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Summary. 5P'-valued Gaussian processes of a certain class are shown to 
satisfy generalized Langevin equations. Examples are fluctuation limits of 
several infinite particle systems, in particular infinite particle branching 
Brownian motions with immigration under various scalings and the voter 
model with hydrodynamic scaling. 

1. Introduction 

Let 5r a) denote the space of C a rapidly decreasing functions on R a, and 
5r a) its topological dual, the Schwartz space of tempered distributions. Let 
A:Y(R~)~S~(R a) be a continuous linear operator. We will study when a 
Gaussian 5f'(Ra)-valued process X =  {X,, t~[0, T]} satisfies a generalized 
Langevin equation of the form 

dXt= A* Xtdt +dWt, (1.1) 

where A* is the adjoint of A and W=-{Wt, te[O,T]} is an 5P'(Re)-valued 
Wiener process, in general time-inhomogeneous. (Our definition of W is slightly 
more general than the processes that can be obtained as stochastic integrals of 
deterministic processes with respect to the standard Wiener 5e~-process in- 
troduced by It6 [20].) The precise meaning of a solution of (1.1) in this paper 
is taken to be the so called "mild" solution (Definition 3.1). Solutions of (1.1) 
are called generalized Ornstein-Uhlenbeck processes. 

Let X=-{Xt, t~[O,T]} be an Y'(Re)-valued process, continuous or right- 
continuous with left limits, and define 3? by 

T 
(~,~)=~(X,,eb(t,.))dt, ~ f f ~ ( R a +  !), (1.2) 

o 
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where ( . , ' )  denotes the duality on the appropriate spaces (5~'(R a+l) and 
5p(Ra+ 1) on the left-hand side, 5~'(R d) and 5r a) on the right-hand side). We 
know that )( is a random element of ~ ' ( R  d+l) and the distribution of 2 
determines the distribution of X [-2]. Moreover, X is Gaussian if and only if 3? 
is Gaussian. (The case T =  oo requires a special treatment (see [2]); however, 
for (1.1) in this case we may assume T finite but arbitrary.) 

We will show that for a continuous Gaussian 5~'(Ra)-valued process X, 
being a solution of (1.1)is equivalent to the covariance functional of 3? defined 
by (1.2) satisfying a certain condition (Theorem 3.5). If the operator A gener- 
ates a strongly continuous semigroup of continuous linear operators on 5r 
and if the covariance functional of X (which can be obtained from that of X) 
satisfies a certain condition, then X is Markovian and satisfies (1.1) (Theorem 
3.6). In any case the distribution of the 5~'-Wiener process W is determined 
explicitly by the covariance of X or )(. The processes W that can appear in 
(1.1) belong to a general class of Y'-Wiener processes (Definition 2.1). 

The relevance of the formulation in terms of ~'(Ra+l)-valued random 
variables J? is that not only the distribution of )? suffices to obtain a Langevin 
equation for the process X in the Gaussian case, but in general weak con- 
vergence of a tight sequence of ~'(Ra)-valued processes (Xn) . follows if the 
corresponding sequence (2,),~ converges weakly in 5r a+l) [2]. Thus the 
whole study of convergence of J '(Ra)-valued processes to generalized Ornstein- 
Uhlenbeck processes may be carried out in a space of (space-time) distri- 
butions. This approach is useful for the asymptotic analysis of various types of 
infinite particle systems, where one wishes to show that the fluctuation process 
with respect to the mean converges to a generalized Ornstein-Uhlenbeck pro- 
cess, as will be illustrated below. 

We shall give several illustrations of fluctuation limits of infinite particle 
systems and their corresponding Langevin equations, including It6's example 
of an infinite system of Brownian motions [20] and Presutti and Spohn's 
hydrodynamic limits of the voter model and the simple exclusion process [26]. 
The others form a collection of examples concerning a certain infinite system 
of Brownian motions, including branching and immigration phenomena, that 
have been studied by one of us; most of these results are new and contain as 
special cases results of Dawson and Ivanoff [-6, 7, 9, 21, 22], Holley and 
Stroock [18], Martin-L6f [23], and Gorostiza [13]; such results involve sever- 
al different scalings and they were treated before using different approaches; 
one of our objectives here was developing a unified treatment. We remark that 
the Langevin equations (1.1) in [233 and [,13], as well as in other papers ([12, 

14]),were obtainedintheform ()(,(A+~t)~b)~-117V,,~t~), ~SP(Ra+I), 
in the sense of equality of probability distributions; (in other of the papers 
cited above the meaning of the Langevin equations is not specified). Our 
results imply that solutions in the latter sense, which is apparently weaker than 
the mild sense, are in fact mild solutions of (1.1) (this follows from Proposition 
3.4 and Theorem 3.5). 

The results presented in [-2] and here grew out of attempts to adapt the 
approach of Martin-L6f [23] to the analysis of more complicated infinite 
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particle systems; while this was feasible in the cases of [8, 13] and [14], for 
other models it proved to be very difficult; the main problem was that one had 
to guess the operator A in the Langevin equation and then perform intricate 
computations to determine W, which became very unwieldy except in relatively 
simple cases. Thus it seemed desirable to extend the ideas of [23] in a general 
fashion that could apply to a broad class of models. This is what is achieved in 
[2] and in this paper. 

In Sect. 2 we define the 5P'-Wiener processes we need and prove their 
existence. Section 3 concerns the generalized Langevin equations. The exam- 
ples are contained in Sect. 4. 

2. 5r Wiener process 

We recall that an 5~'(Ra)-valued process {W,,teR+} is said to be (centered) 
Oaussian if {(W,, qS)- t eR+,  qSeY(Ra)} is a (centered) Gaussian system. 

Definition 2.1. A centered Gaussian Y'(Ra)-valued process W ={W~,teR+} is 
called a (generalized) Wiener process if it has continuous trajectories and its 
covariance functional K(s, 4; t, ~) = E((Ws, qS)(W~, 0))  has the form 

s a t  

K(s, 4;t ,~)= y (Q.(a,~b) du, s, teR+, ~,~ESP(Rd), (2.1) 
0 

where the operators (2.: Y(Ra)~SP'(Ra) have the properties: 
(i) (2. is linear, continuous, symmetric and positive for each ueR+,  and 

(ii) the function u~(Q.~,t~) is right-continuous with left limits for each 
q~, ~ ( R ~ ) .  

We say that Wis associated to (2=((2,, ueR+}. 

Remarks. (a) From the definition it follows immediately that if Wis an ~'(Re) - 
valued Wiener process, then W o =0  and it has independent increments in the 
sense that for any ONs<t and qSe~(R ~) the real random variable (W~,qb) 
-(W~,~b) is independent of the a-algebra generated by {(W,,~,): O<u<_s, ~ 
Y(Rd)}. 

(b) The standard one-dimensional Wiener process w={wt, t~R+} can be 
considered as an ~'(Rd)-valued Wiener process. Indeed, for arbitrary fixed 
xo~R d the process W=wbxo satisfies the conditions of Definition 2.1 with (2~ ~b 
=qb(Xo)bxo, ueR+. An analogous identification can be made for the standard 
n-dimensional Wiener process. 

(c) The standard Wiener 5P2-process b defined by It6 [19] is also an .50,_ 
valued Wiener process in our sense, with (Q,,~,~)=S(a(x)~(x)dx. Moreover, 

t R 

the stochastic integral j~sdbs defined in [20] for deterministic c~ is also a 
0 

generalized Wiener process under the additional, but not restrictive, condition 
(ii) of Definition 2.1; however, not all generalized Wiener processes are of that 
form; the process defined in (b) is a counterexample. 

In order to prove the existence theorem for generalized Wiener processes 
we need the following lemma. 
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Lemma 2.2. Let Q.: 5e(Rd)~5~'(Rd) be a linear, continuous, symmetric operator 
for u~R+, such that the function u ~ ( Q .  4, 0 ) is right-continuous with left limits 
for each O, tPeSP(Ra). Then the function K: (R+ x 5~(Ra)) x (R+ x 5~(Rd))~R 

s a t  

defined by K(s,O;t,O)= ~ ( Q . 4 , ~ ) d u  is positive-definite if and only if Q. is 
positive for each ucR+. o 

Proof. Using the symmetry of K (s, 4; t, 0) in the pairs (s, 4), (t, ~), one obtains 
for any O=to<tl <. . .<t . ,  41 . . . . .  (o.cS~(Rd), 

K(tj, Oj;tk, ~ Q, Ok, Ok du. (2.2) 
j , k :  1 "= tj t k = j  k = j  

If Q. is positive, ucR+, the left-hand side of (2.2) is positive and this implies 
the positive-definiteness of K. Conversely, suppose that K is positive-definite 
but ( Q t 4 , 4 ) < 0  for some teR+,4~5~(Rd). Then by right-continuity there 
exists t '>t such that ( Q , 4 , 4 ) < 0  for u~[t,t']. Define t l=t  , ta=t' , 4 1 = - 4 ,  
4 2 = 4 ;  then (2.2) yields 

2 tz 

0<= ~ K(tj, Oj, tk, Ok)=~(Q, 42,42)du<O. 
j , k =  1 t l  

This contradiction ends the proof. 

The main result of this section is the following existence theorem. 

Theorem 2.3. For each .family of operators Q = {Qu, u~R + } satisfying conditions 
(i) and (ii) of Definition 2.1 there exists an SP'(Ra)-valued Wiener process as- 
sociated to Q. 

Proof. It suffices to verify that K(t, 4; t, 4) satisfies the conditions of Theorem 
4.1 of [19], i.e. that it is continuous in t for every 4, and that it is a continuous 
positive-definite quadratic functional of 4 for every t; the continuity in 4 
follows from Proposition 2 of [27]. 

3. Langevin Equations for ~'-Gaussian Processes 

In what follows we consider processes on a fixed time interval [0, T], where 
0 <  T <  0% and for T =  c~ [0, T] should be read as [0, oe). 

For unity within this section let us write equation (1.1) here: 

dXt= A* Xtdt +dW r (3.1) 

We will investigate when a given Gaussian 5P'(Rd)-valued process X---{X~, 
tc[0, T]} satisfies this equation, where A* is the adjoint of a linear, continuous 
operator A: 5~(Rd)~(Rd),  and W is an 5~ Wiener process, defined 
in the previous section. Equation (3.1) is understood in the following, so called 
"mild" sense: 
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Definition3.1. We say that a process X is a solution of (3.1) if for each ~be 
5:(Re)' t 

(X~ , (~ )=(Xo ,4 )+S~X~,A~)du+(W~, (? )  for t~[0, T]. (3.2) 
0 

For any continuous 5:'(Rd)-valued process X - { X t ,  te[O , T]} we consider 
X, defined by (1.2), which is a random element of 5:'(R e+l) if T <  oo. If T =  oe 
a larger space of distributions is needed (see [2]), but for the sake of brevity we 
prefer not to distinguish between the cases T <  oo and T--oo in this paper. We 
know from Proposition 4.1 of [2] that the distribution of _~ determines that of 
X, and moreover, from its proof we obtain immediately: 

Lemma 3.2. The process X is Gaussian if and only if 2 is Gaussian. 

In the first part of this section the fact that X is a solution of (3.1) will be 
expressed in terms of 2 .  To this end, for any 5:'(Rd)-valued Wiener process W 
we define 8 W by 

.) dr, (3.3) 
o \  8t 

Henceforth we will restrict 4~ to ~([0,  T])@Y(Ra), where N([0, T]) is the 
subspace of ~ (R)  of functions having supports contained in the open interval 
(0, T). 

Lemma 3.3. I f  W is an J'(Re)-valued Wiener process associated to Q, then 8W is 
a Gaussian random element of (~([0, TI)@~9:(Ra)) ' with mean 0 and covarianee 
functional determined by 

T 

E (~ VV,, oh f )  (O W,, O g) = ~ (Q, ~, O) f(u) g(u) du, (3.4) 
0 

for ~), OeS:(R~),f, ge~([0 ,  T]). 

Proof. Only (3.4) needs verification, all the other assertions being trivial. The 
derivation of (3.4) is based upon straightforward calculations, using the integra- 
tion by parts formula several times and the fact that the elements of ~([0, T]) 
vanish at 0 and T. 

Remark. 8W can be viewed as a "generalized 5'~'(Re)-valued process" 
t 

{8W~, s t [0 ,  T]} such that, formally, W~=SOW~ds and 
0 

E@Ws,~)@Wt,  tk)=6(s- t ) (QtO,  t~), qS, O~Y(Ra). 

The so called "space-time Gaussian white noise" corresponds to Q. - ident i ty  
on ~(Re). 

It will be convenient to introduce one more notation, To each continuous 
linear operator A: 2,~(Ra)~S:(R ~) we associate a continuous linear operator A 
+ 8: 9 ([0, T]) @ 6: (R e ) ~ @ ([0, T]) @ 6: (R e) determined by 

(A+8)Of=fAdp+~f ' ,  qS~S:(Rd), f ~ ( [ 0 ,  T]), (3.5) 
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where f '=d f /d t .  Its adjoint is of course A*-O:(@([O,T])~S'~(Ra))'~ 
(9([0, T]) @ 5~(Ra)) ' such that 

((A* - 0) 4, ~bf> = (r (A + 0) ~bf>, ~b~S~(Rd), fe~([0,  T]), (3.6) 
~(~( [0 ,  T3)) | ~(Rd)) ' 

Proposition 3.4. A continuous Y'(Rd)-valued process X is a solution of(3.1) if and 
only if 

- (A* -0 )  2=0W,  (3.7) 

where OW is defined by (3.3). 

Proof By (3.5), (3.6) and (1.2) we have for qb~Se(Ra),fs~([O, r]),  

T T 

( - ( A *  - ~ ) 2 ,  q~f> = ( 2 ,  - f AO-(o f '>= - ~  (Xt,  A4> f ( t ) d t -  ~ ( X  t, ~b> f ' ( t )dt  
0 0 

= (Xo,d~>+y(Xu, A~)>du-(X~,~b > f '(t)dt,  (3.8) 
0 0 

where the last equality was obtained by integration by parts using the fact that 
f(O)=f(T)=O. 

Let us define an Y(Re)-valued continuous process Yby 

t 

(Yt, q)>=(Xo,q)>+~(Xu,Aq)>du-(X,,4)>, t~[0, TT, ~ ( R a ) .  (3.9) 
0 

By (3.3) and (3.8) equality (3.7) is clearly equivalent to 

T T 

~(Yt, O>f'(t)dt= - ~ ( W  t, 4)>f'(t)dt, 4)~5~(Ra), f r  r]),  
0 0 

or, for any fixed ~beSe(Rd), 

d y., 
N(< ~ 4 > + < W . + > ) = 0  

in the ~'([0, T])-sense. Since the function t--*(Yt,~b)+(Wt, qS) is continuous 
and equal to 0 at t=0,  the last expression is equivalent to (Y~, ~b> + (Wt, qS> =0, 
tel0, T], and this, by (3.9), is precisely (3.2). The proof is complete. 

We will formulate now a condition for X to be a solution of (3.1) in terms 
of the covariance functional/(  of 2 ,  i.e. 

K(q), tP)= Coy ((J?, ~),  ( 2 ,  tp}), ~, t/'E@([0, T])@ ~9'~(Rd). (3.10) 

Theorem 3.5. Let X - { X t ,  tel0, T]} be a continuous, centered Gaussian 6'~'(Ra)- 
valued process, and let ~2 be given by (3.10). Assume that there exist a continuous 
linear operator A: 6P(Ra)-*Sa(Ra) and a family Q-{Qu,  ue[O, T]} of operators 
satisfying conditions (i) and (ii) of Definition 2.1, such that 
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T 

/~ ((A + 0) 4f, (A + a) 0 g) = j" { Q, 4, 0)  f (u) g (u) du, (3.11) 
0 

4, 0~(Rd),  f, ge~([0, T]). 

Then there exists an 5~'-valued Wiener process W associated to O such that X is 
a solution of (3.1). Conversely,/f (3.2) holds for some A, W(associated to Q), then 
(3.11) is satisfied. 

Proof. (3.11) is clearly the same as 

T 

E({(A*-~?)2 ,4 f}{(A*-~)2 ,0g))=~{(2uO,~) f (u)g(u)du.  (3.12) 
0 

The "converse" part of the theorem then follows immediately from Proposi- 
tion 3.4 and Lemma 3.3. 

Assume that (3.11) holds. Let 17r an 5~'-Wiener process associated to Q, 
existence of which is guaranteed by Theorem 2.3 (that theorem of course 
remains valid for a finite time interval). It is clear, by continuity of A, that 
- ( A * - 0 ) 2  is a Gaussian random element of (9([0, T])@5~(Ra)) ' with mean 
0, so (3.12) and Lemma 3.3 imply that - ( A * - 3 ) 2  and 0W have the same 
finite-dimensional distributions. By (3.8) we have 

T 

{ - (A*  - 0) 2,  4 f )  = ~ {It, 4) f ' ( t )  dt, 
0 

where Y, defined by (3.9), is a continuous centered Gaussian process. Since a 
function h ~ ( [ 0 ,  r ] )  has the form h = f '  for some f ~ ( [ 0 ,  T]) if and only if 
T 

h(t)dt=O, we see that the families 
0 

{ Y~, 4)  h(t) dr: 4s~(Rd), h~N([0, T]), ~ h(t) dt = 0 
0 

and (by (3.3)) 

- !{  ~ ,  4)  h(t) dr: 4eSP(Re), h e y  [0, T]), ~ h(t) dt = 0 
0 

are Gaussian with the same finite-dimensional distributions. For any fixed 
se[0, T] let f ,E~([0 ,  r ]) ,  n = l , 2  . . . .  , be such that f ,  converges to 6= in ~'(R) as 
n~oo,  and let f,e~([-0, T]), n = l , 2 ,  ... be such that fn converges to 6 o in ~'(R) 

T T 

as n ~  oo. We assume additionally that ~f,(t)dt= ~f,(t)dt= 1 for all n. Then h, 
0 0 

T T 

= f , - f ~  is in ~([0, T]) and satisfies ~h,(t)dt=O, and lim~{Y~,4)h~(t)dt 
0 n~OO 0 

T 

={Y~,4) a.s. and in L2, since u Analogously, l i m ~ ( @ , 4 )  h~(t)dt 
n ~ 0 

=(~/~ ,4}  for each 4 ~ ( R a ) .  Hence we conclude that the Gaussian systems 
{{Y=,4), s~[O,T], 4~J(Ra)}  and {-{17r sc[0, T], 4~J(Ra)}  have the 
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same distributions, and this means (see Definition 2.1) that Yhas the form Y= 
- W  for some 5P'-Wiener process associated to Q. The theorem is proved. 

In the second part of this section we will give a sufficient condition for X 
to satisfy (3.1). The usefulness of this criterion will be illustrated by several 
examples in the next section. 

Theorem 3.6. Assume that 
(a) X = { X t ,  t~[O, r ]}  is a continuous, centered Gaussian 5~'(Ra)-valued pro- 

cess with eovariance functional 

K(s,C);t , t~)=Cov((X~,4),(Xt ,  O)), s,t~[O,T], q~, 0eS~ 

(b) for each 4c5~(R d) the function s~K(s, 4;s,O) is continuously differ- 
entiable; 

(c) {Tt, ts[0,  T]} is a strongly continuous semigroup of continuous linear 
operators on 5e(R a) such that its infinitesimal generator A (in the sense that 

t 

Tt ~ - 0 = ~  T~A4)ds, te[O, T], dpsSe(Re)) 
0 

is continuous from 5~(R a) into itself; 
(d) for each 0 <-s <<-t<-T, O, ~OcJ(Re), K satisfies 

K(s, 4; t, t)) = K(s, O; s, Tt_ s t)). (3.13) 

Then X is a Markov process and there exists an 5 ~ Wiener process W 
such that X is a solution of (3.1). W is associated to the family Q=_{Q,, 
u~[0, T]} defined by 

(Q,(o ,O)=J~ K(u,(o;u, tp)-K(u, AO;u,~j)-g(u,(o;u,  At)), O, OeSP(Ra) (3.14) 

(fluctuation-dissipation relation). 

Proof. The Markov property for a Gaussian 5P'-process is implied directly by 
(3.13) (see e.g. [23]). To prove the other assertions we again define Y by 
formula (3.9). It will clearly suffice to show that Y is an 5~'-Wiener process 
associated to the Q given by (3.14). Y is continuous, centered Gaussian; let us 
compute its covariance functional. For O<_s <_t<_ T, dp, tpeS~(Re), we have 

t 

E((Y~, qS) (Yt, 0 ) )  = K(0, qS; 0, 0 ) +  SK(0, O; u, AO) du 
0 

s 

+ S K(O, O; u, A~))du-K(O, 4; t, O)-K(O,  t); s, qS) 
0 

s t s 

+~ ~K(u,A(o;r, AO)drdu-~K(u ,  AO;t ,~)du 
0 0 0 

t 

- ~ K(u, At); s, ~))du + K(s, 4; t, o/J). 
0 
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The double integral term is transformed as follows: 

s 

~ K(u, A4);r, AO)drdu 
0 0 

s t s s 

=~ yK(u, A4);r, AO)drdu+y ~K(u, A4);r, AO)dudr 
O u  O r  

S t S 

r 

S 

= S K(u, A4); u, T,_u O)du- i K(u, A4); u, O)du 
0 0 

s s 

+SK(r, A0;r, Ts_r4))dr--S K(r, AO;r, 4))dr. 
0 0 

We have used successively (3.13), the fact that K is a continuous linear 
functional with respect to each of the ~(Rd)-variables, and assumption (c). 
Transforming similarly the remaining terms we obtain 

E((Ys, 4))(Yt, 0))  = K(s, 4); s, 0)-K(O, 6,; O, 0) 
s 

- ~(K(u, A4) ; u, O)+ K(u, 4); u, AO))du. 
0 

Assumption (b) and bilinearity of K imply that the function s~K(s,  4);s, 0) is 
continuously differentiable for every 4) ,0e~(Re) ;  hence for each s,t~[O,T], 
4), 0~SP(R a) we have 

s^ t /d  
Cov(~ Ys, 4)), <~, 0))= ! (G K(u, 4); u, 0)-K(~, A4); u, 0) 

- K(u, 4); u, AO)) du. (3.15) 

To complete the proof we must show that (3.14) defines a continuous operator 
Qu from ~ ( R  a) into Se'(R d) which is symmetric and positive. Observe that by 
the Banach-Steinhaus theorem, dK(u, 4);u,O)/du is linear and continuous in 
~b, 0, as the pointwise limit of the continuous bilinear forms h-X(K(u+h,  4); u 
+h,O)-K(u,  4);u,O)) as h~0.  Therefore the whole expression at the right- 
hand side of (3.14) is a continuous bilinear form on ~ ( R  d) x ~(Rd), hence it 
must be equal to (Q,4), 0 )  for some continuous linear Qu: ~(Re)-~ ' (Re) .  The 
symmetry of Q~ is obvious, and Lemma 2.2 together with (3.15) imply that (2u 
is positive. 

Remarks. (a) If the assumption of differentiability of K is dropped, then we still 
have (3.2), where W is a continuous ~'(Re)-valued Gaussian process with 
covariance functional 

S A t  

K(sAt, 4);sAt, 0l-K(0,4);0,0)- S (K(u, a4);u,O)+K(u, 4);u, aO))du; 
0 

therefore it has independent increments (see Remark (a) after Definition 2.1). 
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(b) From the construction in Theorems 3.5 and 3.6 it follows that W is 
adapted to the filtration generated by X. Hence the solutions of (3.1) obtained 
by these theorems are "weak" (see e.g. [-30]). There exist some results concern- 
ing strong solutions of (3.1) in special cases ([1], [28]); they are expressed in 

f 

the form X't=T~Xo+iT~_udW u. We will treat elsewhere the problem of exis- 
0 

tence and uniqueness of strong solutions of equations more general than (3.1) 
(with A depending on t). See [5] for the case of Hilbert space, where it holds 
that X = X'. 

(c) We do not know what can be said on necessity of the assumptions of 
Theorem 3.6. 

(d) Wittig [29] considers Langevin equations for continuous centered 
Gaussian 5P'(Rd)-valued processes X having covariance functionals of the form 

K(s,O;t,~h)=iQ.(T~_rO, Tt_rO)dr, s<-_t, 
o 

where Q is a continuous covariance and {T~} is a contraction semigroup with 
generator A. It is shown that X satisfies the Langevin equation dXt=A*X~dt 
+dWt, Xo--0, where W is a time-homogeneous 5~ process associated 
to (in our notation) <Qs4,~,>=Q(4),~,) for all s. This is a special case of 
Theorem 3.6 in the sense that we allow time-inhomogeneous 5P'-Wiener pro- 
cesses and we do not require T t to be a contraction (e.g. in example 3 below 
with ~>0  it is not a contraction). On the other hand, the main emphasis in 
[29] is on the Sobolev subspaces where the solutions live. The methods are 
different from ours. 

(e) Results of related interest have been obtained recently by Chari [4]. 

4. Fluctuation Limits of Infinite Particle Systems 

The procedure we use for the asymptotic analysis of most of the particle 
systems considered here is the following. We have a sequence (Xn),= 1,2 .... (or a 
continuous sequence (XK)K_>I) of 5P'(Rd)-valued processes, continuous or right- 
continuous with left limits. Tightness of the sequence is determined combining 
results of [17, 18] and [25]. Weak convergence of X n to a continuous Gauss- 
ian 5P'(Re)-valued process X is obtained from convergence of finite-dimension- 
al distributions [25], or from convergence of X, to 3? in 5~'(R d+l) (or other 
nuclear spaces of distributions) [2]; the latter is somewhat simpler because it 
involves only weak convergence of random variables, and since the spaces are 
nuclear, a L6vy-type continuity theorem can be used [3], [-24] (see [2]). (Con- 
vergence can also be proved by martingale methods [18] when the processes 
are Markovian.) If the covariance of 2 satisfies condition (3.11), then we can 
write down the Langevin equation for X according to Theorem 3.5. The 
covariance of X can be obtained directly from that of J<, and if A generates a 
semigroup {T~} and the covariance of X satisfies condition (3.13), then X is 
Markovian and we have its Langevin equation given by Theorem 3.6. The 
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following examples fall into the latter setup. The simplest one is It6's model 
[20]; convergence using the 3? approach needs only a direct application of the 
central limit theorem (see [2]). The examples involving branching and immi- 
gration are all based upon results described later on in this section. Since the 
tightness and convergence proofs are analogous to those in [13, 14], here we 
generally restrict ourselves to the matter of interest, namely the Langevin 
equations. Other aspects of this study not included here are laws of large 
numbers for the systems (see the survey [15]) and Hilbert subspaces of 5e'(R a) 
supporting the values of the fluctuation limit processes. A different type of 
fluctuation limits of supercritical infinite particle branching motions is studied 
in [8], [16]. The last examples are related to results of Presutti and Spohn 
[26] on the voter model. 

For our examples we have chosen Brownian particle motion for simplicity, 
but other Markov particle motions can be taken (see e.g. [7, 23]. In all the 
following {Tt} stands for the Brownian semigroup. We stress that the Langevin 
equations are understood in the "mild" sense (Definition 3.1); furthermore, in 
the Langevin equations in all the examples the 5~'-Wiener process and the 
initial condition are independent. 

(1) Let B k -  {B~(t), tsR+}, k =  1, 2, ... be independent d-dimensional Brown- 
ian motions with the same initial distribution #. Let 

Xn(t, A)= n-�89 A)-EN.(t, A)), 

where Nn(t,A ) is the number of k<=n such that Bk(t)~A and A is a Borel set of 
R d. Then Xn={X.(t),t~R+} is a continuous ~9~ process, and X n 
converges weakly as n~oQ to a continuous, centered Gaussian Y'(Re)-valued 
process X with covariance functional 

K(s, O; t, ~b)= Cov (0(B1 (s)), @(B 1 (t))). 

(The usual central limit theorem gives convergence of )?n to J~ [2].) This 
covariance can be written 

K(s,O;t,@)= ~ qS(x)T~_sO(X)ps(x)dx- j O(x)#s(s)dx ~ T~_s@(x)#s(x)dx, s<t, 
R a R a R a 

where #s=Ts#. Therefore K satisfies condition (3.13) for the semigroup {T~}. 
Hence X is a Markov process, and application of Theorem 3.6 yields the 
Langevin equation 

dXt= �89 AXtdt + dW~, 

where the initial value X 0 is 

Z having distribution #, and 

(Qs4, 

Gaussian with characteristic functional 

Eei<Xo, 4,) = e -  �89 4~(Z), 

the 5P'-Wiener process Wis determined by 

O> = ~ ,s(x) v~(x). VO(x)d~, 
R a 

where �9 stands for the usual scalar product in R a. This result was obtained by 
It6 [20], interpreting the noise term in the Langevin equation in a different 
way. 
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Examples (2) to (5) can be treated using the same approach, which is 
explained after example (5). 

(2) Consider an infinite system of independent d-dimensional Brownian 
motions whose initial positions (particles) are of two types: (a) a collection of 
particles at time 0 distributed in R d according to a homogeneous Poisson 
random field with intensity 7K (7>0), and (b) (immigration) a collection of 
particles appearing in Rax [0, oe) according to a homogeneous space-time 
Poisson random field with intensity fiK (fl > 0). Let 

XK(t, A) = K-  ~ (NK(t , A) -- ENK(t, A)), 

where NK(t, A) is the number of particles in the Borel set A of R d at time t. 
Then X K is an 5:'(Ra)-valued right-continuous with left limits process, and X K 
converges weakly as K--,oo to a continuous centered Gaussian 5:'(Ra)-valued 
process X with covariance functional 

K(s, 4;t,O)=(7+fis) ~ dp(x) T, ~O(x)dx, s<t. 
R a 

Hence condition (3.13) is satisfied for the semigroup {Tt} and therefore X is a 
Markov process obeying the Langevin equation 

dXt=�89 +dWt, 

with Xo=7~G, where G is a spatial standard Gaussian white noise, and the 
Y'-Wiener process Wis specified by 

(Qs4), O)=B ~ r S re(x). VO(x)dx. 
R a R a 

Setting fi =0  we obtain the result of Martin-Ltif [23]. 
(3) Let us add branching to the model in the previous example, i.e. assume 

that each particle independently branches at an exponentially distributed time 
(after its birth) with parameter V, the branching law {Pn},=o, ~ .... having mean 
m I and finite second factorial moment m2, and the new particles appearing at 
the location where their parent branched, c~=V(ml-1  ) is the Malthusian 
parameter of the underlying branching process. Let X~: be defined as in the 
previous example. Then Xr: converges weakly as K ~ o e  in the Skorohod space 
D([0, oo), 5:'(Rd)) tO a continuous centered Gaussian 5:'(R~)-valued process X 
with covariance functional 

K(s,~b;t,O)=y e ~ 4)(x)Tt~sO(x)dx+rn2 V ~ 4(x)~e~Tt~+~_2rO(x)drdx 
R R a 0 

+fl[(e  ~s- 1)/. ~ ~b(x) T t ~ ( x ) d x  
R a 

s ] 
+maV ~ 4)(x)5(e=~-l)/czTt~+~_2, O(x)drdx , s<t, 

R a 0 
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where {Tt ~} is the semigroup Tt~=e~tTt. Hence condition (3.13) is satisfied for 
this semigroup, and the Langevin equation for the Markov process X is 

dXt=(�89 A + o:) Xtdt + dW t, 

with Xo=7�89 (as in the previous example), and the 5~'-Wiener process W is 
given by 

(Qs4,, 0)  =Te=S[(m2 V - e )  ~ 4,(x)O(x)dx+ j V4,(x). VO(x)dx] 
R a R a 

+fi{[m 2 V(e ~ -  1)/c~+2-e =~] ~ 4,(x) r 
R a 

+(e ~s- 1)/a j VO(x). V~(x)dx}. 
R a 

Setting f i=0  we have the result of [13]. 
In this example it is easy to see from the covariance functional of X t that 

for ~=0  (the critical case) and fi>0, X, does not have a limit as t~oo,  and for 
~<0  (the subcritical case) and fi>0, X, converges weakly as t--+oo to the 
centered Gaussian random element Xoo of ~'(R a) with covariance functional 

Cov((Xoo, 4,5, (xoo, ~,5)= -(/3/~){ j 4,(x) ~,(x)dx 
R a 

+.,2 v y 14,(x),z,(y)k(x, y)axay}, 
R d R a 

with 

~e-(- 2~)~llx-Yll / 2 ( -  2c@, d= 1, 
k(x'Y)=((-2ooa/4-1/2Ka/z_l((-2oO~llx-yl])/(2zc)a/2llx-ylld/2-1, d>2, '  

where Ka/2_ 1 is the usual modified Bessel function [10]. k(x, y) is one half of 
the potential kernel of Brownian motion killed at an independent exponentially 
distributed time with paramer - a .  Observe that X~ depends only on the 
immigration. 

A different scaling that yields the same results of this example is the 
following. The Poisson intensities are still ?K and ilK; replace V by VK and 
assume that the branching law has mean m/c ~ and second and third factorial 
moments i n K ,  2 and inK, 3 such that mK, I=I  +#/K for some #eR, mK,2=o/K 
with v > max {#, 0}, and supmK,3<c~. Then N K has the same asymptotic 

K > I  

behavior above, with c~ replaced by #V and m 2 by v in all the expressions. This 
scaling is related to Dawson's diffusion approximation [7] (see [15]). 

(4) For the model considered in the previous example we will give now a 
result for the critical case (a=0) and dimension d>3,  assuming that the 
branching law has finite third moment. Let the intensity of the initial Poisson 
field be y and the intensity of the immigration Poisson field be fi/K 2. Introduce 
the space-time scaling (x,t)--+(Kx, K2t), i.e. (NK(t),4,)=(NK(K2t),4,(./K)) 
where N K is as before. Let 

xK(t ,  A) = K -d/2- l (XK(t, A ) -  En,,(t ,  A)). 
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Then X K converges weakly as K ~ o o  in D([-0, oo),5P'(Rd)) to the continuous, 
centered Gaussian 5 ~'(Re)-valued process X with covariance functional 

f s K ( s , O ; t , O ) = m  2 V 7 ~ 4(x)~Tt+s-2rO(x)drdx 
R a 0 

s 1 +fi ~ @(x)~rT~+s_a~(x)drdx , s<t .  
R e 0 

Condition (3.13) is satisfied for the semigroup {Tt}, and X is a Markov process 
such that 

d X t=  �89 AXtd t  + dW.  

with X 0 = 0  , the Y'-Wiener process Wbeing given by 

<Qs~, ~,)=m2 v(~+ps) ~ r 
R d 

Letting f i=0  yields the results of Dawson [6, 7] and Holley and Stroock 
[18]. (In the case cr the space-time scaling with central limit theorem 
normalization does not give results of the type we are considering). 

(5) In the previous example the particle motion (Brownian motion) is 
preserved by the space-time scaling. If we only introduce the space scaling 
x ~ K x ,  with Poisson intensities ~ and fi, then the motion is annihilated in the 
limit K ~  oo while the branching is preserved. Let 

XK(t , A ) = K  d/2(NK(t , A ) - E N K ( t  , A)), 

with N K as before. Then X K converges weakly in D([0, oo),J'(Rd)) to the 
continuous, centered Gaussian S'~'(Rd)-valued process X with covariance func- 
tional 

K(s, cb; t, ~p)= q(s, t) ~ ~)(x)~p(x)dx, 
R d 

where 

] e ~t {7 [1 + m z V(e ~s - 1)/~3 + fi [(1 - e-~s)/a +/T/2 V(e =s + e . . . .  2)/2~2] } 

q (s, t) = if c~ =~ 0 

[7( l+m2Vs)+f i ( s+m2Vs2/2)  if c~=0, s< t .  

Convergence of XI~(t ) to X(t) for fixed t was established by Dawson and 
Ivanoff [-9, 21, 22]. Condition (3.13) is satisfied for the (multiplicative) semi- 
group {e~t}, and X is a Markov process with Langevin equation 

dX,=c~X, dt +dW~, 

with X o = 7 ~ G  (as in examples (2) and (3)), and the 5~'-Wiener process W is 
defined by 

((2~ qS, ~ )  = {Te~(rnz V -  cr + fi [2 - e ~ + m 2 V(e ~ - 1)/cr } ~ O(x) O(x) dx. 
R d 

In this scaling it turns out that the results are exactly the same as for the 
model where the particles do not migrate, hence the migrations have no effect 
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in the limit. This example was studied in [14] before we had the present 
method. 

The general setup underlying examples (3) to (5) is the following. We have 
an infinite system of branching Brownian motions on R a generated by initial 
particles appearing according to a homogeneous Poisson random field with 
intensity 7 and immigrant particles appearing according to a homogeneous 
space-time Poisson random field with intensity ft. Suppose the particle lifetime 
distribution is exponential with parameter V, and the branching law has mean 
m 1 and second factorial moment me< or; let c~= V(m 1 -1). Denote N~(A) the 
number of particles in the Borel set A of R d at time t and denote X t = N t -  EN t ; 
it can be shown that {X~, t>0} can be realized in D([0, o9), 5P'(Ra)). It can be 
proved using the method of [9] that the joint characteristic functional of 
Nt,, .... Nt~, t 1 < ... < t ,  is given by 

Eexp{ij~_lub(N~j,r uj(Nt~,Ob))--l]dx 

+p ! ~ E exp_/ 2 -1  d~d~ 
R a \ j = l  J " 

b / l '  " ' ' ,  b/re@R, (~1, " ' ' ,  qbme 5P(Ra), ( 4 . 1 )  

where {Nff, t>0} is the system generated by a single particle located initially at 
xeR '~ (Nff=0 for t<0). 

From (4.1) and using the Lemma in [13] one obtains 

t 

E(Nt,r  5 E(Nt~,O>dx+fi5 5 E(Nff_~,O}dxds 
R d 0 R d 

=(Te~t+fi(e~t-1)/o:) ~ O(x)dx, t>0 ,  (4.2) 
R d 

and 

Coy ((N. 4), (N,, ~>) 

=~; S E(x2 ,~ ) (Nx ,  o ) a ~ + f i i  ~ E(NsX-.~>(N x ~,~,>d~d,~ 
R d 0 R d 

=e~'(y+fi(1 -e -~9/a)  ~ r s~(x)dx 
R d  

S 

+e~'~me VS e~(s-r) S ~(x)Z.~_e~0(x)d~ar 
0 R a 

$ 

+e~t flme V~e~(~-~)(1 -e-~) /~  ~ O(x) Tt+~_ 2~tP(x)dxdr, 
0 R a 

s < t. (4.3) 

The joint characteristic function of (X~I, 01}, -.., (Xt~, qS} can be written 
from (4.1) and (4.2). Then the calculations for examples (3) to (5)reduce 
essentially to bringing the corresponding scalings and normalizations into the 
characteristic function for X K and into expressions (4.2) and (4.3), and applying 
the L~vy continuity theorem in the usual way. In some scalings, in the appli- 
cation of the continuity theorem the convergence of the error term to 0 
requires the branching law {Pn} to have a finite third moment (see [14]). The 
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condition d > 3 in example (4) is also used in proving convergence of the error 
term to 0. In all cases the covariance functional of the limit fluctuation process 
is just the expression obtained by taking the limit K ~  in (4.3) for the 
corresponding scaling and normalization. A similar procedure can be carried 
out in terms of 2 ~ (e.g. [13]). 

The limit in example (2) is also obtained in an analogous way by the 
continuity theorem and covariance calculations. 

We end with two examples of a different type from those above, the voter 
model and the simple exclusion process on a d-dimensional discrete lattice. 
Presutti and Spohn [26] have obtained Gaussian fluctuation limits for these 
models under hydrodynamic scalings (we refer to [26] for details). However 
they do not mention the Markov property and the Langevin equations. We 
will show them now. In the following we let {T t} stand for the semigroup 
generated by A in order to conform with [26]. 

(6) For the voter model in dimension d > 3  with symmetric nearest neigh- 
bor interactions, the fluctuation process of the magnetization field under an 
appropriate choice of initial measures, space-time scaling and normalization 
converges weakly to an 5P'(Ra)-valued continuous, centered, Gaussian process 
X with covariance functional 

K(s, 4;t ,O)=a i ~ [1-(T~m(x)) 2] Ts_~)(x)Tt_~t~(x)dxdr, s<=t, 
0 R a 

where a is a positive constant and m is a continuous function from R d into 
[ - 1 ,  1]. Condition (3.13) is satisfied for {Tt}, and therefore X is a Markov 
process with Langevin equation dXt= A X t dt+ d W~, X o =0, W being associated 
to 

(Qs qb, t)) = a ~ [1 - (T s re(x)) 2] 4) (x) ~9 (x) dx 
R a 

(W is space-time white noise when m-0) .  In the stationary case the Gaussian 
fluctuation limit X has covariance 

K(s,(a;t,O)=b S(-A)-lq~(x)Tt sO(x)dx, s<t, 
R d 

where b is a positive constant. Again (3.13) holds for {Tt} , and X is a Markov 
process satisfying dX t = AX t dt + d W,, where W corresponds to 

(Q~ ~b, 0 )  =2b S O(x)O(x)dx. 
R a 

(7) In the simple exclusion case in any dimension the Gaussian fluctuation 
limit X has covariance 

K(s, q~; t, ~,) = K(O, rs4; O, T,O) 

+i ~ [1--(T~m(x)) 2] VTs-~(x)" VTt-~O(x)dxdr, 
0 R a 

s<=t, 
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where m is as above. Condi t ion  (3.13) holds for {Tt}, and X 
process satisfying d X  t = A X  t dt + d Wt, with W associated to 

(Q~ O, ~5 = ~ [1 - (Tsm(x ) )  2] V(o(x). Vtp(x)dx. 
R a 
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