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Summary. In 1959, H. Dye showed that any two ergodic, measure-preserv- 
ing automorphisms of a Lebesgue measure algebra were weakly equivalent. 
In this paper, we study weak equivalence, for ergodic measure-preserving 
automorphisms on non-separable measure algebras. It is shown that, in 
general, Dye's Theorem does not hold, and in particular, it holds only on 
separable, i.e. Lebesgue, measure algebras. 

In 1959, H. Dye [3] showed that any two ergodic, measure-preserving auto- 
morphisms of a Lebesgue measure algebra were weakly equivalent. The separa- 
bility of the measure algebra was not one of his initial assumptions. In fact, he 
does not impose it until two-thirds through the paper - just before he proves 
the above theorem bearing his name. He imposes it there because the proof is 
essentially a constructive one which employs the separability of the measure 
algebra to build a sequence of transformations whose limit yields the desired 
conjugacy (see p. 155 [3]). This raises the question is the theorem true in 
general, i.e., are any two ergodic, measure-preserving automorphisms on a 
normalized, measure algebra weakly equivalent? Since a non-atomic, measure 
algebra is homogeneous if and only if it carries ergodic automorphisms [2] we 
will restrict ourselves to the homogeneous ones and show, not only that Dye's 
Theorem in general is false but, that it is only true in the Separable case. 

This work was done in part while the author was a research visitor at 
McGill University. The author would like to thank J. Choksi for many helpful 
discussions. 

Let I denote the unit interval, and D an uncountable index set. We put Z 
= H I  e, d~D, where I e = I  for all d. The product measure will be m, and the 
measure algebra lB. Thus, (IB, m) is a homogeneous measure algebra of Ma- 
haram type the cardinality of D, with Z a representation space. By a theorem 
of D. Maharam [5], every homogeneous measure algebra has a space represen- 
tation as above and so we may restrict ourselves to such throughout this 
paper. If J c D  then lB(J) will denote the measure algebra generated by the 
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"cylinder sets" based on the coordinates designated by J. In general, we will be 
a bit lax in putting in the phrase "modulo sets of measure zero" and other 
such related termonology. Definitions and basic knowledge regarding homo- 
geneous measure algebras may be found in [2, 5, 6]. An easily accessible proof 
of Dye's Theorem may be found in the paper of A. Hajian, Y. Ito and S. 
Kakutani [5]. We refer the reader there, as well as to [-3], for the definition of 
the full group and weak equivalence. Two immediate and well-known obser- 
vations which we will use throughout are a follows. 

i) If AeIB, m(A)>0 then there is a countable J c D  with AelB(J). 

ii) If J is countable then (IB(J),m) is a Lebesgue measure algebra. In such a 
case we will put X=FIIe,  d~J (which is again isomorphic to the unit interval, 
and visualize Z =  X x HIe, d~D\J.  

Let S be an automorphism of lB, then we will say J c D  is S-invariant if 
S(lB(J))-- lB(J). If in addition, J is countable, then we will visualize 5~ as a skew 
product over X = F I I  d, deJ. In particular, we would denote this as S = S  x qSx, 
where S is the point transformation induced by S on X, and for each x~X, (?x 
is an automorphism of HId, d~D\J.  We will denote the fibre x x HIe, d 6 D \ J  
by fx. So S takes fibres to fibres, i.e. x x I I I a ~ S x  x ~x(Ille). 

We begin with a lemma originally due to D. Maharam [5]. 

Lemma 1. Let S be an automorphism of IB. Let A n, n= 1,2,..., be any measur- 
able sets. Then there exists a countable J which is 'S-invariant and A,~IBU) for 
all n. 

Proof. Each A, is essentially based on a countable number of coordinates, so 
there exists j1 countable with A,6IB(J~) for all n. Let / ~ ,  r e = l , 2  . . . . .  be a 

F k - 1  basis for lB(J~). By the same reasoning the sets S B~k--0,  +_1, +2,  ..., m = l ,  
-2 2, ..., are contained in lB(j2) where j2 is also countable. Let B~, m =  1,2 . . . .  , be 

a basis for lB(j2). By induction, we obtain J~, j2, j3, each countable, and put J 
= U J ' , n = l , 2 , . . . .  

We will assume the reader is familiar with the notion of entropy for a 
measure-preserving transformation (see [7]). We point out_, that the definition 
of the entropy of a measure preserving automorphism h(T) as the sup of the 
entropy h(T,P) along all finite partitions P car r ies  straight through for the 
homogeneous measure algebra cases. In addition, h (T)=  suph(T) where T is 
restricted to an invariant Lebesgue algebra. We will be using the following well 
known fact. If all the images of the partition P under T are stochastically 
independent, then h(T) > h(T, P) = H(P). 

Lemma 2. There exists an ergodic measure preserving automorphism U of IB 
with h(U)=0.  

Proof Let U be a mixing transformation of I with h(U)=0.  Define U = H U  a, 
deD, Ua= U for all d. That U is ergodic may be found in 1-2] - in fact, it is 
mixing. Let IL be any invariant Lebesgue algebra for U. From Lemma 1, there 
are countable coordinates J ~ D  with ILcB(J),  and J is U-invariant. l.~ induces 
on X = I I I  a, de J, V=FIUa, deJ. As a countable product of 0-entropy transfor- 
mations, V has 0-entropy. [~ on IL is a factor of V, hence the entropy of 
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restricted to IL is 0. Since lL was any invariant Lebesgue algebra, we conclude 
h(O)=O. 

Let T be any ergodic, invert ible, measure-preserving transformation on the 
unit interval with h(T)>0.  Put T=IITa, dcD. We will show 

Theorem 1. Any ergodic S in the full group [T],  or conjugate to anything in said 
full group has positive entropy. 

Corollary. The U as_previously defined in Lemma 2 is not in [7'] nor is any_thing 
conjugate to (J in [T].  This negates Dye's Theorem, i.e. the full groups of U and 
T are not conjugate. 

Let S~ be ergodic in [T] .  Let Z~ be the sets where S =  T". By Lemma t, we 
can find a countable J c D  invariant under S with Z, MB(J). Now, we can 
realize Z = X x H I e ,  deD\J ,  ,~=,Sx~. and 7"=T• deD\J,  where 
=HT~, d~J. 

We take a disintegration of Z with respect to X x Hie, deJ. That is, we 
have 2 the projection of m onto X which is Lebesgue, and for each x e X  we 
have ff~ on f:,=x x FI1 e which is the fibre measure. The relation between the 
various measures is for/~EB 

m (~) = j ~ (*? •L)  d ;~ (x). 
x 

Since h(T)>0 ,  we know by Sinai's Theorem (see [7]) that every Bernoulli 
shift with entropy less than h(T) is isomorphic to some factor of Z Hence, 
there exists a two set partition Po= (Po, Po} of l such that TkPo, k=0,  +1,  +2, 
..., are stochastically independent and h(T) > h(Z Po) = H(Po) > 0. 

Pick a coordinate b e D \ J  and let /~= {P0,P~} be the inverse of the canoni- 
cal projection onto I b. Then, Tk/~, k=0 ,  +1,  +2  . . . .  , are stochastically 
independent with the base algebra IB(J). We wish to show that ~'Po are also 
stochastically independent. This would imply that h (S) > h (S, Po) = H (/~) > 0. 

Look at the partition induced on s by TkPo, i.e. TkPomf~. These are 
stochastically independent on fx with respect to #x (for almost all x with 
respect to 2). 

Now look at Sk/~ cff~. We can assume x is a generic point for 7- and S. For 
each k, we have some n(k) such that 

and if k4:j then n(k)4=n(j) (if n(k)=n(j) then Skx=S;x, but by x generic and S 
ergodic this is only possible if k=j). Hence we conclude that the partitions 
Sk/~c~fx , k=0 ,  +1,  _+2 . . . .  , are independent with respect to /~x. The integra- 
tion formula now yields that the SkP0 are also independent with respect to m. 
This completes the proof of the theorem. 

As a further remark, observe that the above also yields that the ~k/~, k=0 ,  
_+1, _+2, ..., together with the base algebra IB(J) are stochastically inde- 
pendent. We will use this in the next theorem. 

With the negation of Dye's Theorem for non-separable homogeneous mea- 
sure algebras, many questions arise regarding the weak equivalence of various 
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ergodic automorphisms. One such, is whether a factorizable automorphism is 
always weakly equivalent to a non-factorizable (see [13 for definition of non- 
factorizable) and vice-versa. In the next theorem we give a partial answer to 
this question by presenting a factorizable automorphism which is weakly 
equivalent only to other factorizables. The examples is a variation of that 
presented earlier, i.e., it and all the ergodics in its full group have positive 
entropy. Thus it remains an open question as to whether the non-factorizable 
automorphism [1] and the 0-entropy automorphism constructed in Lemma 2 
are weakly equivalent. 

Let ~ on I be isomorphic to the Bernoulli two-shift. So we have a two set 
partition Po = {P0, P,} on I such that 

i) NkP o, k =0,  _+ 1, +_ 2 .. . .  , are stochastically independent, and 

ii) the total collection of sets in NkPo, k=0 ,  +1,  +2  . . . . .  generate the mea- 
sure algebra on I. 

Put ~ = H ~ a ,  d~D, ~ a = N  for all d. This product Bernoulli has infinite 
entropy and is isomorphic to any other product Bernoulli. That is, if Ne is any 
Bernoulli on Ia, not necessarily the same for different deD, then ~ = N a ,  dsD, 
is isomorphic to the above ~3. Further, if we put W=FIZn, - o v < n < o o ,  Z,  
= Z  for all n and define P on W as the shift (~'w)n= w,+ l, then V also is 
isomorphic to ~.  

We will prove 

Theorem 2. Any ergodic S with IS] = [~3] factorizes. 

Let Z ,  be where S = ~B". Let Z* be where ~3 = S". By Lemma 1, we find a 
countable JcD,  S-invariant and Z,, Z*6B(J) for all n, m. 

So we have Z = X x I I l e ,  d~D\d, S=Sx4)  x, and f f3=Tx91 where ~ = N e ,  
d~D\Y and T=HNa, dE.l. Notice that, T on the Lebesgue space X is again a 
Bernoulli automorphism. It is of finite entropy if d is finite, otherwise it is the 
infinite entropy Bernoulli. 

Let Pa on I e be the two-set generating partition of I a. Let ~ = rt 2 1 (Pe), where 
rc a is the canonical projection on the d coordinate, P u t / ~  = k//~, d~D\d the a- 
algebra generated by the/~. The following is straight forward. 

i) ~3kPo, -- oO < k < oo, are stochastically independent. 

ii) ~BkPo, -- oo < k <  0% is independent of IB(J). 

iii) ~kP  0 IB(J)=IB. 

We will show, that conditions i), ii), iii) also hold for S in place of ~.  Thus 
the factorization suggested by IB(J), and the ~ / ~  will yield a factorization for 

Conditions i) and ii) are evident from the previous argument for Theorem 1. 
We need to show that for any n, 

IB Po c IB(d) v Sk Po, - o o < k < o o .  

We start with ~3P o. We have ~3=S '~ on Z* IB(J). Hence, ~Po can be pieced 
together in IB(J)vSkPo . Next, ~ I - S ]  implies that ~"~[S] ,  and the elements 
where ~ " = ~  are also in IB(J). Thus, the same reasoning goes through and we 
are done. 
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