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Abstract. We study sequences (Xo, X1, ...) of r andom variables, taking values 
in the positive integers, which grow faster than branching processes in the 

Xm 
sense that X,,+,> ~ X,(m, i), for m, n > 0 ,  where the X,(m, i) are distributed 

i=1 
as X,  and have certain properties of independence. We prove that, under 
appropriate  conditions, X~,/"~2 almost surely and in L 1, where 2 
=supE(X,) t/". Our principal application of this result is to study the 

n 

Lebesgue measure and (Hausdorff) dimension of certain projections of sets 
in a class of r andom Cantor  sets, being those obtained by repeated random 
subdivisions of the M-adic  subcubes of l-0, 1] a. We establish a necessary 
and sufficient condition for the Lebesgue measure of a projection of such 
a random set to be non-zero, and determine the box dimension of this projec- 
tion. 

1. Introduction 

The generation sizes of a branching process form a sequence Xo, X 1 . . . .  of 
r andom variables satisfying the distributional relation 

Xm+n d Xm Z X,(i). (1.1) 
i = I  

where the Xn(i) are distributed as X, .  Here we think of the X,(i) as the number  
of descendants of the ith member  of the rn th generation which belong to the 
(m-b n) th generation. The asymptot ic  behaviour of X ,  for large n is well under- 
stood. For  example, it follows from (1.1) that, if Xo = 1 and #=EX1 < o% then 
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(Y,, J,) is a martingale where Y,=X, I i"  and J ,  is the a-field generated by 
Xo, X1, ..., X,. Consequently the limit 

W= lim X./~-" (1.2) 
n ---~ co 

exists almost surely, and it may be shown that 

if E(XI log X1) = oo, 

if E(X1 log X1) < o% 

where 8 is the probability that the process becomes extinct (see, for example, 
Athreya and Ney (1972)). In particular, we have that, as n ~ oe. 

Xt"/"~{O off~ s,S' (1.3) 

almost surely, where S is the event that the process does not become extinct. 
There are many branching-type processes which fail to satisfy (1.1), but which 

satisfy instead a "superbranching" inequality of the form 

d X m  

Xm+n~ E Xn, m(i) for m, n > 0 ,  (1.4) 
i = 1  

for suitably defined random variables X,,,,(i), having the same distribution as 

X n for each i. Here U~=V means P(U>x)>P(V>x) for all real x. A simple 
example is a branching process with immigration, for appropriately chosen 
immigration rates; other examples may easily be found, such as in the study 
of branching random walks (see Biggins (1977, 1979)). In the next section we 
present a formal definition of a "superbranching" process and give various 
concrete examples. Of particular interest to us in this paper is a superbranching 
process arising in the study of random fractal sets, and we shall return to this 
example later in the introduction. 

Our principal theoretical result is an analogue to (1.3) for processes (X,: n > 0) 
satisfying a slightly stronger property than (1.4). Specifically we shall prove 
that for such a process a limit theorem of the form 

X~,/"~2 a.s. on {lim sup X,  > 0} (1.5) 
n ~ o o  

is valid, where 2 = sup E(X,) 1/". 
n 

The primary motivation for our interest in such a question lies in an applica- 
tion to labelled branching processes, thence to answer a question concerning 
the (Hausdorft) dimension of certain projections of randomly-generated Cantor- 
like sets. We describe this first by an example. Define Co = [0, 1] x [0, 1], the 
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closed unit square in the plane. We think of Co as the union of the four closed 
squares C (i, j) for i, j = O, 1, where 

C (i, j) = [1 i, 1(i + 1)] x [-l j, �89 + 1)]. 

Using some specified random mechanism #, we delete some (or all) of these 
C(i, j), writing C1 for the union of those remaining. We now repeat this process 
of deletion to each of these remaining subsquares: divide each into four squares 
with side-length + in the obvious way and use the random mechanism # again 
in deciding which of these smaller squares to delete. Each application of # 
is independent of all previous applications and all applications in other squares. 
We write C2 for the union of the remaining squares of side-length �88 Continuing 
in the obvious way, we obtain a decreasing sequence Co, C1, C2 . . . .  of closed 

sets with limit C = (~ C,. Let 7 be the mean number of subsquares of C o which 
n=0 

remain after the first application of #. If 7 >1  then P ( S ) > 0  where S is the 
event that C, 4= 0 for all n, or equivalently that C is non-empty. Various authors 
have shown that the Hausdorff  dimension of C is log 2 7 almost surely on S 
(see Peyri6re (1978), Hawkes (1981), Falconer (1986, 1987), Mauldin and Williams 
(1986), Graf  (1987)). Let ~zC be the projection of C onto the x-axis: 

rcC={x~[0,  1]: (x, y)~C for some y}. 

Then ~C is a closed subset of [-0, 1], and we shall show in Theorem 9 how 
the limit theorem for superbranching processes may be used to compute the 
box-dimension (also called capacity, logarithmic density, Kolmogorov-Tihomir-  
ov dimension) of zcC. 

The random Cantor  sets we consider here are called random curds in Man- 
delbrot (1983). Our Theorem 10 may be considered as a general quantification 
of a remark in Mandelbrot  (1983, p. 218) on the size of projections of his imple- 
mentation of Hoyle's galaxy model as a random curd. 

All logarithms are to base e unless otherwise indicated. 

2. Superbranching Processes 

Let _X = (X, :n > 0) be a sequence of random variables taking values in the non- 
negative integers. We shall assume throughout  that Xo = 1, but this assumption 
is not essential. 

We say that _X satisfies the weak superbranching inequality if 

d Xm 
Xm+,> ~ X,,m(i) for m, n > 0 ,  (2.1) 

i=1 

where U ~  V means P ( U > x ) > P ( V > x )  for all x, and (Xn, m(i): i> 1) are indepen- 
dent random variables which are independent of Xm and are distributed in 
the same manner  as Xn. 
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We say that _X satisfies the strong superbranching inequality if, whenever 
m > 0 and we are given that X~ = x~ for 0 _  i < m, then 

d xrn 
Xm+n> ~ X,(i) for n > 0 ,  (2.2) 

i = i  

where (X,(i): i__> 1) are independent random variables which are distributed as 
X,, and which are independent of X0, X t, ..., X,,. If _X satisfies the strong super- 
branching inequality, then _X satisfies the weak inequality also. 

We are interested in the asymptotic properties of a sequence _X which satisfies 
one of the above inequalities. In advance of describing such results, we give 
some examples. 

(i) Branching process. The generation numbers of a Galton-Watson branch- 
ing process satisfy the strong superbranching inequality with equality in (2.2). 

(ii) Branching process with immigration. Certain schemes for immigration into 
a branching process do not disturb the strong superbranching inequality. A 
simple such example is as follows. Let f be a mapping from {0, 1, 2, ...} into 
itself satisfying f ( u  + v) > f(u)  + f (v). To each generation of the branching process 
we add f (k)  immigrants where k is the number of natural children of the members 
of the previous generation. 

(iii) Birth process with superadditive birth rates. Consider a birth process 
in continuous time with a single founder at time 0, and assume that the birth 
rates 21, •2 . . . .  satisfy 2 , > 0  and 2,+v>2u+2v for u, v__>l. Writing X,  for the 
size of the process at time n, we see that _X=(X, 'n>0)  satisfies the strong 
superbranching inequality. 

(iv) Branching random walk. Suppose that particles inhabit the real line and 
reproduce in the following way. At time 0 there is a single particle at the origin. 
At time 1 this particle is replaced by a collection of particles distributed about 
points of N chosen at random. At time 2, each of these particles is replaced 
by a collection of particles positioned at points with the same distribution rela- 
tive to their parent as the position of the children of the unique founder. Each 
particle reproduces in this way, giving rise to children at points chosen according 
to the same measure but independent of all other families. Suppose that 0__< ~ </3 
and let X, be the number of members of the nth generation positioned within 
the interval [ncq n/~l. It is not difficult to see that _X=(X,: n>0)  satisfies the 
strong superbranching inequality. The example may be generalized to deal with 
the contents of intervals of the form [~(n),/~(n)~ where O<~(n)<=~(n)<=oo for 
all n, and (e (n): n > 0) is a subadditive sequence and (/? (n): n > 0) is superadditive. 

(v) Labelled branching process. Let V be a set of labels, and suppose that 
we are provided with a branching process with a single founder and non-empty 
families, in which each member has some family of random size N, the members 
of which receive randomly chosen labels L1, L 2, ..., LN from V. We assume 
that the vector (N; L1, L2,. . . ,  L,) is chosen according to some specified probabil- 
ity measure on the appropriate space, independently of all previous family-sizes 
and label sets. The founder member remains unlabelled. Writing L(x) for the 
label of member x of the process, we see that with each member x there is 
associated a sequence L(xl), L(x2), ..., L(x) of labels, where p, xl,  x2 . . . . .  x is 
the unique path in the family tree of the process joining the root p to x. Thinking 
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about  V as an alphabet, we call the sequence L(Xl), L(X2) . . . . .  L(x) the word 
w(x) associated with x. If x is in the nth  generation of the process then w(x) 
has length n. Let Xo = 1 and write X ,  for the number  of distinct words having 
length n. Then _X=(X,: n > 0 )  satisfies the strong superbranching inequality. 
To see this, suppose that X i = x  ~ for O<_i<_m, and let ~1, ~zz, ..., rcx~ be members  
of the mth generation whose corresponding words of length m are distinct. 
Let X,(i) be the number  of distinct words of length n in the subtree of the 
process with root at rc i. 

It  is not difficult to see that  

d xm 
Xm+,> ~ X,(i) 

i = 1  

as required. 
Labelled branching processes provide a general setting for branching random 

walks. Suppose for example that  V=IR, and with the point x in the process 
we associate the real number  p(x)=NiL(xi),  the sum of the labels in the word 
corresponding to x. We may think of p (x) as the position of x in the associated 
branching random walk. 

3. Limit Theorems for Superbranching Processes 

We have limit theorems for sequences satisfying both the weak and strong super- 
branching inequalities. In the weak version of such limit theorems, we shall 
assume also that the sequences in question cannot  become extinct. We shall 
study sequences (X n : n > 0 )  with X o =  1, al though the assumption that X o = 1 
is not vital. 

Theorem 1. Let X satisfy the weak superbranching inequality, and suppose that 
P ( X  1 >= 1) = 1. I f 2  = sup E(X,)  1/" satisfies 2 < oo then 2 >-_ 1 and, as n ~ oo, 

n 

X~/" ~ 2 a.s. and in L t. (3.1) 

In the subsequent parts of this paper  we shall make  use of the following 
corollary. 

Theorem 2. Under the hypotheses of Theorem 1, we have that 

1 
- log X ,  ~ log 2 a.s. and in L 1. (3.2) 
n 

Our third result concerns the strong inequality. 

Theorem 3. Let X satisfy the strong superbranching inequality, and suppose that 
EXI  >O. I f  2=sup E(X,)  1/" satisfies 1 < 2 <  oo then, as n ~ 0% 

n 

X 1 / ,  ~ {lim s u p X , > 0 } .  (3.3) n ~ A a . s .  O H  
?/--+co 

The last theorem asserts that X~/"--*2 a.s. on the event { X , >  1 infinitely 
often}. It is clear that P ( X , = 0  for all large n ) = l  whenever _X is an integer 
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sequence with sup E(X,)I/"< 1. In the proof of Theorem 1 we shall use the follow- 
n 

ing lemma (whose proof  will be postponed to the end of this section), the conclu- 
sion of which is doubtless well known. 

Lemma 4. Let (B (n): n__> 0) be the generation sizes of a Galton-Watson branching 
process with B(O)= 1 and whose family-sizes are non-zero with mean # satisfying 
1 < # < oo. I f  c~ < #, there exists fl(e) < 1 such that 

P(B(n)<e")<fl(e)" for all n. 

Proof of Theorem 1. We write #, = E(X,,), and note from (2.1) that 

/~,,+,>/~m #, for m, n > 0 .  (3.4) 

Since #1 > 0, we have that #,  > 0 for all n. We apply the subadditive limit theorem 
to (3.4) to find that 

#t,/"--,2 as n-~oo (3.5) 

where 2 = sup E(Xm) 1/m. We note that 
m 

#m<2 ~ for all m. (3.6) 
If t /> 2 then 

P (X, > q") < q - ,  E (X,) < (2/t/)". 

giving by the Borel-Cantelli lemma that 

lira supX1,/"<2 a.s. (3.7) 
n --+ c~  

For  the lower bound on X 1/" we have to work a little harder. We may 
assume that 2 > 1 since otherwise #, = 1 for all n and the result is trivial. For  
each N > 1, let (BN(n): n > 0) be the generation sizes of a branching process with 
a single founder and family-sizes distributed as XN. We have from the weak 
superbranching inequality that 

d 

XNk>BN(k) for all N, k > l .  (3.8) 

We fix u such that 1 < u < 2 ,  and we choose N such that E(XN)>uN; this is 
possible by the definition of 2. Now 

P (XNk < U uk) _< P (B~ (k) _-< u Nk) = P (BN (k) -< ~k) (3.9) 

where c~ = uN< E(X~). We apply Lemma 4 to deduce that 

~P(Xuk<--<_uNk)<~ for all u < 2 .  (3.i0) 
k 

From the assumption that P(X1 > 1)= 1 and the weak superbranching inequali- 

ties we have that X,  ~_ Xm if n < m, giving that 
N 

ZP(X,<=v")=Z Z P(XNk+j <=vNk+j) 
n k j = l  

N 

s  Z P(XNk+j<=vN(k+I))<=NZ P(XNk~VN(k+I)) < oO 
k j = l  k 
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whenever 1 < v < 4. By the Borel-Cantelli lemma, 

lim infX~/"> 2 a.s. (3.11) 
n --~ o o  

as required. 
To prove L 1 convergence, we define 

Y, = inf y l / ~  ~ m  " 

m>=n 

Note that (Y,: n>0)  is monotone  with limit given by Y, T2 a.s. Thus, by monotone 
convergence, 

E(Y,)~'2 as n ~ oo. (3.12) 

From (3.11), Fatou's lemma, Jensen's inequality, and (3.5), 

2 < E (lira inf X 1/") < lira inf E (X]/") 
n --+ cz? n --+ c o  

__<lira sup E(X1,/") 
t l  --e- oO 

< lira sup E (X) I/" = 4, 
n - - *  00  

giving that 

Thus 

E(XI,/")--+2 as n--. oo. (3.13) 

EIX~/"-21 ~ E I X  1/"- Y~I +El Y . -  21 

= e ( Z .  ~/") - E ( Y . )  + ;~ - E ( Y . )  

- + 0  a s  ~1 --~ oo 

by (3.12) and (3.13). This completes the proof. []  

Proof of Theorem 2. The almost sure convergence is immediate from Theorem 1. 
Convergence in L 1 is almost immediate. We write Z,=X~,/". If 2 =  1 then P(X, 
= 1)= 1 for all n and the result is trivial. Suppose therefore that 2 >  1. On the 
interval [2-1,  oo) it is the case that 

Thus, as n--+ oo 

i logx[< 2 log2 [x-- 11. 
= 2 - - 1 -  

E I n log X , - - l og  2 =E[ log  (Z,/2)] 

< log2 
EIZ.-AI-,O. [] 

- -2 - -1  

Proof of Theorem 3. Suppose now that _X satisfies the strong superbranching 
inequality with 1 < 2 <  oo. Then _X satisfies the weak inequality also, so that 
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the proof of Theorem 1 gives us that # ,=E(X , )  satisfies/~,~/"--+ 2 as n ~ ~ ,  and 
#, < 2" for all n. Also 

lim sup X 1/" < 2 a.s. (3.14) 
n ---~ oo 

as in (3.7). It remains to prove that 

P(lim infX~/" __> 2, A) -= P(A) (3.15) 
n ~ o o  

where A = {X, > 1 infinitely often}. We prove this in a sequence of lemmas. 

Lemma 5. Let L be a positive integer and define TL=min {n: X,>  L}. Then P(TL 
< 0% A) = P (A). 

Proof. Let N be a positive integer such that EXN>I ,  and let (BN(n): n>=O) be 
the generation sizes of a Galton-Watson branching process with BN(0 ) = 1 and 
family-sizes distributed as XN. The process _Bn is supercritical, and thus there 
exists k such that 

tl=P(BN(k)<L)<I; (3.16) 

we choose k accordingly and define r/by (3.16). 

Now, we may construct an increasing random sequence (Ji: i>  1) of integers 
as follows. We set J l = m i n  {m: X,,>_ 1} and J i + l = m i n  {m: m>Ji+Nk and X,, 
> 1}. We note that Ji is a stopping time for _X, for all i. It can happen that 
J i=oo for some i, in which case J j=oo for all j>i; this is impossible on A. 
We write A t = {Jr < o0} for I a positive integer and we note that 

Thus 

where 

However, 

where 

A = lim AI. 

P(Xo<L forall  n, A)<=P(Xj,+Nk<L forall i, A) 

= lim n(1) 
1---~ oO 

7c(I)=P(Xj~+Nk<L for 1 <_i<I, AI). 

7c(I)= ~ P(Xj~+Nk<L for 1 <_i<I, At, Jz=J) 
j=0 

= ~, P (X j  + Uk < L, Cx (j)) 
j=0 

CI(j)={Xs,+Nk<L for l<i<I ,A,_~,Jx=j}  

(3.17) 
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is an event which depends only on Xo, X1, ..., Xj. On the event {Jr=j} we 
have that X j > I ,  and we may use the superbranching inequality and (3.16) 
to deduce that 

Hence 
P(Xj+Nk <L, CI(j))<tlP(C~(j)). 

rc(I)<t 1 ) '  P(Ci( j ) )<t lrc(I-  1). (3.18) 
j=O  

Hence re(I) ~ 0 as I ---, 0% giving by (3.17) that Lemma 5 is true. []  

Lemma 6. Let (Bl(n): n>0 )  be the generation sizes of a Galton-Watson process 
with family-sizes distributed as X1. Suppose that Xi=x~ for O<-i<m. Then 
(Xn : n > m) is a collection of random variables which are jointly no smaller in 
distribution than the distribution of (B 1 (n): n> m) conditional on BI (m)=xm. 

Proof This is a consequence of the strong superbranching inequality. It is easy 
to see by induction on k that 

P(Xm+i>y,,,+i for O < i < k [ g j = x j  for O<=j<=m) 

>P(B~(m+i)>ym+~ for O<i<=k[Bl(m)=xm) 

for all k. [] 

Lemma 7. Suppose #1 = E(X1)> 1. Then 

P (lim inf X~/" > #1, A) = P (A). (3.19) 
n~oo 

Proof This is the principal calculation. Let (B 1 (n): n > 0) be as given in Lemma 6 
with Bt (0)=  1. Choose v such that 1 < v < # 1  and note that, for each i, 

P(B 1 (n) < v "+i infinitely often) < q (3.20) 

where q is the probability that the branching process _B1 becomes extinct; we 
have that t /< 1 since #1 > 1. 

Let L be a positive integer, and define TL=min {n: X,>=L} as in Lemma 5. 
Then 

P ( X , > v  ~ foral l large n, TL < OO) 

> P (Xn > v n for all large n, TL < k) 
k 

> y" P(TL=i)P(BI(n)>v" fo ra l l l a rgen  ]BI(i)>L ) 
i = 0  

by Lemma 6, the strong superbranching inequality, and the fact that X i > L  
if TL = i. Thus 

P(Xn>v n for all large n, Tr<oO ) 
k 

> ~ P(TL = i) (1 -- P(B 1 (n -- i) < v" infinitely often) L) 
i = 0  

=(1--rIL)p(TL<k) by (3.20) 

~ (1 -- t/L) P(TL < oo) as k ~ o o .  
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However P ( A \ {  TL < oe })= 0 by Lemma 5, and hence 

Thus 

P (X. >= v" for all large n, A)> P ( A ) - @  P(TL < oe) 

--* P(A) as L -~ oQ. 

lim infX1,/ '>v a.s. on A 
t l ~ o o  

for all v < #1 and the lemma is shown. []  

The theorem has nearly been proved. Let N be a positive integer such that 
E(XN) > 1. If A holds then one of the events Ao, A 1, ---, AN-1 holds, where 

Ai = {XNk+i> i for infinitely many values of k}. 

We claim that if A~ holds for some i then Aj holds for all j a.s., whence it 
follows that 

P(AA {Aoc~A 1 n ... ~AN_ 1}) =0 .  (3.21) 

We prove this as follows. Suppose that Ai holds. As in the proof  of Lemma 5, 
we define J l = m i n  {k: XNk+i> 1} and Jr+l = m i n  {k>Jr :  XNk+~> 1}. Finally we 
write A~, k for the event {Xn> 1 for all n satisfying N k + i < n < N ( k +  1)+i}. We 
shall show that (on Ai) the event Ai, k occurs for infinitely many values of k 
a.s., implying that A s occurs for every j a.s. This is not difficult to accomplish, 
by adapting the proof  of Lemma 5. We have as in (3.17) that 

where 

P(Ai, k occurs for no value of k, Ai) 

< P (A~, sr for all r, Ai) = lim ~ (I), 
I--+ oO 

((I)=P(A~,sr for 1 < r < I ,  J~< oe}. 

(3.22) 

As in the proof  of Lemma 5 we may use the superbranching inequality, and 
particularly Lemma 6 (replacing (3.16) by ~/= P(B 1 (n)=0 for some n, 1 __< n < N), 
where (Bt (n): n > 0) is a branching process with B1 (0) = 1 and family-sizes distrib- 
uted as X0,  to conclude that ~ ( I ) ~ 0  as I ~ o o .  It now follows immediately 
from (3.22) that Ai,k occurs for infinitely many values of k a.s. on A i, since 
otherwise there exists m such that Y~=XM+r(r=>0), defines a superbranching 
process for which the event corresponding to A i occurs, but that corresponding 
to {Ai,k for some k} does not. Equation (3.21) follows. Finally let O<j<N,  
and define Yk=XNk+j for 0 < k < o c .  If A occurs, then by (3.21) Aj o c c u r s  a.s., 
and we may apply Lemma 7 to the sequence _Y to find that 

P(lim " 1/k mf XNk + S > E (XN), A) = P (A); 
k ~ o o  
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we have used the fact that _Y satisfies the superbranching inequality and 
E(YllYo = 1)>E(XN)>  1. It  is not necessarily the case that Yo = 1, but we never 
used the fact that  Xo = 1 in the proof  of Lemma  7. Thus 

lim " a/Nk ~/N mfXNk+j>E(XN) a.s. on A. 
k ~ o o  

This is valid for all j with 0 < j  < N, giving that 

lim in fX ,  1/" > E(XN) 1IN 
n ---~ co 

a.s. on A. 

We let N ~ oo to deduce that  (3.15) holds, as required. [] 

Proof of Lemma 4. First we prove that P (B (n)< a n) decays at least geometrically 
as n ~  o% when a is small enough. Fix a such that 0 < a < l .  We note that  
B(k )<B(k+l )  for all k, so that there exist at least n ( 1 - a )  values of k such 
that 0 < k < n and B (k) = B(k + 1), whenever B (n) < a n. However  

P(B(k )=B(k+I ) )<P(B(1)=I )  for all k, 
giving that 

P (B(n) < an)< P(Y, > n(1 - a)) 

where Y, has the binomial distribution with parameters  n and p = P ( X  1 =1). 
We use Markov ' s  inequality in the usual way to find that there exists y ( a ) > 0  
such that 

P(B(n)>an)<exp(--nT(a))  for all n, 

and furthermore 7 (a) > 0 if a < 1 - p. 
Suppose that  0 < ~ < # .  Let 0 < f i < l  and 0 < a < l ;  we shall choose fl and 

a shortly. In the following, we shall occasionally write non-integral quantities 
in places where integral quantities are required; this minor  aberrat ion is easily 
corrected but the notat ion becomes less simple. We have that 

P (B (n) < cd) < P (B (n) < cd I B (/3 n) => a n) P (B (fi n) > a n) + P (B (fi n) < a n) 

<-_ P(B(n(1 - fi)) < ~")~" + P(B(fin) < an). 

We pick fl and a such that 

~(1-~)-' < p ,  a / f l < l - p  

and recall from (1.3) that P(B(n)< 6")~ 0 as n ~ oo if 5 < #, to find that 

P (B (n) < a n) =< P (B (m) =< ~m(1 -p)-  ')an _]_ p (B (r) < r (a/fi)) 

decays at least geometrically in n as n-~ ~ ;  we have written m = ( 1 - f l ) n  and 
r = f in  here. The proof  is complete. [] 

Remark. Let (X. : n => 0) be a sequence of random variables satisfying the strong 
superbranching inequality. Then in general there will be no limit theorem for 
the sequence (X./EX.:n__>O). This is demonstrated by the following example 
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due to Harry  Kesten. Let (Y , :n> 0) be any sequence of random variables, such 
that each Y, takes values in [�89 1], and let (a,: n > 0) be a sequence of positive 
real numbers satisfying a,+m>2a, am for all n, m_->0 (e.g., a , = 2  n-l). Then _X 
defined by X,  = a ,  Y~ for n__>0 satisfies the strong superbranching inequality, 
but we have assumed extremely little about  the distribution of X , / E X ,  = Y~/E In. 

4. Labelled Branching Processes and Random Cantor Sets 

We establish next the appropriate terminology for labelled branching processes 
and associated random Cantor  sets, more or less following the scheme of Fal- 
coner (1986) (see also Neveu (1986)). 

We begin with the concept of a labelled branching process. For  any set 
S, we write S * = { A } u S 2 ~ . . .  for the set of all finite ordered sequences of 
numbers of S, where A denotes the empty sequence. We write N = { 1 ,  2 . . . .  } 
and, for _/=(il, i2 . . . . .  i j e N "  and J_=(Jl,J2 . . . . .  j , , ) e N  m, we write (j,j_') for the 
sequence (il, i2 . . . . .  i,, j l ,  J2 . . . . .  Jm) S N" +' .  

A branching tree T is a subset of N* defined as follows. First, A ~T. There 
exists a non-negative integer N(A) such that i ~ N  belongs to T if and only 
if I_<i_<N(A). Suppose that we have determined which points in 
{ A } u N ~ . . . ~ N "  belong to T. I f - / , eN"  and i~N,  then there exists a non- 
negative integer N(/,) with the property that - / ,+l=(j , ,  i) belongs to T if and 
only i f / , 6 T  and l<_i<_N(i,). If this holds, we call i,+1 a child o f / , .  We may 
turn T into a graph with vertex set T by joining two vertices whenever one 
is a child of the other. T then becomes a rooted tree. 

Now let V be a set, called the label space. To each point in T we assign 
a label from V, and we call the resulting tree a labelled tree. In this labelled 
tree, each point _/ has a certain number N(i_) of children, and these offspring 
have labels, say L 1, L2, ..., Luq3 in lexicographic order. We may write 

Zq)=(Nq) ;  L, ,  Lz, ..., Lm~ ), 

a vector which describes the labelled offspring of i. 
Next we introduce randomness. Let 

Z = ( N ;  L1,L2,  ..., LN) (4.1) 

be a random vector, where N is a (random) non-negative integer and 
L1, L2, ..., LN are (random) labels chosen from V. Suppose that {Z(i): _/~N*} 
is a family of independent copies of Z. We call the resulting (random) labelled 
tree T a labelled branching process. We speak of this process as having "typical 
offspring distributed as Z ". 

Consider now a labelled branching process with offspring distributed as 
Z. To each point in=(il, i2 . . . . .  i,)~T, where n >  1, there corresponds a unique 
path A, h ,  -i2 . . . . .  in- 1, in joining A to _/n. Writing L(j) for the label of the point 
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i in T, this path gives rise to a sequence (L(jl), L(j2), ..., L(j,)) of labels; we 
call this sequence the word associated wi th / , ,  and write this word as 

w (/,) = L(j1) L(j2)... L(j.). 

We write T, = {i, = (il, i2, ... ; i,): _/, a T} for the set of members of the n th genera- 
tion of the process, and write W,= {w(j):_/e T,} for the set of distinct words 
of length n in the process. 

If V is a vector space, the above labelled branching process is a branching 
random walk in V, in which the particle _/at the point p(j) gives birth to N(j) 
children which are positioned at the points {p(j)+Lj: I < j < N ( j ) }  where Lj is 
the label of the j t h  child of i. 

Next, we recall how labelled branching processes give rise to certain random 
Cantor sets in ]R d. We fix positive integers d >  1 and M > 2 ,  and we write N(M)  
= {0, 1, 2 . . . .  , M - 1 } .  Let T be a labelled branching process with label space 
V = N ( M )  d and labelled offspring distributed as Z. With each word in V* we 
associate a M-adic cube in IR d in the following way. With the empty word 
A, we associate the unit cube Io(A)= [0, 1] e. If w= I1 Iz... I, is a word of length 
n > l  and each Ij~1N(M) d is written coordinatewise as lj=(lj(I), lj(2) . . . .  , lj(d)) 
where 0 < tj(i)< M for all i, j, then we associate with w the cube 

j = l  

(4.2) 

The process T determines a sequence Go, G1, ... of closed random subsets of 
[0, 1] d defined by 

Go=E0, 1] a, Go-- ~ Io(w). 
w~l ,V n 

If -/n+l =(in, i) belongs to T then w(j_,+O=w(j_,)L(i), giving that 
I,+ l(w(i,+ 1))~-I,(w(i_,)), so that G,+ 1 ~ G, for all n. We are mainly interested 
in the limit set 

G = lim G, = (~ G,, 

which we term the random M-adic Cantor  set associated with the labelled 
branching process. 

We note that G =  ~, the empty set, if and only if the underlying branching 
process, with family-sizes distributed as N, is ultimately extinct. 

The classical Cantor set is the set G obtained when d - - l ,  M = 3 ,  and 
Z = ( 2 ;  0, 2) almost surely. A less trivial example, to which we shall return later, 
has d = 2, M = 2, and 

P ( Z = ( 2 ;  (1, 0), (1, 1)))= 1 - p  

P ( Z = ( 3 ;  (0, 0), (0, 1), (1, 0))) = p ,  
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where 0 < p < 1. 
Finally, we call such a labelled branching process a M<adic tree if N - - M  e 

and {L1, L2 . . . . .  LN} = N(M)  d almost surely. 

5. Projections of Random M-adic Cantor Sets 

For  integers d and e satisfying 1 <_eNd and a vector 0 = ( / ) 1 ,  / )2 ,  " " ,  /)d), we write 
rc~ v=(vl ,  v2, ..., v~) for the projection of v onto the subspace generated by the 
first e coordinates of the vector. 

If G is a subset of NY, then rc~ G is the projection of G onto the e-dimensional 
subspace of N d generated by the first e coordinates. A few general results are 
known about the Hausdorff  dimensions of the collection of orthogonal projec- 
tions of G over the set of all e-dimensional subspaces of lRd; see Marstrand 
(1954) or Falconer (1985). We are interested here in the case when G is the 
random M-adic Cantor  set generated by a labelled branching process with label 
space N(M)  d, and with the single projection rc~. In this section we address 
the question of determining necessary and sufficient conditions for the property 
that 7~ e G has non-zero e-dimensional Lebesgue measure. In the next section, 
we study the Hausdorff  dimension of ~e G. 

Let V = N ( M )  d as before, and consider a labelled branching process LBP(d) 
with labels in V and offspring distributed as Z = ( N ;  L1, L2, ..., LN). For  a given 
vector s 6 N ( M )  e, we write Z(s) for the number of labelled offspring of the hypo- 
thetical family with size N and labels L1, L 2 . . . .  , L N whose labels project onto s: 

N 

Z(s)=  y '  ls(L,) (5.1) 
i = 1  

where, for / e N ( M )  d, is(l) equals 1 or 0 depending on whether or not rce l=s. 
We write 

m~=E(Z(s)) (5.2) 

for the mean number of such offspring, and 

m =  1-[ ms, (5.3) 
seN(M) e 

noting that m=< 1 if and only if the geometric mean of the ms is less than or 
equal to 1. 

The labelled branching process LBP(d) gives rise to a projected labelled 
branching process, LBP(e) say, obtained by projecting each label in LBP(d) 
onto its first e coordinates. Let G be the random M-adic Cantor  set generated 
by LBP(d). It is easy to see that ~z e G is the random M-adic Cantor  set generated 
by LBP (e). 

If LBP(e) is a Me-adic tree, then ~e G-- to, 1] e almost surely, and we exclude 
this special case from the next theorem. We say that a labelled branching process 
becomes extinct if the associated tree is finite. The probability of extinction 
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is the smallest root in [0, 1] of the equation x=E(xN). The following three 
statements are equivalent: 

(i) LBP(d) becomes extinct, 
(ii) G = 0, the empty set, 

(iii) rce G = 0, the empty set. 
We write 2 e for e-dimensional Lebesgue measure. 

Theorem 8. Let G be the random M-adic Cantor set generated by LBP(d) and 
rce G the corresponding projected set generated by LBP(e). Suppose that LBP(e) 
is not a Me-adic tree. Then 2~(~c~ G)=0  almost surely if m< 1. I f  m> 1 then 
2e(~e G) > 0 almost surely whenever G + O. 

Proof As in Dekking (1987) this proof  makes use of branching processes in 
varying and in random environments. 

Writing W~ as before for the set of distinct words of length n in LBP(d) 
and 

7r, e Wn= {ge W: W~ Wn } 

for the set of words of length n in LBP(e), we have that F,=rc e G, is given 
by 

F,= ~) I,(s). 
S~ge  Wn 

Certainly F, ~, F as n ~ o% where F = roe G, and so 

E(2~(F~)) -~ E(2e(F)) as n -~ ~ ,  (5.4) 

by monotone  convergence. Furthermore 

fr M-ne]~e W~[, (5.5)  

where IS] denotes the cardinality of the set S. Thus 

E(~e(fn)) = M-he Z P(WErCe Wn), (5.6) 
W 

where the sum is over all words w of length n in the alphabet N(M)  e. As 
in Dekking (1987), we may relate this expression to the survival probability 
of a certain branching process in a random environment. Specifically, consider 
first a branching process in a varying environment in which there are M e distinct 
possible environments labelled by N(M)e: we write this environment space as 
{q(s): sEN(M)e}. If the environment of the process in a given generation is 
q(s) then the families of the members of that generation are distributed as Z(s) 
in (5.1). For  a given sequence t/(Sl), t/(s2), ... of environments, we write 
Z(tl(sl), tl(s2) . . . .  ) for a branching process in a varying environment with initial 
size 1 and environment q(si) in generation i -  1; we write Z,(rl(sO, rl(s2) . . . .  , rl(s,) ) 
for the size of the nth generation of this process. We may now see that 

P (s ~ ~e W~) = P (Z ,  (~l (s ~), ~ (s:), . . . ,  ~ (s,)) > O) (5.7) 



350 F.M. Dekking and G.R. Grimmett 

for words s=sa s 2 . . .  S n of length n in the alphabet IN(M) e. Thus, from (5.6), 

E (2~ (F,)) = M "~ ~ P (Z, (q (s 1), ..., q (s,)) > 0) 
s 

s 

= M - " ~ P ( 2 , > O [ ~ i = t l ( s i + l )  for 0=<i<n) 

where 2 ,  is the size of the n ta generation of a branching process _Z in a random 
environment, having random environments ~o, ~1, ..., and a single founder 
member; as before the summations are over all words s=s~ s2.. .s ,  of length 
n in the alphabet N(M)% We are at liberty to specify how the environments 
of Z are chosen, and we shall suppose that they are independent identically 
distributed environments chosen uniformly from the set {tl(S):seN(M)~}. With 
this choice, the previous conditional probability may be written in terms of 
an absolute probability instead to find that 

E (2e (F,)) = P (2,  > 0). (5.8) 

We call 2 the branching process in a random environment associated with 
LBP(e). 

Suppose now that LBP(e) is not a M~-adic tree, so that it is not the case 
that P(Z(s)= 1 for all s)= 1. By the result of Athreya and Karlin (1971), under 
this condition it is the case that P ( 2 , > 0 ) ~ 0  as n ~ o o  if and only if 
E(log E(211 Co))<0. However, in our case, from (5.2) and (5.3), 

E(logE(211~0))= ~ M - e l o g m s  
s ~ N ( M )  e 

= M  -~ log m, 

giving by (5.4) and (5.8) that E(2~(F))=0 if and only if m < l .  Suppose now 
that m>  1, so that E(2~(F))>0, and write 6=P(2e(F)=O); we note that 3<1.  
We shall show that 6 is a root of the equation 

x=E(xU); (5.9) 

combined with the fact that 6 < 1, this will imply that 6 equals the probability 
that LBP(d) becomes extinct, and the theorem will be proved. To show that 
6 satisfies (5.9), we argue in the usual way based on the natural recursion of 
LBP(d). We may write 

N 

F= U e(j) (5.1o) 
j = l  

where F(j) is the random M-adic Cantor set obtained from the subtree of LBP(e) 
having as root t h e j t h  child of the root. Apart from a scale factor and a transla- 
tion. F (j) has the same distribution as F, so that P(2e (F (j))= 0)= P (Ze (F)= 0)= 6. 
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Furthermore,  from (5.10), 2e(F)=0 if and only if 2e(F(j))=0 for all j. By the 
independence of F(1), F(2), ..., F(N), 

6 = P (2~ (F) = O) 

= ~ P(N= n) P(2~(F) = 0 f  = E(ON). 
n = O  

This completes the proof of Theorem 8. [] 

Remark. We have proved in Theorem 8 that, if m > 1, then W = lira M-"el~z~ W~ [ 
n ~ o o  

exists a.s., and is (a.s.) strictly positive on the event that the process does not 
terminate. Harry  Kesten has shown a corresponding result without the assump- 
tion on m: he has proved that W =  lira I~e W,]/E]~eVV, I exists a.s. and is (a.s.) 

strictly positive on the event that the process is not extinct. 

6. Dimensions of Random M-adie Canter Sets 

We write D~(A) and D~(A) for the Hausdorff dimension and the box dimension 
of the set A, respectively, recalling that if A is a bounded subset of IRd then 
DB(A ) is defined by 

log N~(A) 
D B (A) = lim sup 

~ o log (l/r) 

where Nr(A) is the smallest number of closed balls in IR a with radius r whose 
union covers A. It is not hard to see that this is equivalent to 

log v~ (A) 
D~(A) =l im sup (6.1) 

, ~  n l o g M  

where v~(A) is the number of cubes I,(w), with w=ll. . . l ,  ranging over the 
words of length n with l f iN(M) a (see (4.2)) which intersect A. Box dimension 
is also known as Bouligand dimension, s-entropy, entropy dimension, Pontrya- 
gin-Snirelman dimension, and so on (see Tricot (1981)). Clearly Dn(A)<DB(A ) 
for all A and quite often these dimensions are equal (see e.g., Hawkes (1974)). 

Let G be the random M-adic Cantor  set generated by the labelled branching 
process LBP(d) with labelled offspring distributed as Z = ( N ;  L1, L2, . . . ,  LN). 
Several authors have proved that the Hausdorff  dimension DH(G) of G satisfies 
DH(G)=D~(G)=log(EN)/logM almost surely; see Peyri6re (1978), Hawkes 
(1980, Falconer (1986, 1987), Mauldin and Williams (1986), Graf  (1987). The 
common tool in this work is the martingale convergence theorem. We are inter- 
ested here in the dimension of the projected set zce G, where 1-< e < d. The limit 
theorems of Sect. 3 are suited for determining the box dimension of ~e G. 
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Theorem 9. Let G be the random M-adic Cantor set generated by LBP(d) and 
ne G the corresponding projected set generated by LBP(e). I f  P(N = O)= O, then 

log( ~ m's) 

Ds(ne G) = inf ~N(~t). a.s. (6.2) 
t~[o, 11 log M 

where m~ is the expected number of labelled offspring projecting onto sEN(M) e. 

The condition P ( N = 0 ) = 0  is not essential to the argument underlying the 
proof of this theorem, and this condition may be removed in the usual way. 
Suppose that P(N = 0)> 0, so that the probability 6 that LBP(d) becomes extinct 
satisfies 6 > 0. Clearly rc~ G = 0 if LBP(d) becomes extinct. On the other hand, 
if 6 < 1 then, on the event that LBP(d) does not become extinct, the conclusion 
of Theorem 9 enables us to calculate the almost sure box dimension of ne G 
by replacing LBP(d) by a suitably amended branching process in which extinc- 
tion is impossible. For suppose that LBP(d) does not become extinct. The limit 
set G is unchanged if we remove from LBP(d) all those points which do not 
give rise to infinite lines of descent. The resulting family tree (for the moment 
we do not consider the labels of the points) has the same distribution as a 
branching process with family-size probability generating function 

f ( ( 1 - 6 ) x + 6 ) - 6  
f (x) = where f (x)= E(x N) (6.3) 

1 - 6  

(see, e.g., Athreya and Ney (1972, p. 47)). The families of this new branching 
process are non-empty and a typical family size N' satisfies the condition of 
Theorem 9: P(N'= 0)= 0. After we have deleted from LBP(d) those points with 
only finitely many descendents, there remains a copy of this new branching 
process, the points of which are labelled randomly from N(M) d. The offspring 
in a typical family have labels El, L'2 . . . . .  L'w, where these labels depend only 
on N' and the original family size N; thus the new branching process, taken 
in conjunction with its random labels, constitutes a labelled branching process 
with label space N(M) d and typical labelled offspring (N'; L' 1, L'2, ...,/J%,). As 
noted before, the random M-adic Cantor set generated by this process is just 
G, and so DB(ne G) may be ascertained by applying Theorem 9 to this process. 

As a corollary to Theorem 9 we have the following result which characterizes 
those sets for which the dimension does not decrease after projection. 

Theorem 10. I f  P(N=O)=O and ~,ms log ms<=O, then 
S 

log EN 
DB(n~G)=D"(G)= ~ogM a.s.; 

/f Y', ms log ms > 0 then Dn(~e G) < DB(G ) a.s. and hence Dn(7ce G) < Dn(G) a.s. 
s 
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As an application of Theorem 9 we return to the example given at the end 
of Sect. 4. In this example d = 2, e = 1, M = 2, and a typical labelled family is 
distributed as Z = ( N ;  L1, L2, ..., LN) where 

P ( Z = ( 2 ;  (1, 0), (1, 1))= 1 --p, 

P ( Z = ( 3 ;  (0, 0), (0, i), (i, O))=p, 

and 0 < p < l .  Easy calculations yield mo=2p,  m 1 = 2 -  p. Thus m = ] / ~ o m l  
= ~ ) > 1  if and only if p > l - 1 ] / ~ ,  giving from Theorem 8 that 
21(rq G)>0  almost surely if (and only if) this holds. If 0 < p < 1 - 1 [ / 2  then 
m o + m l > 2 ,  giving by Jensen's inequality and the convexity of g ( x ) = x l o g x  
that mo l o g m o + m l  l o g m l > 0 .  It follows (cf. Dekking (1987)) that inf log(m~ 
+ m~) equals H(fl), where t~ro, lj 

log (2p) 
log (2 p/(2 -- p)) 

and H(fl)= --fl log (fl)-- (1 --fl)log (1 --fl). 
By Theorem 9, 

H(/~) 
DB(g e G) -- 

log 2 
a , s .  

Proof of Theorem 9. Let Q , =  [ g e  Wn[  be the number of distinct words of length 
n generated by the first n generations of LBP(e). Remembering (6.1) and the 
fact that P(N = 0 ) =  0, we have that vy(~z e G)= Q,, so that 

G,=li.. .  o,,p log Q, DB(Tre 
n log M 

a.s. (6.4) 

Recall from Sect. 2 (part (v)) that ((2, : n > 0) satisfies the strong superbranching 
inequality. Furthermore, (2, is no larger than the total number of M-adic sub- 
cubes of [0, 1] e with side length M-" ,  giving that 

satisfies 

= lira -1 log E(Q.) (6.5) 
n --+ oo n 

~ < e  l o g M < c ~ .  

Applying Theorem 3, we deduce that 

lira /- log Q, = 
n ~ c o  /'1 

a.s. (6.6) 

From the proof of Theorem 8, and particularly (5.5) and (5.8), 

E ((2.) = M" e E (2 e (F.)) = M"e p (5.  > 0) (6.7) 
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where F, is the subset of I-0, 1] e generated by the first n generations of LBP(e) 
and Z is the branching process in a r andom environment associated with LBP(e). 
According to the main result of Dekking (1988), 

1 
lim • log P [ 2 ,  > 0] = log inf E(m(~o) t) (6.8) 

n --* ao F/ re [O,  1] 

where m ( ( o ) = E ( 2 t  I (o). For  the process _Z in (5.8), 

E(E(21[~o)t) = ~ mt~M -~. 
s e N ( M )  ~ 

From (6.4), (6.5) and (6.6) we have 

D,(rCe G ) -  1 lira 1 log E(Q,) 
l o g M  , - ~  n 

(6.9) 

a.s. (6.10) 

Combined with (6.7), (6.8) and (6.9) this yields (6.2). []  

Proof of Theorem 10. As remarked in Dekking (1988), the limit in (6.8) is equal 
to EZ1 if ~ ms log ms < 0 (and strictly smaller otherwise). However  

s ~ N ( M ) ~  

E Z I = M  -~ ~ m s = M - ' E N ,  
s e n  ( M )  e 

since the N offspring of any point of LBP(d) may  be parti t ioned into subsets 
according to the projections of their labels onto N ( M )  e. Thus, from (6.7), (6.8) 
and (6.10), 

log EN 
DB(n e G) = - -  a.s. 

log M 

if ~ ms log ms < O, and is strictly smaller otherwise. [] 
s 

Final remark. Recently K. Falconer  has found a simple argument  to show that  
Theorem 9 is also true with DB replaced by Dn. 

Acknowledgements. We are grateful to Harry Kesten for his remarks on the superbranching inequali- 
ties. 
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