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Summary. The paper first reviews the Skorohod generalized stochastic 
integral with respect to the Wiener process over some general parameter 
space T and it's relation to the Malliavin calculus as the adjoint of the 
Malliavin derivative. Some new results are derived and it is shown that 
every sufficiently smooth process {ut, t6T } can be decomposed into the 
sum of a Malliavin derivative of a Wiener functional, and a process whose 
generalized integral over T vanishes. Using the results on the generalized 
integral, the Bismut approach to the Malliavin calculus is generalized by 
allowing non adapted variations of the Wiener process yielding sufficient 
conditions for the existence of a density which is considerably weaker than 
the previously known conditions. 

Let e~ be a non-random complete orthonormal system on T, the Ogawa 
integral S u~W is defined as Si(ei, u)[. e~dW where the integrals are Wiener 
integrals. Conditions are given for the existence of an intrinsic Ogawa 
integral i.e. independent of the choice of the orthonormal system and 
results on it's relation to the Skorohod integral are derived. 

The transformation of measures induced by (W+~udg) with u non 
adapted is discussed and a Girsanov-type theorem under certain regularity 
conditions is derived. 

1. Introduction 

Different definitions of the stochastic integral of a non-adapted random process 
with respect to a Wiener process have been proposed by several authors (cf. e.g. 
[-12, 14, 17]). In [17] Skorohod introduces a stochastic integral with respect to 
a Gaussian measure with orthogonal increments. This integral is constructed as 
a random linear functional on an abstract Hilbert space. Roughly speaking, the 
role of the adaptability property is replaced in this kind of stochastic integrals 
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by some regularity conditions on the integrand processes. Also, this stochastic 
integral does not possess some of the more natural properties of the ordinary 
Ito integral. For  instance, let ~ u6 w denote this integral then 

T 

(i) It is possible to have ~ u6w=O a.s. even though E ~ u2#(dt)>O. 
T T 

(ii) Let C(w) denote a random constant, then in general, 

C(w) C(w) S dw. 
T T 

In a recent article [4] Gaveau and Trauber have shown that this general- 
ized stochastic integral is equivalent to the dual operation of the differential in 
the Malliavin stochastic calculus. In the paper of Skorohod a stochastic de- 
rivative with respect to the fundamental Gaussian process is already intro- 
duced, and in [4] it is proved that it coincides with the Malliavin gradient. 

The purpose of this paper is to further clarify the relation between the 
Skorohod integral and the Malliavin calculus and to show that this integral 
enables to derive conditions for the absolute continuity of the probability law 
of Wiener functionals under conditions which are weaker than those of the 
Malliavin approach. In Sects. 2 and 3 the basic properties of the Skorohod 
integral and the Malliavin operators are presented in the general context of a 
Gaussian measure with orthogonal increments. The special case where T 
=[0,  1] is discussed in example 3.6 and it is pointed out that the Skorohod 
integral generalizes the forward and backward Ito integrals. The integration by 
parts formula of [4] is reviewed in Sect. 4 and some consequences are derived. 
It is shown in Sect. 4 that every square integrable process (ut(w), teT) possesses 
an orthogonal decomposition u=DF+u ~ where, very roughly, DF is the gra- 
dient of a Wiener functional F(w) and u ~ is orthogonal to all processes which 
are representable as gradients of Wiener functionals and the Skorohod integral 

of u ~ ~ u ~ 6w, vanishes. 
T 

The Malliavin calculus is a powerful method for proving the existence of a 
density for the probability laws of functionals of the Wiener process and, more 
generally, of functionals of a Gaussian measure with orthogonaI increments. 
The ideas of Malliavin have been developed by several authors (Stroock [17], 
Shigekawa [14], Ikeda-Watanabe [5]). An alternative approach to the problem 
of the existence of a density has been proposed by Bismut [1], cf. [19] for a 
general survey of the Malliavin calculus and a comparison of the approaches. 
The method of Bismut is based on the Girsanov theorem which allows to 
deduce an integration by parts formula and is, roughly speaking, based on 
directional derivatives in adapted directions i.e. directions which are admissible 
by Girsanov's theorem. While directional derivatives in adapted directions 
suffice for the case of solutions of stochastic differential equations this is not 
the case in general. In Sect. 5 we use the integration by parts formula of Sect. 4 
to extend the Bismut approach, obtaining sufficient conditions for the absolute 
continuity, which are strictly weaker than in Malliavin approach. We give a 
particular example where the Malliavin method is not applicable because the 
functional does not belong to the domain of the Ornstein-Uhlenbeck operator 
L, but the generalized Bismut approach can be applied using a derivative in a 
suitable non-adapted direction. 
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In some recent papers ([12, 13]) Ogawa has introduced a non-causal 
stochastic integral with respect to the Brownian motion, which may depend on 
the particular orthonormal basis that we choose in the Hilbert space LZ([0, ll). 
In Sect. 6 we give some conditions for this integral to have an intrinsic 
meaning in the general set-up of a Gaussian orthogonal measure, and we 
discuss its relation with the Skorohod integral. It turns out that the hypotheses 
for the existence of an "intrinsic" Ogawa integral are stronger than those for 
the construction of the Skorohod integral. In some particular cases we in- 
troduce a symmetric integral, which is similar to the Ogawa integral, and is an 
extension of the Stratonovich integral. 

Finally, in Sect. 7 we study the transformation of the probability law of a 
Gaussian orthogonal measure under changes of the form w(B)~w(B) 
+ ~ u(t, w) #(dt), where # is the intensity of the Gaussian measure w, and u is 

B 
some square-integrable process without the assumption on this transformation 
to be one-to-one. Some conditions for the absolute continuity are given, the 
density is computed and a Girsanov type result is presented. In the framework 
of an abstract Wiener space this problem has been considered by Ramer [14], 
and, under more general assumptions, by Kusuoka [9], following earlier work 
of Cameron and Martin, Gross, Shepp and Kuo. 

2. The Mall iavin Operators  

Let (T, B) be a measurable space with a finite atomless measure #. Consider a 
zero mean Gaussian process {w(B), BeB} with covariance function given by 
E(w(B1)w(Bz))=#(BI~B2), defined in some probability space (t2, F, P). This 
process will be called a Gaussian orthogonal measure on the space (T, B, #). 
We assume that the sigma field F is generated by the random variables w(B), 
B~B. We will denote by H the Hilbert space LZ(T, B,/~) and we will suppose 
that H is separable. For  any hsH, we denote by w(h) the Wiener integral of h 
with respect to w. 

Recall that any square integrable functional F~U(t2, F, P) can be expanded 
into the series of multiple Ito-Wiener integrals ([6]) 

F = E ( F ) +  ~ Im(f~) (2.1) 
m = l  

which converges in quadratic mean. For all m >  1, Ira(fro ) denotes the multiple 
Ito-integral of the deterministic function fm6I~(T~ B"~ #m). The main properties 
of these integrals are the following: 

(a) I~ is linear, 
1 

(b) I , , ( f )=I~(f) ,  where f(t~ . . . . .  t,~)=m~. Zf(t~(l~' ""' t~m~)' a running over 
all permutations of {1, ..., m}, ~ 

0, if m=t=p, 
(c) E(Im(f) Ip(g))= m ! ( f ,  g)L2(rm), if m =p. 
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Note that, in the decomposition of F we may assume that the kernels fm are 
symmetric and, in this case, they are uniquely determined by F as elements of 
L2(T ~, B", #m). In the following we will always suppose that the fm are sym- 
metric. 

The Malliavin operator L is defined as 

LF= ~ mira(f=), (2.2) 
m = l  

provided the series converges in quadratic mean. Than means, LF exists if and 
only if the sum 

IILFIIZ2 = ~ m2m! Ilfm[l~ 
('Z3 

m = l  

is finite. The operator L has the following properties: 

(a) L is a closed, non-negative, self-adjoint operator with a domain dense in 
Le(f2, F, P) and E(LF)=O. 

(b) L possesses a self-adjoint square root given by 

r a = t  

(c) As pointed out in [19, 203 LF can be interpreted as the derivative of F 
with respect to a scale parameter: LF(w)=(~F(2w)/~2)a=l. In fact, let 2 be a 
real number such that 121 < 1, and define the functional 

F~=E(F)+ ~ 2mlm(f~). (2.3) 
m = l  

Then LF exists if and only i f-I(F-F~_~) converges in L 2 as e tends to zero, and 
1 

in this case L F = l i m  L(F-FI_~). 
e ~ 0  /3 

(d) L is the infinitesimal generator of the semigroup {T~F = ~_~; z >0}. 

The Malliavin Derivative DhF can be defined as follows. Let F~L2(O, E P) 
be given by (2.1), for h~H set 

OhV= ~ m(h, I,,_l(f,,(tl, ..., t,,_~, .))) 
" = ~ ( 2 . 4 )  

= ~ mlm-l((h,f,,(tl .... , tin--l, "))), 
m = l  

provided the series converges in Lz(f2, F, P) where ( f ,  g)  denotes the scalar 
product of two functions f, g in H. Let {% i >  1} be a complete orthonormal 
system in H. Then, DF exists as a square integrable H-valued random variable 
if and only if the following quantity is finite 
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E(tIDFII2) = ~ E((D~,F) 2) 
i = 1  

= ~, ~ m 2 E [ ( ~  ei(t) Im_l(fm(tl, ...,tm_1,~))~l(dt)) 2] 
i = 1  m = l  T 

= ~, m2(m - 1)! Ilfmq[~ =E((La/eF)2). (2.5) 
m = l  

The set of functionals FeL2(f2, F, P) such that E(IIDFII~)<~ will be denoted 
by H 2' 1. Note that H 2' 1= Dom L 1/2. The set H 2' 1 is a Hilbert space with the 
scalar product E(FG) + E((DF, DG)H ). 

The next proposition relates the Malliavin operators D h and L. 

Proposition 2.1. Let hell. Then 

DhLF--LDhF=DhF, 
if all terms exist. 

Proof It suffices to suppose F=l,,(f,,), and in this case DhLF=mDhF and 
LDhF-- (m- 1) DhF. 

Fix an element h~H. As in the case of the operator L, we want to interpret 
the random variable DhF as a directional derivative of the functional F. 
Without loss of generality, we may assume that (O, F, P) is the canonical 
probability space associated to the process {w(B),B~B}, that means, (2=]R B 
and F is the product sigma field completed with respect to the law of w. It is 
easy to see that the probability measure induced on (~2, F) by the mapping 
{w(B)} ~ {w(B)+ ~ hdp} is absolutely continuous with respect to the law of w, 

B 

with a density equal to e x p ( w ( h ) - l ~  h 2 d/~). Indeed, let B1, ..., B M be measur- 
able disjoint subsets of T We have T 

E[exp  M 1 h2d#)] (i.~= tjw(Bj)+w(h)-~ ! 

I 1 M M \ . 

=exp I - 7  Z t~ p(Bj)+i 2 t~ ~ hd# ) 
\ "~' j = l  j = l  Bj 

[ 
~ E  i_exp 2 t [ w ( B j ) +  ~ hd#] , 

j =  1 By 

for all tt . . . . .  t M in JR. Thus, for any real number, e, the functional F(w 
+e~hdp) is well defined. 

1 
Proposition 2.2. Let F~L2(y2, F,P). Assume tha t -  [F(w+~ ~ hdp)-F(w)] con- 

verges in L 2 as e~O. Then DhF exists and coincides with the limit of this 
expression. 

Proof. Let F=E(F)+ ~ Ira(fro). We will denote by F,, n = l , 2 ,  ..., the sum 
n rn=l  

E(F)+ ~ I~(f,,). We remark first that 
m = l  
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lm(fm)(W4-~;[.hdkO= ~ (m) cy - i l i (  S f m ( t p ' " ' t i ' t i + l  . . . .  'tin) 
i = 0 T m - i 

�9 h(ti+ 1)-.. h(t~) #(dti+ 1) ... t~(dt:~)) �9 

In fact, this formula is obviously true when f~ is a simple function. In the 
general case it is proved by a usual convergence argument. As a consequence, 
we obtain . -  2 

i = 0  r e = i + 2  

�9 Ii( f f~(q  . . . . .  ti, ti+ 1 . . . .  ,t~) 
T m - i  

�9 h(ti+ 1)... h(tm) kt(dti+ 1) "'" #(dtm)), 
and, therefore, 

L 2 
1 EF,,( w 4- e ~ hd#) - F~(w)] ~ D h F., 
8 

for all n > 1. That  means, for functionals belonging to the Wiener homogeneous 
chaos of order n the operator  D h c a n  be expressed as a directional derivative. 

Denote by Fh the limit lim 1 [_F(w+eShd#) -F(w)]  in the L 2 sense. For any 
e ~ 0  

GeL2((2, F, P) we compute 

1 
- E [ ( F ( w + e  S hdl~)-F(w))  G.(w)] 

1 
= -  E [ f (w)  (6 , (w - e [. hd ~) - Go(w)) + F(w) G,(w - e f h a~). 

8 2 

�9 (e ~w(h)--2 ! h 2 d #  - -  1 ) ~ .  

When e ~ 0, this expression converges to 

E [ - F D  h G n 4- FG, w(h)], 

which will now be shown to be equal to E(GnDhFn+I). In fact, by the proper- 
ties of the multiple Ito integrals, we have 

E [F(G n w ( h ) -  D h G.)] 

= E  F ~_oI,,+l g,,(t t . . . . .  tm) h(tm+l) 

= ~ ( r e+ l ) !  f f , ,+ l ( t t  . . . .  ,t,~+l) gm(q, . . . , tm)h( t , ,+1)d# "+1 
m = O  T m +  l 

=E(G,,DhF,,+I), 

where G = E ( G ) +  ~, I~(gm)" 
m = l  
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Therefore E(G, D h F,+ 1) = E(G, fin), consequently D h F,+ 1 is the projection of 
ffh on the Wiener homogeneous chaos of order n and, therefore, ffh=DhF. 

Let 0: IR"~ IR be a three times differentiable function on IR" such that 
together with its fist three derivatives are of polynomial growth. The function- 
als F(w)=O(w(h 0 . . . .  ,w(h,)), hieH, will be called simple functionals. From 
Proposition 2.2 it is clear that for any h~H 

DhF= ~ 00 r ~x~ @' h~)n" (2.6) 

Moreover, it can also be proved (cf. [18, 19]) that 

LF= ~. 0~ Oz~ @~, hj) n. (2.7) ~ixi w(h')- ~ Ox, Ox~ 
i = 1  i,j=l 

The main rules of the calculus associated with the Malliavin operators D and 
L can be summarized as follows: 

Proposition 2.3. Let p: IRe~IR be a real valued twice continuously differentiable 
function such that the first and second derivatives of (p are bounded. We consider 
square-integrable functionals F 1 .. . .  , Fd, and set F =(F1, ..., Fa). We have 

(i) qo(F)eH 2'1 if F~H2' l for all i=1  . . . .  , d, and D 0 ( F ) =  ~u. (F) DFr 
i = 1  

(ii) I f  Fr for all i=1  . . . .  ,d, then qo(F) belongs to the closed L 1 
extension of L and 

Lq0(f) = ~ ~(p ~x~ (F) LF~- ~ Oa~--~ (F)(DF~, DFj) u. 
i = 1  i,j=l ~Xi~Xj 

Proof. Consider first the case where the F,. are simple functionals, and then pass 
to the limit. 

3. The Skorohod Integral 

Let {w(B), B~B} be a Gaussian measure with orthogonal increments on the 
underlying space (T,B,/~). In this section we introduce a stochastic integral 
with respect to the measure w, defined in [17] by Skorohod, and discuss its 
basic properties. 

Suppose that u =  {u(t, w), (t, w)~T x f2} is a B|  process such 
that E ( u 2 ) < ~  for all t~T. Then for each t the random variable u t has a 
representation in a series of multiple Wiener-Ito integrals 

ut=E(ut)-t- Z Im(fm(tltl . . . .  , tin)), (3.1) 
m = l  

where the kernels fm can be chosen to possess the following proper t ies  

(a) for every t in Tfm(t I.) is symmetric in the coordinates t 1 . . . .  , t,~ and 
belongs to L2(T ~, B ~, 1~'~). 
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(b) fm is a measurab le  funct ion of all its variables.  

The  p roof  of  (b) is as follows. Let  {u k , k > l }  be a sequence of simple 

processes such that  l im u~(w)=u,(w) for all (t, w) and k L2(a) ut ~ oo ~ u, for all t. 
k oo 

We will have a representa t ion  of the fo rm u~=E(ukt)+ ~ 1,,(f~(tlq .. . . .  t~)), 
m=l 

for any  k >  1, where the functions J~ verify the desired properties.  Then  it is 

easy to check that  f~(tl " ) ~  f (tl ") for all t, and this implies the existence k__+o 0 arrt 

of a measurab le  version of fro. 
We will denote  by 

fm(tl . . . . .  tin, t)= ~ fm(t]tl . . . . .  tin) q- fm(t i l t l , . . . , t i_ l , t ,  ti+l,...,tm) , 
i=1 

i.e. the symmet r i za t ion  of fro as a function of m + 1 variables.  Then,  the Skoro- 
hod integral of the process u is defined as 

uaw=w(e(u) )+ ~, Im+l(f,,), (3.2) 
T r n = l  

provided  that  the mul t ip le  I to integrals exist and the series converges in 
quadra t ic  mean.  This means  that  the Skorohod  integral  can be defined for all 
measurab le  processes u such that  E(u 2) < oo for all t and such that  the follow- 
ing s emino rm is finite 

{ !  ~ 2 )1/2.} 
I[ul[= (Eut)2*`(dt)+ ,.., ( r e + l ) !  I[f~b] ? �9 (3.3) 

m=l 

In this case E ~ uaw=O and E[(S u6w)2] = ILuH 2. The  Sko rohod  integral  of  the 
T T 

process u will be also denoted  by 6u. Let  LZ(T x ~2) be the space of measurab le  

processes u such that  S E(u2)*`(tit)< oo. We have the following result. 
T 

Proposition 3.1. Let usL2(TxO) such that ~ E(llDutll~)*`(dt)< oe. Then, the 
T 

Skorohod integral of the process u exists, and we have 

e [(au) 2] = ~ e(u2) *`(dt)+ ~ e[Du~(s)Dus(t)] *`(at) *`(ds) 
r T2 (3.4) 

< j ~(u2) *`(at) + j" e(llDu~ll,~),,(at) 
T T 

= ~ E (u 2) *` (d t) + ~ E [(L ~/2 u,)2] *` (d t). (3.4 a) 
T T 

Proof. Note  that  Du is a square  integrable r a n d o m  var iable  valued on H |  
=L2(T 2 B 2,/,2), and we can choose a version of Dut(s ) which belongs to L2(T z 
x fJ, B 2 | F, *`2 | p). Fo r  a lmos t  all (s, t, w) we will have 

Dut(s)= ~, mIm_l(fm(tls, tl , . . . , tm_l)). 
m=l  
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Then, using (3.3), a simple computation shows that 

E [(c5u)2] = TS (Eut) 2 #(dr)+ 7= 1 (m+ 1~ ((m+ 1)T m+l~ f2 ( t l t l ,  ..., tin), 

#(dt )#(dt l ) . . .#(dtm)+m(m+l)  ~ fn( t]s , t  I . . . .  , t  m_l)fm(s[t , t l , . . . , t ,~_l),  
Tin+ 1 

#(dt) y(ds) #(dtx).. .  #(dt~_ 1))= ~ E(u 2) #(dr)+ ~ E[Dut(s ) DUs(t)] #(dr) ~t(ds). 
T T 2 

Finally we apply the Schwarz inequality and equation (2.5). 

Remark. A result of this type appears in the article of Skorohod, in a more 
general set-up, where w is a generalized Gaussian element on an arbitrary 
separable Hilbert space H. Furthermore, a similar stochastic integral has been 
considered by Ramer [14] and Kusuoka [9] in the context of square-integra- 
ble functionals defined in an abstract Wiener space. 

Now we are going to present the main properties of this integral. 

Proposition 3.2. Let FeL2(O, F, P). Then L F = 6 D F  in the sense that F belongs 
to the domain of L if and only if F e l l  2' 1 and DF is Skorohod integrable. 

Proof. Note that here we identify the H-valued random variable 
DF~L2(f2, F, P) with a real random process of L2(T x g2). To prove the propo- 
sition, it suffices to consider the case F=Im(fm ). Then LF=mF,  and bDF 
= b(mI,,_ 1 (f~ (t, tl, ..., t m_ 1))) = inF. 

Proposition 3.3. L b u - b L u = 6 u ,  for any measurable process u such that 
E(u2)< oo for all t and such that all terms in this expression exist. 

Proof. We may assume that u,=I~(fm(tl')). Then, 

Lg)u- 6 Lu=(m + l ) I~+ l (fm)-mIm+ l (fm)= Im+ l (fm)=~Su. 

Proposition 3.4. D h b u - b D  h u = (u, h) if h EH and u is a process of L2(T x #2) 
such that the variables Dh g)U and bDhU exist. 

Proof. As before, we may assume that Ut=I,n(fm(tl')). In this case, 

(1[ ]) 
DhOu=DhIm+l ~ f~( t l t l  . . . . .  tin)+ fm(tiltl . . . .  , t i_ l , t ,  t i+l,. . . , tm) 

i = 1  

= I ~ ( I h ( ' ) ' f m ( ' l t l  . . . .  't~)+if~(tiltli=~ . . . . .  t i - l ' " t~+l  . . . .  ' tm))) 

=(h ,  u>+(~DhU. 

Proposition 3.5. Let F e l l  2' 1 and f 6 H .  Then the process f( t)F(w) is Skorohod 
integrable and 

g~(f F) = w( f )  F -  D y F 

=F~S f - { D F ,  f )  H. 

Proof. It suffices to assume that F=I~(fm ). Then, the above equality follows 
from the properties of the multiple Ito integrals: 
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6 ( f .  F)=Ira+ x( f ' f~ )=I~( f ) I~ , ( fm)- -mlm- t  ( (f ,  fm(tt, "", tin- t, "))) 
=w( f )  F - D s F .  

Remark. The result of Proposition 3.5 can be generalized to yield 

6(F . ut(w))= F . 6 u -  (u, DF)H 

under suitable conditions. 
As a consequence of Proposition 3.5 for a simple process u(t,w) 
d 

= ~ Fk(w ) 1Bk(t ), where B k are measurable subsets of T, and Fk~H 2' 1, we have 
k = l  

d d 

flu= Z w(Bk)Fk- ~ (DFk, 1,~),.  
k = l  k ~ l  

We can also consider the behavior of the Skorohod integral under a change 
of scale. Let )~ be a real parameter such that 12]<1. We have already in- 
troduced in (2.3) the ((naturab~ extension F(2w) of the functional F~L2(t-I, F, P), 
which has been denoted by Fz(w ). With this definition we obtain the following 
expressions 

1 
LF~=(LF)~, DhFz=2(DhF)~, and 6uz=~(cSu)z, 

which are compatible with the different relations among the operators L, D 
and 6. 

Example 3.6. Consider the particular case T=  [0, 1], /~ the Lebesgue measure 
and w[0, t ]=w t an ordinary Brownian motion. Here we may take f2 equal to 
the space of continuous functions C(T) and P the Wiener measure on it. Let 

1 

u={u t, tET} be a measurable and adapted process such that ~E(uZ)dt<oo. 
0 

Then as we show now, u is Skorohod integrable, and the Ito and Skorohod 
integrals coincide. Consequently the Skorohod integral for square-integrable 
processes is an extension of the Ito integral. In fact, the kernels fm(tl t l ,  . . . ,  tin) 
can be chosen with the property f , ,(t[t  1 . . . .  , t~)=0 unless max{t  1, ..., tm}<_t, 
and then, the seminorm ]luLl defined by the expression (3.3) coincides with 

have 

1 ao  1 1 

Ilu]I2=- ~ E(u2) dr+ E mm! ~ ~ fm(tlS, tx . . . .  , tin_l) 
0 m = l  0 0 

1 

�9 f~(s It, t 1 . . . .  , t,~_ 1) ds dt dr1.., dtm_ 1 = ~ E(uZt) dt. 
0 

1 1 
Therefore ~ u6w exists. Furthermore, Im+ l (fm)= ~ I,,(f~(t ] tl, ..., t~)) dw~, and 

O O 
1 

the Skorohod integral 6u is equal to the Ito integral ~ utdw t. 
o 
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In a similar way, if the process  u is measurable ,  adap ted  to the fi l tration G t 
1 

=a{w([-s,  1]), t<=s< 1}, and satisfies ~ E(ug)dt< o% then the Sko rohod  integral  
0 

of u exists and coincides with the backward  I to  integral [7]. 
Two par t icular  examples  of Sko rohod  integrals are as follows 

hence f o r T l < T  2 

T T T  

w(r) aw = ~ ~ dw, dw,~ = w~(r) -  r 
0 0 0 

T2 

w(L) aw = w(L) w(T2)- L. 
0 

The  second example:  

T 

Wt(W~'--W) aw= 
0 

(3.5) 

Remark (a). Let u={u,,  t eT}  be a 

with the integral representa t ion  u, 

sider the predic table  project ion u P 

where 

fm(~ltl . . . .  , tm)=~ fm(tttl . . . .  ,t,,) if m a x { t > . . . , t m } < t  
t o  otherwise. 

Then, if u is adap ted  we know that  u=u e. However ,  it follows f rom (3.5) or  

(3.6) that  for a non -adap ted  process  u, the Sko rohod  integral  J" u t 6 %  does not  
coincide, in general, with the I to integral  S uPtdw, �9 r 

T 
1 

Remark (b). Unlike the I to integral  we m a y  well have ~uaw=O a.s. while 
1 0 

e ds > 0. An example  of such a case is ESu ,  
0 

1 

u ,=S( t -q )dw, .  
0 

T t 2  t 

=S S Idw.dw, dw,2 
0 O 0  

- i  w2(tz)- t2 dw,2" (3.6) 
o 2 

1 

measurab le  process such that  S E(u2) dt < 0% 

i o = E(u) + Im(f,,(tlt 1 . . . .  , tm) ). We can con- 
m = l  

of u, which will be equal  to 

uP,=E(ut)+ ~ Im(f~(t[tl, ..., t,,)), 
m = l  
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1 

In this case fl(t[ t O = t - q ;  fl(tl, t)-=0 and ~ u S w = 0  by 3.2. Another example 
is given in the next remark, o 

T 

Remark (c). Consider the functional F(w)=SuscSw S where u is a nonadapted 
o 

Skorohod integrable integrand. Then F has the Ito integral representation F(w) 
T 

= ~ u~ dws for some adapted process u I therefore 
0 

T 

F(w)=~u~aw~ 
0 

and also 

and 

T T 

V(w)= I u dws=S u aws 
0 0 

T 

5(us-u )aw=0 
0 

T 

but ~ (u S-  u~) 2 ds > 0, cf. Proposition 4.4. 
0 

4. An Integration by Parts Formula 

Let u={ut, teT}  be a measurable process of the space L2(Txf2). For  any 
FeH 2'1, we define D,F=(DF,  u)n. Then DuF is an integrable random vari- 
able such that (E [DuFI) 2 <E(LIDFII~)~. g(u~)~(dt). In [43, a av eau  and Trauber 

T 

have shown that the Skorohod integral of the process u is equivalent to the 
adjoint of the differential operator D introduced by Malliavin. More precisely, 
we have the following result. 

Theorem 4.1. ([4]). The mapping F ~ E(DuF ) defined on the space 
H2"I~La(f2, F,P) is continuous in the norm of L2(t?,F,P) /f and only if the 
Skorohod integral of u, exists, and, in this case, E(D,F) =E(F S u6w). 

T 

Let FeH  2' 1, for the case where u is deterministic we have already seen that 
DuF can be interpreted as a directional derivative. In general, in order to 
identify D,F as a directional derivative it is necessary to impose some re- 
strictions to the process u, but we will not treat this problem here (cf. [19]). 
The following property, which has been proved in [19] for directional deriva- 
tives, is an immediate consequence of the above definitions. 

Proposition 4.2. Let FEH 2' ~. Then 

ILDFN2=sup ((D,F)2: ueLZu(f2, F, P) and such that ]hu[lu= 1}. 

Proof Clearly (DUE)2<= IIDFII 2 if IlulLu=l. Conversely [IDFll~=DDFF=(D,F) 2, 
DF 

where u ILOFIL~" 
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Let u e L 2 ( T x  g2). We may ask the following question: When is u equal to 
DF for some functional F in H 2' 17 

Proposition 4.3. Suppose that u e L 2 ( T x  f2). There exists a functional F ~ H  2' 1 
such that D F = u  if and only if the kernels fro(tit1, . . . , t~) which appear in the 
integral decomposition of u are symmetric functions of all the variables. 

Proof The condition is obviously necessary. To show the sufficiency, define F 
1 

= w ( E u , ) + ~  ..C77,,1~+i(fm). This series converges in quadratic mean and 
m =  1 

F e  Dom L 1/2 because E [(L 1/2 F)2] = ~ m ! [I fm[I 2 = y E(u 2) l~(dt). Also, it is clear 
that DF = u. m = 0 r 

Remark. Recall that under the hypotheses of Proposition 4.3, it follows by 
Proposition 3.2 that the Skorohod integral of the process u exists if and only if 
F ~ D o m L ,  and then gu=LF.  

Theorem 4.4. Every process u~LZ(f2, F, P) has a unique orthogonal decom- 

position u = D F + u  ~ where F 6 H  2"~ and E ( u ~  for all G in H 2'1 
Furthermore, u ~ is Skorohod integrable and 6u ~ =0. 

Proof Note that the Hilbert spaces L~(f2, F, P) and L2(T x f2, B | 1 7 4  can 
be identified by the natural isometry. The elements of the form DF, F~H  2' 1, 
constitute a closed subspace of Lz(f2, F, P) by Proposition 4.3. Therefore, any 
process u~L2n(Fd, F,P)  has a unique orthogonal decomposition u = D F + u  o, 
where F ~ H  2' 1 and Uo_LDG for all G~H 2' 1. Note that, by Theorem 4.1, u ~ is 
always Skorohod integrable and 3u ~ =0.  

Remark. I. Shigekawa has recently introduced differential n-forms in abstract 
Wiener space and derived a de Rham-Hodge-Kodaira  decomposition for such 
forms [-16]. The decomposition of Theorem 4.4 above corresponds to the case 
of n=  1 of [16], i.e. the decomposition of 1-forms as the sum of the exterior 
derivative of a zero form, the Hodge-star operation on a 2-form and a 
harmonic component which vanishes in this case. We wish to thank an anon- 
ymous reviewer for calling our attention to [16]. 

5. The Generalized Bismut Approach 

Let F be a square-integrable functional of the Gaussian orthogonal measure w. 
The question arises whether the probability distribution of F possesses a 
density with respect to the Lebesgue measure. The following lemma, intro- 
duced by Malliavin, is a basic tool in establishing this property. 

Lemma 5.1. ([10]). Let X be a random variable and assume that for all 
(p~C~(IR) (the class of all real valued functions on ]R which are bounded and 
possess bounded derivatives of all orders) the following inequality holds 
IE(cp'(x))l <c  II~0l[~. Then the law of x has a density. 
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Following the approach of Bismut [-1] and applying the general integration 
by parts formula established in the last section, we can state the following 
result. 

Theorem 5.2. Let F~L2(f2, F,P). Let u={u~, t~T} be a Skorohod integrable 
process of L2(Tx~2). Assume that F, DuF~H 2"1, and D,F~:O a.s., then the 
probability law of F possesses a density. 

Proof. Set G=DuF/(e+(DuF) 2) for any e>0.  Then, by the rules of Malliavin 
calculus, DuG=(e-(DuF)2)/(e+(D,F)2) 2. Applying Theorem 4.1 we have for 
any ~0 e C~ ~ (IR) 

E(Gq~(F) ~ ubw)= E(Gcp'(F) DuF + q~(F) DuG ). 
T Hence 

E ~o'(F) D 2 6w ' I e-(DuF) 2 D,,DuF'[. ( u F) =<ll Ll E{ ! J 
For any fixed e > 0, the right-hand side is bounded by hypothesis. Therefore, if 

dp ~ 
P~ is a new measure on the original probability space, defined by dP 

_ (DuF) 2 
e§ , the measure P~F-1 is absolutely continuous with respect to the 

Lebesgue measure on ~ .  Let B be a Borel set of ~ with Lebesgue measure 
zero. Then P~(FeB)=O and, by monotone convergence, P(F~B)=O, which 
completes the proof. 

In the Malliavin approach, the main condition to assure the existence of a 
density is q[DFILu>0 a.s. More precisely, we have ([10, 15], cf. the proof of 
Proposition 2.2.1 of [-19]): 

Theorem 5.3. Let F E D o m L  such that F and IIDFII~H 2" 1. Assume IIDF]In>O 
a.s. Then, the probability law of F is absolutely continuous with respect to the 
Lebesgue measure. 

For the particular case where we choose u=DF in Proposition 5.2, the 
smoothness requirements in Propositions 5.2 and 5.3 are the same (in fact, 
F ~ D o m L  iff F~H 2'1 and DF is Skorohod integrable, cf. Proposition 3.2). 
Comparing, now, the generalized Bismut approach (Proposition 5.2) with the 
Malliavin result (Proposition 5.3) yields that Proposition 5.2 is more general. 
In fact, from Proposition 4.2 we see that hypotheses of Proposition 5.2 imply 
I]DFL]n>0 a.s., but it may happen that u is such that D~F>O a.s., u is 
Skorohod integrable and DuF~H 2"1 although DF does not satisfy the con- 
ditions of Proposition 5.3. 

Example 5.4. Let F(w)=q)(w(T)), where ( p : ~ ] R  is such that: ~p(x)--2x 
--x logx 2, for all ]xL<_~<l, and extend q~(x) for all x for which Ix[ is in (~, o0) 
in such a way that ~p is C~ and cp'>0 for ]x[>e/2. 

Then D h F = q~ (w (T)) ~ h d # and, therefore, F E H 2. 1, because q~' (x) = - log x 2 
T 

if Ix[ <~. If we choose u t = w 2, then DuF= q;(w(T))w~, p(T) belongs to H 2' 1 and 
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D , F > O  a.s. Therefore the generalized Bismut method (Proposition 5.2) is 
applicable. However, F ~ D o m L ,  and IIDF]12~H 2' 1. 

6. The Ogawa Integral and its Relation with the Skorohod Integral 

In [12, 13] Ogawa has introduced a stochastic integral of non-adapted pro- 
cesses with respect to the Brownian motion using a method which differs from 
that of Skorohod. In the context of a Gaussian orthogonal measure w, the idea 
for constructing this integral is the following. Let {ei, i > l }  be a complete 
orthonormal system in I-I=L2(T) and consider a measurable process u satisfy- 
ing P{~ u, z # ( d t ) < o o } = l .  Then the Ogawa integral of u is defined as the sum 

T 

in the sense of the convergence in probability of the series ~ (u, ez) w(ei) if it 
i 

exists. In general, this integral may depend on the particular orthonormal 
system. Ogawa has proved the existence of such integral when u is a con- 
tinuous quasi-martingale, w is the Brownian motion on [0, 1] and ez is the 
system of trigonometric functions. 

Consider a process u ~ L 2 ( r x  ~) with the integral representation (3.1) and 
put 

n 

" -  E (ut) + ~, I m (fro (t I q ,  . . ,  t,,)) U t - -  
m = l  

for any n > 1. From Proposition 3.5 we have 

c5 (e i (t) (u", el) ) = w (el) (u", e,) - (D ((u", el) ), ei), (6.1) 

for all n >  1 and i>  1. Assume that S E(I]DutN2)#(dt) < c~. Then the sequence of 
T 

processes {ei(t)(u" , ei) , n> 1} converges to the process ei(t)(u, ei) in the norm 
(3,3). Therefore we may take the limit in the expression (6.1) for the L 2 
convergence, when n ~ 0% obtaining 

a(ei(t)(u, el)) = w(ei)(u, el) - 5 Du,(s) ei(t ) ei(s ) #(dt) #(ds). (6.2) 
T 2 

Thus, in order to give an intrinsic meaning to the sum of the series 
w(el)(u, ei) we have to impose some conditions to the kernel Du,(s). 

i 

Proposition 6.1. Let ueL2(T x ~) such that ~ E(iLDu, k[ 2) #(dt) < oo. Assume that 
T 

the kernel Dut(s) has a finite trace, for all w, except in a set of  probability zero. 
Then, the Ogawa integral exists for any complete orthonormal system and it is 
equal to au + trace Du. 

M 

Proof. The sum y" ei(t)(u, el) converges to the process u when M tends to 
i = 1  

infinity in the norm (3.3). Indeed, it is easy to check that 

M 

ei(t)(u, ei ) L~(~,F,P~ 
M ~ m  ~ U~ 

i = 1  
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and 
M 

L~2C~,~,m Du. (6.3) ei(t) ~ Du~(s) ei(v )#(dr) M ~  ' 
i ~ I  T 

As a consequence, ~5 ei(t)(u,e~) converges in L z to cSu when M~oQ.  
\ i =  1 

Moreover, for any complete orthonormal system {e~,i>l} the series 

~ Du,(s)e~(t)ei(s ) #(dr)#(ds) converges for almost all w to the finite random 
i = l  T 2 

variable trace Du. This achieves the proof of the proposition. 
If the Ogawa integral of some process u exists and has the same value for 

any complete orthonormal system, it will be denoted by du. 

Examples. (i) Let F e l l  2" 1 and f e l l .  Consider the process u(t, w)=f(t)F(w). 
Then, Dut(s)=f(t ) DF(s) has a finite trace and, therefore, the Ogawa integral of 
u is well defined and is given by S ( f F ) = b ( f F ) + D r  by Proposition 

d 

3.4. More generally, for simple processes u(t, w)= ~ Fk(w ) 18~(t), such that 
Fk~H 2, 1, we have k= 1 

J w) l~(r  = ~ w(B~) F~. 
k = l  k = l  

(ii) Consider a measurable function p: lR"x T ~ I R  such that for any teT, 
p(-, t) is a continuously differentiable function, and such that the function q~ 

together with its derivatives ~ have an absolute value bounded by 0(t)(1 

+Ixt~), where OeL2(T) and v>0  is some integer. Let h 1, ..., h~eH. Then, the 
process u(t, w)=~o(w(h~) . . . .  , w(h~), t) satisfies the hypotheses of Proposition 6.1. 
In fact, we have 

Dut(s) = ~ Oq) ,=1 ~xi (w(hl) . . . . .  w(h~), t) h,(s). 

So, we know that the Ogawa integral d exists. In order to compute its value, 
denote by {~0(x,w), xelR ~} a continuous version of the process w((o(x, .)) 
= ~ (p(x, t)dw t. The existence of this version follows from the Kolmogorov 

T 

continuity criterion. In fact, for any p>=2 and ]xl, [y[ <k,  we have 

E(Iw(rp(x, "))- w(p(y, "))lV) G C,(~ lrP(x, t)--r 012 #(dt)) p/2 <const  Ix -y[  ~. 
T 

We will show now that 
du = (o(w(hl) . . . . .  w(h~), w), (6.4) 

and, by Proposition 6.1, 
~o 

(}u = q0(w(hl) . . . .  , w(h~), w)-i~_ _! ~xl (w(hl) . . . . .  w(h,), t)hi(t )#(dt). 

To show Eq. (6.4), define 
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M 

q)M(x, w)= ~, (~o(x, "), ei) w(ei). We know that  (PM(W(hfl, ..., w(h,), w) converges  
i=1 

in probabi l i ty  to c~u when M tends to infinity. We are going to see that  this 
sequence of r a n d o m  variables  converges in L 2 to the r ight -hand side of (6.4). 
To  do this, assume tha t  the h i belong to the linear span of {ei . . . . .  e,,}. Then, 
for M > n, we have 

E(ICPM(W(hl) .. . .  , w(h,), w ) -  q~(w(hl) . . . . .  w(h,), w)l 2) 

=E ~ (~qo(w(hl) . . . .  ,w(h,), t) ei(t )ff(dt)) 2 M-*o~'0" 
i = M + I  T 

(iii) Let  F e D o m L .  Assume that  D2F has a finite t race for a lmost  all w. 
Then,  the process u = DF is O g a w a  integrable,  and we have  

d(DF) = c~ (DF) + t race D 2 F = LF + t race D 2 F. 

We recover here a familiar  expression for the opera to r  L. In part icular ,  in the 
context  of  Example  3.6, if F is extendable  to all cont inuous  functions vanishing 
at zero and  this extension, F,.(.), is twice Frechet  differentiable then ~DF(w) 
=(3Fc()ow)/62)~= 1 (cf. Eq. 14 of [19]). 

We r emark  tha t  the conclusion of Propos i t ion  6.1 is still t rue if, instead of 
assuming that  Dut(s ) is a t race class kernel, we suppose  that  the series 

~ Dut(s ) ei( 0 ei(s ) #(dt) #(ds) 
i T 2 

converges in probabi l i ty  and the sum does not depend on the o r t h o n o r m a l  
system {e i, i~  1}. 

Consider  now the s i tuat ion of Example  3.6. Tha t  means,  T =  [0, 1], # is the 
Lebesgue measure  and w is the Wiener  process. Let  a~L2(T • •) be a process 

such that  ~ E(ilOutll~ ) ~(dt)< ~ ,  and assume that  a.s., 
T 

1 
lira ~ Dut(s)dsdt=q~(x), for all xeT,  a.e., (6.5) 
~$0 4~ 2 ( [ x _ e , x + e ] c ~ T ) 2  

where (p(t) is an integrable  function, which will be denoted by Dut(t ). Under  
these assumpt ions  we can define the symmetric integral of the process u by the 
expression 

u~w= ~ ug~w+ ~ Dut(t )dt. 
T T T 

This symmet r i c  s tochast ic  integral  is similar to the O g a w a  integral  in the sense 
that  they coincide if, for instance, the kernel  Dut(s ) is cont inuous.  Finally we 
have the following result. 

Proposition 6.2. Let x and y be adapted processes of LZ(T x f2) verifying 

E(HDxtlI2 + IlDytll~ ) dr< oc. 
T 
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Consider  the cont inuous semimartingale,  with respect to the Wiener  filtration, 
t t 

given by u t= ~ xsdw~+ ~ y~ds. Then the process u verifies condi t ion (6.5) and 
0 0 

the symmetric  integral of u is equal to the Stratonovich integral, that  means, 

l ' t ~ W =  S u d w - l - l  (bl '  W ) I "  
T T 

Proof It suffices to see that  (6.5) holds and Dut(t)-=�89 ~ for all teT,  a.e. In fact, 
if this is true we will have 

Dut(t) dt=�89 ~ x t .d t=�89 w)l .  
T T 

It is clear that  uteI~(T x ~2). Consider  the integral representat ions 

x , = E ( x t ) +  ~ Im(f~(tlt ~ . . . .  , tin)), 
m = l  

and 

Yt=E(Yt)+ ~.~ Ira(gin(tit1 . . . .  , t,n)), 
m = l  

where the kernels fm and gm satisfy propert ies (a) and (b) of Sect. 3, and, also 
they vanish unless max {tl, ..., tin} <=t. Assume first that  x~=I~(f~(tl 9), and y~ 
=Im(g,,(tl')). In this case we obtain, from Proposi t ion 3.4, that  

D u~(s) = ) D x s(cr) d w~ + i D Ys (a) d a + xs, (6.6) 
$ s 

for all s < t. 
We remark  that  the kernels Dut(s ), Oxt(s ) and Dyt(s ) are zero if s>t.  In the 

expression (6.6) we sum the index m from 1 to infinity obtaining that  
E(IlDu, II~) dt < oo and that the equali ty (6.6) holds in general. Set 

T 
t t 

s s 

1 
Then, we have l i r a - -  ~ c~(s,t)dsdt=O for almost  all x and w. In 

e~o 482 ([x_e,x+e]c~T)2 
fact, using the Lebesgue differentiation theorem, we have 

1 x+ex+e < 1 x+~ 

482 j" j" Ic~(s, t)l ds dt ~ ( sup le(s, t)l) ds----* sup Io~(x, t)l , 
x - ~  x - e  =28  x--e s<=t<--s+(1/n) ~$0 x<_t<_x+(1/n ) 

for almost  a l l x ,  and finally, the expression sup ]a(x, t)l converges to zero 
x<--t<--x+(1/n) 

when n tends to infinity, by continuity.  Moreover ,  for almost  all t and w, we 
have 

1 
Du~(t)=lim- ~ x~l~o<=~dadz 

~+o 482 ([t--e,t+~]c~T)2 

t+e 

=l i ra  ~ ( t + e - ~ ) x ~ d a = x  r 
e $ O  ~ 2  t - e  
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7. Transformation of Measure 

Let w(B) be a Gaussian measure with orthogonal increments defined in the 
canonical probability space (~2, F, P). Assume that u is a stochastic process of 
L2(T x O) such that S E(llDutl[2)l~(dt) < or. We know that with these assump- 

T 

tions the process u is Skorohod integrable. We consider a new stochastic 
measure defined by {w(B)-S ud#, BeB}, and we want to know whether the 

law of this stochastic process indexed by B is absolutely continuous with 
respect to the law of {w(B), B6B}. Note that we can also formulate this 
problem in terms of stochastic processes indexed by the Hilbert space H 
=L2(T). 

Suppose that A(s, t) is a square-integrable kernel on the measure space 
(T, B, #). The Carleman-Fredholm determinant of A is defined by the product 
expansion 

de(A) = Hi(1 - 2) exp 2j, 

where the 2/s are the nonzero eigenvalues of A counted with their multiplici- 
ties. The following properties of this determinant are well-known: 

(i) d~(A) is a continuous function of A with respect to the Hilbert-Schmidt 
norm 

flail = { j" A(s, t) 2 ~(ds) #(dt)} 1/2. 
T 2 

(ii) If Af ( t )=SA(s , t ) f ( s )# (ds  ) is a nuclear operator of H=L2(T), and I 
T 

denotes the identity operator then dc(A ) = d.et (1 - A) exp (trace A). 

(iii) Let A and B be two square-integrable kernels and denote by AB the 
composition of these kernels: (AB)(s, t )=~A(s,u)B(u,  t)l~(du). Then, we have 

T 

dc(A).dc(B)=dc(A+B-AB)exp(trace(AB)).  In particular, if A + B = A B ,  then 
d c(A) dr = exp (trace (AB)). 

An alternative expression for dc(A) is the following 

d~(A)= l+  ~ (-1)'~ .=1 nV ~ det(A(si'sj))#(dsl)'"l~(dsn)' 
�9 r n 

where A(si, sj)=A(si, s) if i#:j, and fi,(s i, sl)=0. 
Denote by { % i > 1 }  a complete orthonormal system in H. A process 

veL2(T x O) will be called an elementary process if for some integer N, v can be 
expressed like 

N 

v~= ~ Oj(w(el) . . . .  , w(eN) ) ej(t), (7.1) 
] = 1  

where ~: IRN-+IR is a continuously differentiable function such that t) together 
with its first derivative has polynomial growth�9 

Let u~LZ(Txf2) such that ~E(ILDut]lz)/~(dt)<oo. It is easy to see that the 
T 

process u can be approximated in the norm {S E(u 2) t~(dt) 
T 
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+ ~ E(]lDutl[2)#(dt)} 1/2 by elementary processes. Indeed, first we approximate 

the process u by a finite sum of the form E(ut)+ Im(fm(t ] ")). Then, we may 
t n = l  

assume that the kernels fro(tit 1 . . . .  , tin) are finite linear combinations of pro- 
ducts like 

h(t) ejl(tl). . ,  ej~(til ) ej2(ti~+ 1)... ej2(ti2).., ejk(til +...+ik 1+ 1)... ejk(t,,), 

where h~L2(T), i l + . . . + i k = m ,  and the indices Jl, "",Jk are different. That  
means, the process u is a finite linear combination of products of the form 
h(t) hi~(w(ej~)).., hik(w(ej~) ) where h,(x) are Hermite  polynomials, normalized in 
such a way that the coefficients of x" are equal to 1. 

An elementary process v will be called one-to-one if the mapping ( I -O)(x)  
= ( x l - 0 1 ( x ) ,  ...,XN--tpN(X)) is one-to-one. A process u~LZ(rx f2 )  such that 

E([IDutLIz)#(dt)<oo will be called weakly one-to-one if u can be approxi- 
T 

mated in the norm {E(]LuH~)+E(ILDuII~.s.)} 1/2 by one-to-one elementary pro- 
cesses. Consider, for instance, the situation of Example 3.6, that means, 
T =  [-0, 1] and w t is the Wiener process. In this case, any adapted process u e L  z 
(T x s such that E(HOuq[~.s.)< co is weakly one-to-one. 

Let v be an elementary process, given w, then x and y = ( I - O ) ( x )  are well 
defined hence y=y(w). The cardinality of the x's such that ( I -O)(x)=y(w)  is 
the multiplicity function of v and will be denoted My(w); obviously Mr(w)> 1 
and may be infinite. For  example, let v(t)=(w, el) 3 .e  1 (where /LelLI =1) then 
My(w)=3 for I(w, e)1<2-3 .2/3 and M~(w)=l  otherwise. Let u be a process 

ueL2(f2 x T) and E~ ][Dutll~g(dt)< o% an integer valued finite or infinite ran- 
T 

dom variable M,(w) will be said to be a weak multiplicity function associated 
with u if u can be approximated in the norm {E(llull~)+g(llDu ti.s.]j2 ~1/2  by 

elementary processes u, such that M, , (w)dd~M, (w) .  In particular, if u is 
weakly one-to-one then M, (w)=  1 a.s. 

Theorem 7.1. Let uffL2(r x f2) such that ~ E(IIDu, II 2) #(dr) < 0% and assume that 
T 

u possesses a multiplicity function M~(w) such that M,(w)<  oo a.s. Let g: IRd--*N 
be a positive, continuous and bounded function and consider the non-negative 
functional F(w)=g(w(B 0 . . . .  , w(Be)), where B1, ..., Bd~B. Then 

E(F(w))> E ((M,(w))-l ldr exp(!u6w-�89 F ( w -  ~ud#)), (7.2) 

where dr represents the Carleman-Fredholm determinant of the kernel Du. 
Furthermore, if d~(Du)+O a.s. then, the probability distribution of the process 
{w(B)-~  ud#, BeB} is absolutely continuous with respect to the law of {w(B), 
BEB}. e 

Proof Denote by {el, i>1}  a complete or thonormal  system in H. Assume that 
v is an elementary process of the form (7.1) and denote by A(w) the N x N 
matrix given by 

Air(w ) = 6ij - (D~ v(w), e j) = 61~--0 i O~(w(ea) . . . .  , w(e,)). 
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Then we have 

E [ M 2  I(w) Idc(Dv)L exp (~ v 6 w -  �89 LIvL]2) F ( w -  ~ vd#)] 
T 

= E [M;-1 (w) L det A (w)[ exp (trace D v + ~ v 5 w -  �89 ]L v H 2) F ( w -  ~ vd#)] 
T 

= E  M~-l(w) ldetA(w)lexp ~, (v, ej) w(e~)-~ 2 (v,e~) 2 F ( w - ~ v d # )  . 
\ i =  1 j =  1 

N (7.3) 

For any h~H we set ~v(h)=w(h)-  ~ (h, e j)w(ej).  The random processes Cv(h) 
N j = l  

and ~ (h, e j )w(ej)  are independent, and, therefore, the expectation (7.3) will 
j = l  

be equal to 

( N ) d e t A (  ~" ) E# ~ M :  1 Wq- E Xkek W-}" E Xkek 
~ N  k = l  / k = l  

�9 exp Oj(x 1 . . . .  , xN) x j - � 8 9  ~ Oj(x 1, ..., XN) 2 
j=l j=l 

�9 F gv+ ~, xse s -  ~ Os(xl . . . .  ,x~.)ej 
j = l  j = l  

1 2 ( 2 7 ~ ) - N / 2  d x  1 . . d x  N �9 exp - 7  ~ xj 
\ j = l  / 

=E~ ~ M g  1 # +  2 Xkek ]det(I--jO)[ 
N. N \ k =  1 

�9 exp - x j -  ~ l j ( X l , . . .  , Xs)) 2 
j = l  

�9 f # +  ~ ( x s - O j ( x  1 . . . .  , x s ) )e  j (2rc)-N/2dxl . . .dx N, 
j = l  

where Jo denotes the Jacobian matrix of ~. Then we make the change of 
variables x j - O j ( x  1 . . . . .  XN)=y, in the above integral. The Jacobian matrix of 

1-oy i this transformation L0x~J coincides with I - J  O. In applying the change of 

variable formula we have to multiply by M~(w) ([-3], Theorem 3.2.5, p. 244) 
and, consequently the expression (7.3) is upper bounded by 

1 2 (2re) -s/2 dy 1 . dy N=E(F(w)). E,~ 5 exp - 2 ~ y j  F # +  yjej .. 
1R N \ j =  1 / j 

The reason for it's being an upper bound for (7.3) rather than an equality is 
that in the left hand side of the last equality we also integrate over regions for 
which det (I - J ~) = 0. 

Finally, let {v,,n>=l} be a sequence of one-to-one elementary processes 
2 ] ) 1 / 2  Then, there converging to the process u in the norm {E(Hu[lZ)+E(llDullu.sjj . 

exists a subsequence {G,, i>  1} such that 
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M -1 [d~(Dv,,)l exp( 5 v, 6w-�89 
Un i i 

T 

converges almost surely to 

My lldc(Du)l exp (5 uaw- �89  ]lull 2) F ( w -  5 ud#). 
T 

Therefore, by Fatou's lemma we obtain the inequality (7.2). The absolute 
continuity of {w(B)- 5 ud#} follows directly from (7.2) since Idc(Du)[ >0  a.s. 

B 

Lemma 7.2. Let v be an elementary process of the form (7.1) and assume that 
dc(Dv)q=O a.s. Then, the probability distribution of the process {w(B)- 5 vd#, 
B~B} is absolutely continuous with respect to the law of {w(B), B~B}. B 

Proof Suppose that F is a bounded functional such that E(F(w))=O. Using the 
same notation as in the demonstration of Theorem 7.1, for all #, almost surely, 
we will have 

1 2 dy 1 dyu=O. 5 F V+ E yjej exp - ~ E y j  "'" 
N N \ j = l  / \ j = l  / 

For these ga it is clear that 

5 I d e t ( I - J 0 ) l  exp - �89  y '  (x j -Oj(xl ,  ...,xN)) 2 , 
N N j =  1 

F r ~ ( x j - O j ( x l , . . . , x N ) ) e  j dxa...dxN=O. 
j = l  

Integrating with respect to # we obtain 

E[idc(Dv)l exp( 5 v~w- �89 HvlL~) F ( w -  5 vd#)] =0. 
T 

Therefore, E(F(w-5  vd#))= 0, which implies the desired result. 
We remark that, in the last proposition, the condition d~(Dv)q=O a.s. is 

equivalent to saying that I-JO=t=O a.e. with respect to the Lebesgue measure 
on IR N. 

N 
Proposition 7.3. Assume that ut= ~. Fi(w) ei(t ), where the F i are random variables 

i = l  

such that the second Malliavin derivatives D2 F~ exist and E([IDZ Filh 2 H . s . )  < C~ .  

Suppose d~(Du)+O a.s. Then, the probability distribution of the process {w(B) 

- 5 ud#, B~B} is absolutely continuous with respect to the.law of {w(B), B~B}. 
B 

N 

Proof As before we will write fv(h)=w(h)- ~ (h, ej)w(e~). We denote by G 
j = t  

the a-field generated by the random variables {Y(h),haH}. An arbitrary 
bounded and measurable functional can be expressed as F(w) 
=0(w(e 0 . . . .  ,w(eu),G ), where 0 is a bounded Borel function and G is G- 
measurable. 
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Assume that E(F(w))=O. Then for all #, almost surely, we have 

1 2 dx~ ..dxN=O. (7.4) ~r 1 . . . .  , XN ,  GOTv)) e x p  --~- ~ X j  . 
IR N j=  1 / 

The translated functional will be F"(w)=tp(w(el)-Fl(w) . . . . .  w(eN) 
--FN(W ), G(#)), and our aim is to show that E(F"(w))=O. 

Denote by P"(dx[#) a regular version of the probability distribution of the 
random vector ~ = (w (e 1) - 1:1 (w) . . . . .  w (eu) - F u(w)) conditioned by G. Then, 

E(F"(w)) =E~, ~ O(x 1 . . . .  , xu, G(fv))P"(dx/#). 

Taking into account (7.4), in order  to show that this expectation is zero, it 
suffices with proving that for all v;,, almost surely, the probability P"(dxl#) is 
absolutely continuous with respect to the Lebesgue measure on p u. This will 
be achieved using the Malliavin technique. 

We fix a function cp6C~(Nu). For any integer m> 1, we consider a function 
?,,e C~~174 u) such that 

(a) 7re(a)= 1 if aeK,. ,  
(b) 7m(cr)=0 if a~Km+l, 

where Km=taelRN| ,aiSl<m for all i,j; and ,det a , > l t .  We have 
k .  

N 

D ej [q~ (#)3 = ~ (8, (p)(#)(a,j- D ey F). 
i = 1  

Denote by F the matrix (Sq-DejFi)  and observe that d~(Du)#O a.s. implies 
det F 4= 0 a.s. Thus, 

E [?m(F)(0~ (p) (~) HI  
N 

= ~ E[y,.(F) De~f~ol~)](r- z)J~H] 
j = l  

N 

= 2 E EDej(H.cpI~) 7,,(r)(r-~)J')-~o 14)Des(Tm(F)(r-~)J')H 
j = l  

- 9 (~) Y~ (F)(F- 1)SiD e5 H3, 

where H is a simple functional of the form ~(w(eN+l), ..., W(eu)). Notice that 
DejH=O for j =  1, ..., N. Therefore, we obtain 

E [y~(F)(8~ ~o)( 0 H3 
N 

= ~ E[H (pl~){w(ej)7, ,(r)(r-1)J~-Dej(7, ,(r)(r-lYi)}].  
j = l  

As a consequence, 

G]I 

E[j~I {w(ej) ym(F)(F-1)J'-Dej(Tm(F)(F-1)J')} [G]. 
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For any m let P,~(dx/#) be a regular version of the conditional distribution 
of ~ given G, with respect to the measure 7re(F)dP. Using the basic Lemma of 
Malliavin we deduce that, for almost all #, the measure P,~(dx/v~) is absolutely 
continuous with respect to the Lebesgue measure on IR N. Making m tend to 
infinity we obtain the desired result. 

It is interesting to remark that inequality (7.2) implies the following Girsa- 
nov-type theorem: 

T h e o r e m  7.4. Let u6L2(r x f2) be such that E(lIDullZ.s.)<oo and assume that 
Mu(w)< oo a.s. Set 

tl= ldc(Du)l exp(~ u 6 w - � 8 9  ][u[12) M 21(w) 
r 

and suppose that E(t/) = 1. Then the law of the process {w(B)-  ~ udg, B~B} in 
B 

the probability space (f2, F, t/. P) coincides with the law of {w(B), B~B} with 
respect to P. Furthermore if ]dc(Du )] ,t = 0 a.s. then the measures are equivalent. 

Proof. Let F be a bounded functional and A a Borel subset of N. By (7.2) we 
know that 

E [1A(F)] > E [q 1A(F(w-- ~ ud#)]. (7.5) 

As functions of A both members of this inequality are nonnegative measures 
with total mass equal to E(F). Therefore, they must coincide, that means that 
equality holds in (7.5) and this proves the theorem. By 7.1 and since t/=t=0 a.s., 
w - ~  ud# is absolutely continuous with respect to the Wiener measure. On the 
other hand if E1A(W-~ud#)=O then Etl la(w-~udl~)=O hence, by 7.5 with 
equality E 1A(W ) = 0 hence the equivalence of the measures. 

Let u(w) be a process of LZ(T x f~) and let vt(w ) be a process of L~ x ~2) 
and such that 

u t ( w ) = - v t ( w - ~ u d # )  a.s. 

Let A c f2 denote the range of the transformation w ~ w -  ~ udl~ namely A = {w 

-~udl~}. Let y = w - ~ u d l ~  then a.s. for every w, the equation y(B)=~v(y)dl~ 
B 

+ w(B) has a unique solution y, y e A  and given any yEA then there is a unique 
solution w which will be denoted by w(y). 

Theorem 7.5. Let u and v be as specified above and assume: 

1) u(w) is weakly one-to-one, E Du ]2.s < ~ .  
2) ]dcDul+O a.s. and 

E {dc(Du) . exp ~ u3w-�89 2} = 1 
T 

then P(A) = 1, the probability law of the process {w(B)-  ~ udl~}, BeB} is equiva- 
lent to the law of {w(B), BsB} and the density is given by 

I(d~D u) (w(y))l exp(y v(y)6w(y) -�89 II vii2) 
T 
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Proof. Let P denote the underlying measure and P the measure induced by 

dP (w)= ]d~(Du)[.exp (~ u(w) 3w-�89 II u ]1,]). 

Now under P, by Theorem 7.4, y is Wiener. Let Pr denote the probabili ty law 
of y under P. Hence [~ restricted to y is Wiener namely Pw and P restricted to y 
is Py. Consequently 

dP~ dP 
d~ (y(w))= E [~f, F~] 

where F r is the sigma field generated by y(w) and the expectation is with 
respect to the measure P. 

Rewriting dP/dP: 

dP 
dP (w(y))= Id~(D ~= u)(w(y))l exp ( -  ~ v(y) 6w(y)- �89 I] v(y)lh~) 

it follows that this expression is measurable on Ft. Therefore 

dEw 
d ~  (y (w)) = ](d c D u)(w (y))] �9 exp ( -  S v (y) 6 w (y) - �89 [1 v 1] ~) 

since by 7.1, Py ~Pw, and this completes the proof. 

Examples. (1) Consider a process of the form u~(w)=f(t)F(w), where f e l l  and 
FEH z'2. In this case, the kernel Dut(s)=f(t)DF(s ) is nuclear and it is easy to 
see that 

d c D u = (1 - D s F) exp (D I F). 

So, as a consequence of Proposition 7.3, if DyF+ 1 a.s., then the law of the 
process {w(B)-F(w)Sf(t)#(dr), BeB} is absolutely continuous with respect to 

B 
the law of {w(B), BeB}. 

(2) Consider the situation of Example 3.6, that means T =  [0, 1] and w t is 
the Wiener process. Suppose that u~ is an adapted and measurable process such 

1 1 1 

that ~E(u2)dt+~E(Dut(s)2)dsdt<~. Then, dcDu=l because the kernel 
0 0 0 

Dut(s ) vanishes if t<s. Therefore, u satisfies the hypotheses of Theorem 7.1 
with multiplicity M = I .  However  for this case the Girsanov theorem is at 
present stronger since it holds under weaker assumptions. Note  that the for- 
mula for the density coincides with the result of Theorem 7.3 because d c D v = 1. 

(3) Consider the case r = [ 0 , 1 ] ,  u(t)=(w(e))k.et and ILeLl=l. Then 
l<=Mu<k; noting the shape of the graph of x--xk=y, it follows that for k 
even, M u = 2  and for k odd, k > 3  M , = 3  if lyi<(k-1)-k (1-k)/k and 1 otherwise. 
Note that for k even there are values of y for which x-xk=y has no real 
solutions but y(w) is a.s. not in this region. For  both k even and odd, k>2 ,  
dcDu4=O a.s. and therefore by Theorem 7.1 the probabili ty law induced by 
w.--(w(e))k.e, is absolutely continuous with respect to the law of w. It is 
straightforward to verify that the assumptions of Theorem 7.4 are verified for 
k odd only. 
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Consider the case 
ut(w ) = + (v~(e)) k e t 

~ t ( w )  = - ( w ( e ) )  k e ,  

where #t=wt- i  us ds then u , ( w ) = -  v,(#). Consider Theorem 7.5 for this case. 
o t 

The first relation implies that CVt=W,--(#(e))k5 esds; hence in order that u, be 
o 

well defined we have to require that ~v(e)=w(e)-(#(e)) k be satisfied for all 
values of w(e). For  k even this is impossible. For  k odd, given w(e) there is 
always one and only one solution for #(e). Therefore u is one-to-one and so in 
v. Therefore Theorems 7.4 and 7.5 are applicable. 
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