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Summary. Let W(t) be a standard Wiener process with occupation density 
(local time) r/(x, t). Paul L6vy showed that for each x, rl(x , t) is a.s. equal to 
the "mesure du voisinage" of W,, i.e., to the limit as h approaches zero of 
h ~ times N(h, x, t), the number  of excursions from x, exceeding h in length, 
that are completed by W up to time t. Recently, Edwin Perkins showed 
that the exceptional null sets, which may depend on x, can be combined 
into a single null set off which the above convergence is uniform in x. The 
main aim of the present paper is to estimate the rate of convergence in 
Perkins' theorem as h goes to zero. We also investigate the connection 
between N and ~/in the case when we observe a Wiener process through a 
long time t and consider the number  of long (but much shorter than t) 
excursions. 

1. Introduction and Statement of Results 

Let {W(t), t>0}  be a Wiener process. For  any Borel set A of the real line let 

H(A,  t )=2{s:  s<=t, W ( s ) e A }  

be the occupation time of W where 2 is the Lebesgue measure. It is well- 
known that H(A,  t) is a random measure, absolutely continuous with respect to 
2. The Radon-Nikodym derivative of H is called the occupation density (local 
time) of W and it will be denoted by ~/, i.e., t/(x, t) is defined by 

H(A, t)=S ,(x, t)dx. 
A 

The concept of mesure du voisinage of W is strongly related to the concept 
of its occupation density. It can be defined as follows. Let N(h,  x, t) be the 
number  of excursions of W away from x that are greater than h in length and 
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are completed by time t. Then the "mesure du voisinage" of W at time t is 
lim h~N(h, x, t), and the connection between q and N is given by the following 
h',o 
result of P. L6vy (cf. It6 and McKean 1965, p. 43). 

Theorem A. For all real x and for all positive t we have 

lira h~N(h, x, t)=]~_-rl(x, t) a.s. 
h ' - ,O v g 

Recently, Perkins (1981) proved that Theorem A holds uniformly in x and 
t. In fact his result says 

Theorem B. For any fixed t' > 0 we have 

sup h~N(h, x, t ) - ] ?  tl(x, t) =0 a.s. lira 
h'~O ( x , t ) e R  x [O , t ' ]  V z c  

where R = ( - o e ,  oe). 

The main aim of this paper is to estimate the rate of convergence of 
Theorem B. Our fundamental result is 

Theorem 1. For any fixed t '> 0 we have 

h-�88 h-  1)- 1 sup h~N(h, x, t) - ] / ~ -  tl(x , t) =0 a.s. lim 
h% 0 ( x , t ) ~ R  x [0 ,  t ' ]  v ~  

We also investigate the connection between N and t/ in the case when we 
observe a Wiener process through a long time t and consider the number of 
long (but much shorter than t) excursions. We obtain 

Theorem 2. For some 0 < c~ < 1 let 0 < a t < t ~ (t > O) be a non-decreasing function 
of t so that air is non-increasing. Then 

( ~ ) + (  ~t ) - t  N(at' ]~@tt t) lira log sup x, t ) -  t/(x, =0 a.s. 
t~oO X ~ R  

The proofs of Theorems 1 and 2 are based on two large deviation type 
inequalities (respectively) which are of interest on their own. 

Theorem 3. For any K > 0  and t'>O there exist a C = C ( K , t ' ) > O  and a D 
=D(K, t ' )>0 such that 

P {  h-~(l~ h-1)-  ~ (x,t)~Rsup• Eh, t'l h~ N (h' x' t ) - ] ~  tl(x' t) >= C} <=Dh~r 

where h < t'. 

Theorem 4. For any K > 0  there exist a C = C ( K ) > O  and a D=D(K)>O such 
that 
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{t ;f V 2 - -  sup x , t ) -  t/(x, > C  < D  P log at/ x e R  t = 

where O < a , < t .  

The authors are indebted to E. Perkins for pointing out a serious mistake 
in the original manuscript. 

2. Proof  of  Theorem 4 in the Case of a t = t  TM 

Introduce the following notations: 

%=Zo(X)=inf{t:  t>=O, W(t )=x} ,  

z 1 =z l (x )= in f{ t :  t > % ,  IW( t ) -x l  =1}, 

Zz=Z2(x)=inf{t: t > % ,  W(t )=x} ,  

z2i+l =%i+ l(x)=inf{t:  t> Zzi , IW( t ) -x l  =1}, 

z2i+2 =z2i+ 2(x)-=inf {t: t>z2 i+ l ,  W(t)= x} , 

~21=sup {t: Zzi<t<Zzi+l , W(t)=x}  (i=0, 1,2, ...), 

~2-~1 = i l l (x )= i l l ,  ~4-~3 =fl2(x)=f12 . . . .  , z~,-~21_1 =Mx)=f l i  . . . . .  

TI--'IS0:0~I(X):0~I, T3--T2:0~2(X)=(Z2, .. . ,  T J 2 i + l - - T 2 i ~ - - - ~ i + 1 ( X ) = O ~ i + l ,  . . .  

M(a, x, n) = Y { i :  i<=n, fli>a}, 

where Jff{...} is the cardinality of the set in brackets. Finally let n(t)=n(x, t) 
be the largest integer for which z2,<t)<t. 

The following lemma is well-known (cf. Knight 1981, Lemma 2.11). 

Lemma 1. For any fixed x {fli} is a sequence of i.i.d, rv's with 

p(fl i>a)= 1 S v - ~ e  gTdv=P(a)= 1 + O  . 

Lemlna 2. For any positive integer n, a > 1 and C > 0 we have 
2 C  

P l / /nP(~-~P~)a))l~g(nP(a))  = - 

provided that 
C log (n P (a)) < n P(a) (1 - P(a)). 

Proof. A simple consequence of the Bernstein-inequality (cf. e.g., R6nyi 1970, 
p. 387). 
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Lemma 3. There exists a universal constant L > 0 such that 

n(x, z2.)-n >t/ClognP(a ~ <L 
e [I lf~ I = \P(a)n] 

holds for any positive integer n, C > 0 and 1 _< a <- n p (p < 2). 

Proof�9 It follows from the well-known fact that 

/~(X, ~ 1 ) - / ~ / ( X ,  "CO) , t~(X, 773) - - t / (X ,  "C2) . . . .  

are independent, exponentially distributed rv's with parameter 1. 

Lemmas 2 and 3 together imply 

Lemma4. For any K > 0  there exist a C=C(K)>O and a D=D(K)>O such 
that 

p f  M(a,x,n)-tl(x,'c2n)P(a) [ } 1 K 
[ ] ] / ~ - - P ~ - a ) )  l ~ a ) )  >-- C <D (P~a~-) 

holds for any integer n and 1 <_a<-n p (p<2). 

A simple consequence of this lemma is 

LemmaS. For any K > 0  there exist a C=C(K)>O and a D=D(K)>O such 
that 

P{ M(a~'x2n)~--; tl(x~''c2")~a =>C}~D(~_~) K 

holds for any integer n and n o <_ a <- n p (2/5 < ~ < p < 2). 

This lemma in turn implies 

Lemma 6. For any K > 0  and 2 / 5 < ~ < p < 2  there exist a C=C(t), p, K)>0 and 
a D=D(~,p,  K)>0 such that 

holds for any integer n, where j runs over the integers. 

Using the same method as above an applying the trivial formula 

1 j+l �9 3 
P{J<f l l<J+l}  ~ ~j v-~e 2vdv=O(j-~), 

one gets 
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Lemma 7. For any K > 0  and 2 / 5 < 0 < p < 2  there exist a C=C(O,p ,  K ) > 0  and 
a D=D(t), p, K ) > 0  such that 

P/sup 
n k 5) log./Wl , n ,  

holds for any integer n, where j runs over the integers. 

Lemmas 6 and 7 together imply 

Lemma 8. For any K > 0 and 2/5 < 0 < P < 2 there exist a C = C(O, p, K) > 0 and 
D =D(0,  p, K ) > 0  such that 

M ( a , n ) - t l ( x , ' c z , ) ] / ~ a a  I x ,  

. . . . .  ( at 
holds for any integer n, where a runs over the reals. 

As a simple consequence of this lemma one gets 

Lemma9.  For any K > 0 ,  2 / 5 < r  and 0 < 7 < 6 < o 0  there exist a C 
=C(y, 6, r p, K ) > 0  and a D =D(y, 6, ~, p, K ) > 0  such that 

x, n) -~ / (x ,  ~2~ K 

P sup sup 2 + < C <D 

holds for any t > 1, where n runs over the integers and a runs over the reals. 

By Lemma 1 one gets 

Lemma 10. For any K > 0  there exists a C= C( K) > O and a D=D(K)>O such 
that 

P\n2 Clogn/= 
for any positive integer n and 

P(n(t) > (C t log t) ~) < D t -~ 
for any t > 1. 

Lemma 11. For any 0 < ? < 1 / 2 ,  e>0,  C > 0  there exists a D=D(7, e, C)>0  such 
that 

P(t/(x, t )> t  ~+~, n(t)<t~)<Ot -c. 

Proof of Lemma 11. For any 0 < u < v <  oo let r/(x, (u, v)) =r/(x, v) -~(x ,  u). Then 
n (t) 

~(X, t)__< Z ~(X, [~2,, ~2,+p). 
i = 0  
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P {rl(X , t )> t  7+~, n(t) < t ~} 
(.(t) } 

<= Z P ~ ~=otl(x, [z2i, zz,+ t))>t'+€ =k P {n(t )=k} 
k<tV 

<P [.k<=t vtmax i=0 ~ /~(X, IT21 , "C21 + 1))>t v+e} 
t'/ 

Since (cf. Knight 1969) 

POl(x, [%i, %1+ 0<Y} =1 - e  -y 

the statement of Lemma 11 follows. 
Introduce the following notations 

d = d ( t ) = { n ( t ) < t ' } ,  7=3/16, 

= N(t) = {t ~ < n(t) ~ (C t log t){}, 

=cg(t) = {n(t) > (C t log t){}, 

(y_>_0, i = 0 , 1  . . . .  ), 

M (a,, x, n(t))-tl(X , t) 
9 = 9 ( t ) =  / > C  , a ,=t  �88 

Lemma 12. For any K > 0  there exist a C = C ( K ) > O  and a D=D(K)>O such 
that 

Proof. Clearly 

By Lemma 10 

P (9) = P ( d  9 )  + P ( ~ 9 )  + P (egg). 

Since M(at, x, n(t))<n(t), by Lemma 11 we have 

P(dg)~=D (~)  K. 

Now let 2/5 < ~, < 1/2 and 4/3 < p < 2. Since ~ implies 

(n (t))  ~ < a t = t �88 < (n (t))  p 

and 
(C log t/a) ~ >-_ (n(t))% 
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we obtain 
f 

~:~  c ~ sup 
t (n (tI)q" < a < (n (t))p 

[ 
c / sup 1 sup 

I,t '/<_n<(Ctlogt)~ n'l.' <a<nO 

M ( a ' x ' n ( t ) ) - t l ( X ' t ) ~ a  I 

t�88 t/a) § > C, 

x, n)-~(x, ~2.) 
~ • > C  . 

n ~ a - "  (log n/a) = 

Hence Lemma 9 implies Lemma 12. 
The following lemma is well-known (cf. Cs6rg6 and R6vdsz 1981, Lem- 

ma 1.6.1). 

Lemma 13. 

P{ sup T-~lW(t)l<x} <(4/rc) exp(-zcZ/8x2). 
O<_t<T 

Lemma 14. For any K > 0  there exist a C = C ( K ) > 0  and a D=D(K)>O such 
that 

P{ inf sup [W( t+s) -W( t ) I<I}<DT -K, 
O ~ t ~ T - - b T  O~s<--bT 

where b r = C log T. 

The proof of this lemma is essentially the same as that of Step 1 of 
Theorem 1.6.1 of Cs6rg6 and R6v6sz (1981). We present the details for con- 
venience. 

Proof of Lemma 12. By Lemma 13 

P{ min sup [W(i+s)-W(i)[<_<2} 
O<-i<- T - b T  O<=s<=bT 

( 7~2 C I ~  ' if Tzzc/32>K+l.  <-<_(T-bT) exp 8 4 

Since 

{ inf sup kW(t+s)-W(t)[<__l} 
O < - t ~ T - b T  O<=s<=bT 

{ min sup [W(i+s)-  W(i)[__<2}, 
O<_i<_ T - b r  O<=s<bT 

we have Lemma 14. 
Let L(a t,x, t) be the number of excursions of W away from x that are 

greater than a t in length and not higher than one. Then by Lemma 14 we have 
the following two lemmas. 

Lemma 15, For any K > O  there exists a D=D(K)>O such that 

P {L(at, x, t)>= 1} <=Dt -t~. 

Lemma 16. For any K > 0  there exists a C=C(K)>O and a D=D(K)>O such 
that 

P{ max ak>Clogt}<Dt  -K. 
1 <-k <_n(t) 
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Next  we prove  

L e m m a  17. For any K > 0  there exists a C=C(K)>O and a D=D(K)>O such 
that 

P {N(at, x, t) r (M(at, x, n(t)), M(a t - C log t, x, n(t)))} < D t-K.  

Proof. Let  
N*(at, x, t) =N  (at, x, t) -L(at ,  x, t). 

By L e m m a  15 it suffices to p rove  that  

P {N*(at, x, t) q~(M (at, x, n(t)), M(a t - C logt ,  x, n(t)))} < Dt -K. 

For  any fixed x the end points  of the excursions away f rom x that  are higher 
than  one are (~2i, z21+2) ( i=0 ,  1, 2, ...). The  lengths of these excursions are 

fli+ 1 < T 2 i +  2 --I~t2i < ~i+ 1 ~- f l i+ 1" 

Hence  by L e m m a  16 we have our  L e m m a  17. 

L e m m a s  12 and 17 together  imply  

L e m m a  18. For any K > 0  there exists a C=C(K)>O and a D=D(K)>O such 
that 

I N(at, x, t) - I / n @  t rl(x , t) 

P (t/at)�88 t/at) ~ 

N o w  let 

xi=xi(t) =i t  -c 

Then  by L e m m a  18 we have 

L e m m a  19. For any 
=D(K, c ) > 0  such that 

>cJ 
(i = 0, _+ 1, _+ 2, .. 

P [ m a x  
Iil--<[ t~+ 1] 

, +_[t~+~]). 

K > 0  and c > 0  there exist a C=C(K,c )  and a D 

N(at, xi, t ) - V ~ t  (xl, t) ] K. 

Let  {E(t), 0 =< t < 1} be a posit ive Brownian  excursion and for any 0 < e < 1/2 
put  

m ( 0 =  rain E(t). 
g<t< 1 --e 

L e m m a  20. There exists a constant C > 0 such that 

for any 0 < e < ' 2  9. 

P{M(r < e} < Ce ~ 
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Proof.  By Theorem 5.2.7 of Knight (1981) we have 

2~ ( y2 ) 2 t ( 1 - t )  P ( E ( t ) < 2 e )  = (t(1-t))  -~ ! y2 exp dy  

<81fi 
=5  V ~-( t (1- t ) ) -}e 3. 

In case e}_< t < 1 - e+ we obtain 

P(E( t )  < 2 e) < 4 e 45/16. 

Let 
t 

8 ~ = t o < t  1 < . . .  < t  n 

be a partition of the interval (e ~, 1 - e  ~) with 

ti+ 1 --ti = ~:3 3/16,  n=[-e - 33/16] § 

Then 
P{ min E( t i )<2e}<8e  �88 

O < i < n  

Knowing the transition function of the inhomogeneous Markov-process E(t)  
(Theorem 5.2.7 of Knight (1981)) it is easy to prove that 

P{ max sup ]E(t)-E(ti)l>_e}<__Ce ~. 
0 < i _ < n - - 1  ti <=t<=ti+ t 

Hence we have our Lemma. 
Put 

E a ( z ) = E a ( a t ) = a ~ E ( t  ) (a>0,  0<t=<l)  

where 0<~ = a t < a .  Further let 

Ma(e ) = min Ea(z). 
a ~ = < r - < a ( l  - -e )  

Lemma 21. There exists  a constant  C > 0 such that 

P (Ma(e  +) < e a s) < C e ~ 

for  any  0 < e < 2 -  9, a > 1. Similarly 

P ( M o ( t  ~(c++))<t-c)< Ct  -~(c+"~) 

for  any  c > O, a > a t and t big enough. 

Proof.  Our first statement is a trivial analogue of Lemma 20. Choosing 

> 1 =t_Ca �89 a = a t -~- U ,  g 

where c is the constant of x i (cf. definition between Lemmas 18 and 19) we 
have the second statement as well. 
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Let N+(h,x, t)  resp. N-(h ,x ,  t) be the number of positive resp. negative 
excursions of W away from x that are greater than h in length and completed 
by time t. 

Lemma 22. There exists a constant C > 0 such that 

P{ inf N+(at-2et ,  x, t)<-_N+(at, xi, t ) - 2 }  
x i ~ x ~ x i +  l 

<= c ( d y  ( t-  ~(~+ +))2 = c t - (~'+ 21/16, 

consequently 

P{ sup (N+(at, xi, t ) -  inf N+(a~-2et, x, t)) >2} 
O <= lil < [te+ l] xi <=x <=xi + l 

Ct -(~)c+ 37/15 

where gt=t -~(c++). 

Proof. Let xi=xi( t)<x<xi+l( t)=xi+ 1 and consider a positive excursion away 
from x i that is greater than a t in length and is completed by time t. Say the 
end points of this excursion are a and b. Such an excursion is called bad if in 
the interval (a+et,  b - e t )  there is a point u where W(u)<xi+l. By Lemma21 
the probability that an excursion (away from xi, greater than at) is a bad one is 
less than Ct  -~(~++). Considering two such excursions (away from x~, greater 
than at) the probability that both are bad ones is less than Ct  --~(c+~). Since the 
number of such excursions is less than t ~ and the number of such pairs is less 
than t ~, we obtain our Lemma. 

Lemma 23. For any c > 0  there exists a K=K(c)>O such that 

where 

Proof. Let 

where 

Let 

p{N*>I}<__Kt -2c, 

N* = sup N +(at,x,z), 
- - t  c<--x~O 

z=inf{s :  W ( s ) = - r e } .  

A={co: - t - r  for all 0_<s~log2t},  

B ={o): # < z } ,  

# = 'co(l)=inf{s:  W(s)=I} .  

~= in f{s :  s > # ,  W(s)=0}, 

A~ for all 0_<s-<log2t}, 

#o=inf{s :  s>~9, W(s)= l} ,  

BO = { o :  #O<z}. 

We note that by ~ being a stopping time, we have 

P{A}=P{A*}<=P{ sup IW(s)l<=l}<=Kt -zc, 
O <=s <=log2t 

(z) 
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and 

Consider 

We have also 

which together imply 

P{B}=P{B~ <=Kt-L 

P{N* =2} =P{N* >2, A} +P{N* >2, A} 
<=Kt-2c§ A}. 

{J., N* => 2} c {# < log 2 t} 

{N* >_ 2} ___ {r > log 2 t} 

{# < log 2 t, z > log 2 t} _ B 

{N* >2,/~ < log2 t}___ {I//< z}, 

{e{, N*>2} c{B, 0< r} .  

Hence 

P{N*>=2, A}=P{N*>=2, A ,B ,O<z}  

=P{N*> 2, A,B, O<r, AO} + P{N*> 2, d,B, O < ~,A 0} 

<Kt -2c+p{N*>2,  A,B,O<r,A*},  by (1). 

The way we have seen (3) we see also that 

{A*, N* =>2} c_B*. 
Consequently, 

P {N*> 2, A,B, O <% A ~  {N*_-> 2,A,B, o < z,A ~ 
<P{B, B O } < K r  2c, by (2). 

The above inequalities together imply Lemma 23. 
This lemma implies 

Lemma 24. For all i = +_ 1, +_2 .... and x i =i t -q  we have 

P{ sup N + (at, x, "Co(Xi) ) > 1} ~ K t  -2c. 
xi<_x<x~+l 

Lemma 25. Let 
:~=inf{s: N+(G, O, s)=1}. 

Then for any I> 2 and C > 0 we have 

P{ sup N+(a,x ,  c O > l - 1 } < K t  -q-1)c 
0 <x<-- l i t  c 

Proof. Let 
fl=inf{s: sup N+(a~,x,s)=l}, 

O < x < t  e 

A~={o~: O<W(s+f l )< l  for all O<s-<loget}, 

#p=inf{s: s>fl, W(s)=l}, 

Be ={co:/2~ < c~}. 

(2) 

(3) 
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Just like in (1) and (2) of the above proof  

P{A e } < K t  -~ and P{B ~}<-_Kt-q 

Consider the case of 1 =2.  

P{ sup N+(at, x,c~)>2} 
O < x < t - c  

= P {  sup N+(at, x, cO>2, Aa}+P{  sup 
O<_x<~-e O<x<_t c 

< K t - ~ + P {  sup N+(at, x ,e)>2,  AP}. 
O < x < t - ~  

We have also 

N+(at, x, c0 >2,  A ~} 

{ sup N+(at, x, cQ>2, A~}c__{#p<=fi+logZt}, 
O < x < t  c 

{ sup N+(at, x, oO>2}~{~>=fl+log2t}, 
O < x < t - c  

which together imply 

{ sup N+(at, x,c~)>2, Al3}~Bl~. 
O<_x<_t-c 

Hence by (4) we have L e m m a 2 5  with I=2. For  / > 2  
completes the proof. 

L e m m a  26. For all i = +_ 1, +_ 2 . . . .  we have 

P{ sup N+(at, x , t )>N+(at ,  xi, t)+3}<=Kt3/2-2c. 
x i < x < x i + a  

Proof. Let 

N + (at, x, (u, v))=N + (at, x, v ) - N  + (at, x, u), 

~o = % ( x )  

d 1 = inf {s: s > do, N + (at, xi, (do, s)) = 1 }, 

d 2 =inf{s: s > d  1 , N+(a .  x i, (Yq, s))=1} 

v(t)=inf{k: gk>t},  

((1)---No. {i: O_<i_<v(t)-1, sup N + (at, X, (gi, gi+ 1)) => 1} �9 
x ~ < x < x i + l  

We note that 
v(t) < t~, 

N + (at, xi, t) =v(t)  - 1, 

(4) 

a similar argument 

(5) 

(6) 

v ( t ) -  1 

sup N+(at, x,t)<= sup N+(at, X, do)+ ~ sup N+(at, x,(~i,~i+t)) 
x i < x < x i + ~  x ~ < x < x i + ~  i = 0  x i < x < x ~ + ~  

by (6). 

< = s u p  
x~<=x<x~+~ 

= sup 
x i < x < x i + l  

N+ (at, x, go)+ v(t)+ ~(2)+2 ~(3)+ ... 

N+(at, x, go)+N+(at, xi, t)+ 1 + ( ( 2 ) + 2 ( ( 3 ) +  ... 
(7) 
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By (5) and Lemma 25 w i t h / = 2  we get 

P { [ ( 2 ) > I } ~ K t  ~ - 2 c  

By (5) and Lemma 25 with l>  3 we get 

P{((I) > 0} < K t �88 ~)~ 

By Lemma 24, (8) and (9) 

P{ sup N+(at,  x ,~Yo)+( (2 )+2[ (3 )+ . . .>2}<=Kt -~-2% 
x~<x<=x~+ 

Hence by (7) and (10) we get Lemma 26. 

Lemma 27, For all i = +_ 1, +__ 2, ... we have 

P{ sup N + ( a , , x ,  t ) > N + ( a t - 2 e t ,  xi+~, t )+4} 
x~ <=x<x~+ ~ 

< K ( t - (~)c  + 21/i 6 + t ~ -  2 q  

Proof. Since 

P{ sup N+(at,  x , r ) > N + ( a t - 2 g ~ , x i + i , t ) + 4 }  
X i ~ X ~ X i + l  

=<P{ sup N+(at,  x , t ) > N + ( a t ,  xl, t )+3}  
x~ Nx<=x~+ ~ 

+ P { N + ( a t - 2 e t ,  x i+l ,  t )<N+(a t ,  xi, t ) - 1 } ,  

by Lemmas 22 and 26 we get Lemma 27. 

Similarly one can prove 

Lemma 28. For all i =  +_ 1, +_2, ... 

P{ inf N + ( a t - 2 e t ,  X, t )<N+(a t ,  x i+l ,  t ) - 4 }  
x~<x<_x~ 1 

<= K ( t - @ c  + 2z/~ 6 + t ~-  2c). 

In analogy with Lemmas 22 and 26, by symmetry arguments we have also 

Lemma 29. For all i = +_ 1, +_ 2, ... we have 

and 
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(8) 

(9) 

(lO) 

(12) 

(13) 

P{ sup N(a,, x, t)<N(at-2et,  xi+l, t)+7} 
x~<x<x~+, 

~ K( t - ( -~ )c  + a*/16 + t } -  2c ) 

Lemma 30. For all i = +_ 1, +_ 2, ... 

P { inf N -  (a t - 2 et, x, e) < N - (at, x i + 1, t) - 1} 
Xi~XNXi+ 1 

< Kt-(})c+ 21/16 

P{ sup N - ( a t ,  x, t ) > N - ( a t ,  x ~ + l , t ) + 3 } < K t  ~-2c (11) 
x~<=x<x~+~ 
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P{ inf N(a t -2z t ,  x, t)<N(at, xi+ 1, t) -5}  
xi<=X<=xi+ l 

< K(t-(~)c+ 21/16 + t ~- 2c). (14) 

Proof. By Lemma 27 and (11) we get (13), while Lemma 28 and (12) yield (14). 

Lemma31.  For any K > 0  there exists a C=C(K)>O, c=c(K)>O and a D 
= D ( K ) > 0  such that 

{(tat) -+ ( t t - � 8 8  } (~)K. P -- sup sup [rl(X,t)-tl(xi, t)l>C <D 
l~ at/ li]<=tC+, x e [  . . . . . .  ] 

Proof. Apply inequality (3.32) of Cs6rg6 and R6v6sz (1984). 

Choosing c big enough, Lemmas 19, 30 and 31 together imply that our 
Theorem 4 holds true in case of a t =t +, i.e., we have 

Lemma 32. For any K > 0  there exist a C=C(K)>O and a D=D(K)>O such 
that 

P {(~}+ (log~)-�88 N ( a , , x , t ) - ~ ( x ,  t ) > C }  <D (~)K. 

3. Proofs of Theorems 3 and 4 

For any fixed t > O, let 

W(s t) 
Wl(s) = Wl(s, t ) -  , s>=o. 

Then { W l(s, t); s >= 0} is a Wiener process for any t > 0. The local time and the 
number of excursions of W 1 will be denoted by t/1 and N 1 respectively. Clearly 
we have 

t~tll(Xt -~, 1) =t/(x, t), Nl(h , x t  -~, 1) =N(at, x, t), 

where h =ajt. 
Applying the above transformation, Lemma 32 gives 

Lemma33.  For any K > 0  there exist a C=C(K)>O and a D=D(K)>O such 
that 

P {h-+(logh-~)-§ h~N(h,x, 1 ) - ~ l ( x ,  l) > C } < D h  K. 
x ~ R  

Applying the above transformation in the opposite direction, one gets 
immediately Theorem 4 as a consequence of Lemma 33. 

A trivial generalization of Lemma 33 is: 

Lemma34.  For any K > 0  there exist a C=C(K)>O and a D=D(K)>O such 
that for any fixed t > h we have 
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Pth--~(l~188 x~n h-~N(h'x't)-]/f~ rl(x't) >C} <DhI(" 

For t'>h>O, let 
t i= ih  2 ( i=[h-~] ,  [h -1] +1 . . . . .  [ t ' h - 2 ] ) .  

Then by Lemma 34 we obtain 

Lemma35.  For any K > 0  and t'>h there exist a C=C(K,t')>O and a D 
=D(K, t ' )>0 such that 

P{ h-~(l~ Eh-q<-i<=~t'h-~lmax supx~R h-~N(h'x't i)-]~ rl(x'tl) >=C} <Dh K. 

By Lemma 35 and a simple estimation of 

sup Iq(x, ti+ 1) -rl(x, ti)l 
x ~ R  

one obtains Theorem 3. 

4. Proofs of Theorems 1 and 2 

The proofs of Theorems 1 and 2 are based on Theorems 3 and 4, and are very 
similar to each other. Here we only present the proof of Theorem 1. 

Let h n =n -2. The Borel-Cantelli lemma and Theorem 3 imply 

lim h~- +(log h~- 1) -1 sup 
n ~  oo ( x , t ) ~  R x [O , t ' ]  

As a consequence we also have 

lim hn+ 1 (log h~+10-1 
n ~ o o  

Let now h,+~<h<h,. 
inequality 

h~ N (hn, x, t) - ] / ~  rl(x, t) =0 

sup h i N(h,, x, t) _~_2_ r/(x, t) = 0 
(x,t, eR x [0,t'l 

a . s .  

a . s .  

Then our latter two relationships and the trivial 

(1 - 1/n)h~ N (h,, x, t) <h-~ N (h, x, t) <(1 + 1/n)h~+ 1N (h,+ 1 , x, t) 

imply Theorem 1. 
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Note added in proof. Recently CsiSrg~5, HorvS.th and R~v4sz (How big must be the difference 
between local time and mesure du voisinage of Brownian motion? Statist. Probab. Lett. 4 (1986), in 
press) showed that the rate of convergence in Theorem 1 is optimal except the log term. 


