collisions that do not 
involve the tagged particle are further suppressed. (Thus in this trivial situation the 
persistence of  the recollisions does not contradict the Markov property of the 
tagged particle process.) 

For  the (mathematical) demonstration of (2.1) we can proceed as in the pre- 
vious section, starting from the relation (1.3) in which X A, Y~ etc. are understood 
to be defined with the original dynamics. It suffices to consider the sum with 
k + k '+  k"= 3 in (1.3). For  k = 0 or 3 the roles of A" and A' are symmetrical and the 
corresponding integrals in (1.3) cancels each other. Let k--1 or 2. Then in the 
process resulting in YA"{X~} there can be no collision, while for Y~'X ~ with 
appropriate A' and A, we may have (side-to-side) collisions which (inevitably) 
involve the first particle, to the effect that 

l im t -3  [H t/2 H~ {~bf }(x) - H  ~ {~bf} (x)] 
t~0 

= C{ [~b (q, v) - 49(q, -w)]F1 (q, v) + [q~ (q, v) - ~)(q, w)]rz(q, v)} 

where F I and F 2 are positive functions determined by f only and C is a positive 
constant. Therefore the limiting process is not Markovian, whether the system is in 
the equilibrium or not. 

3. Intuitive Reasoning 

For our model the Boltzmann equation does not emerge in the Grad limit, which 
fact, as is well understood, must imply that the two particles which are about to 
collide are correlated. The latter fact may strongly suggest our present claim that the 
limiting process is not Markovian, but does the correlation asserted therein alone 
really prove the claim? At a very heuristic level one would be able to affirmatively 
answer this question as follows. Since any particle of which we know only its present 
state is expected to have made no collision in the near past with high probability, the 
correlation of two particles being about to collide is almost the same as that 
measured under the condition that one of the two has made no collision in the near 
past. On the other hand one may well guess that these two particles might be hardly 
correlated if we know that one of them, say c~, is right after a collision, because, 
conditioned on this event, the existence of  the particle c~ at a given state, x say, does 
not seem able to have any influence on the probability that there is found a particle 
that is about to collide with another particle in the state x if any. (These together 
amount to saying that it is the duration of the particle's run without any collision 
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that causes the correlation.) Therefore it would make a difference to the correlation 
at issue whether we have or have not certain knowledge about the past history of one 
of the two particles, implying what was to be proved. 

What we shall actually do below is to compare the two conditional probabilities 
of the first particle's future collision, the one conditional on its making no collision 
in the near past and the other on its being right after a collision. We shall reduce this 
comparison to that between the corresponding conditional probabilities of having a 
particle, a "scatterer", that is running ahead of the first particle, reducing the chance 
of its future collision. Figure 3 illustrates how is produced such an effect that the 
conditioning on being right after a collision increases the probability of having a 
scatterer. For  this to be compatible with the fact that in the equilibrium case the 
process is Markovian there must be another effect that counteracts it, so we shall 
need to estimate these effects with some accuracy. 

past ./t I present 

2 1 
A 

L ." .r L 

' - ' -<>2,  ~-<>~- 0 "  - -  
2' i' 2 

1 '  

Fig. 3. Suppose that the particle 1 is observed running along a line, L say, at present. If it has made a 
head-on collision just before its coming into the present phase, then with a good probability there might 
take place a head-on collision between some two particles, 2 and 2' say, on or nearly on L at some past 
time (as illustrated in the figure left) from which it ensues that one of them, say 2, either runs ahead of 
the particle I at present so as to play a scatterer in future or has already played it and disappeared 
from along L. 

Through the rest of this section we shall make the arguments given above precise 
to provide another proof  of the Theorem stated in Sect. 1. Here we are concerned 
only with the Model II and, for the sake of brevity, exclude the (suppressed) side-to- 
side collisions from our account (to do this can be justified: their effects cancels each 
other or, otherwise, are small enough to neglect). Suppose that the present time is t 
and consider the conditional probability that the first particle makes a (head-on) 
collision during (t, t + ~), ~ > 0, given its present phase, x :  (q, v) say, together with 
either the event 

d 1 : the first particle has not collided during [0, t], 

or the event 

d 2 : the first particle has just collided but not made any other collision during 
[0, O, 

(in the case o f d  2 the present phase x represents the post-collisional phase). In what 
follows we compare the probabilities/)1 and/)2 : 
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pk:=P( f )  [the first particle makes a (head-on) collision 
during [t, t + ~)IX(t) = x, d k ], (k = 1,2) 

provided that both t and r/t are small enough. 
We must first discuss in terms of the n-particle process X("(t) our problem of 

estimating p~-p2 .  For  a moment we accordingly take Pk as defined with 
(p(I,), X(,)(t)) in stead of  (P(Y), X(t)).  

The partner particle of the first particle's future collision, if any, may come out in 
front of the first particle in two ways: (A) without any collision during (t, t + z) and 
(B) via a collision made with another particle during (t, t + ~). First we consider the 
contribution from the case (A) to the probabilitypk in question (k = 1 or 2), which we 
shall need to compute up to the order O(tz2). By letting, e.g., v = ( l , 0 ) ,  this 
contribution may be written as 

(n-l) i dh2~u.ll(t+s,q+(s,h),-v)(1-bk(s,h))ds 
- -8  0 

(3.1) 

plus a negligible term, where bk(s, h) denotes the conditional probability, given d k 
as well as X[")(t)=x, of the event g which (if v = ( l ,  0)) is defined by 

C : presently there is a particle (ahead of the first particle) with the velocity v 
=(1,0)  in the region { q + ( ~ , h + r l ) : O < ~ < s ,  - e < t / < e } .  

As for the second possibility (B), it makes little difference in comparison with the 
case (A) which of d 1 or sr 2 we known occurs, since r/t is supposed to be very small 
(to be more precise the effect to PI -P2  is similar but of smaller order). 

Now, taking the limit of (3.1) as n ~  o% we again consider Pk and bk as defined 
with the limit process, and see that the difference P t - P 2  can be estimated by 
computing the difference b2 (s, h) - b l  (s, h). 

Let us deal with b 2 (s, h) first. The particle appearing in the description of g can 
come out ahead of the first particle in the two ways (A) and (B) as before but with s 
replacing -c. If d2  is the case the existence of the first particle has little influence on 
each of these ways and, as in [2] (see a discussion leading to (2.12) therein), we can 
easily find that 

b 2 (s, h) = 2 (1 - 4 t f  ( - v)) f ( v )  s + 8 f  (~ v) f ( - t v) ts + o (ts). 

Here (and below) we omit the position arguments from f ,  for they are not 
significant. (For a more exact expression the first two terms on the right-hand side 
should be replaced by certain integrals over the starting positions (at time 0) of two 
particles ; the errors, however, can be absorbed in the remainder term o(ts) owing to 
the continuity of f .  Alternatively one may argue that the same integrals should 
appear for the expression of bx(s,k)  so that they cancels each other in the 
subtraction b 1 -b2. ) 

As for b 1 (s, h) we see that the possibility to the way of(B) is largely cut offby the 
condition that d l  is the case ; after an elementary computation it turns out that its 
contribution to bl (s, h) is written as 

O ( h ) f ( t v ) f ( - ~ v ) t s + o ( t s ) ,  with 2 < 0 ( h ) < 3 .  
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By a similar  c o m p u t a t i o n  we also observe that ,  given X(t)=x, the cond i t iona l  
p robab i l i t y  of  d 1 is (1 - 4 t f (  - v)) + o (t) and  tha t  the con t r i bu t ion  f rom (A) to the 
cond i t iona l  p robab i l i t y  of  d i c e d  ~ given X(t)=x is f(v)s(2-[8 +O(h)]tf(-v)) 
+o(ts). C o m b i n i n g  these es t imates  we have 

bt (s,h )=(2-O(h)t f  (-v)) f (v)s +O(h ) f (w) f (-zv)ts +o(ts). 

Consequen t ly  we have 

b 1 (s, h) -b2(s, h ) =  - ( 8  - O(h))(f(zv)fOv)-f(v)f(-v))ts+o(ts),  

which toge ther  with (3.1) shows tha t  the chance o f  the first par t ic le ' s  col l is ion in 
the near  future  under  d 1 is larger  or  smal ler  than  tha t  under  d 2 accord ing  as 
f ( t v ) f ( - z v ) - f ( v ) f ( - v )  is posi t ive or  negative.  Thus the pas t  h is tory  o f  the 
tagged par t ic le  influences its future  behav io r  even when its present  state is given. 
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