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Summary. The paper first reviews the Skorohod generalized stochastic
integral with respect to the Wiener process over some general parameter
space T and it’s relation to the Malliavin calculus as the adjoint of the
Malliavin derivative. Some new results are derived and it is shown that
every sufficiently smooth process {u,,teT} can be decomposed into the
sum of a Malliavin derivative of a Wiener functional, and a process whose
generalized integral over T vanishes. Using the results on the generalized
integral, the Bismut approach to the Malliavin calculus is generalized by
allowing non adapted variations of the Wiener process yielding sufficient
conditions for the existence of a density which is considerably weaker than
the previously known conditions.

Let e; be a non-random complete orthonormal system on T, the Ogawa
integral [udW is defined as Z(e;, u) [ e;dW where the integrals are Wiener
integrals. Conditions are given for the existence of an intrinsic Ogawa
integral ie. independent of the choice of the orthonormal system and
results on it’s relation to the Skorohod integral are derived.

The transformation of measures induced by (W+|udy) with u non
adapted is discussed and a Girsanov-type theorem under certain regularity
conditions is derived.

1. Introduction

Different definitions of the stochastic integral of a non-adapted random process
with respect to a Wiener process have been proposed by several authors (cf. e.g.
[12, 14, 17]). In [17] Skorohod introduces a stochastic integral with respect to
a Gaussian measure with orthogonal increments. This integral is constructed as
a random linear functional on an abstract Hilbert space. Roughly speaking, the
role of the adaptability property is replaced in this kind of stochastic integrals
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by some regularity conditions on the integrand processes. Also, this stochastic
integral does not possess some of the more natural properties of the ordinary
Ito integral. For instance, let jué w denote this integral then

T

(i) Tt is possible to have [ udw=0 as. even though E | u® u(dt)>0.
T T

(i) Let C(w) denote a random constant, then in general,
[Cwyobw=Cw) | dw.
T T

In a recent article [4] Gaveau and Trauber have shown that this general-
ized stochastic integral is equivalent to the dual operation of the differential in
the Malliavin stochastic calculus. In the paper of Skorohod a stochastic de-
rivative with respect to the fundamental Gaussian process is already intro-
duced, and in [4] it is proved that it coincides with the Malliavin gradient,

The purpose of this paper is to further clarify the relation between the
Skorohod integral and the Malliavin calculus and to show that this integral
enables to derive conditions for the absolute continuity of the probability law
of Wiener functionals under conditions which are weaker than those of the
Malliavin approach. In Sects. 2 and 3 the basic properties of the Skorohod
integral and the Malliavin operators are presented in the general context of a
Gaussian measure with orthogonal increments. The special case where T
=[0, 1] is discussed in example 3.6 and it is pointed out that the Skorohod
integral generalizes the forward and backward Ito integrals. The integration by
parts formula of [4] is reviewed in Sect. 4 and some consequences are derived.
It is shown in Sect. 4 that every square integrable process (u,(w), teT) possesses
an orthogonal decomposition u=DF +u° where, very roughly, DF is the gra-
dient of a Wiener functional F(w) and u° is orthogonal to all processes which
are representable as gradients of Wiener functionals and the Skorohod integral
of u® [u®édw, vanishes.

T

The Malliavin calculus is a powerful method for proving the existence of a
density for the probability laws of functionals of the Wiener process and, more
generally, of functionals of a Gaussian measure with orthogonal increments.
The ideas of Malliavin have been developed by several authors (Stroock [17],
Shigekawa [147], Ikeda-Watanabe [5]). An alternative approach to the problem
of the existence of a density has been proposed by Bismut [1], cf. [19] for a
general survey of the Malliavin calculus and a comparison of the approaches.
The method of Bismut is based on the Girsanov theorem which allows to
deduce an integration by parts formula and is, roughly speaking, based on
directional derivatives in adapted directions i.e. directions which are admissible
by Girsanov’s theorem. While directional derivatives in adapted directions
suffice for the case of solutions of stochastic differential equations this is not
the case in general. In Sect. 5 we use the integration by parts formula of Sect. 4
to extend the Bismut approach, obtaining sufficient conditions for the absolute
continuity, which are strictly weaker than in Malliavin approach. We give a
particular example where the Malliavin method is not applicable because the
functional does not belong to the domain of the Ornstein-Uhlenbeck operator
L, but the generalized Bismut approach can be applied using a derivative in a
suitable non-adapted direction.
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In some recent papers ([12, 13]) Ogawa has introduced a non-causal
stochastic integral with respect to the Brownian motion, which may depend on
the particular orthonormal basis that we choose in the Hilbert space I*([0, 1]).
In Sect. 6 we give some conditions for this integral to have an intrinsic
meaning in the general set-up of a Gaussian orthogonal measure, and we
discuss its relation with the Skorohod integral. It turns out that the hypotheses
for the existence of an “intrinsic” Ogawa integral are stronger than those for
the construction of the Skorohod integral. In some particular cases we in-
troduce a symmetric integral, which is similar to the Ogawa integral, and is an
extension of the Stratonovich integral.

Finally, in Sect. 7 we study the transformation of the probability law of a
Gaussian orthogonal measure under changes of the form w(B)—w(B)
+ [ u(t, w) u(dr), where y is the intensity of the Gaussian measure w, and u is

B

some square-integrable process without the assumption on this transformation
to be one-to-one. Some conditions for the absolute continuity are given, the
density is computed and a Girsanov type result is presented. In the framework
of an abstract Wiener space this problem has been considered by Ramer [14],
and, under more general assumptions, by Kusuoka [9], following earlier work
of Cameron and Martin, Gross, Shepp and Kuo.

2. The Malliavin Operators

Let (T, B) be a measurable space with a finite atomless measure . Consider a
zero mean Gaussian process {w(B), BeB} with covariance function given by
E(w(B,)w(B,))=pu(B,nB,), defined in some probability space (@, F, P). This
process will be called a Gaussian orthogonal measure on the space (7, B, u).
We assume that the sigma field F is generated by the random variables w(B),
BeB. We will denote by H the Hilbert space I*(T, B, ) and we will suppose
that H is separable. For any he H, we denote by w(h) the Wiener integral of h
with respect to w.

Recall that any square integrable functional FeI?(, F, P) can be expanded
into the series of multiple Ito-Wiener integrals ([6])

F=E(F)+ Y. 1(f,) 2.1)

which converges in quadratic mean. For all m=1, I _(f,) denotes the multiple
Ito-integral of the deterministic function f, e I*(T™ B™ u™). The main properties
of these integrals are the following:

(a) I, is linear,

~ . 1 )
(b) Im(f):Im(f)’ Where f(tb vy tm):W zf(to-(l)’ et tg(m))’ g runnmg over
all permutations of {1, ..., m}, e

0 f >
© E(1,(f) Ip(g))={m’,<f & ;f Zfi
‘s 82 L2rmys e
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Note that, in the decomposition of F we may assume that the kernels f, are
symmetric and, in this case, they are uniquely determined by F as elements of
L}(T™ B™ u™). In the following we will always suppose that the f, are sym-
metric.

The Malliavin operator L is defined as

LE=Y m(f) (2.2)

provided the series converges in quadratic mean. Than means, LF exists if and
only if the sum

ILFI3= ) m*m!|f,]3
m=1

is finite. The operator L has the following properties:

(@) L is a closed, non-negative, self-adjoint operator with a domain dense in
I[*(Q, F, P) and E(LF)=0.
(b) L possesses a self-adjoint square root given by

IM2F= i VmI ()

(c) As pointed out in [19, 20] LF can be interpreted as the derivative of F
with respect to a scale parameter: LF(w)=(0F(Aw)/0A),_,. In fact, let 1 be a
real number such that |A] <1, and define the functional

F,=EF)+ i AL () (2.3)

m=1

s o1 .
Then LF exists if and only if —(F —F,_,) converges in L? as ¢ tends to zero, and
i 1 ‘
in this case LF=lim—(F —F, _).
e—-0 &
(d) L is the infinitesimal generator of the semigroup {T,F=F,_.; t>0}.

The Malliavin Derivative D,F can be defined as follows. Let FeI?*(Q, F, P)
be given by (2.1), for he H set

DhF: Z m<h’ Im—l(fm(zl’ M [m~—15 .))>
m=l (2.4)

ml,_ (b [t ot 1))

1

[
ﬁMs

provided the series converges in I*(Q, F, P) where {f, g)> denotes the scalar
product of two functions f, g in H. Let {e¢,,i=1} be a complete orthonormal
system in H. Then, DF exists as a square integrable H-valued random variable
if and only if the following quantity is finite
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E(IDFI)= Y E(,,F))
=§ S w2 EL e/ Iy fltrs ot 1o D) ()]
= ¥ m =D S 3=E2 ), (2.5)

The set of functionals Fel*(Q, F, P) such that E(|DF||3)<o will be denoted
by H>'. Note that H**=Dom I} The set H>' is a Hilbert space with the
scalar product E(FG)+ E({DF, DG>p).

The next proposition relates the Malliavin operators D, and L.

Proposition 2.1. Let he H. Then
D,LF—LD,F=D,F,
if all terms exist.

Proof. 1t suffices to suppose F=1I,(f,). and in this case D,LF=mD,F and
LD,F=(m—1)D,F.

Fix an element heH. As in the case of the operator L, we want to interpret
the random variable D,F as a directional derivative of the functional F.
Without loss of generality, we may assume that (€, F, P) is the canonical
probability space associated to the process {w(B), BeB}, that means, Q=R"
and F is the product sigma field completed with respect to the law of w. It is
easy to see that the probability measure induced on (@, F) by the mapping
{w(B)}—»{xv(B)+fhd u} is absolutely continuous with respect to the law of w,

with a density equal to exp(w(h)—3 [ h* du). Indeed, let By, ..., B, be measur-
able disjoint subsets of T. We have 7T

E[exp( thB)+w —rjhzdu)]
=exp (—l th,u(Bj)—i-iZ tjfhdu\) .

=1
[exp ( Z t [wB)+ | hd,u])]
for all t,,...,t, in IR. Thus, for any real number, & the functional F(w
+e¢{ hdp) is well defined.
1
Proposition 2.2. Let FeI*(Q, F, P). Assume that " [F(w+e[hdu)—F(w)] con-

verges in I? as ¢—0. Then D,F exists and coincides with the limit of this
expression.

Proof. Let F=E(F)+ Z I,.(f,). We will denote by F,, n=1,2, ..., the sum

E(F)+ Z 1.(f.) We remark first that
m=1
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I(f,)w+e | hdw) :i ( ) E LT fultys st b s ooe £

=0 Tm~-i

bty o) - h(ey) pldt;, o) . pldey,))-

In fact, this formula is obviously true when f, is a simple function. In the
general case it is proved by a usual convergence argument. As a consequence,
we obtain

n—2 n
F{w+e[hdp=F,(w)+eD, F,+e* Y > (m) gmi?
i

i=0 m=i+2

LOT fultns o titipns oo by)

Tm—i
“h(tiy ) - Chit) p@de, ) - plde,))
and, therefore,

1 2
= LR (w+e [ hd )= F,(w)] o D,F,

for all n>1. That means, for functionals belonging to the Wiener homogeneous
chaos of order n the opelator D, can be expressed as a directional derivative.
Denote by F, the limit lim — [F (w+e{hdp)—F(w)] in the I* sense. For any

£~0

GelI?(Q, F, P) we compute

L BLFOw-+2 [ hd) —F9) G, 0]
:% E[FwW)(G, (w—e [ hdp)— G (w)+F(w) G, (w—e | hdp).

82
ew(h)—= [h*du

. (6 27 - 1)]
When ¢ — 0, this expression converges to
E[—FD,G,+FG,w(h)],

which will now be shown to be equal to E(G,D,F,,,)- In fact, by the proper-
ties of the multiple Ito integrals, we have

E[F(G,w(h)—D,G,)]
z 1
:E[F Y Iis (m—+1 {gm(tl, s L)1)

m=0

5 sttt

i=1

=2 4+ D! [ Sl oo tug ) 8ultss oos 2 Bllyy ) di™™
m=20 Tm+1

:E(GnDhFrH- 1)7

where G=E(G)+ > I,(g,)
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Therefore E(G,D, F,, ,)=E(G,F), consequently D, F,, ; is the projection of
F, on the Wiener homogeneous chaos of order n and, therefore, F,=D, F.

Let ¥:IR*—> R be a three times differentiable function on R" such that
together with its fist three derivatives are of polynomial growth. The function-
als Fw)=y(w(h,), ..., w(h,)), h,eH, will be called simple functionals. From
Proposition 2.2 it is clear that for any he H

Z — <h (2.6)
Moreover, it can also be proved (cf. [18, 19]) that
n aw n azl//

LF= — w(h,)— ——— L R D>, 2.7

i=zl axi W( l) i’jz=1 axi axj <hz‘ 1]>H ( )

The main rules of the calculus associated with the Malliavin operators D and
L can be summarized as follows:

Proposition 2.3. Let ¢: R*> R be a real valued twice continuously differentiable
function such that the first and second derivatives of ¢ are bounded. We consider
square-integrable functionals F,, ..., F,, and set F=(F,, ..., F)). We have

(i) o(F)eH*' if FeH* for all i=1, ...,d, and Do(F Z (F ) DF,.

(i) If FeDomL for all i=1,....d, then o(F) belongs to the closed 11
extension of L and

Lo(F)= Z %(F)LF— i ‘o (F){DF,, DF>
¢ T ox i =1 0%, 0x; M

Proof. Consider first the case where the F; are simple functionals, and then pass
to the limit.

3. The Skorohod Integral

Let {w(B), BeB} be a Gaussian measure with orthogonal increments on the
underlying space (T, B, p). In this section we introduce a stochastic integral
with respect to the measure w, defined in [17] by Skorohod, and discuss its
basic properties.

Suppose that u={u(t, w), (t, w)eT x Q} is a B® F-measurable process such
that E(u?)<oo for all teT. Then for each ¢ the random variable u, has a
representation in a series of multiple Wiener-Ito integrals

)+ S L]ty s ) (3.1)
m=1

where the kernels f, can be chosen to possess the following properties:

(a) for every t in Tf,(¢]) is symmetric in the coordinates ¢, ..., [, and
belongs to I*(T™ B™ u™).
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(b) f,, is a measurable function of all its variables.
The proof of (b) is as follows. Let {u*, k=1} be a sequence of simple

processes such that hm uk(w)=u,(w) for all (£, w) and u* —Li(i)> u, for all ¢.

We will have a representatlon of the form u*=Eu") + Z L (f5elty, ooes )
m=1
for any k=1, where the functions f* verify the desired properties. Then it is
L2(T™)

easy to check that f(z| )——> f..@]-) for all ¢, and this implies the existence

of a measurable version of f,.
We will denote by

1
Tty ot )= Eﬁ[&mgw H+ZfUHD.HIJ@Hw”w}

ie. the symmetrization of f,, as a function of m+1 variables. Then, the Skoro-
hod integral of the process u is defined as

J ubw=w(Ew) + S It () (32)

m=1

provided that the multiple Ito integrals exist and the series converges in
quadratic mean. This means that the Skorohod integral can be defined for all
measurable processes u such that E(u?)< oo for all ¢ and such that the follow-
ing seminorm is finite

o N 1/2
Hu!|={f(Eut)2H(dt)+ > (m+1)! llfmﬂz} : (3.3)
T m=1

In this case E j udw=0 and E[(juéw)2 = |u}/®. The Skorohod integral of the
process u will be also denoted by Su. Let I2(T x Q) be the space of measurable
processes u such that j E(u?) u(dt) < co. We have the following result.
T
Proposition 3.1. Let uel*(Tx Q) such that | E(|Du]|}) u(dt)<oo. Then, the
T

Skorohod integral of the process u exists, and we have

E[(5u)2]=fE(uf)u(dt)+ f E[Duy(s) Duy(t)] u(dt) u(ds)
(3.4
éf 2)#clt)JrJ"E(HDuHH)#(dt)

uut+jEuﬂﬂ )] u(do). (3.42)

i
-a=—; ~

Proof. Note that Du is a square integrable random variable valued on HQ H
=I2(T% B?, u?), and we can choose a version of Du,(s) which belongs to [*(T?
x Q, B*°®@F, u?>® P). For almost all (s, t, w) we will have

o0

Dus)= Y ml,_ (fult]s, t1s s tp_ )

m=1
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Then, using (3.3), a simple computation shows that

m!

(m+1) [ [l .t

ELCw 1= (Ew)* ude)+ 3, Gy (mt D) T

pldryp(dey) .. plde,)+mm+1) § fo@]s, b, eyt V(S8 ooy by

Tm+1

p(d1) u(ds) i) oy, )= ] E@)) pd)+ | ELDus) Duo)] pdo) uds).

Finally we apply the Schwarz inequality and equation (2.5).

Remark. A result of this type appears in the article of Skorohod, in a more
general set-up, where w is a generalized Gaussian element on an arbitrary
separable Hilbert space H. Furthermore, a similar stochastic integral has been
considered by Ramer [14] and Kusuoka [9] in the context of square-integra-
ble functionals defined in an abstract Wiener space.

Now we are going to present the main properties of this integral.

Proposition 3.2. Let Fel*(Q, F, P). Then LF=0DF in the sense that F belongs
to the domain of L if and only if FeH** and DF is Skorohod integrable.

Proof. Note that here we identify the H-valued random variable
DFel%(Q, F, P) with a real random process of I*(T x Q). To prove the propo-
sition, it suffices to consider the case F=I,(f,). Then LF=mF, and §DF

=0(ml,,_ (f,(t, ty, ... t,_))=mF.

Proposition 3.3. Lou—JLu=035u, for any measurable process u such that
E?)< oo for all t and such that all terms in this expression exist.

Proof. We may assume that u, =1, (f,,(¢1-)). Then,

Léu—SLu=m+11,  (f)—ml, . (f)=IL.. (f)=0u

Proposition 3.4. D, 6u—38D,u=<{u,hy if heH and u is a process of L*(T x Q)
such that the variables D, éu and dD,u exist.

Proof. As before, we may assume that u, =1, (f,,(¢]*)). In this case,
1 m
D, du=D,1, (E%—_l [fm(t{tl, ...,tm)+i§1fm(ti|t1, VU PP A FPU tm)])

=1, (<h(->,fm(-|z1, cor )t X ol b zm)>)
={h, ud+D,u.

Proposition 3.5. Let FeH*' and feH. Then the process f(t)F(w) is Skorohod

integrable and
o(fFy=w(f)F—D,F

—F5/~(DF,f>y.

Proof. Tt suffices to assume that F=1I,(f,). Then, the above equality follows
from the properties of the multiple Ito integrals:
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0(f F)=1L, s (J fu) = Ly (N) L fy) =L ((CFs frtgs s b 15 7))
=w(f)F—D,F.

Remark. The result of Proposition 3.5 can be generalized to yield
O(F -u,w)=F -du—{u, DF )

under suitable conditions.
As a consequence of Proposition 3.5 for a simple process u(t, w)
d

= ) F(w)1p (1), where B, are measurable subsets of T, and F,e H* !, we have
k=1
d

d
du= Y w(B)F— Y <(DE, 15>,
k=1

k=1

We can also consider the behavior of the Skorohod integral under a change
of scale. Let 1 be a real parameter such that |A]<1. We have already in-
troduced in (2.3) the «natural» extension F(iw) of the functional FeI*(Q, F, P),
which has been denoted by F,(w). With this definition we obtain the following
expressions

1
LF,=(LF),, D,F,=A(D,F);, and 5”123(5“)13

which are compatible with the different relations among the operators L, D
and d.

Example 3.6. Consider the particular case T=[0, 1], u the Lebesgue measure
and w[0, t]=w, an ordinary Brownian motion. Here we may take Q equal to

the space of continuous functions C(T) and P the Wiener measure on it. Let
1

u={u,,teT} be a measurable and adapted process such that { E(u?)dt< 0.
0

Then as we show now, u is Skorohod integrable, and the Ito and Skorohod
integrals coincide. Consequently the Skorohod integral for square-integrable
processes is an extension of the Ito integral. In fact, the kernels f,,(¢t|t,, ..., t,)
can be chosen with the property f,(¢]¢,...,1,)=0 unless max {t,...,t,} <t,
and then, the seminorm |lu|| defined by the expression (3.3) coincides with

1 172
(j E(u?) dt) , because using Proposition 3.1 we have
0

1 0 11
(ull?=[E@?)dt+ Y, mm!§ { fo(tls,tys s b y)
(o] m=1 00

1
ulslt by, b, dsdtdt ...dt, ={E®u})dt
0

1 1
Therefore fudw exists. Furthermore, I,,,,(f)={1.(f.&|ty,...,t,)dw, and
0 0

1
the Skorohod integral du is equal to the Ito integral | u,dw,.
0
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In a similar way, if the process u is measurable, adapted to the filtration G,
1

=o{w([s, 1), t<s<1}, and satisfies j E(u})dt<co, then the Skorohod integral
0

of u exists and coincides with the backward Ito integral [7].
Two particular examples of Skorohod integrals are as follows

T

TT
fw(mow={ fdw, dw, =wXT)-T
0 00

hence for T, < T,
T2

[ w(T)) 6w=w(T,) w(T,)—T;. (3.5)
0

The second example:

T

gw,(wT~wt)5w |

Qb= M Ot Ot Oty

i <t<iy

O ey Y
O by =y

—

dw,, thz) dw

It

O t—

t
[dw, dw,dw,,
0

1
= (f wtdw,) dw,,
[
2
£,)—
Y i) (~2) ‘2 gw,.. (3.6)

1
Remark (a). Let u={u,, tcT} be a measurable process such that jE Ydt< oo,

with the integral representation u,=E(u,)+ Z L.(f,@lt,, ... )). We can con-

sider the predictable projection u? of u, whxch w111 be equal to

uf:E(ut)_’_ Z Im(f;n(tltlz Ty tm))’
m=1
where

ftty, .o t)=

f (tity, .. b, if max{t, ..., ¢,} St
otherwise.

Then, if u is adapted we know that u=u’. However, it follows from (3.5) or
(3.6) that for a non-adapted process u, the Skorohod integral f u, 0w, does not
coincide, in general, with the Ito integral _[ut w,.

1
Remark (b). Unlike the Ito integral we may well have [udw=0 as. while
1 0

E [u?ds>0. An example of such a case is
o

}(t—z
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In this case f,(¢|t,)=t—1t,; f,(t,,)=0 and juéw 0 by 3.2. Another example
is given in the next remark.
T
Remark (c). Consider the functional F(w)={u dw, where u is a nonadapted
0
Skorohod integrable integrand. Then F has the Ito integral representation F(w)
T

= | ul dw, for some adapted process u! therefore
0

T
= u, 0w,
0
and also
T T
Fw)=[uldw,={uldw,
0 0
and

T
fu,—ul)dw=0
0

T
but | (u,—u)?> ds>0, cf. Proposition 4.4.
0

4. An Integration by Parts Formula

Let u={u,, teT} be a measurable process of the space I*(T x Q). For any

FeH*!, we define D,F={DF,u),. Then D, F is an integrable random vari-

able such that (E|D,F|Y <E(|DF|3) { E(u}) u(dt). In [4], Gaveau and Trauber
T

have shown that the Skorohod integral of the process u is equivalent to the
adjoint of the differential operator D introduced by Malliavin. More precisely,
we have the following result.

Theorem 4.1. ([4]). The mapping F—E(D,F) defined on the space
H*»'<I*(Q,F, P) is continuous in the norm of I*(Q,F, P) if and only if the
Skorohod integral of u, exists, and, in this case, E(D,F)=E(F [ udw).

Let FeH?* !, for the case where u is deterministic we have already seen that
D,F can be interpreted as a directional derivative. In general, in order to
identify D,F as a directional derivative it is necessary to impose some re-
strictions to the process u, but we will not treat this problem here (cf. [197).
The following property, which has been proved in [19] for directional deriva-
tives, is an immediate consequence of the above definitions.

Proposition 4.2. Let Fe H*'. Then
|DF ||z =sup {(D,F)*: ueI?,(Q, ¥, P) and such that |ju| =1}

Proof. Clearly (D, F)*<|DF\} if |ull,=1. Conversely |DF||3=D,.F=(D, F)%,
DF

where u= m
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Let ue*(T x Q). We may ask the following question: When is u equal to
DF for some functional F in H>1?

Proposition 4.3. Suppose that ueI*(T x £). There exists a functional FeH* !
such that DF =u if and only if the kernels f,,(t|t,, ..., t,) which appear in the
integral decomposition of u are symmetric functions of all the variables.

Proof. The condition is obviously necessary. To show the sufficiency, define F

=w(Eu)+ Y m1m+l(fm)' This series converges in quadratic mean and
m==1 0

FeDom [M'? because E[(L'? F)*]= Y m!| f,lI3= [ E(u}) u(dt). Also, it is clear
that DF =u. m=0 T

Remark. Recall that under the hypotheses of Proposition 4.3, it follows by
Proposition 3.2 that the Skorohod integral of the process u exists if and only if
FeDom L, and then du=LF.

Theorem 4.4. Every process uel?(Q, F,P) has a unique orthogonal decom-
position u=DF +u° where FeH*' and E{u’,DG>,=0 for all G in H**
Furthermore, u® is Skorohod integrable and du®=0.

Proof. Note that the Hilbert spaces I%,(2, F, P) and I*(T xQ, BQF, u® P) can
be identified by the natural isometry. The elements of the form DF, FeH> !,
constitute a closed subspace of I2,(2, F, P) by Proposition 4.3. Therefore, any
process uel?,(Q, F, P) has a unique orthogonal decomposition u=DF +u,,
where FeH>' and u, 1 DG for all GeH* . Note that, by Theorem 4.1, u° is
always Skorohod integrable and 6u®=0.

Remark. 1. Shigekawa has recently introduced differential n-forms in abstract
Wiener space and derived a de Rham-Hodge-Kodaira decomposition for such
forms [16]. The decomposition of Theorem 4.4 above corresponds to the case
of n=1 of [16], ie. the decomposition of 1-forms as the sum of the exterior
derivative of a zero form, the Hodge-star operation on a 2-form and a
harmonic component which vanishes in this case. We wish to thank an anon-
ymous reviewer for calling our attention to [16].

5. The Generalized Bismut Approach

Let F be a square-integrable functional of the Gaussian orthogonal measure w.
The question arises whether the probability distribution of F possesses a
density with respect to the Lebesgue measure. The following lemma, intro-
duced by Malliavin, is a basic tool in establishing this property.

Lemma 5.1. ([10]). Let X be a random variable and assume that for all
e CyP(R) (the class of all real valued functions on R which are bounded and
possess bounded derivatives of all orders) the following inequality holds
|E(¢p'(x))|=cll@ll . Then the law of x has a density.
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Following the approach of Bismut [1] and applying the general integration
by parts formula established in the last section, we can state the following
result.

Theorem 5.2. Let Fel*(Q, F, P). Let u={u, teT} be a Skorohod integrable
process of I*(T x (). Assume that F,D ,FeH*', and D ,F#+0 as., then the
probability law of F possesses a density.

Proof. Set G=D,F/(¢+(D,F)?) for any ¢>0. Then, by the rules of Malliavin
calculus, D,G=(¢—(D,F)*)/(e+(D,F)*)*. Applying Theorem 4.1 we have for
any g€ Gy’ (R)

E(Go(F) [ udw)=E(G¢'(F) D,F+¢(F)D,G)

Hence T

¢e—(D, F)?
(e+(D,F)*)?

(D, F)?
e+(D,F)*

(D, F)?

__—’8+(DMF)2.£ w‘ -D,D,F

E’w'(F)

b

For any fixed £>0, the right-hand side is bounded by hypothesis. Therefore, if
dP¢
dpP
the measure B¢ F~! is absolutely continuous with respect to the

é!lqolooE{l

P? is a new measure on the original probability space, defined by
(D, F)*
e+ (D, F?
Lebesgue measure on R. Let B be a Borel set of R with Lebesgue measure
zero. Then P!(FeB)=0 and, by monotone convergence, P(FeB)=0, which

completes the proof.

In the Malliavin approach, the main condition to assure the existence of a
density is |DF|l,>0 as. More precisely, we have ([10, 15], cf. the proof of
Proposition 2.2.1 of [19]):

Theorem 5.3. Let FeDom L such that F and |DF||3eH*"'. Assume |DF| ;>0
a.s. Then, the probability law of F is absolutely continuous with respect to the
Lebesgue measure.

For the particular case where we choose u=DF in Proposition 5.2, the
smoothness requirements in Propositions 52 and 5.3 are the same (in fact,
FeDomL iff FeH*' and DF is Skorohod integrable, cf. Proposition 3.2).
Comparing, now, the generalized Bismut approach (Proposition 5.2) with the
Malliavin result (Proposition 5.3) yields that Proposition 5.2 is more general.
In fact, from Proposition 4.2 we see that hypotheses of Proposition 5.2 imply
IDF||,>0 as., but it may happen that u is such that D, F>0 as, u is
Skorohod integrable and D ,FeH*' although DF does not satisfy the con-
ditions of Proposition 5.3.

Example 54. Let F(wy=¢(w(T)), where ¢:R—-R is such that: ¢(x)=2x
—x logx?, for all |x|<e<1, and extend ¢(x) for all x for which |x| is in (g, 00)
in such a way that ¢ is C;° and ¢’ >0 for |x[>¢/2.
Then D, F=¢ (w(T)) { hdu and, therefore, FeH* !, because ¢'(x)= —logx?
T

if x| <e. If we choose u,=w2, then D,F = ¢’ (w(T)) w2 u(T) belongs to H>' and
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D,F>0 as. Therefore the generalized Bismut method (Proposition 5.2) is
applicable. However, F¢gDom L, and ||DF||3¢H> .

6. The Ogawa Integral and its Relation with the Skorohod Integral

In [12, 13] Ogawa has introduced a stochastic integral of non-adapted pro-

cesses with respect to the Brownian motion using a method which differs from

that of Skorohod. In the context of a Gaussian orthogonal measure w, the idea

for constructing this integral is the following. Let {e;,i=1} be a complete

orthonormal system in H =I]*(T) and consider a measurable process u satisfy-

ing P{fu? u(dty<oo}=1. Then the Ogawa integral of u is defined as the sum
T

in the sense of the convergence in probability of the series ) (u, e;> w(e;) if it

exists. In general, this integral may depend on the particular orthonormal
system. Ogawa has proved the existence of such integral when u is a con-
tinuous quasi-martingale, w is the Brownian motion on [0,1] and e; is the
system of trigonometric functions.

Consider a process uelI*(T x Q) with the integral representation (3.1) and
put

w=E@)+ Y L,(f,(tltg, .. 1,)
m=1
for any n=1. From Proposition 3.5 we have

(e, (1) (u", e) =w(e)<u", ) —<DKW", e), e, (6.1)
for all n21 and iz 1. Assume that | E(|Du,||3) u(dt)< co. Then the sequence of
T

processes {e,(t){u" ¢;>, n=1} converges to the process ¢,(f)<u, ¢;> in the norm
(3.3). Therefore we may take the limit in the expression (6.1) for the I?
convergence, when n— oo, obtaining

o(e(1)<u, ep)=wl(e)<u, e;>— Iz Du,(s) e, (t) e;(s) u(dt) u(ds). (6.2)

Thus, in order to give an intrinsic meaning to the sum of the series
Y w(e;){u, e;» we have to impose some conditions to the kernel Du,(s).

Proposition 6.1. Let ueI?(T x Q) such that jE(HDu,]I%I)u(dt)<oo. Assume that
T

the kernel Du,(s) has a finite trace, for all w, except in a set of probability zero.
Then, the Ogawa integral exists for any complete orthonormal system and it is
equal to du+trace Du.

M
Proof. The sum ) e;(r)<u,e;> converges to the process u when M tends to
i=1

infinity in the norm (3.3). Indeed, it is easy to check that

L2,(2,F, P)

M
Y e <u, e e W
i=1
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and
L22(2,F, P)
—’oo

f Du,(s) e,(v) u(dv) Du. (6.3)

?‘“Mz

M
As a consequence, 5(Zei(t)<u, ei>> converges in I? to du when M — 0.

i=1

Moreover, for any complete orthonormal system {e;,i=1} the series

Y. | Du,(s) e;(t) e;(s) u(dt) u(ds) converges for almost all w to the finite random
i=1 T2
variable trace Du. This achieves the proof of the proposition.

If the Ogawa integral of some process u exists and has the same value for

any complete orthonormal system, it will be denoted by S

Examples. (i) Let FeH*' and feH. Consider the process u(t, w)=f(t) F(w).
Then, Du,(s)=f(t) DF(s) has a fmrge trace and, therefore, the Ogawa integral of
u is well defined and is given by o(f F)=46(fF)+D, F=w(f) F, by Proposition

3.4. More generally, for simple processes u(t, w)= Z F,(w) 15 (t), such that

F,eH*', we have
d

$($ R0 1,0)= 5 W) R
K=1 k=1
(if) Consider a measurable function ¢:IR"x T—R such that for any teT,
@(-,1) is a continuously differentiable function, and such that the function ¢

o . 0
together with its derivatives a—(P have an absolute value bounded by ¥ (1)1
+1x]"), where yeI*(T) and vZ=0 is some integer. Let h,, ..., h,e H. Then, the
process u(t, w)=@(w(h,), ..., w(h,), t) satisfies the hypotheses of Proposition 6.1.
In fact, we have

n

0
Dus)= 3, 57 (W) ooy wlhy) 1 ).

i=1

So, we know that the Ogawa integral S exists. In order to compute its value,

denote by {¢(x,w), xeR"} a continuous version of the process w(e(x,*))

= [ @(x,t)dw,. The existence of this version follows from the Kolmogorov
T

continuity criterion. In fact, for any p=2 and |x|, |y| <k, we have

E(w(o(x, )= wlp(y, W= C(f lox, h—o(y, 0 u(d)”’> Sconst [x — yi?.
T
We will show now that
Su=q@w(hy), ..., w(h,), w), (6.4)
and, by Proposition 6.1,
Su=@Wwhy), ..., wh,), w)— 3 ; (W), o, wihy), 1) (D) pld ).

i=1

To show Eq. (6.4), define
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M
oux, W)=Y (@(x,), ¢;> wle,). We know that @, (w(h,), ..., w(h,), w) converges
i=1

in probability to du when M tends to infinity. We are going to see that this
sequence of random variables converges in I? to the right-hand side of (6.4).
To do this, assume that the k; belong to the linear span of {e, ...,e,}. Then,
for M =n, we have

E(lgp(w(hy), ..., wlh,), w)— @(w(hy), ..., w(h,), w)l*)

“E(( 5w [ ot 0 utan) 0t 007

i=M+1

=E Y, (Jowhy), ...w(h,), 1) e, pd1)® — 0.
i=M+1 T .
(iii) Let FeDom L. Assume that D?F has a finite trace for almost all w.
Then, the process u=DF is Ogawa integrable, and we have

S(DF)=08(DF)+trace D F = LF +trace D> F.

We recover here a familiar expression for the operator L. In particular, in the
context of Example 3.6, if F is extendable to all continuous functions vanishing
at zero and this extension, F.(-), is twice Frechet differentiable then SDF (w)
=(0F,(Aw)/04),_ (cf. Eq. 14 of [19]).

We remark that the conclusion of Proposition 6.1 is still true if, instead of
assuming that Du,(s) is a trace class kernel, we suppose that the series

)y ][Z Du,(s) e,(z) e,(s) u(dt) u(ds)

converges in probability and the sum does not depend on the orthonormal
system {e;, i=1}.

Consider now the situation of Example 3.6. That means, T=[0, 1], x is the
Lebesgue measure and w is the Wiener process. Let ueI*(T x Q) be a process

such that { E(|Du,[|3) u(dt) < o, and assume that a.s.,
T

1
hff)l ¥ | Du,(s)dsdt=e¢(x), forall xeT, ae., (6.5)
€ (Ix—zg x+e]nT)2

where ¢(t) is an integrable function, which will be denoted by Du,(t). Under
these assumptions we can define the symmetric integral of the process u by the
expression )
fudw=[udw+ | Du,(t)dt.
T T T
This symmetric stochastic integral is similar to the Ogawa integral in the sense
that they coincide if, for instance, the kernel Du,(s) is continuous. Finally we
have the following result.

Proposition 6.2. Let x and y be adapted processes of I?(T x Q) verifying

Ij“E(HDxt“IZJ‘f’ HDyzuil)dl< 0.
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Consider the continuous semimartingale, with respect to the Wiener filtration,
t t

given by u,= | x,dw,+ [ y,ds. Then the process u verifies condition (6.5) and
0 0

the symmetric integral of u is equal to the Stratonovich integral, that means,

iu(%w: fudw+3u,wy,.
T

Proof. Tt suffices to see that (6.5) holds and Du,(t)=%x, for all teT, a.e. In fact,
if this is true we will have

j Du,(r)d :% f :% s W)L
T T
It is clear that u,€I*(T x Q). Consider the integral representations

)+ X Tnlfultltrs s 1),

and

yt:E(yI)+ Z Im(gm(t|[l’ R tm)))
m=1

where the kernels f,, and g, satisfy properties (a) and (b) of Sect. 3, and, also
they vanish unless max {t,, ..., t,,} =t. Assume first that x,=1_(f,(¢]*)), and y,
=1,{g,(t|*)). In this case we obtain, from Proposition 3.4, that

Du[(s):}st(o)dwa—kiDys(a)do+xs, (6.6)

for all st

We remark that the kernels Du,(s), Dx,(s) and Dy,(s) are zero if s>¢. In the
expression (6.6) we sum the index m from 1 to infinity obtaining that
[ E(IDu,]|3) dt < oo and that the equality (6.6) holds in general. Set
T

afs, t)= j Dx (c)dw,+ j Dy (o)do.

.1

Then, we have lim — § ofs, t)dsdt=0 for almost all x and w. In
el0 FE (x_g x4+gnT)2

fact, using the Lebesgue differentiation theorem, we have

1 x+e x+e x+g

i § Ilast)\dsdt<2— §(_sup Ja(s, ) ds— 5> sup falx, 1),

X—g x—¢ x—e SEL=s+(1/n) xZt=x+(1/n)

for almost all x, and finally, the expression  sup  |a(x, t)| converges to zero
. xSt =£x+(1/n)
when n tends to infinity, by continuity. Moreover, for almost all ¢ and w, we

have

1
Du,(t)=lim — § X, 1lpeydod
clo 4¢? ([t—s, t+£lnT)2 N
t+e

hgrg e IL(t—Fe— 6)x,do=x,.
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7. Transformation of Measure

Let w(B) be a Gaussian measure with orthogonal increments defined in the

canonical probability space (Q, F, P). Assume that u is a stochastic process of

I?(T x Q) such that | E(||Du,|) u(dt)<oo. We know that with these assump-
T

tions the process u is Skorohod integrable. We consider a new stochastic

measure defined by {w(B)— [udy, BeB}, and we want to know whether the
B
law of this stochastic process indexed by B is absolutely continuous with

respect to the law of {w(B), BeB}. Note that we can also formulate this
problem in terms of stochastic processes indexed by the Hilbert space H
=1*(T).

Suppose that A(s,t) is a square-integrable kernel on the measure space
(T, B, ). The Carleman-Fredholm determinant of A4 is defined by the product

expansion
d(A)=1I1,(1—2) exp 4,

where the A/s are the nonzero eigenvalues of A counted with their multiplici-
ties. The following properties of this determinant are well-known:

(i) d4.(A) 1s a continuous function of A4 with respect to the Hilbert-Schmidt
norm

14| ={Tf2/1(5= 1) u(ds) pdo)}'2.

(ii) If Af(t)sz(s, t) f(s) u(ds) is a nuclear operator of H=I*(T), and I
T

denotes the identity operator then d (A)=det(I — A4) exp(trace 4).
(ii)) Let A and B be two square-integrable kernels and denote by AB the
composition of these kernels: (AB)(s, )= | A(s, u) B(u, t) u(du). Then, we have
T

d.(A)-d.(B)=d.(A+B— AB) exp(trace (4B)). In particular, if A+ B=AB, then
d (A4) d,(B)=exp (trace (4B)).
An alternative expression for d, (4} is the following

_1 n R
( n!) Tj“ndet(A(si,sj))ﬂ(dsl)...y(dsn),

d(4)=1+ i

where /f(sl-, s)=A(s;,s) if i+, and /I(si, 5;,)=0.

Denote by {e,,i=1} a complete orthonormal system in H. A process
ve2(T x Q) will be called an elementary process if for some integer N, v can be
expressed like

b= L Wjvlen) s wiew) &0 (7.1)

where : R¥ >R is a continuously differentiable function such that i together
with its first derivative has polynomial growth.
Let ue*(T x Q) such that [ E(J|Du,|) p(dt)<co. It is easy to see that the
T

process u can be approximated in the norm  {[ E(u})u(dr)
T
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+ j E(||Du,||3) p(dt)}*'* by elementary processes. Indeed, first we approximate

the process u by a finite sum of the form E(u,)+ Z I.(f,]-). Then, we may

m=1
assume that the kernels f, (t|¢,, ..., ¢t,) are finite linear combinations of pro-

ducts like
h(t) ejl(tl) et ) ety ). €,(t,) e (o i e 1) € (s

where hel*(T), i;+...+i,=m, and the indices j,,...,j, are different. That
means, the process u is a finite linear combination of products of the form
h(t) h; (w(e;)) ... b, (w(e;)) where h,(x) are Hermite polynomials, normalized in
such a way that the coefficients of x" are equal to 1.
An elementary process v will be called one-to-one if the mapping (I —y)(x)
=(x,—V¥(x), .. ~y(x)) is one-to-one. A process uel*(T x Q) such that
jE(\DutH ),u(dt)<oo will be called weakly one-to-one if u can be approxi-

mated in the norm {E(|u||%)+E(|Dul;s)}"* by one-to-one elementary pro-
cesses. Consider, for instance, the situation of Example 3.6, that means,
T=[0, 1] and w, is the Wiener process. In this case, any adapted process uel?
(T x Q) such that E(jDul ;) <oo is weakly one-to-one.

Let v be an elementary process, given w, then x and y=(I —y)(x) are well
defined hence y=y(w). The cardinality of the x’s such that (I —y)(x)=y(w) is
the multiplicity function of v and will be denoted M (w); obviously M (w)=1
and may be infinite. For example, let v(t)=(w,e,)*-e, (where [, =1) then
M, (w)=3 for |(w,e)|]<2-37%° and M,(w)=1 otherwise. Let u be a process
uel?(@x T) and E | |Du,|} u(dt)< oo, an integer valued finite or infinite ran-

T
dom variable M (w) will be said to be a weak multiplicity function associated
with u if u can be approximated in the norm {E(l|u|%)+ E(|DulZ¢)}'* by

elementary processes u, such that Mun(w)is'—> M,(w). In particular, if u is
weakly one-to-one then M, (w)=1 as.

Theorem 7.1. Let ueI*(T x Q) such that | E(|Du,|) u(dt)< oo, and assume that

T
u possesses a multiplicity function M (w) such that M (w)<co a.s. Let g: R*>R
be a positive, continuous and bounded function and consider the non-negative
Sfunctional F(w)=g(w(B,), ..., w(B,), where B,, ..., B,eB. Then

E(F ()2 E (M, 00) " 40wl exp([ udw—4 Jul}) F(w—judu)), (7.2)
T

where d.(Du) represents the Carleman-Fredholm determinant of the kernel Du.
Furthermore, if d.(Du)+0 as. then, the probability distribution of the process
{w(B)— { udyu, BeB} is absolutely continuous with respect to the law of {w(B),
BeB}.

Proof. Denote by {e;,i=1} a complete orthonormal system in H. Assume that
v is an elementary process of the form (7.1) and denote by A(w) the Nx N
matrix given by

A;(w)=0;;— <D, v(w), e;>=6,;— 0, Y ;(wley), ..., w(e,)-



Generalized Stochastic Integrals and the Malliavin Calculus 275

Then we have
E[M; '(w)|d (Do)l exp(f vow—%lv]Z) F(w— [ vdu)]

=E[M; ' (w)|det 4(w)| exp(trace Dv+ | véw—%HvHﬁ)F(w— fodw]
T

=E[Mv_1(w)|detA(w)l exp (_i(v Dwle)— Z (v, e;> ) w—jvdﬂ)].

(7.3)

N

For any heH we set w(h)=w(h)— Z <h, e;» w(e;). The random processes w(h)
N

and Y (h,e ;> wie)) are 1ndependent and, therefore, the expectation (7.3) will
j=1

be equal to

E, [ M;? (w+ Y xkek)
RN k=
- exp (j;(//j(xl, j—%_gj Wx, N)Z)
F (W—i— g:lxjej— ;1 Yixy, s Xy) ej)

xj?)(27t)’N/2 dx,...dx,

det 4 (w—}— Z xkek>

o
>
o)
ity
|
N=
1=

.
-

= [ M (54 3w ldet (1—j9)
S
exp (1Y (xj-lpj(xl,...,xN))Z)

.
i
-

N
F (W-f— Y (= (xq, .0, xy) ej) Qm)~NM2dx, ...dxy,
i=1

where J, denotes the Jacobian matrix of . Then we make the change of
variables x;—(x,, ..., xy)=y, in the above integral. The Jacobian matrix of

. ) dy,
this transformation [ Vi
8xj

variable formula we have to multiply by M, (w) ([3], Theorem 3.2.5, p.244)
and, consequently the expression (7.3) is upper bounded by

] coincides with I—J,. In applying the change of

N N
E, | exp (—% 5 y§> F(w+ 5y yjej) Qn)~Y2dy, ...dyy—=E(F(w)).
RN j=1 j=1

The reason for it’s being an upper bound for (7.3) rather than an equality is
that in the left hand side of the last equality we also integrate over regions for
which det (] —Jy)=0.

Finally, let {v,,n=1} be a sequence of one-to-one elementary processes
converging to the process u in the norm {E(Jlu||%)+ E(|Dul % s)}*/?. Then, there
exists a subsequence {v, , i=1} such that
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M, t1d.(Dv,)l exp(] v, 0w =30, %) Fw—fv, duw
T

converges almost surely to

M d (Du)l exp(J ubw—4 Jul2) Fw—f udp).

Therefore, by Fatous lemma we obtain the inequality (7.2). The absolute
continuity of {w(B)— [ udu} follows directly from (7.2) since |d (Du)|>0 as.
B

Lemma 7.2. Let v be an elementary process of the form (1.1) and assume that
d.(Dv)*0 a.s. Then, the probability distribution of the process {w(B)— | vdp,
BeB} is absolutely continuous with respect to the law of {w(B), BeB}. B

Proof. Suppose that F is a bounded functional such that E(F(w))=0. Using the
same notation as in the demonstration of Theorem 7.1, for all W, almost surely,
we will have

N N
| F(Vv-{— Y yjej> exp (—% > yf) dy,...dyy=0.
RY j=1 j=1
For these w it is clear that

| 1det (I —Jy)| exp (»—% Y (= (xq, ...,xN))Z),
BN i1

j=
N

F (W+ Y=g, s Xy) ej> dxy...dxy=0.
j=1

Integrating with respect to W we obtain

E[ld (Do)l exp(f vow—3|v|7) F(w— [ vd)]=0.

Therefore, E(F(w— | vdu))=0, which implies the desired result.

We remark that, in the last proposition, the condition d (Dv}#0 as. is
equivalent to saying that I —Jy =0 a.e. with respect to the Lebesgue measure
on R™.

N

Proposition 7.3. Assume that u,= ) F,(w)e,(t), where the F, are random variables
i=1

such that the second Malliavin derivatives D> F, exist and E(|D*F}l}.¢)< 0.

i

Suppose d (Du)+0 a.s. Then, the probability distribution of the process {w(B)
— fudu, BeB} is absolutely continuous with respect to the law of {w(B), BeB}.
B

N
Proof. As before we will write W(h)=w(h)— Y, {h, e;» w(e;). We denote by G

=1
the o-field generated by the random varijables {W(h), heH}. An arbitrary
bounded = and measurable functional can be expressed as F(w)
=i (wley), ..., wley), G), where ¢ is a bounded Borel function and G is G-
measurable.
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Assume that E(F(w))=0. Then for all W, almost surely, we have

N
Y xf) dx ..dxy=0. (7.4)

=1

j't[/(xl, cees Xy» G(W)) exp (—%
[RI\

The translated functional will be F'(W)=y(w(e)—F, (W), ..., w(ey)
—Iy(w), G(W)), and our aim is to show that E(F*(w))=0.

Denote by P“(dx|Ww) a regular version of the probability distribution of the
random vector &=(w(e,) —F (w), ..., w(ey)— Fy(w)) conditioned by G. Then,

E(F“(w))zEWRij//(xl, vy Xys G(W)) P(dx/W).

Taking into account (7.4), in order to show that this expectation is zero, it
suffices with proving that for all W, almost surely, the probability P*(dx|Ww) is
absolutely continuous with respect to the Lebesgue measure on RY. This will
be achieved using the Malliavin technique.

We fix a function @€ Cy(RY). For any integer m>1, we consider a function
7m€ C(RY@RY) such that

(@ y,(0)=11if geK,,

(b) y,(0)=01if 0¢K,, ,,

. 1
where Km:{oe]RN@lRN: lo¥| <m for all i, j; and det olg—}. We have
m

N
De[o(&)]= Y (0:9)(0)(6;;—De; F).

i=

Denote by I' the matrix (3;;—~De;F;) and observe that d,(Du)+0 as. implies
det I'+0 a.s. Thus,

ELy.()(0; @)(&) H]

_Z E[y, (I} De;lo| ON Y H]

Z E[De(H 1)y, (NI~ H) =01 Deyy, (NI HHH

—Q)(é) YD~y De; H,

where H is a simple functional of the form o(w(ey_ ), ..., w(ey,)). Notice that
De;H=0 for j=1, ..., N. Therefore, we obtain

E[y,(1)(@;¢)(¢) H]
Z E[H @{&){w(e) v (NI ™Y = De;(y, (D)I Y}

As a consequence,
ELy (D)0, 9)&) | G

lol E[| . ) 001 = Des 0=
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For any m let PX(dx/W) be a regular version of the conditional distribution
of £ given G, with respect to the measure y, (I') dP. Using the basic Lemma of
Malliavin we deduce that, for almost all W, the measure P:(dx/w) is absolutely
continuous with respect to the Lebesgue measure on RY. Making m tend to
infinity we obtain the desired result. []

It is interesting to remark that inequality (7.2) implies the following Girsa-
nov-type theorem:

Theorem 7.4. Let ueI*(T x Q) be such that E(|Dul| s)<oo and assume that
M, (w)<oo as. Set
n=|d.(Du)| exp(J udw—3lulf) Mg ' (w)
T

and suppose that E(y)=1. Then the law of the process {w(B)— [udu, BeB} in
B

the probability space (@, F, n- P) coincides with the law of {w(B), BeB} with
respect to P. Furthermore if |d,(Du)| =0 a.s. then the measures are equivalent.
Proof. Let F be a bounded functional and 4 a Borel subset of IR. By (7.2) we

know that
E[1,F)]ZE[1 (F(w—fudw]. (7.5)

As functions of 4 both members of this inequality are nonnegative measures
with total mass equal to E(F). Therefore, they must coincide, that means that
equality holds in (7.5) and this proves the theorem. By 7.1 and since #+0 as,,
w— [udy is absolutely continuous with respect to the Wiener measure. On the
other hand if El (w— [udu)=0 then Enl (w— [udu)=0 hence, by 7.5 with
equality E1,(w)=0 hence the equivalence of the measures. []

Let u(w) be a process of I?(T x Q) and let v,(w) be a process of L’(T x Q)

and such that
u(w)=—v(w—fudy) as.

Let A=Q denote the range of the transformation w—w— [udu namely A= {w
—fudu}. Let y=w—fudy then as. for every w, the equation y(B)= [ v(y)du
B

+w(B) has a unique solution y, yeA and given any yeA then there is a unique
solution w which will be denoted by w(y).

Theorem 7.5. Let u and v be as specified above and assume:

1) u(w) is weakly one-to-one, E |Dul% s < oo.
2) {d,Du|%0 a.s. and

E{d.(Du)-exp [udw—%|u|3}=1
T

then P(A)=1, the probability law of the process {w(B)— [udy}, BeB} is equiva-
lent to the law of {w(B), BeB} and the density is given by

B = :
a8, @D v exp([ o) owl) S 101
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Proof. Let P denote the underlying measure and P the measure induced by

dP
— (W)y=1|d (Du)| - exp (J u(w) dw—3 |ull 7).

ap
Now under P, by Theorem 7.4, y is Wiener. Let P, denote the probability law
of y under P. Hence P restricted to y is Wiener namely P, and P restricted to y
is B,. Consequently

dp, __[dP
T oo =[5 15

where Fy is the sigma field generated by y(w) and the expectation is with
respect to the measure P.
Rewriting dP/dP:
dpP

7p WO =1d.D=u)(wy) exp (— [ v(y) Sw(y) —llv()17)

it follows that this expression is measurable on F,. Therefore

dP,

ar, > (yw) =(d. Du)(w(y)| - exp (= [ v(») dw(y) —3Ivl7)

since by 7.1, B, < P,, and this completes the proof.

Examples. (1) Consider a process of the form u,(w)=f(t) F(w), where feH and
FeH?*?2 In this case, the kernel Du,(s)=f(t) DF(s) is nuclear and it is easy to

see that
d,Du=(1—D;F)exp(D;F).

So, as a consequence of Proposition 7.3, if D,F+1 as., then the law of the
process {w(B)—F(w) | f(t) u(dt), BeB} is absolutely continuous with respect to

B
the law of {w(B), BeB}.
(2) Consider the situation of Example 3.6, that means T=[0, 1] and w, is
the Wlener process Suppose that u, is an adapted and measurable process such

that jE(uz)dH—ij Du,(s)*)dsdi<oo. Then, d,Du=1 because the kernel

Dut(s) vanishes 1f t<s Therefore, u satisfies the hypotheses of Theorem 7.1
with multiplicity M =1. However for this case the Girsanov theorem is at
present stronger since it holds under weaker assumptions. Note that the for-
mula for the density coincides with the result of Theorem 7.3 because d,Dv=1.

(3) Consider the case T=[0,1], u(t)=(w(e))*-¢, and |le|=1. Then
1 <M, <k; noting the shape of the graph of x—x*=y, it follows that for k
even, M, =2 and for k odd, k=3 M,=3 if [y|<(k—1)- kK ~9* and 1 otherwise.
Note that for k even there are values of y for which x—x*=y has no real
solutions but y(w) is a.s. not in this region. For both k even and odd, k=2,
d,Du=0 as. and therefore by Theorem 7.1 the probability law induced by
w.—(w(e))*-e. is absolutely continuous with respect to the law of w. It is
straightforward to verify that the assumptions of Theorem 7.4 are verified for
k odd only.
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Consider the case
u, (W)= +(W(e)e,

Ut(W) =- (W(e))k €

t
where w,=w,— [u,ds then u,(w)= —v,(#). Consider Theorem 7.5 for this case.
0

t
The first relation implies that W,=w,— (W(e))* { e,ds; hence in order that u, be

4]
well defined we have to require that W(e)=w(e)—(W(e))* be satisfied for all
values of w(e). For k even this is impossible. For k odd, given w(e) there is
always one and only one solution for Ww(e). Therefore u is one-to-one and so in
v. Therefore Theorems 7.4 and 7.5 are applicable.
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