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Summary. We obtain a rate of  convergence of  uniform transport processes to 
Brownian motion, which we apply to the Wong and Zakai approximation of  
stochastic integrals. 

1. Introduction 

Let the real process {X(t), a < t < b} satisfy the stochastic differential equation 

[ 1 a (X( t ) , t )  0 a(X(t).t)] dt dX(t)= m(X(t),t)+~ ~x " 

+a(X(t),t)dW(t), a<t<b,  (1.1) 

X(a) = X~, (1.2) 

in the sense of It6, where W is one-dimensional standard Brownian motion 
(Wiener process). Let { Y,, (t), a < t _< b}, n = 1,2 . . . .  be continuous processes with 
piecewise continuous derivative, and let the corresponding processes {X,(t), 
a _< t < b} satisfy the differential equations 

dX.(t)=m(X.(t), t)dt+a(X.(t),t)dY.(t), a<t<_b, (1.3) 

X, (a) = X,. (1.4) 

For each n and each point in sample space, (1.3) with (1.4) is a deterministic 
ordinary differential equation. 

Assuming appropriate conditions on the coefficients m and a, (1.1) and (1.2) 
have a unique solution (cf., e.g., Theorem 1.1 in Friedman (1975) p. 98, and 
Theorem 4.6 in Liptser and Shiryayev (1977)). Wong and Zakai (1965) show that 
if the coefficients m and a satisfy suitable conditions which guarantee the existence 
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and uniqueness of  solutions of (I. 1), (1.2) and (1.3), (1.4), and if Y, converges to W 
uniformly in [a, b] with probability i as n ~ 0% then I1, converges to X uniformly 
in [a, b] with probability 1 as n--+ oe. This result is very important in that it 
guarantees that numerical solutions of (1.3), (1.4) can be viewed as approximate 
solutions of(1.1), (1.2). Physical experiments may correspond to (1.3), (1.4) rather 
than (1.1), (1.2), since Brownian motion can only be realized by approximation in 
the physical world. Thus physical systems driven by "white noise" could lead 
directly to limits of  X, (t) where X, (t) satisfy the Langevin equations (1.3), (1.4). 

Due to It6's stochastic calculus, the forms of  the stochastic differential 
equation in (1.1) and the ordinary differential equation in (1.3) are different. In 
terms of  the so-called Stratonovisch integral, a symmetrical definition for 
stochastic integrals, the chain rule (It6's formula) takes the same form as in the 
ordinary calculus. Consequently, if we were to use Stratonovich integrals instead 
of  It6's, the stochastic differential equation would have the form of (1.3) instead of  
the present one in (1.1). For further discussion on It6 and Stratonovich calculus in 
the present context we refer to Wong and Zakai (1965, 1969). 

Assuming a > 0, in this paper we consider the specific processes { Y, (t), t > 0} 
as follows. For  each n = I, 2, . . . ,  let { Y, (t), t > 0} be a stochastic process such that 
I1, (t) is the position on the real line at time t of  a particle starting from 0 with 
velocity + n or - n ,  each with probability 1/2. The particle moves with constant 
velocity until a random time 271 whose distribution function is exponential with 
parameter n 2, i.e. E271 = n-2. At time rl  the particle switches from velocity + n to 
-T-n and moves with this velocity for an additional length of  time 2- 2 --271, 

independently from r l ,  the time before, where r 2 -  vl is again an exponential 
random variable (r. v.) with E (2.2 - 271 ) = n - 2. At the random time 2.2 it changes its 
velocity again. The motion continues in this manner. This process is called a 
(uniform) transport process. From now on Y, will be this transport process. 

The weak convergence of  Y, to Wiener process follows from a result of  Pinsky 
(1968), Watanabe (1968) and Griego et al. (1971). The rate of  convergence of Y, to 
W is studied by Gorostiza and Griego (1980), who obtain the following result. 

Theorem A. There exists a sequence o f  Wiener processes { W,( t ) ,  t > 0} such that 
for  all e > 0 we have, as n ~ ov 

P ~max I Y , ( t ) -  W,(t)l > Cn-1/Z(logn)S/2~ = o(n-~) ,  
{ a < t < b  ) 

where C is a positive constant, depending on a, b and e. 

Here, in this theorem, and also later on, it is assumed without loss of generality 
that all random variables and stochastic processes are defined on the same 
probability space (cf. de Acosta (1982), Theorem A.1). We say that a function 
f ( x ,  t) satisfies Lipschitz condition if I f ( x ,  t) - f ( y ,  t) l _-< K[ x - Y  I, where K is a 
constant, does not depend on t. Let ~a,b (X, Y) be the Prohorov-L6vy distance of  
probability measures generated by the random elements X, Y on C[a, b]. 

Gorostiza (1980), and R6misch and Wakolbinger (1985) deduce the following 
estimation for the solutions of  (1.1), (1.2) and (1.3), (1.4). 
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Theorem B. Suppose the following conditions are satisfied." 
(i) re(x, t), o-(x, t), &r(x, t)/Ox, Oa(x, t)/Ot are continuous in - ~ < x < o% 

a<t<_b,  
(ii) m(x, t), a(x, t), a(x,  t)Oa(x, t)/~x satisfy Lipschitz conditions, 

(iii) 0 < c <  la(x,t)[ < L < ov and IOa(x,t)/Otl < Kae(x , t ) ,  
(iv) X a is constant. 

T h e n ,  a s  n ---+ oo , 

O,,b(X,, X) = O (n- 1/2 exp (C(logn)l/2)) (1.5) 

.for some C > O. 

Roughly speaking (1.5) means that G,b(X , ,X)=o(n-1 /2+ 0 for all 
0 < e <  1/2. 

The main aim of this paper is to give a much improved version of  Theorem A. 
This will enable us to establish a better estimation in Theorem B. 

2. Approximation for the Transport Process 

First we introduce and study some auxiliary processes whose transforms will yield 
the desired results. Let 01,02 , . . .  be independent identically distributed exponen- 
tial r.v.'s with E01 = 1. We define 

k 

Z ( k ) =  Z 0~, k =  1 , 2 , . . . ,  
i=1 

N(t)  =inf{k :  Z(k )  > t}, t >0 ,  

and 
N (0 - 1 

Y(t)= 2 ( - - 1 ) i + 1 0 i "  
i=1 

Theorem 2.1. We can define a Wiener process {F(t), t > 0} such that with T>  1 we 
have F 

sup I Y ( t ) -   (t)r > A1 =< B1 P T-~ 
[ O<_t<_T ) 

for all e > O, where A 1 = A 1 (e) and B 1 are constants. 

Proof. By Corollary 4.2 in Cs6rg6 et al. (1987b) (cf. also Theorem in Cs6rg6 et al. 
(1986)) we obtain 

P {N(T)  > A1,1 T} < 81,1T -~, (2.1) 

where A1,1 = A1,1 (e) and B1,1 are constants. One can easily see 

N(t)-  I [(N(t)- 1)/2] 

2 ( - - ] ) i + 1  0i ~- 2 ( 0 2 ' - 1 - - 0 2 i ) - ~ 0 f f ,  (2 .2 )  
i=1 i - 1  

with 
0 " =  {0 if ( N ( t ) - l )  is even 

02[(N(t) 1}/2]+1 if ( N ( t ) -  1) is odd. 
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By (2.1) we obtain 

L1 < i < N(T) 

m a x  
l N i < A l , l  T ' , 

=< B1, 2 T -~ . (2.3) 

Next we let 

and define the sums 

~i = 0 2 i -  1 Jr- 0 2 i ,  t l i = 0 2 i - 1  - - 0 2 i  

A(t)= ~ ~i, D(t)= ~ r h. 
l <_i<_t l <_i<_t 

We also introduce the renewal of A (t) 

and observe that 

Consequently 

where by (2.3) 

B(t) =inf{s: A(s) > t}, 

B(t) = ~N(t)/2 if N(t) is even 
[[N(t)/2]+ 1 if N(t) is odd. 

[(N(t)- 1)/21 

Y~ (o2,_~ - o2,) = D (B(t))  + R ( t ) ,  
i=1 

(2.4) 

(2.5) 

P {o_< ,_< [R(t)[ > A,,3 log T} ~ Bt, 3 T -~ . (2.6) 

It follows from the Koml6s et al. (1976) embedding theorem (cf. Theorem 2.6.2 
in Cs6rg6 and R6v6sz (1981)) that we have 

P I  sup ~, (02i--1)--Wl(t) >A1,41ogT } < B I , , T  -~ (2.7) 
LO_< t=< T[ 1 <_i<~t 

and 

P t  sup • (02i_l)-Wz(t)  > A , , , l o g T  t <=B1,4T -~, (2.8) 
t .O<t<T l s  ) 

where W1 and Wa are suitably constructed independent Wiener processes. We 
define the independent Wiener processes W 3=2-1/2(W, + W2) and 
W4 = 2-1/2(W2- W1). Then, from (2.7) and (2.8), we get 

P{oSUpr (A(t)--2t)-21/2W3(t)  >2A,,41ogT }<=2B,,4T -~ (2.9) 
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and 

PtkONt<_TSUp ID(t)-21/2W4(t)l > 2AI,41ogT}<2Ba,4 r-` .  (2.10) 

Applying Theorem 4.1 of Cs6rg6 et al. (1987 b) in combination with (2.9), we can 
define a Wiener process Ws, which is independent of W4, so that 

Pt~.0_<t_< rsup ](B(t)-t/2)-2-1Ws(t)l>Aa,slogr} < BI,sT -~. (2.11) 

On using (2.1) and (2.4) together with (2.10) and (2.11) we obtain 

P {kO<_t<_Tsup ID(B(t))-- 21/2 W•(t/2 + 2 -1 Ws(t))l > 3A1,61ogr} 

< P t~o<_t<_Tsup ]D(B(t))-21/zW4(B(t)) [ > A1,610gf } 

-~P(Lo<_t<-TSUp r W 4 ( e ( / ) ) - -  W4(t/2+2 -t ms(t)) I > Al,61ogr } 

< P (  sup ]D(t)--21/2W4(t)J > A1,610gT} +2Bl, lT -~ 
kO<=t<_Al., T 

+ P {  sup sup {W4(t+s)-W4(t)I>A1,610gT}+B1,5 T-~ 
~.O<t<AI.tT O<s<A1.51ogT 

B1, 6 T - e  , (2.12) 

where in the last estimation we used Lemma 1.2.1 of Cs6rg6 and R6v6sz (1981) on 
the increments of the Wiener process. Using now Lemma 3 of Cs6rg5 et al. 
(1987a), we can define a Wiener process F such that 

P t  sup 121/2W4(t/2+2 -1Ws(t))-F(t)l > AI,vlogT l < B1,7 T-L (2.13) 
I.ONt<_T ) 

Now the statement of Theorem 2.1 follows immediately by (2.2), (2.3), (2.6), (2.12) 
and (2.13). 

Remark 2.1. Cs6rg5 et al. (1987a) study the approximation of stopped sums 
when the stopping process is independent from the summands. The rate of 
approximation they obtain is log T, which is best possible. Their result cannot be 
applied under the conditions of Theorem 2.1 due to the dependence of N(t) on the 
summands 0f in the definition of Y(t). We should note that the rate of 
approximation in Theorem 2.1 is the same as the optimal rate of approximation 
when the summands and the stopping process are independent. 

We can now prove the main result of this section. 

Theorem 2.2. We can define a sequence of Wiener processes {F, (t), t => 0} such that 

PIw_<t_<lsup ]Y,(t)-F~(t)l > A2n-llogn} <= B2 n-~ 

for all e > O, where A 2 = A2@ ) and B 2 a r e  constants. 
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Proof. Let r be a random variable with P { T = I } = P { z = - I } = I / 2  and 
independent of {0~, i >  1 } and {F(t), t > 0} of Theorem 2.1. We observe that with 
~o = 0 we have 

{ n 2 z ~ n 2 ( r ~ - - z ~ _ ~ ) , i > l }  =~ {0~ , i> l}  (2.14) 

for each n = 1,2, . . . ,  and consequently also 

{ r.(t), o_< t_< 1} (2.15) 

~= { n - l z ( y ( n 2 t ) + ( n 2 t - Z ( N ( n 2 t ) - l ) )  ( -  1)N(~2~)+1), 0 <  t--< 1}. 

By definition we have 

Hence 

Z ( N ( t ) )  = Z ( N ( t )  - 1) + ON(t) > t.  

O~(t) ~ t - Z ( N ( t )  - 1) 

(2.16) 

(2.17) 

Similar to the proof of (2.3) we obtain 

I max 0N(,)> A2,11og T 1 =< B2,1 P T-~. (2.18) 
[O<<_t<_T ) 

It follows immediately from (2.17) and (2.18) that we have 

P t sup I ( n 2 t - Z ( U ( n Z t )  - 1))(--1)u("2t)+' I > a2,21ogn2~ < B2,2 n-~ . 
l.O<_t<_l ) 

(2.19) 

Ctearly, the stochastic process {n-1 v F ( n  2 t), 0-< t < 1} is a Wiener process for 
each n. Hence Theorem 2.2 follows from Theorem 2.1 via (2.15) and (2.19). 

R e m a r k  2.2. We wish to point out the crucial role of (2.14) which results in the 
time transformed equality in distribution of (2.15) for each n. Namely, if we 
were to apply the Koml6s et al. (1976) inequality directly to the partial sums of 
{zi, i > 1}, then the constants of  this inequality would depend on n due to the 
dependence of the distribution of these r. v.'s on n. Consequently, such a procedure 
cannot yield a result like that of  Theorem 2.2. 

3. Rate of Convergence of the Solutions 
of the Stochastic Differential Equations (1.3), (1.4) 

Applying Theorem 2.2 we obtain the following improvement of Theorem B. 

Theorem 3.1. Under the conditions o f  Theorem B we have 

~a,b (X,, X) = O (n -~ exp (C(logn)~/2)) (3.1) 

with some C > O, where X ,  & solution of(1.3) ,  (1.4), and X is solution of(1.1) ,  (1.2). 
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Pro@ We take the sequence of  Wiener processes F, of  Theorem 2.2 and consider 
the differential equation of  (1.1), (1.2) in terms of it with corresponding solution, 
say X*. Thus we have 

dX*(t)= m(X*(t), t)+ 1 a(X*(t), t) ~xx a(X*(t),t) dt 

+a(X*(t),t)dF,(t), a<_t<b, (3.2) 

X* (a) = Ya, (3.3) 

where X, is the same constant as that of(/.2). Using unicity of the solution of(3.2), 
(3.3) (cf. Theorem 1.1 in Friedman 1975, p. 98) we get 

{Y,* (t), a < t < b} =~ {Y(t), a < t < b}, (3.4) 

where {X(t), a _< t _< b} is the solution of (1.1), (1.2). By Theorem 3 of R6misch 
and Wakolbinger (1985) we obtain, with some constants C1 and C2, 

sup 12"* (t) - ii ,  (t) I 
a<_t<_b 

< (  max 

Since F n (t) is a Wiener process for each n > 1 we have 

P t  sup IF~(t) l > C3(logn) t/2} == n -2, (3.6) 
ka<t<b 

and hence, on account of Theorem 2.2, we have also 

P ~_<t<bt sup I Yn(t)[ > C4(logn) 1/2} <= n 2 (3.7) 

with some constants C3 and C4. Consequently by Theorem 2.2, (3.5), (3.6) and 
(3.7) we conclude 

P {a<_t<<_bsup {X*(t)-X,(t)[ > C5n-Xexp(C6(logn)l/2)} <_<_ C7n -2, (3.8) 

with some constants C5, C 6 and C 7. Applying now the Strassen-Dudley 
estimation of the Prohorov-L~vy distance (cf. Dudley (1968)) we obtain 

~~ < ~>oinf \(e + P  ~a_<t_<b~sup X*( t ) -  X,,(t), > ~ } ) ,  

and hence also Theorem 3.1 by (3.8). 
We note also that if a(x, t) is not a function of x, then (1.1) reduces to 

dY(t)=m(X(t), t)dt +a(t)dW(t), a< t<_b. (3.9) 

Consider now 

d X *  ( t )  = m (32*" (t),  t)  dt  + a ( t)  dF,  (t) ,  a <- t <- b ,  (3.10) 

X *  (a) = Xa, (3.11) 
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instead of (3.2), (3.3). Using the Lipschitz condition for m, 

[ m ( x , t ) - m ( y , t ) l  < L I x -  yh. 

An integration by parts gives 

sup [ X * ( t ) - X n ( t ) l < t ( t z - t l )  sup I X , ( s ) - X * ( s ) l  
tl  ~ l ~ t  2 t t  ~S<--12 

+ IX,( t t )  - XA* (tl) [ 
b 

+ sup I F , ( t ) -  Y,(t)l ~ la '(s) lds,  
a<_t<_b a 

and hence if we take ( t  2 - -  tl) so that (tz - t l ) L  < 1/2, we obtain 

sup IX~*(t)- X~(t)l ~ 2 1 X ~ ( t ~ ) -  XA*(ta)I 
q <t<tz  b 

+2 sup I r . ( t ) -  Y.(t)l S la'(s)lds. 
a<_t<_b a 

Using (1.4) and (3.11) we get 

sup IX ,* ( t ) -  X,( t ) l  
a<t<b  

b 

=< (22L(b-a)+2 -- 2) sup IF,(t)-- Y,(t)l ~ [a'(s)lds, 
a<_t<_b a 

and hence Theorem 2.2 combined with the Strassen-Dudley estimation of the 
Prohorov-L6vy distance gives the following result. 

Corollary 3.1. Assume the conditions of Theorem B and that a does not depend on x. 
Then 

Oa, b (X,,  X)  = 0 (n- 1 logn), 

where X,  is solution of(1.3), (1.4), X is solution of(1.1), (1.2). 

Finally we note that the transport process Y, is constructed from n 2 
independent random variables. Another possibility for constructing approximate 
solutions of (1.1), (1.2) is in terms of partial sums of independent random 
variables. If we want to compare such an approximate solution to the transport 
process, then we should take partial sums of n z random variables. This would 
again result in an approximation like that of Theorem 3.1 (cf. Example 2 in 
R6misch and Wakolbinger (1985)). 
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attention to R6misch and Wakolbinger (1985). 
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