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Summary. We prove a "p ropaga t ion  of chaos"  result for the mean-field 
limit of  a model  for a t r imolecular  chemical reaction called '~ 
Then we show that  the pair  of nonlinear  (i.e. law-dependent)  stochastic 
differential equations describing the evolution of the concent ra t ion  of the 
molecules at a given site in the mean  field limit has a solution with a 
periodic law (in t). Finally we identify the limit and establish a central limit 
theorem for the periodic law in the case where the noise tends to zero. 

1. Introduction 

The "Brussela tor"  is a model  for the t r imolecular  reaction 

A--, X 

X+B---,  Y+ C 

2 X +  Y-* 3X 

X ~ E  

describing the evolution of  the concentra t ion of the molecules of type X and Y. 
The concentrat ions of A and B are assumed to be constant  in time (and space). 
Determinist ic and stochastic (ordinary and partial) differential equations as 
well as M a r k o v  jump  processes have been used to model  the reaction. A 
nonexhaust ive list of papers on such models includes [2, 4, 7, 9, 12, 15, 22]. 

The name "Brusse la tor"  is due to J.J. Tyson  [22] and honours  the pioneer- 
ing work of a group of scientists f rom the Universit6 Libre in Brussels (among 
them Prigogine and Nicolis). 

* Part of this work was performed while on leave at the Department of Mathematics and 
Statistics, Carleton University, Ottawa, Canada and supported by NSERC operating grants of 
M. Cs~Srg6 and D. Dawson 
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In the well-stirred case and if stochastic fluctuations are neglected the 
evolution of the concentration of the reactants X and Y can be described by 

d ~ t )  = a  - ( b  + 1) X ( t )  + X2(t) Y(t) 

(1) 
d Y(t)  _ b X  (t) - X 2 (t) Y(t)  

d t  

after some appropriate  scaling, where a and b are positive constants. (1) has a 
b 

unique steady state solution given by X(t )=-a ,  Y ( t ) - - w h i c h  is asymptotically 
a 

stable for a 2 > b - 1 [22] and unstable for a 2 < b - 1. Fur thermore if a 2 < b - 1 
there exists a unique stable limit cycle surrounding the steady state [15]. 
Numerical  simulations in that case have been carried out by Lefever and 
Nicolis [9]. The PDE generalization of (1) which models the spatial distribu- 
tion in addition to the temporal  evolution was extensively studied in the book 
of Nicolis and Prigogine [12]. They point out that the Brusselator is the 
simplest type of a chemical reaction model exhibiting a certain "interesting" 
(cooperative) behavior and therefore assign to it the same significance as to t h e  
harmonic oscillator as a prototype model. Apart from the PDE model, Nicolis 
and Prigogine also treat the Markov jump model. 

As an alternative to the Markov jump approach, Dawson [2] proposed the 
following stochastic model in the well-stirred case: 

d X  (t) = (a - ( b  + 1) X (t) + X 2 (t) Y(t)) d t  + g,  ( X  (t)) d W 1 (t) 
(2) 

d r ( t )  = (b X ( t )  - X 2  (t) Y(t)) d t + g2 (r( t ) )  d W 2 (t). 

Here W 1 and W 2 are independent Wiener processes. To include the spatial 
distribution in the non-well-stirred case without having to study stochastic 
PDEs Dawson suggested the following model 

d Xi,  N (t) = (a - (b + l) Xi ,  N (t) + X~  N (t) Yi, N (t)) d t + g l (Xi,  N (t)) d W1, ~ (t) 

) +D1 ~ 2 ~  Y~ X~,N(O--Xi, N(t) dt 
j = l  

J*i (3) 
d Y~, N (t) = (b X,, N (t) - X~ u (t) Yi, N (t)) d t + g2 (Y~, u (t)) d W2, ~ (t) 

+ D 2  Z YJ, N(t)--Yj ,  N(t) dt,  i----1 . . . . .  N 
j = i  
j # i  

where Xi, N and Y~,N denote the concentration of X and Y in the i-th out of N 
cells (small volumes), D 1 and D 2 are nonnegative constants modelling the 
diffusion between different cells and Wl,i, W2,~, i =  1, .. . ,  N are independent 
Wiener processes. Here it is assumed that the proport ion of molecules leaving 
cell i per time unit is proport ional  to the number of molecules in that cell and 
that they distribute equally over all other cells. We want to point out that this 
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last assumption is a rather crude approximation in general, but it seems to be 
the more realistic the more nearest neighbors a fixed cell has i.e. the higher the 
dimension of the state space. 

In this paper we study Eq. (3) in the limit NToo (called the mean-field limit 
or McKean-Vlasov limit). First we will establish a "propagation of chaos" 
result for (3) i.e. if (Xi(O), Y/(0)) i=  1, 2 . . . .  are i.i.d, IR2-valued random variables 
with 5s Y/(0))=#, (•  denoting the law), then for any fixed k (X1,N(~ 
Y1,N(')), . . . ,  (Xk, N('), Yk, N(')) converge in law in the space of probability mea- 
sures on C([0, oo), IR 2k) to k independent copies of the unique process (X(.), 
Y(.)) satisfying the equation 

d X (t) = (a - (b + 1) X (t) + X 2 (t) Y(O) d t + g 1 (X  (t)) d W t (t)+ D t ( E X  (t) - X (t)) dt 

d Y(t) = (bX(t)  - X 2 (t) Y(t)) dt  + gz(Y(t)) d Wz(t) + Dz(EY(t)  - Y(t)) dt (4) 

~e(x(0) ,  Y(0)) = #. 

Equation (4) is called "nonlinear" because (contrary to (3)) the corresponding 
Fokker-Planck equation is a nonlinear PDE. A number of propagation of 
chaos results have been proved in the literature [3, 11, 13, 19-21], but none of 
them covers Eq. (3). It turns out however that Sznitman's method can be 
extended to prove the result in our case. The hardest part of the proof is the 
pathwise uniqueness of the solution of Eq. (4) for which we require certain 
assumptions on the functions gl and g2 as well as on the tails of the initial 
distribution #. This is not too surprising since a number of nonlinear equations 
with coefficients satisfying a local but not a global Lipschitz condition have 
been shown to have more than one solution [17]. 

Theorem 3.4 states the main result: under certain assumptions on gl, g:,  
D 1, D 2, a and b there exists an initial law # such that the law of the solution 
(X(t),  Y(t)) of (4) is strictly periodic in t. This shows that chemical reactors 
interacting according to Eq. (3) are capable of cooperative behavior in the limit 
N--~ 0% whereas it is known that for finite N (3) can never have a periodic law 
as long as gl and g2 are nondegenerate on (0, oo) [6]. Simple examples of 
periodic behavior of nonlinear diffusions can be found in [16]. Writing a factor 
e > 0  before the functions gl and g2 in (4), we study the limiting behavior of the 
periodic solutions as e~0. We identify the limit as the deterministic periodic 
solution and establish a central limit theorem for the fluctuations. This shows 
that the Brusselator is a physically motivated example, where noise and peri- 
odic behavior are simultaneously present. Even though the model treated here 
is a particular example, it seems that most of the results are true and can be 
proved in a similar way for a large class of two-dimensional systems for which 
the ODE has a stable limit cycle. Furthermore for the Brusselator, all proofs 

[g l (X( t ) )dWl( t )~  is replaced by G(X(t),  go through if the noise term \gz (Y( t ) )dW2( t ) ]  (dwl(tl  
Y(O) \dW2(t)] provided the Matrix G satisfies a Lipschitz condition and suit- 

able boundary conditions and G is bounded. 
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2. Propagation of Chaos 

Throughout  the paper we will assume the following: a and b are (strictly) 
positive constants, gl and g2 satisfy a Lipschitz condit ion with constant  K, g2 
is bounded, 

gl(0) = g2(0)=0, DI, D 2 =>0. 

Theorem 2.1. Let # be a probability measure on [0, oe) x [0, oe) such that 

~Sx4d#(x,y)<o�9 and S~exp(Ty2)dp(x ,y)<oe forsome 7>0.  

a) For every N > 2 ,  N e N  (3) has a unique strong solution with initial law 
#| This solution is global (i.e. exists for all t >O) and concentrated on ([0, oo) 
x E0, oo)) ~. 

b) Equation (4) has a unique (pathwise and in law) nonnegative solution 

(X (t), Y(t)) satisfying ~ (X (0), Y(0)) = # and ~ E X  (s) + g Y(s) d s < oo for all t > O. 
0 

c) (Propagation of chaos.) For every k e N  

((X~,N('), Y~,N(')) . . . .  , (Xk, N('), Yk, N('))) 

converge in law to k independent copies of solutions of Eq. (4) as N ~  in the 
space of probability measures on C([0, oo), lR2k). 

Proof. a) Since the drift and diffusion coefficients are locally Lipschitz con- 
t inuous there exists a unique strong local solution of (3). We show that  it is in 
fact global i.e. cannot  explode in finite time. 

satisfies 
z,, N(t): = x, ,  ~(t) + Y~, ~(t) 

N 

j , i  

(__ 1 N \ \  

\ N - 1  j=l  ' 
j * i  

+ g l (Xi, N (t)) d WI, i (t) + g2 (Y~, N (t)) d W2, ,(t). 

For  m e n  define fro: ~ 2 ~  [-0, o0) by 

=~x2y  if Ixl, lyl<m 
fm(X'Y) [bounded,  Lipschitz, nonnegative otherwise 

and gi, m (i = 1, 2) by 

~gi(x) O < x < m  

gi, m(X)= [bounded,  Lipschitz otherwise 

and let (m) (m) (Xi, N(t ), Y~,N(t)) denote the unique global (see [lJ) solution of (3) with 
the terms X~ N(t) IT//, N(t) replaced by f,,(Xi, N(t), Yi, N(t)) and gi replaced by gi, m (i 
= 1, 2). It is easy to see that  one can approximate a Y(m) v(,~)~ i =  1, N) by k ~ , ~ i , N '  ~i, NI~ "'" 
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a sequence of Markov chains with state space [0, s 2N which satisfy the 
assumptions of Theorem 11.2.3 in [18]: let the initial distribution of the 
Markov chain be #| and the transition probabilities rCh(Z, "), h>0,  z~[0, or) 2~ 

<_1 be the product of 2N uniform distributions with mean z for IkzH= h 

+h .Dr i f t ( z )  and variance hg2(zi) for i odd and hg2(zl) for i even unless this 
would lead to jumps out of [0, oo) 2N with positive probability in which case 
one makes a jump to zero in the corresponding component. Furthermore, for 

1 
all IIz[I >~  define nh(z, . )=e  z (unit mass in z). Theorem 11.2.3 in [18] says that 

the law of the (linearly interpolated and time-scaled) Markov chains converge 
to the solution of the martingale problem associated with the diffusion t~i,~v(m)N, 
Yz (m)~ Hence P{XI~.)N(t)>O, Y~(,~(t)>O for all t > 0 } = l .  It is well-known [10] ,N ] "  , - -  - -  - -  
that the forth moments of y(m) and y(m) exist and are bounded on finite ~ i , N  i,N 
intervals and hence sup (Zl~,~(t))4< co for every T > 0 .  Using (5) with an index 

O<_t<_T 
m attached to all variables and applying It6's formula, we get 

F4Zly (t)V E(Zl7 (O)) + 2 i aEZi, N(s) 
0 

§  E EZI~,)N(s) (.0 - -  Z j ,  N (S)  ds 
j = l  
j # i  

t 
2 (m) 2 fin) 

-~ ~ E ( g  1 ( X i ,  N(S)) 4- g2 (Yii, N (S)))  ds. 
0 

Due to the fact that the law of (m) (,,) Y~, N (t)) symmetric i = 1 . . . .  , N (Xi, N(t), is w.r.t. 
we have 

E(Z]~,)N(t))2 < E (Z(lm)N (0)) 2 + 2 i a(1 + E(z]m,)N(s))2 ) 
0 

§ I +D  2 + K 2) E(Z(I~,)N(S)) 2 ds. 

Applying the Lemma of Bellman and Gronwall (see e.g. [1]) we get 

E(Z(I~)~(t)) 2 <= E(Z(~,)~(O)) 2 + 2a t 

+ 2(a + D1 + D2 q- K2) i e2(a+D' +D2+ K2)(t-S)(E(Z(im)N(O))Z + 2as) ds. 
0 

Since E(Z(I~N(O))2=EZ~ N(0) and (X (m) ('~ Y ~ ( ' ) )  converge weakly to 
(Xi,N('), Y1,N(')) as m ~ o o  [18] it follows from Fatou's lemma that 

sup sup E(Z1,N(t))2<oo for all T > 0  (6) 
N>=2 0<_t<T 

and also that P{Xi, N(t)>0, Yi, N(t)>0 for all t > 0 } = l  proving part a) of the 
theorem. 

b) Existence of a solution of (4) will follow from the proof of c), so we only 
show uniqueness. A similar problem has been treated in [5], but the results do 
not cover Eq. (4). 
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and EY(t) replaced by a(t) and 
gl(X(t)), where, for ~ > 0  

T 

Let (X(t), Y(t)), t>O be any nonnegative solution of (4) satisfying ~EX(s) 
0 

+EY(s)ds<ov  for all T > 0  (otherwise (4) does not make sense), let a(t): 
=EX(t)  and b(t)==EY(t) and let (X(~), Y(~)) be the solution of (4) with EX(t) 

b(t) respectively and with h~(gl(X(t)) ) instead of 

Define 

and 

h=(x): = {x Ixl ~c~ > , xelR. 
I x l - ~  

z(t): = x( t )  + g(t) 

z ( A t ) . -  = x(,)(t) + ~At) .  

P{X(~)(t)>O, Y(~)(t)>0} follows as in the proof of part a). Then 

Z(~)(t) = Z(O) + a t - } X(~)(s) ds 
0 

+ D, } a (s)-  X(~)(s)ds + D 2 } b (s)-  Y(~)(s)ds 
0 0 

+ i ha (g~ (X= (s)))d W~ (s)+ i g2 (Y(~)(s))d W 2 (s) 
0 0 

t t 

EZ(~) (t) < EZ (0) + a t + D ~ ~ a (s) d s + D2 S b (s) ds, 
0 0 

so sup sup EZ(~)(t)< co and hence 
e > O  O < t < = T  

EZ(~)(t) + D 1 i EX(~)(s) ds + D 2 i EY(~)(s) ds 
4 

0 0 

t t 

< EZ(O) + a t+ D t ~ E X  (s) d s + D2 ~ E Y(s) d s. 
0 0 

Since, for c ~ o o ,  (X~('), Y~(-)) converge in law to (X(.), Y(.)) in the space of 
probability measures on C([0, oe), IR 2) according to [18], Theorem 11.1.4, it 
follows from Fatou's lemma (or dominated convergence) that EZ(t)<EZ(O) 
+at. 

For the pathwise uniqueness proof it suffices to show that there exists some 
e > 0  and some 9 > 0  such that 

sup Eexp(~y2(t))<oe and sup EZ4(t)<oo (7) 
O < t < l  O < t _ < l  

for all solutions of (4) and that the solution is pathwise unique on [0, el '  
Define "c as the supremum over all t such that the solution is pathwise unique 
on [0, t]. Since the sample paths are continuous, pathwise uniqueness holds on 
[0, z]. Assuming �9 < 1, ~(X(z) ,  Y(~)) satisfies the assumptions on the initial law 
in the theorem (once we have shown (7)) under which we will prove pathwise 
uniqueness on [z, ~ + dl  which is a contradiction. By iteration we get pathwise 
uniqueness on [0, oo). 

and 
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Step 1. First we show that there exists some ~ > 0 such that 

sup E exp (9 y2(0) < 
0 < t = < l  

uniformly for all solutions of (4). Theorem 4.7 in [10] states this result for 
onedimensional diffusions with linearly bounded drift and bounded diffusion 
coefficient. Although the drift of Y is 

b X  (t) - X 2 (t) r(t)  + D 2 (E Y(t) - r(t)) 

b 2 b 2 

b 2 
< 4 Y(t) + D 2 (EZ (0) + a t) 

which is unbounded near 0 and even though the drift of Y depends not only on 
Y, almost the same proof as Liptser-Shiryayev's works here. Applying It6's 
formula to Y" we get 

t 

Y"(t) = Y"(O) + ~ n Y " -  l(s)(bX(s) - X 2 ( s )  Y(s)+ D 2 ( E Y ( s ) -  Y(s))) ds 
0 

t i + ~ n Y"-I  (s) g2 (Y(s)) d W 2 (s) + n (n - 1) Y"-  2 g ~ (y(s)) d s. 
o 2 o 

Defining %:=inf{t=>0: Z(t)=>~}, B.-=supg2(y) and 
y > 0  

Y(~' n)(t): = Yn(t A %) 
we get 

t^ ~= b 2 + ~S)t EY(~"O(t)<=Eyn(o)+ E ! n y " -  I(s) ( 4 y ~ +  D2(EZ(O) ds 
/ 

n ( n - 1 ) B  t ^~  
-~ 2 E ~ Y"-Z(s)ds.  

0 

Assuming, by introduction, sup EYk( t )<oe  for all l<_k<_n-1 and using 
O_<t~<l 

Fatou's lemma for c ~ o e ,  we get sup EY"( t )< oe and 
O_<t_<l 

E y 2 " ( t ) < E y 2 " ( O ) + 2 n y E y 2 " - * ( s )  4~-~+D2(EZ(O)+a)  ds 
0 

t 

+ Bn(2n - 1) ~ E Y  2"- 2(S) ds. 
0 

Defining / s  B + ~ }  , D2(EZ(O)+a ) and using Yz"-~<=Y2"+l it 

follows that (for n__> 1) 
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Ey2"(t)  < EY2"(O) + 2nIs + 4nIs ~ EYZ"(s) ds + g z n(2n - 1) j" E Y  z ' -  2 (s) ds 
0 0 

which is Eq. (4.142) in [10]. The rest of the proof of Step 1 (comparing the 
moments EYZ"(t) with the moments of the solution of 

d Y(t) = 2K-. Y(t) d t + K d W(t)) 

is exactly the same as that of Theorem 4.7 in [10-1 and is therefore omitted. 

Step 2. We show that sup E z g ( t ) <  oo uniformly for all solutions of (4). Let 
0 < t < l  

X(t) ,  Y(t) be any solution of (4). As before, let z~ :=inf{ t>0:  Z(t)>c@ Then, 
for i=2,  3,4 and 0<_t<_l 

t 
Z'  (t) = Z i (0) + i S z i -  1 (s) (a - X (s) + D 1 (EX  (s) - X (s)) + D 2 (E Y(s) - Y(s))) d s 

0 
t t 

+ ~ i Z i -  1 (s) g l ( X  (s)) d W 1 (s) + S i Z i  - t(S) g2  (Y( s ) )  d W 2 (s) 
o o 

t 

+�89 - 1) ~ z'-~(s)(g~(X(s))+ g~(r(s))) d~ 
0 

and, for Z(~' i) ,=Zi(tAz~),  and assuming sup EZk(s)<oo for all k < i - 1  by 
induction o -<s_< t 

t 

E Z  (~' ~)(t) <-_ EZi(0) + 4 ~ E Z  ~- l(s)(a + (D 1 + D 2)(EZ(O) + a)) ds 
0 

+ 6KZ i EZ("  i)(s) ds 
0 

due to the general assumptions stated at the beginning of this section. Using 
Gronwall's lemma and then Fatou's lemma for c ~  oe, it follows by induction 
over i that 

sup EZ4( t )<  oo. 
O__<t<l 

Step 3. Let us now prove pathwise uniqueness on some interval [0, 5] with 
0 < 5 < 1 .  Let (X(0, Y(t)) and (3?(0, l?(t)) be two solutions of (4) on the same 
probability space with the same initial condition. We already proved that 

sup ( E X  4 (t) + E y4 (t) + EX 4 (t) + E ~4 (t)) < oo. 
O < t < l  

Let c(s): = E Y(s) - E Y (s), 

d ( s ) : = E X ( s ) - E X ( s ) ,  X ( s ) = X ( s ) - X ( s ) ,  Y(s)= Y ( s ) -  f'(s) 

and Z ( s ) = Z ( s ) - Z ( s ) .  Unfortunately the usual proof via Gronwall's lemma 
cannot be employed here due to the lack of a global Lipschitz constant. 
Instead we will formulate and use a "nonlinear" Gronwalltype estimate. 
Applying It6's formula we get 
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So 

N o w  

d ~2 (t) = 2 Y(t) d Y(t) + (g2 (Y(t)) - g2 ( g ( t ) ) )  2 d t 

= 2 ~Y(t)(b X (t) + X2( t )  r  X2( t )  Y(t)) d t  

+ 2 Iz(t) (g2 (Y(t)) - g 2 (I?(t))) d W 2 (t) 

+ 2 ]z(t)(D2 c(t) - D  2 Iz(t)) d t  

+ ( g 2 ( Y ( t ) ) -  g2 (I?(t))) 2 dt. 

t t 
E ~72 (t) ~ b ~ Ez1~ 2 (s) + E ~2 (s) d s + 2 j E Y(s)(z~ 2 (s) ]~(s) - X 2 (s) Y(s)) d s 

o o 

i ' t + 2 D 2  c 2 ( s l d s - z D ~  S eY2(s)  d s + K  ~ j E ~  ~(s) ds. 
0 0 0 

c~(s) <__E~(s) 
and  the re fo re  

t 

E ~2 (t) ____ (b +/<2)  i E2~2 (s) + E ~2 (s) ds + 2 j E ~ ( s ) (2  2 (s) ?(s) - X 2 (s) g(s)) ds. 
o o 

N o w  for  x, 2, y, y > 0 

(y _ y)(~2 y _x~ y) = (y _y)  [ _(y  _y)  x 2 + 2(~ - x )  xy + (~ - x )  2 Y] 

= - ( y - y ) ~ -  x -  . y + ( ~ - x ) ~ y y  
y - y  

< (2 - x) 2 '  M 2, 

whe re  M : =  m a x  {y, 9}- H e n c e  

t t 
E Y  2 (t) <= (b + K 2) ~ E X  2 (s) + E Y  2 (s) ds + 2 ~ E X  2 (s) M 2 (s) ds, 

o o 

where  M ( s ) =  m a x  {Y(s), I?(s)}. F u r t h e r m o r e  

d,y2 ( t )  = 2 2 (t) [ - )2 (t) d t + (gl (X (t)) - g l ()~ (t))) d W i (t) 

2f_ ( g 2 ( y ( t ) )  _ g2  (]~(t)))  d W2( t  ) 

+ (D 1 d (0 + D2 c ( t ) -  D 1 2 (t) - D2 Y(t)) d t] 

+ [(gl  (X( t ) )  - g 2  (fl((t))) 2 + (g2 (Y(t)) - g(Y(t))) 2] dt. 
T h e r e f o r e  

E z  2 (t) = - 2 E ~  2 (s) ds - 2 J E) ( s )  2(s) ds 
o o 

t t 

+2D1~ d 2(s) ds+2(Dl +D9 ~ d(s) c(s) d~ 
0 0 

t t 

+2D2 S c2(s) d~ - 2 D 1  ~ E ~ 2  (~) ds - 2 ( D  1 + D 9  i E2~(s) Y(~) ds 
o o o 
t t 

-2D2 J E~2(s) ds + K 2 J EX2(s)+ EY~(s) ds 
0 0 

t 
=< ( -- 1 + 2D 1 + 2D 2 + K 2) j" E~7 2 (s) ds + (1 + 2D 1 + 2D2 + K2) } E ~2 (s) ds. 

0 0 
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Denoting 

we have 
D (s): = E.X 2 (s) + E Y2 (s) 

D (t) = e (2 ( t )  - ~'(t)) 2 + E ~2 (t) = 2EZ 2(t) + 3 E ~zz (t) 
t t 

< ~c i ~ D(s) ds + 6 ~ EM2(s) Jf2(s) ds 
0 0 

where tct = 2 4- 4D 1 § 4D2 + 5 K2 + 3 b. 
1 

For n > 0  define q = l + -  and p = n + l .  Then -1+-1=1. Using HiSlder's in- 
n p q 

equality twice yields for s =<_ 1 

EM2 (s) Jr2 (s) = E M 2 (s) g~2(q - 1)lq(s ) x 2/q(s) 
< (EM2.(s) f2  (s))llp(e~2(s))llq 
_-<(EMep(s) ) I /2p(E. , ,y4(s) ) I /2p(EX2(s) ) I /q  

<='~2 %(EX ~(s)) 1/~ 
where 

t%: = s u p  (E.X4) 1/2 + 1 < 0(7) and C~p:= s u p  ( E M 4 p ( s ) )  1/2p. 
0_<s_<l O_<s_<l 

We need the following lemma, the proof of which is similar to that of 
Gronwall's lemma (see e.g. [10], Lemma 4.15). 

Lemma. Let 1 > m > 0, A > 0, T > 0 and f:  [0, T] -+ N. be a nonnegative con- 
tinuous function satisfying 

t 

f ( t ) < A ~ f m ( s ) d s  for all 
0 

Then f ( t )  < [A (1 - m) t] 1/(1 - m) on [0, T]. 

t 
Proof. Define z( t)= ~ fro(S) ds. Then 

0 

dz(t) 
=fm(t)<(Az(t))m, 

dt  

te[0,  T]. 

~(o)=o. 

Let v(.) be the maximal solution (because of nonuniqueness at 0) of 

dr(t) 
at -(A~(t))m' v(O)=O. 

Then for all te l0 ,  T] 

which implies 

z ( t )  < v( t)  = ( ( 1  - m) A m 01/(1-m) 

(dz(t)]l/m~Az(t)~Av(t)= [A(1 -m)  t] '7(1- m) 
f ( t ) =  \ dt ] 

(8) 

which proves the lemma. 
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We proved for t6[0, 1] 

D(t)<~q D(s) ds+6~c 2 c~p5 (D(s)) n~-I ds. 
o o 

D(') is continuous since the forth moments of Z and Z are bounded on [0, 1]. 
Choosing l>_e l>0  such that D( s )< l  for se[0, el] and applying the lemma 

with m = - -  we get 
n + l  

[ n + l  1 ] "+~ O<O(t)< 0 c 1 + 6 ~ c 2 % + 1 ) ~ t  for 0 - - < t ~  1. 

Obviously there exists some e~ ~----B2 ) ' 0  and a sequence (nk)k~ N- k-~ ~ o O  such that 

the upper bound converges to 0 as n k ~ oo uniformly in t~ [0, 22] iff 

lim inf ~cl + 6 t r  ~n+ 1 < o(3. 
,,--, ~ n + l  

This is true exactly if 

l iminfn -1 sup (EM2"(s))a/"< oo. 
n-+O0 0 ~ ; ~  ~; 2 

Under the assumptions of the theorem, using Chebychev's inequality, for 
s~F0, s 2] 

P{M(s)> 6} <P{Y(s)>6} + P {l?(s)> 6} <~c 3 e -~~ 
where 

~3 = sup E exp (~y2(t)) + sup E exp (~Y2(t)) < oo. 
re[O, ~21 tel0, e2] 

Hence for n e N  

1 (EM(s)Zn)I/. =1_ 
n n 

1 < _  
-~n 

1 

n 

1 

tl 

( i  P{M(s)2n>=6} d S f  ~" 

o3 

t ~c3 ~ e-~Xnx"-~ dx 
\ 0 

(~:3 n! ?-.)1/. 

which is bounded since n!<n" for heN.  So we have proved pathwise unique- 
ness on [0, z2] and hence on [0, oo). 

Step 4. Let us show that pathwise uniqueness implies uniqueness in law. Let 
X(t), Y(t) be a solution of (4) on some probability space and denote a(t): 
=EX(t), b(t): =EY(t). Since the coefficients are locally Lipschitz continuous it 
follows that the solution is strong i.e. it is measurable w.r.t, the filtration 
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generated by the Wiener process. The results of Yamada and Watanabe [24] 
show that (X(t),~Y(t)) is the only weak solution of (4) satisfying EX(t)= a(t) and 
EY(t)=b(t). If (X, Y) is a solution on some other space with EX(t)=5(t), EY(t) 
= S(t), then it is also a strong solution which can be realized on the same space 
as (X, Y). It follows from Step 3 that a(t)=gt(t) and b(t)=~(t) and therefore 
uniqueness in law. 

1 
c) For the solution Xi, u, Yi, N of Eq. (3), let us study ~ ~ex~,N(.),~,~(. ) 

i= =1 
which we look upon as a random element of the space M:=M(C([O, oo), IR2)) 
of probability measures on the space C([0, oQ),N2+) equipped with the to- 
pology induced by the metric 

sup [f(t)-g(t)l 
1 0~t=<n 

P(f' g)=,~=1 2--; 1 + sup If(t) --g(t)[ 
O<~t<~n 

which makes C([0, m), IRZ+) and hence M (in a canonical way) a Polish space. 
Here e, denotes the measure 

ea(A)={~ aEA 
otherwise. 

Let PN denote the law of ex,,~,(.),y,,z,(.). So PN is a probability measure on 
the space M. z= 

Step I. {PN, N e N ,  N>2}  is relatively compact. Due to Lemma 3.2 in [19] and 
the remark following it, it is enough to show that (/sN:=~(X1, N, Y~,N))N=2, 3 .... 
is a tight family of probability measures on C([0, oe), N~+). Since 5e(X~,u(0), 
Y,,N(0))=p is independent of N it remains to show [18, Theorem 1.3.2] that 
for every T > 0 and p > 0 

lim sup/SN{ sup iX(t)-X(s)l+lY(t)-g(s)l>p}=O. 
bJ, O N>~2 O<=s<t<T 

t--s<6 
Define 

2N(t):=- ~X~,N(t ), YN(t):----~ Y~,N(t) and 2N(t):=f;N(t)+YN(t ). 
i=1 i=1 

To get estimates on the tails of sup ZN(t) let us show that 
O<_t<T 

t 
2~(t) + ~ 2~(s) ds 

0 

is a submartingale. Obviously 

t t 1 N 
ZN(t) = ZN(O) + ~a--XN(S)dS+o ! N i=~=1 g l ( x i ' N ( s ) ) d W l ' i ( s )  

-}-! N i = l t  1 ~ g2(Yi, N ( S ) ) d W  2,i(S) �9 



Periodic Behavior of the Stochastic Brusselator 437 

Since the second moments of the integrands of the stochastic integrals are 
bounded on [0, T] it follows that 

is a martingale and hence 

t 

2 N (t) - ZN (0) -- ~ a -- JfN (s) d s 
0 

2~(t) + i 2~(s) ds 
0 

is a nonnegative submartingale. The submartingale inequality [18] yields for 
c~>0 

PN{ sup ZN(~7)>-~} <~ P N t s u p  (ZN(t)+ i ZN(S) ds)>@ 
0 <~t<~T ( 0  <-t<-T 0 

<- E N(T)+ ~ 2u(s)ds 
0r 0 

where the last expression is independent of N. Furthermore 

ZI, N(t)_Z1,N(0)_ a_X1,N(s)+D1 1 ~ Xi, N(s)_Xl,~(s ) 
0 i=2 

+D2 ~, Yi, N(S)-- Y1,N(S) ds 
i=2 

is a martingale which implies that 

t 

Zl,N(t)-}- (1 + D  1 + D 2 )  5 Z1,N(S ) K s  
0 

is a nonnegative submartingale. As before it follows that 

Pu{ sup Z , ,N( t )>e  } 
O<_t<_T 

<=- (I+ T(I+D~ +D2))EZ 1 x(0)+a (I+DI +D2) . 
O~ 

So we have shown that for every T > 0 

and 

Define 

lim sup Pu{ sup 2N(t)>o~}=O 
~Too N>2 O < t < T  

lim sup PN{ sup Z1,N(t)>r162 } =0. 
~*?c~ N > 2  O<=t<T 

z~,N:=inf{t>01ZN(t)>a or Zl,u(t)>=ot} 

(9) 

(10) 



438 M. Scheutzow 

and ~ , u = o o  if such a t fails to exist. Obviously for any T > 0 ,  p >0 ,  6 > 0  and 
c~>0 

PN{ sup [X(t)-X(s)I+IY(t)-Y(s)[>pI<PN{z~,N<T} 
O<_s<t<_T 

t - - s < ~  

+PN{ sup IX1,N(t/x~,N)--X~,N(SAZ~,N) I 
O<_s<t<=T 

t--s<gJ 

+l Y,, N(t A ~ , ~ ) -  zq, ~(s A ~=, N)I >p}. 

Let ~>0  be given. Due to (9) and (10) we can choose some cr such that 

P{r~,N<T}< 2 for all N=>2. So it suffices to prove that the laws of the 

processes (X1, N(t/x %, N), Y1, N(t f "Ca, N)) are tight, but this follows immediately 
from Theorem 1.4.6 in [-18] since the drift and diffusion coefficients of the 
stopped processes are uniformly bounded for all N > 2. 

Step 2. Since (PN)N> 2 is a tight sequence of probability measures on M it has a 
limit point P~o on M. We show that there exists a set M c M such that Po~ (34) 
--1 and every me)~  solves the (nonlinear) martingale problem associated with 
Eq. (4). Since we already proved pathwise uniqueness and uniqueness in law, it 
follows that M has exactly one element [,18, Corollary 8.1.6]. The idea of the 
proof is taken from [-20], but it requires some modification because our 
assumptions are different. 

Let feC~(lR2), p e n  and gl .... ,gv be continuous and bounded functions 
from IR 2 to IR and let O<=sp<...<sl<s<t. Define 

Mo: = {meM: sup S x(co, u)+ y(oo, u)dm(co)< oo} 
O<_u<t 

and for meM o 

V(m): = Ira, (f(x(t), y(t))-f(x(s), y(s)) 

' ) -~  ~ Lf(x( ' ,  u), y(' ,  u), x(co, u), y(co, u))m(dco)du 
s 

j = l  

where 

Of Lf(x, y, x', y')=~x (x, y)(a-  (b + 1)x + x2y + D 1 (x '-x))  

a2f (x, y) 

1 2 azf +~ g2(y) --ay 2 (x, y). 

Let (Nk) k= 1,2 .... be a sequence such that P, -------, P~ weakly. Obviously F 2 < oo Nk k~ 

on M o and the PN~ are concentrated on the set M o. Also Po~ (Mo)= 1 due to (9). 
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Defining 
Nk 

- 1 Nk - 1 ~ y/,N~(U) 
X ( u ) = ~  i:12 Xi, N+(u) and Y(u) - -~  i : l  

it follows that 

-~ Lf(Xi(u), g(u), ~(u), ~(u))du gj(X~(s), ~%)) 
s j = l  

X k  i = 1  

P 

- - ~ L f ( X l ( U ) ,  Yx(u),)((u), Y(ul)du ~j(XI(sj) , Yl(sj)) . 
s j = l  

The last (quadratic) term is o(1) as k-* oo. Furthermore, for 1 <_i<N k 

Hi(z)" = f (Xi(z), Yii(r)) - f  (Xi(O), Yi(0)) - i L f (Xi(u), Yi(u), X (u), Y (u)) du 
0 

Of 1 2 Xj(u) 
+ o ~x (Xi(u)' Y~(u))D: X(u) Nk--1 j=l 

j :# i 

j = l  
j * i  

are P~ -martingales and (H  i, H j ) = 0  for i # j .  Using 

1 Nk 1 

(the corresponding equality holds for Y too) and the fact that the second 
moments EN~(X(u)+ Y(u)) 2 and EN~(X~(u)+Y~(u)) z are bounded on [0, t] uni- 
formly for all N__> 2 (see (6)) it follows that 

lim y F2(m)dPNk(m)=O. 
k~oo MO 

We want to show that ~ F2(m)dP~o(m)=O. This does not follow directly since F 
i 

is neither bounded nor continuous on M o. For ~ > 0 define h,: [0, 0o)--, R by 
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and F~(m) like F(m) but with x' and y' replaced by h~(x') and ha(y' ) respectively 
in the definition of Lf. Note that F~ is bounded and continuous on M. We will 
proceed as follows: 

(i) lim S F2(m)dPNk(m)=O 
k ~ o o  M o  

(ii) lim supl ~ Fd(m)dPNk(m) - ~ Fa(m)dPNk(m)l=O 
a ~  oo k M o  M o  

(iii) lim ~ F2(m)dPNk(m)= ~ FZ(m)dP~(m) 
k-* oo M M 

(iv) lim ~ F~ (m) dPo~ (m) >__ ~ F 2 (m) dPo~ (m). 
a ~ o o  M M 

We already proved (i). (iii) follows from the definition of weak convergence. 
Note that for m e m  o 

F~(m)=F(m)+ m, i ~ ~x (x(.,u),y(',u)) 
s 

~f 
�9 Dl(x(co, u) -h~(x(o9, u))) + ~ v  v (x(', u), y( ' ,  u)) 

�9 D2(Y(CO, u) -h~(y(co, u))) din(co) du[ I  ~,j(x(', s j), y(', s j)) 
j = l  

which implies (iv) due to Fatou's lemma. 
A calculation similar to the one before shows (ii) provided one is able to 

prove that 
lim sup supENk(Xl(u)-h~(Xl(u)))2=O 

~ o o  O < u < t  k 

and the corresponding result for Y1 (all other required estimates reduce to 
these if one exploits the symmetry of the law and HSlder's inequality). To show 
this, note that sup sup EZ41,N(u)<oo which we did not prove, but which 

N > 2  0 < _ u < t  

follows in the same way as the corresponding result for the second moment in 
the proof of part a) of the theorem if, in addition, one employs a stopping 
argument like in Step 2 of the proof of part b). Then 

x (u) 
E (X 1 (u) - h a (X 1 (u))) 2 < E ~ (X 1 (u) - -  h E (X 1 (u))) 2 < ~ EX~ (u) 

which proves (ii). 
(i)-(iii) imply 

lira ~ F2(m)dP~(m)=O. 
c t ~  M 

So (iv) gives S F2(m) dPoo(m) =0 and hence F(m)=0 Poo-a.s. 
M 

Note that Poo-a.s. the projection of m at t = 0  is equal to /~ by the law of 
large numbers. Therefore P~-a.a. m solve the nonlinear martingale problem 
associated with (4). By Lemma 3.1 in [19J this implies propagation of chaos 
and so part c) is proved�9 [] 
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Remark. The theorem remains true if the initial laws PN of (3) are not nec- 
essarily p| but only assumed to be symmetric and "g-chaotic" i.e. 

k 

i=1 

for all q51, ..., r OO) X [0, o0)) and if the marginals p(U)satisfy the mo- 
ment conditions of Theorem 2.1 uniformly in N. Note that the only place we 
made use of the independence was the very last part of the proof, which is 
obviously true for symmetric and p-chaotic initial conditions PN- 

3. Periodic Behavior of  the Brusselator 

Our next aim is to show that (4) has a strictly periodic law in t if a2< b - 1  (in 
this case Eq. (1) has a stable limit cycle) for a suitable initial law p*. The main 
idea of the proof will be an application of Tihonov's fixed point theorem. For 
this we have to find a suitable weakly compact subset dA( of the probability 
measures on [0, 0@ 2 such that for any solution (X(t), g(t)) of (4), 2,e(X(0), 
Y(0))~J~ implies 2~(X(t), Y(t))~dg for certain t > 0  to be defined later. This 
requires uniform estimates of the moments of the solution of (4) which will be 
established in the following lemmas. We will always assume that initial laws p 
satisfy the moment conditions stated in Theorem 2.1. 

Lemma 3.1. Fix T>0 ,  c>0,  ~>0, wt_>0, W 2 ~ 0  and define 

where 

and 

2 ( 0 : =  g(X(t)) + Y(t) 

M : = g + a T + I  

[ M O < x < M - 1  

g(x):= ~x x > M + l 

~arbitrary otherwise, but such that g~C2[O, oo) and 0<dg_< l .  
- d x  - 

Then for all n~N 

M , : =  sup _sup sup sup sup EZ"(t)< oo. 
EZ(O)<6 EZn(O)<c DI>O wlDl+w2>=D2>O O_<t<-T 

Proof By It6's lemma, for 0 < t < T 

dZ"(t) = nZ"- 1 (t)(d Y(t) + g'(X(t)) dX(t) + lg"(X(t)) g~ (X (t)) dr) 

+�89 2"-2(t)(g22(Y(t))+g'(X(t)) 2 gZ(X(t))) dr. 

Assume EZ"(O)<c and EZ(O)<& 
Let zl~): = i n f { t > 0 :  2( t)>~} and let 

{01 if s u p 2 ( s ) > ~  
l~(t): = o-<~-<t 

otherwise 
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and 
2~(t),= 2(t A ~). 

Then 

- "  -"  - "  o f E l ~ ( s ) 2 " - l (  s ) E l ~ ( t ) Z  ( t )<EZ(~) ( t )=EZ (0)+n 
0 

�9 [bX(s)  -XZ(s) Y ( s ) + D z ( E Y ( s  ) - Y(s))+ g'(X(s))(a - ( b  + 1) X(s)  

+ X 2 (s) Y(s) + D 1 (EX(s) - X(s))) + �89 g~ (X (s))] ds 
t 

+�89  (11) 
o 

Case 1. DI >= D2. 
Substituting D2 (E Y(s) - Y(s)) by - D2 2(s) + D 2 g (X (s)) + D2 E Y(s) we get 

t t 

E 1,(t) 2" (0  = E2"(O) - n D  2 ~ E l~(s) Z"(s) ds + ~ R(s) ds +R o( t  ) (12) 
0 0 

where all remaining terms and the (negative) difference of the right and the left 
hand side of (11) are collected in the functions R and R o respectively. Solving 
this integral equation and assuming M n_ ~ < ~ by induction (note that M 1 = M  
+ g + a T )  we get 

El~(t) 2~(t)__<e -D2"' E2~(0)+ ~ R(s) e ~ . . . .  ds 
0 

t 

< EZ~(0) + ~ (c 1 D 2 + c2) e -D2(t-~) ds 
0 

t 

+ n ( n -  1) K 2 ~ El~(s) Z"(s) e -Dz"(t-s) ds 
0 

t 

< c + c l  + c 2 T +  n ( n -  1) K 2 ~ El~(s) 2~(s) ds 
/ I  0 

where c~ and c 2 are constants not depending on D i, D 2 and N but possibly 
depending on c, g, n and T and where we used the fact that 

0 >= D 2 g' (X  (s)) (E X (s) - X (s)) >= D 1 g' (X  (s)) ( E X  (s) - X (s)), 

since g' (x) + 0 implies 

E X ( s ) - x < = ~ + a T - ( M - 1 ) = O  for 0 < s _  T. 

Applying Gronwall's lemma and then Fatou's lemma for a ~  we get the 
result under the additional restriction D 1 >D 2. 

Case 2. D2>=Dl>Oand D 2 < w l D l + w  z. 
In (11) add the term 

t t 

0 = --nD~ ~ El~(s) 2"(s) ds + n D  1 ~ El~(s) Z~- l(s)(Y(s) + g(X(s))) ds. 
0 0 
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Then we have 

El~(t) 2~"(t)= EZ" (0) " n D  1 i El~(s)Z"(s) ds + i R ( s )d s  + Ro(t  ). (13) 
0 0 

Similarly as before it follows that 

t 

E l~(t) 27" (t) < EZ"(0) + S (c-1 D1 + c2) e-D'  ,(t-s) ds 
0 

t 

+ n(n - 1) K 2 S E ls(s ) 2~" (s) ds 
0 

where ~1 and C 2 are constants independent of D,,  D 2 and N but possibly 
depending on c, C, n, T, wl and w 2 and where we used 

D2(EY(s  ) - Y(s)) <(w 1 D 1 + w2) EY(s)  - D  1 Y(s). 

The rest of the proof follows as in Case 1. [] 

Remark.  The lemma is also true if Z is replaced by Z because Z - M < _ Z < _ Z .  
The reason for introducing 2 will become apparent in the proof of the next 
lemma which is not true if 2? is replaced by Z. 

Lemma 3.2. Let  the assumptions of  Lemma 3.1 be satisfied. F ix  nEN\{1},  
% _ 1 > 0  and / ~ > K 2 ( n - 1 ) .  There exists a number M ,  such that i f  
oo > E2"(O) > YI , ,  E 2 " -  1 (0) < ~,_ ~ and EZ(O) < ~, then E2"(t)  < E2"(O) for  all 
te l0 ,  T] and all D1, D 2 satisfying N<=D 2 <=w 1D 1 +w 2 and D 1 > N. 

Proof. Assume EZ"(0)< oo and E 2 " - l ( 0 ) < e , _ ~ .  Using (12) and (13) and noting 
that the remainder terms R(s) and/~(s) can be estimated by 

IR(s)l < n(n - 1) K 2 E l~(s) Z"(s) + C 1 D 2 + c 2 
and 

IR(s)[ <n(n - 1 )  K 2 El~(s) Z,"(s)+g 1D 1 + e  2 

where c~, c 2, ~1 and ~2 are chosen as in the proof of Lemma 3.1 and 
independently of E2?"(0), we get for any ct>0" 

t 

E l~(t) 2" (0  < EZ"(0) + ~ flD + 7 - n ( D  - KZ(n - 1)) E l~(s) Z"(s) ds 
o 

where D = m i n  {D1, 02} >_N and fi > 0  and 7 > 0 are constants not depending on 
D1, D z and EZ"(0) but possibly depending on w 1, w z, T, n and c t  1. For  c~ Too 

t 

e2"( t) <= e2~ + fl D + y - n (  D - K 2 (n - 1)) EZ"(s) ds. 
o 

More generally: 
t 

EZ" (t) < EZ"  (u) + y riD + ? - n  (D - K z (n - 1)) EZ" (s) d s (14) 
u 

whenever O<u<_t<_ T. 
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Define 

f iN+7  = n 

-t 7 > riD+7 
n(IV-K2(n -1))  =n(D -K2(n  -1))" 

Let E2"(O)>)Vl, and assume there exists some t < T  with E2"(t)>EZ"(O). Let 
u:=sup{z<t:E2"(z)<E2"(O)}. Because of E2"(s+h)-EZ"(s)<(f lD+y)h for 
all O < s < s + h < T  it follows that u<t  and EZ"(u)<E2"(O) which contradicts 

(14). []  

The following lemma states, that the function (EX(t), EY(t)) stays close to 
the solution of Eq. (1) with the same initial condition provided D 1 is large. 

Lemma 3.3. Fix wl >O, w2>0, T > 0  and c>0.  Then there exist constants C>O 
and ~ > 0 such that for any (5 > 0 

(EX(t) - f~ (t)) 2 + (EY(t) -f2(t)) 2 =< C3 

for all O < t < T  and all initial conditions satisfying EZ4(O)~c and E(X(O) 
( 5  

 ro ,ded ~ E X  (O~2 ~ ~ 

where (fl,  f z) is the solution of (1) with f l  (0)=EX(0), f2(0)= E Y(O). 

Proof. Define 
A(t): = X(t) -EX(t) ,  B(t): = Y(t) -EY(t) .  

By It6's lemma, 

dA2(t)=(-2(D1 +b+ 1)A2(t)+ 2A(t)(XZ(t) Y(t)-EX2(t)  Y(t)) 

+ g2 (X (t))) d t + 2A (t) g l (X (t)) d W 1 (t). 

Assuming EZ4(O)<c we know from Lemma 3.1 and the remark following it, 
that all of the following expected values, as well as EA2(t)g2(X(t)) are bounded 
on [0, T]. Hence, taking expectations and solving the integral equation for 
EA2(t), 

EA 2 ( t) = EA 2 (O) e- 2(0~ +b+ 1)~ 
t 

+ ~ e- 2w, +b+ 1)(,-~)(2EA(s ) X2(s) Y(s) + Eg~(X(s))) ds. 
o 

According to Lemma 3.1 (and the remark following it) 

~ :=  sup sup sup sup 2ElA(s)X2(s)Y(s)+g21(X(s))l<oo. 
EZ4(0)~c DI_>00<~D2<=wlDI+W20<s<=T 

Therefore 

EAE(t)~EA2(O)e-2(ol+b+l)t_~ ~ (l_e_2(Dl+b+l)t) 
2(D 1 + b +  1) 

_ _  2 

_<max {EA (0), 2(D1 + b  + 1~}. (15) 
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Assuming EA2(0)~b, we get EA2(t)<=b. Now 

t 
(EX (t) - f  l (0) 2 = ~ 2(EX (s) - f l (s))( - (b  + 1)(EX (s) - f  l (s)) 

0 

+ E X  2 (s) Y(s) _ f 2  (s) f2 (s)) ds 
t 

(E g (t) -.1"2 (t)) 2 = ~ 2 (E Y (s) - f 2 (s))(b (EX (s) - f ~ (s)) 
0 

- (EX 2 (s) g(s) - f ?  (s) f2 (s)) d s. 

Defining D (t): = (EX (t) - f l  (t))2 + (E Y(t) -f2 (0) 2 we have 

t 
D(t) < ~ -2 (b  + 1)(EX(s) - fx  (s)) 2 + bD(s) 

0 

+ 2([eX(s) -f~(s)l + lEg(s) - f2  (s)l)IEX2(s) g(s) -f12(s) f2(s)l ds. 
Now 

E X  2 (t) V(t) = E(A (t) + E X  (t))2 (B (t) + E Y(t)) = EA 2 (t) B (t) + EA2 (t) E Y(t) 

+ 2EA (t) S (t) E X  (t) + (EX (t))2 E Y(t) 
and 

](EX (t)) 2 E Y (t) - f ?  ([) f2 (f)] 

= h(EX(0) 2 (E Y ( t ) - A  (t)) +f2(t)((EX(t)) ~ - f ?  (t))t 
< (EX (0) 2 I E Y(t) - f 2  (t) l +f2 (t)(EX (t) +f l  (t)) [EX (t) - f l  (t) l. 

Writing h(t):=EA2(t)B(t)+EA2(t)EY(t)+2EA(t)B(t)EX(t) ,  and noting that 
f l , f2 ,  E X  and E Y  are uniformly bounded on [0, T] for all initial conditions 
satisfying EZ4(O)<c, there exists some C 1 =>0 such that for 0 _ t <  T 

t t 
D(t) <= C 1 S D(s) ds + 2 ~ (IEX (s) - f l  (s)l + ]EY (s) - f 2  (s)l)Ih(s)l ds 

0 0 

t t t 

<= C i ~ D(s) ds + 2 ~ D(s) ds + ~ h2(s) ds. 
0 0 0 

By Gronwall's lemma 

' (i ) D( t )<~h i ( s )ds+(Cl+2)Se  (c'+2)(~-~) h2(u)du ds. (16) 
0 0 \ 0  / 

Using 

Ih(u)l = [EA(u)(A(u) B(u) + A(u) Eg(u) + 2B(u) EX(u))I 
<= (EA2(u))I/2(E(A(u) B(u) + A(u) EY(u) + 2B(u) E X  (u))2) 1/2 < C 3 (~1/2 

for some constant C3, the assertion follows. [] 

Remark. Note that only the variance of X(0) is required to be small, not the 
variance of g(0)! 
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We are now in a position to formulate a theorem on the periodic behavior 
of the solution of (4). Recall that (as mentioned in the introduction) (1) has a 
unique stable limit cycle whenever dE< b -  1. 

Theorem 3.4. Assume a 2 < b - 1 .  For fixed wl>=O , and W2~0 there exists a 
number N* such that for all D 1 > N* and 3K 2 q- 1 <= D 2 ~ Wl D1 q- W2 there exists 
a probability measure #* on [0, oo) x [0, oo) and some z* >0 such that if ~(X(0),  
Y(0)) = g*, then ~(X(z*), r(z*)) =-#* but ~qP(X(s), Y(s)) ~= #* for 0 < s < r* i.e. (4) 
has a periodic distribution. 

Proof. The main idea of the proof is an application of Tihonov's fixed point 
theorem [8] on a certain weakly compact and convex subset of the probability 
measures on [0, co) x [0, Go). 

Let (f~,f~') be the unique periodic solution of (1) with initial condition 

f*(O)=a,f*(O)> ~ (see [15]). Fix 
a b 

c2>f*(O)>cl>- 
a 

and define 

T:=2  ~ _-<r =<~max min {u>O: fl(u)=a, f2(u)> b 

fl(O)=a, f2(O)=c and (fl ,f2) solve (1)~ 
M 

i.e. T is twice the maximal time a solution of (1) starting on the line segment 
f l  (0)= a, f2(0)e [c 1, c2] needs to return to that segment (because the limit cycle 
is stable). Let (f~~176 be the solution of (1) starting at f(~ f~!(0)=Q, i 
--= 1, 2 and define 

t. '= d i n  d i n  u>O:fl(u)=a, f2(u)<- , 
c1_-<c_-<c2 ~. - a 

fl(O)=a,A(O)=c, (A,f2) solve (1)~ 
~- : :C2 q-a  

) 

N : = 3 K 2 + l  

~1 O<t<=T~\ (1) t __b 2 1/2 :=  d i n  ~ ((f}l)(t)-a)2+ (f~ ( ) a) ) } 

e2:=dist({(a,c);:<c<c~},{(f(~)(t),f(2t)(t));{<t<=T}) 

e3:=dist ({(a, c); c>c2}, {(f~2)(t),f~2)(t)); F__<t_<_ T}). 

e l > 0  because {(f~)(t), f2(t)(t)), O<_t<_r} is a compact set which does not 

(a ,~)  due to the uniqueness of the solutions of (1). e 2 is the distance contain 

between two compact sets. We show that e2>0 i.e. the two sets are disjoint. 

dX>o  Note that for the solution (X, Y) of (1) ~ -  if X = a  and y > b .  Assume for 
a 



Periodic Behavior of the Stochastic Brusselator 447 

b 1 some {<t<_Tf(11)(t)=a and -<f<z )(t)<cl. Take the smallest such t, Then the 
a 

(closed) set enclosed by the curve {(ft(*)(s), f2~1)), O<s<t} and the line segment 

{(a,u),c~>u>f~)(t)} isinvariantunder(1),notidenticalwith {(a,!)}and 
does not contain the limit cycle (f~,f*) which is impossible, since the limit 
cycle is globally stable (except for the steady state) (see [15]), so e2>0. An 
analogous reasoning shows that e3>0. 

For n=2,  3,4 successively choose values M, satisfying the conclusion of 
Lemma 3,2 with ~ ,_~=M,_~,  n = 3 , 4  and % = a + a T .  Define c:=344, let C 
and C 3 be the constants in Lemma 3,3 and fix a > 0  satisfying 
(C~) t /2<min{~,ez ,  a3} and c5 ~/2 C~<a2cl-ab. Now let N*--_/V be so large 
that 

o~:= sup sup sup sup 2E(A(s)X2(s) Y(s)+gZ,(X(s))) 
EZ4(O)<=c DI>~00~D2<mvalDl+w20<-s<T 

< 2 ( b +  1 + N*),5. 

From (15) it follows that sup EA2(O<=EA2(O) if EA2(O)>~, EZ4(0)<c and 
O<_t<<T 

DI>N*. Lemma 3.2 implies that sup EZe( t )~c  if EZ~(0)<M~, i=2,  3, 4 and 
O<=t<_T 

E2(O) <a+aT. We will show that there exist constants 7 >0  and r/> 1 such that 
sup E exp(~/y2(t))<rl whenever Eexp(7 y2(0))<t/. Let Jdl([0 , ~)z) be the set 

O<<.t<_T 
of probability measures on [0, 00) 2 and define 

. / ~ : =  {ftE,.////el ([0 , 00)2): E t z X ( O ) = a  , c 1 ~ E #  Y(0)~c20  E~ A2(0)~6, 
~n E, Z (0) < M, for n = 2, 3, 4 and E,  exp (7 y2 (0)) _-< t/} 

and for fte~/f/ 

z(ft):=inf{t>O:E,X(t)=a,E,Y(t)>b-,a 3t>_s>_O:E~Y(s)<!} 
and 

S: ~ - - ,  ~ ( [ 0 ,  0o) 2) 

s(ft) = ~e (x  (T(ft)), Y(z(ft))). 

Since every # e ~  satisfies the assumptions of Theorem 2.t, there exists a 
unique solution with initial condition ft. Obviously dr is convex and weakly 
compact. Furthermore it follows from the first condition on 6 and Lemma 3.3 
that 0<r ( f t )<  T and that c 1 < E  Y('c(ft))~c 2. We want to show that S: J{--+dr 
and that S is weakly continuous. Once we have established these facts it 
follows from Tihonov's fixed point theorem [8] that S has a fixed point ft*e~/" 
which is the initial law of a solution of (4) such that 5~(X(t), Y(t)) is periodic 
with period z(ft*). 

To prove that S maps ~/~ into Jr/ all that remains to show is that there 
exist constants 7>0  and ~/>1 such that sup Eexp(TYZ(t))<=rl whenever 
E exp (yy2(0)) <t/. 0<t<r 
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Define B: = sup ga 2 (y), 7-" = - -  and assume EZ 4 (0) < c and 
y=>o 4B 

E exp(yYZ(0))< 0o. As in Step 1 of the proof of Theorem 2.1.b it follows that 
sup EY2"(t)<oo for all n__>l and for Nl:=c 1/4 

OGt<_T 

Ey2"(t)<=Ey2"(O)+n~Ey2"-2(s) ~ - + ( 2 n - 1 )  B 
0 

+ 202 ()~lEy2n- 1 (s) -- Ey2n(s)) ds. 
Therefore 

~ 7n y2n(/)  

E n! 
n=0 

< E exp (y y2 (0)) 

N 7" o !t Ey2"(s) ( ( ~ - + ( 2 n +  1 ) B ) b 2  7 - n D 2 ) d s  

7n t 

+.=1 ~ ~ ! D2nEY2"-I(s)(2ff4- Y(s))ds 

b 2 
+7 ( ~ - + B )  b2 t --~-.17N+l ( ~ - + ( 2 N +  I)B)iEy2N(s)dS.o 

fi~-< D2 the first integrand is negative for sufficiently large n. Because of 7 = 4 B = 4 B  

The second integrand is at most D 2 n(2/~r) 2" and 

,=1 n.V D2 n(2M)2" t < 7D2(22~r)2 t exp (7(22~)2). 

Therefore the right hand side of (17) is bounded as N ~ o o  (uniformly for all 
0_< t_. T) and, writing the sum of the second and forth term on the right hand 
side of (17) as 

N yn N 7 n -  1 

io Ey2"(s) ds + 7(287 -O2)ns 1= (n - 1)! - -  EYZ"-2(s). YZ(s) ds 

and using 2By- -D2< --• = 2 2, we  ~ ve t  

Eexp(TYZ(t))<E exp(yg2(0))+ ~-+B TiE exp(Ty2(s))ds 
0 

-�89 i Ey2(s) exp (7 y2 (s)) ds + 47D 2 )~t 2 t exp (7 (2Al)z). 
0 

Obviously EY 2 exp(yy2)-c~Eexp(yy2)--*oo as E exp(Ty2)~oo for any a > 0  
and uniformly for all distributions of y2. Hence it is possible to choose r/> 1 
such that 

�89 EY 2 exp(T Y2)- (~-+ B) E exp(T y2)>4D2ff/I2 exp(7(2M) 2) 
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whenever E exp(Ty2)=>tl uniformly for all Dz=>]V. The same argument as used 
at the end of Lemma 3.2 for 2" (0  instead of exp(TY2(s)) shows that 

sup E exp (y y z  (t)) < tl whenever E exp (7 y2 (0)) ~ r/. 
O ~ t < _ T  

It remains to show that S is weakly continuous. Pick a sequence # , ~  
converging to # e J d  and let v n and v be the laws of the solutions of (4) on 
C([0, T], ~2+) with initial conditions #, and # respectively. Since the forth 
moments are uniformly bounded, the functions E ~ X ( t )  and Eu~ Y(t) are con- 
tinuously differentiable and equicontinuous on [0, T]. 

So there exists a subsequence (#,,k)k=l,2 .... and continuous functions a(t), 
b(t) such that 

(E..~ x(0. E.~ Y(t))--, (a(~), b(0) 

uniformly on [0, T]. According to Theorem 11.1.4 in [18] v,,~ converge weakly 
to the solution V of the martingale problem associated with Eq. (4) with (EX(t), 
EY(t)) replaced by (a(t), b(t)). Obviously a ( t ) = E , X ( t )  and b( t )=E u Y(t) which 
implies V= v and v, .~ ~o > v weakly. 

Moreover, Theorem 11.1.4 in [18] shows that the mapping (#, t)~--~u(X(t), 
Y(t)) is (jointly) continuous on ~ x [0, T], where ~ ( X ( t ) ,  Y(t)) denotes the 
law of the solution of (4) with initial condition 5~ Y(0))=#. 

So once we have established that z: J/g ~ [0, T] is continuous, it will follow 
that S is weakly continuous on J{. We show that ~' .M ~ [0, T]  is continuous: 
For  # ~  

d 
dt  EX(z(#)) = a - ( b  + 1) EX(z(#)) + EX2(z(#)) r(r(#)) 

= - a b  + E(A(z(#)) + a) 2 Y(z(#)) 

= - a b  + a 2 EY(z(#)) + EA(z(#))(A(~(#)) B(z(#)) 

+ A (z(#)) EY(~(#)) + 2B(z(#)) a) 

>= - a b + a 2  c l -61 /2  C3='. f i>0.  

Fix #e  J{  and choose t o > 0  such that d E u x ( t ) > f i  for all t ~ [ z (# ) - t o ,  z(#) 
tit z <P 

+to].  Fix 0 < e = ~ - t o ,  let # . . ~ #  (#~#~)  and choose n o such that 

_ < 2  a(=<to) for sup IE. . (X(t))-E~(X(t))I  <z for all n>no(e ). Then ]v(#)-r(#.) l  =/3 
O < = t < r  

n>no( 0 which shows that ~ is continuous on ~ and hence the theorem is 
proved. [] 

Corollary. Assume a 2 < b - 1 ,  w1>0 , wz>O , and let (D1, ., D2,.).~ ~ be a sequence 
such that D1, ~ and D2, ~ satisfy the assumptions of Theorem 3.4 for every n ~ N  
and D 1 . > or. Then there exists a sequence #* of probability measures on 

�9 n--+r 

[0, ~ )  x [0, oo) such that (4) with D I~=D1,., D2:=D2, .  and L~~ Y(0))=#* 
has a periodic distribution and 

* t  * t  a) (Eu. X(t), Eu: Y ( t ) ) ~  (f l  ( ), f j  ())  uniformly on compact intervals 

b) ~ . : ( x ( . ) ) ~ s ~ ( .  ~ 
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Proof  In the proof of Theorem 3.4 let c 1 =cl (n  ) and C2=C2(gt ) converge to 
fz*(0) in such a way that D I , , > N * = N * ( n  ). Then 3=6(n) converges to zero 
and part a) follows. Furthermore, 

dA (t) = ( - (D 1,. + b + 1) A (t) + X 2 (t) Y (t) - E X  2 (t) Y (t)) d t + g 1 (X  (t)) d W 1 (t) 

and hence, solving for A(t) (see [1], p. 142, the proof given there also works for 
nondeterministic coefficients), 

t 

A(t) = e -Knt A(O) + S e -  Kn(t-s)(X2 (X) Y(s) - - E X  2 Y(s)) ds 
0 

+ i e -  ~(~ - ~ g 1 (X  (s)) d W 1 (s) 
t 

0 

with the abbreviation K~ = D~, n + b + 1, and so using Chebychev's inequality 

P{ sup [A(t)I>=3R}<P{[A(O)[>=R} 
O<_tNT 

T 

+ P  sup IS e-~"(t- '~gl(X(s))dWx(s)[>=R 
~O<=t<= T 0 

<--- EIA(O)I+ + P {  sup [U,( t )[>R} 
- - R  O<_t<T 

where 

and 

Since 

H .  (t): = i e -  K.(t- s) g 1 (X  (s)) d W 1 (s) 
0 

f i= sup EIX2(t )  Y ( t ) - E X 2 ( t )  Y(t)]. 
O<=t<=T 

EIA(O)I~(EA2(O))I/2<=fi~/2(n) , 0  
n---~ oo 

all we have to show to prove part b) is 

P{ sup [H.( t )[>R} 
O<_t<_ T n ~  

Again by [1], p. 142 it follows that 

Hence, for 

, 0  for every R > 0. 

dHn(t)= - K n H n ( t )  d t + g l ( X ( t ) ) d W ~ ( t  ), Hn(O)=O. 

~x 4 IxI<-R 4 
f ( x )  = (bounded?C 2 (IR) 

t 1 i " H  f (U . (O)  + Kn Sf ' (Hn(s))  Hn(s) d s - ~  f ( , , ( s ) )  g2(X(s)) ds 
0 

is a martingaie w.r.t, the filtration induced by (W 1, W2). Defining the stopping 
time 

z: = i n f { t > 0 :  iHn(t)l =R}/~ T, 
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we have, by Chebychev's inequality 

< 1  
P {o supr I H.( t ) l= > R} = P { f (H.  (~)) >= R 4} = ~ -  Ef(H.  (~)) 

1 

0 

For - R 4  <_x<_R 4, 

g Z ( X ( s ) ) - 4 K . x 4 =  - 4 K .  (x 2 3g~(X(s))] z 9g~(X(s)) 
6x 2 

4K.  ] 4K.  
and therefore 

[ 9gl*(X(s)) if g~(X(s))_<R s K. 
r l 4K,  

6x2 g~(X(s ) ) -4K,  x <~ 
-=[6RSg~(X(s))-4K,  R ~6 if g~(X(s))>RSK, 

which implies 

~_Z_ i 9g~(X(s)) 
P{o<=t<=TSUp [Hn(t)[>R}<= E l{g~(X(s) )<RSK.  } �9 4K. 

6 
+ l~,~x~s~>R~,,~ �9 U .  g~(X(~))ds ,-,~o' 0 

T 

since sup E 5 g~(X(s)) ds< co. [] 
n 0 

Remarks. In the Corollary we do not require that D2, . converges as n ~ co, so 
the corresponding processes Y.(.) need not converge. If however lira D2, = D  2 

n ~ o 3  

and g2(x)>0 for all x > 0 ,  then it is easy to see that (Y.(.)) converges in law to 
the unique solution of 

d Y(t) = b f *  (t) - ( f*  (t)) 2 Y(t) + D 2 (fff (t) - V(t)) + g2 (Y(t)) d W 2 (t) 

having a periodic law. The uniqueness can be established by considering the 
irreducible and ergodic Markov chain ~'k..=Y(k~), where z is the period of 
( f*, f f f ) .  

A heuristic explanation of the corollary is the following: If D~ is very large, 
then, because of the term D~(EX(t)-X(t ) ) ,  there is a strong force driving the 
solution X of Eq. (4) towards its expectation, so in the limit D1 ~ coX becomes 
deterministic. 

4. Small  Noise  Limit and Fluctuations 

We will now study the behavior of the Brusselator for fixed D 1 and D 2 as the 
noise converges to zero. First (Theorem 4.1) we identify the periodic solution of 
(1) as the limit of the periodic solution of the stochastic Brusselator as the 
noise converges to zero, then (Theorem 4.3) we study the fluctuations. Finally 
(Lemma 4.5) we derive the asymptotic difference of the expected value func- 
tions of the periodic solutions and the deterministic periodic solution. 
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Theorem 4.1. Let the assumptions of Theorem 3,4 be satisfied. There exist 
numbers N 1 and N 2 such that, if in addition DI>=N 1 and DE->N2, then for all 
1-> e_> 0, there exists a probability measure #~ on [0, oo)2 such that 

dX (t) = (a - (b + 1) X (t) + X2 (t) r(t) + D 1 (EX (t) ~ X (t))) d t + e g 1 (X (t)) d W 1 (t) 

d r(t) = (b X (t) - X 2 (t) Y(t) + D2 (E Y(t) - Y(t))) d t + e g2 (r(t)) d W 2 (t), (18) 

~(X(0),  Y(0))=#~ has a periodic distribution with sup s u p E u Z S ( t ) < ~ ,  
l _>e>_O t_>0  

c2>=Eu Y(O):>c p Eu X(O)=a and period at most T, where ca, c 2 and T are 
defined as in the proof of Theorem 3.4. 

Furthermore, denoting a periodic solution of (18) with these properties by 
(X~, Y~), (X~, Y ~ ) ~  ( f* , f* )  weakly on C([0, ~),  IR2). 

Proof The first part of the theorem is obvious, since all estimates in the proof 
of Theorem 3.4 depend on ga and g2 only through an upper bound K of their 
Lipschitz constant and an upper bound B of g2 2. The proof of Theorem 3.4 
shows only sup EZ4(t)< ~ but, using Lemma 3.2, one can easily see that there 

t__>o 

exists a periodic solution satisfying sup EZS(t)< ~ .  
t > o  

Now let G+0. Since EX~.(O)=a and EY~.(O)<c 2, the family {#~.},~N is tight�9 
The same proof showing that S is weakly continuous in the proof of Theorem 
3.4 can be employed to show that there exists a weakly convergent sub- 
sequence of (X~~ Y~.) converging to a solution (X, Y) of 

) ~ ( t ) = a - ( b + l ) X ( t ) + X 2 ( t )  Y ( t ) + D I ( E X ( t ) - X ( t ) )  , EX(O)=a 
(19) 

~ ( t ) = b X ( t ) - X 2 ( t )  Y(t)+D2(EY(t  ) - Y(t)), c2>=EY(O)>=c 1. 

Let r~ be the period of (X~, Y~) and, for a given sequence G,~0 (0<G=<I), take a 
subsequence G~, k = 1, 2, 3 . . . .  such that s176 , Y~,~) converges to a solution of 
(19) such that z=  limz~ ~ exists. Theorem 11.1.4 in [18] implies that the map- 

k ~  n 

ping (#, e, t)w-~,,~(X(t) ,  Y(t)) from Jg • [0, 1] • [0, T] to Jda(C([0, T], IR2)) is 
(jointly) continuous, where _a~ ~(X(t), Y(t)) denotes the law of the solution of 
(18) with s Y(0))=~t at t. 

Hence, denoting # :=  lim#~, , it follows that 5~u, 0(X(z), Y(z))=# i.e. the 

limit (X, Y) of the periodic processes (X~, , E ~) has a periodic law. Note that 
�9 . . k ,  ~ n  . 

it cannot be constant since Its expectatmn is nonconstant. To prove the 
theorem, it is enough to show that the only solution of (19) with a periodic 
distribution is (f;*,f*). Note that the randomness enters the dynamics of (19) 
only via the initial condition. Defining Z(t):=g(X(t))+Y(t) ,  O<_t<_T with g 
defined as in Lemma 3.1 with ~ . '=a+c2,  it follows that 

d2 
dt (t) = -X2(t)  Y(t)(1 -g'(X(t))) + D 1 (EX(t) - X ( t ) )  g'(X(t)) 

+ b X(t)(1 - g'(X(t))) -g ' (X(t))(X(Q -a )  + D2(EY(t ) - Y(t)) 

~bX(t)(1 -g '(X(t)))--g '(X(t))(X(t)--a)+D2(EY(t)--Y(t))  (20) 



Periodic Behavior of the Stochastic Brusselator 453 

since g ' (x)=0 for all x <  sup E X ( t ) < 6 + a T .  The right hand side of (20) is 
O<t<T 

negative provided either X or Y is sufficiently large i.e. there exists some 7 >0  
d2 

such that ~ - ( t ) < 0  whenever Z(t)>=7, showing that the support of S ( X ( t ) ,  

Y(t)), being periodic, is contained in 

{(x, y)I x_>_0, y__>0, x + y < 7 }  
for every t > 0. 

Writing A: = X - E X  and B: = Y - E Y  we have (dropping t) 

X 2 Y= (A + e x )  2 Y= A (A Y-~ 2 YEX)--~ Y(EX)  2. 

Therefore, since (w.p.1) O < X + Y < y  and hence O<EX,  EY<=? and - 7 < A ,  
B_<_> 

E A X  2 Y < 372 EA 2 + 72 E IABI ~ 7 72 EA 2 +�89 EB 2 

E B X  2 Y > - 3  7 2 E [ABI > --372 E A  2 --372 EB 2 

and hence 

d EA 2 _ 2 ( b + I + D 1 ) E A 2 + 2 E A X 2 y  
dt 

< ( - 2 ( b  + 1 +D1)+7yZ)EAZ+TZEB2 

d EB 2 _ 2 D 2 E B Z + 2 b E A B _ 2 E B X Z Y  
dt 

<(b+ 3y2)EA2 + ( -  2D2 + b+ 3v2) EB 2 

d 
which implies d t  E(AZ(t)+B2(t))<O whenever E(A2(t)+B2(t))>O provided 01 

and D 2 are  large enough (note that ~ may depend on w 1 and w2, but not on 
D 1 and D2). Since EAZ(t) and EBZ(t) are periodic, it follows that 
EA2(t)=EBZ(t)-=O i.e. (X(t), Y(t)) is deterministic. The assertion follows since 
(1) has only one periodic solution with X(0 )=a  and Y(O)>q.  [] 

Our next aim is to study the fluctuations of the periodic solutions as ~+0. 
To prove the main result, we need the following lemma. 

Lemma 4.2. Assume a Z < b - 1  and f i x  nonnegative numbers wl, w2,w3, w4>=O. 
Then for D ~ < w l D 1 + w2 and D ~ < w 3 D 2 + w4 and D 1 and D 2 sufficiently large 

sup Y~<o% where 
O<e<l 

7~:= e sup {(EA4(t)) 1/4, (EBb(t))1~4}, 
t > 0  

A~(t):=e-a(X~(t)-EX~(t)) ,  B~(t):=e-l(Y~(t)-EY~(t)) 

and (X~, Y~) is a periodic solution of (4) with the properties stated in Theorem 4.1. 

Proof Note that sup 7~<oo and limT~=0 according to Theorem 4.1. It 
0<~_-<1 e$O 

remains to prove 7~=O(E) for el,0. Let us define a family of Lyapunov-type 
functions 

M 
Ve(x , y)=)~,(x +y) gp(x, y)+(!. -2~(x+y))  ~(x, y), x, y_> - - -  

g 
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where 

and 

M , =  sup (ExAt)+t~gAt)), 
1 >e>O, t>O, Dl, D2 

~)(x, y ) = x r  '*, tp(x, y )=  17(x + y)4, 

2eC2([0, oo),IR) satisfies ~vv<0 and 2(v)= 

,~,(v) = )~(c~- ~ a v), where 

v < l  

v > 2  

e = M .  max {w~, w3, 1}. 

Our aim is to prove that 

sup sup EV~(A~(t), B~(t))< 
t_>0 l > e > 0  

from which the assertion follows easily. Let L~,~ be the generator of the 
diffusion (A~, B~). Then 

L,,~ V~(x, y)--- )~Lt,~ r + (1 - ~)  L,,~ r + a -1 e2'~(q5 - ~ , ) ( - ( D  I + 1)x -D2Y)  

+ �89 ~ ~ z: (4) -O)(g~ + g~)+ ~- I  ~ ~ ' , ( ( r  g~ ~ +(~ ,  - ~ , )  gg, 

where we have dropped the arguments x + y  of 2~, (x, y) of r and qJ, ex+EX~(t)  
of g~ and ey + EYe(t) of g~ for notational simplicity. 

Let us first consider the case x+y>__ 2~ which implies ~ = 0  and hence 
Lt, ~ V~(x, y ) = L e , ~ ( x ,  y). e 

O~ 

In case x + y > -  
~e 

Now, for x, y_>_ - - -  

-L L 17 ,,~t)(x, y ) = 4 ( x + y ) 3 ( - ( D 1  + l ) x - D z y  ) 

+ 6 (x + y) 2 (g ~ (e x + Ex~ (t)) + g ~ (~ y + ~ ~ (t))) 

<=4(x + y)a(--(Dl + 1 ) x - D 2 y  ) 

+ 6(x + y)2 K 2 ((ex + M) 2 + (~y + M)2). 

M 
, x + y > - -  and D2=> 1 

_>-- e-  ~ rain { - - (w  3 D z + w4) M + (D 2 - 1)(~ + M), 
Dl(c~+M)- (w  1 D 1 +w 2 - 1 ) M }  

= ~- t rain {(D 2 - 1)(a + M - w 3 M) - M(w 3 + w4) ,  

O~(a + M - w  1 M) - M ( w  2 -1)} 
>-_0 
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if D 1 and  O 2 a r e  sufficiently large. Hence  

- ( D I + I ) x - D  z y < - ( x  + y). 

Fur the rmore ,  since e x + M > O  and e y + M > O ,  

6(x + y)2 K2((ex + M)2 +(ey+ M)2)<6(x + y)2 KZ(ex + M +ey+  M) 2 

< 6 (x + y)Z K 2 (e(x + y) + 2 e)2 

<=6(x + y)4 K 2.9e2=<(x + y) 4 

C( 
for all x + y > -  and e < (54K2) - 1/2. Therefore  

~@Lt,~ O(x, y) < - 3(x + y)4 = _ 3 0 ( x ,  y) 

if e is sufficiently small. 
2a  

Let  us now assume x + y < - - .  Then  
8 

L~,~4(x, y )=4x3( - (D1 + b +  1 ) x + h ( e ,  x, y, t ) )+4y3(bx -D  2 y -h (e ,  x, y, t)) 

+ 6x 2 g~(ex + EX~(t)) + 6y 2 gZz(ey + EYe(t)) 

< - 4(D 1 + b + 1) x 4 + 4bxy  3 - 4 D  2 y4 + 4(ixl3 + lyl3)Ih(e, x, y, t)l 
+ 6(x 2 + y2) K2(2e  + 2M)2, (21) 

where  

h(e, x, y, t ) :=  e -  l((ex + EX~(t))2(ey + EYe(t)) - E X  2 Y~(t)) 

=~2(x2 y_  EA~(t) B~(t)) + ~ ( t ) ( x 2 _  EA~(O) 
+ 2eEX~( t ) ( xy -EA  t(t) B~(t)) 
+ 2x EX~(t) E Y~(t) + y(EX~(t)) 2. (22) 

There  exists a constant  c 3 such that  

(Ix[ 3 + lyl3)( e2 x2 [Yl + eMx2 +2eM[xyl  + 2 I x [  m 2 q- lyl mZ)<=c3(xr �9 

Fur the rmore ,  defining ?~(t): = e  max  {(EA4(t)) i/a, (EB4(t))I/4}, 

e z g IA 2 (t) B~(t)t = g-1 E(~A~(t))2(g IB~(t)I) 

1 <=- (E(eA~(t))4)l/z (E(eB~(0)2)I/2 =< ? 3 (t). (23) 
8 

In the same way it follows that  

eEA~(t)< 72(t) and 2eE[A,(t)B~(t)l<2 ?~(t) (24) 

which implies 

(Ixl a + lyl3)(e 2 E [A2 (t) B~(t) l + eEA~(t) + 2eE IA,(t) B~(t) l) 

<(Ix13 +tyla)4 7~(t) < x 4 + Y 4 + 2 ( 4  

if e is so small  that  7~ < 1. 
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Furthermore,  

- 4 ( D  1 + b + l ) x 4 + 4 b x y  3 - D 2 y *  +6(x2 + y2) K2(2ct + 2M) 2 

<= --(4c3 + 4 + 2)(x'* + y'*) +c 4 

for D 1 and D 2 sufficiently large and c 4 a suitable constant.  
Together  we have shown that  there exist constants c 4 and c~ such that  

Lt, ~ ~b (x, y) =< - 2 (x ~ + y*) + c 5 ~8 (t) e -  r + c 4 

provided D~ and O 2 a r e  sufficiently large and e is sufficiently small. 
We still have to consider the three remaining terms in Lt,~V~(x, y) which 

contain derivatives of 2~. 
Since 2 ' <  0, - ( D ~ +  1 ) x - D  2 y < 0 whenever 2'~ + 0 (as shown before) and 

(o(x, y)= x4 + y4 <= ( - - M f  + (x + y +M)4<=(x + y)4 +(2(x + y))4" 

2c~ c~ 
=17(x+y)4=O(x ,y )  for - - > x + y > -  

(note that  for fixed z, x 4 + ( z - x )  ~ attains its max imum on an interval at the 
boundary)  we have ct- 1 e2'~((b - 0 ) (  - ( D  1 + 1) x - D  2 y) __<0. 

Fur thermore ,  since g~(ex+EX~(t)) and g~(ey+EY~(t)) are bounded  on x 
2c~ 

+ y__<-- uniformly for all e > 0, there exists a constant  c 6 such that  the last two 
e 

terms of Lt, ~ can be est imated by m i n ( x 4 + y  ~, 17(x+y)4)+c6 provided e is 
small enough. So we have shown that  for % : =  c 4 + c 6 

L~,~ ~(x, y) __< - 2,L(x + y) q~(x, y ) -  3(1 -~.~(x + y)) O(x, y) 

+ min (~b(x, y), O(x, y))+c4+c6+c5 V~(t). e -~ 

= ~ (t) < _ V ~ ( x , y ) + c T + c  5 s -4 

M 
for all x, y > - - - .  Hence  

8 

d 
d-i e~(A~(t), B~(t))= EL~,~ ~(A~(0, Bo(t)) 

<= -EV~(A~(t), B~(t))+ c 7 + c s 7~ max {EA~(t), EBb(t)} 

__< - E  V~(A~(t), BA0) + c~ + c~ ~ E~(A~(O, BAt)). 

7~=o Since EV~(A~(t), B~(t)) is periodic and lim it follows that  
e$0 

sup sup sup EV~(A~(t), Be(t))< oo 
l>-e->0 t>O D1,D2 

provided D 1 and D 2 satisfy the assumptions above and are sufficiently large. 
This implies the assertion of the lemma. [ ]  
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Theorem 4.3. Let the assumptions of Lemma 4.2 be satisfied. Then for D 1 and D 2 

sufficiently large, as e$0, (A~, B~) converge weakly to a Gaussian process (Ao, Bo) 
which is the unique solution of 

deo(t )] b - 2 f ~ ( t ) f * ( t )  - O 2  _ ( f . ( t ) )  2 \eo(t)] dt 

(g~ (f~* (t)) d W 1 (t)~ (25) 
+ \g2(f*(t))  dWz(t)] 

with a periodic or time-invariant distribution. (Note that (25) is equation (4) 
linearized around the periodic solution of  (1)). 

Proof Lemma 4.2 implies that for any sequence en+0, the sequence 5'~(A~,(0), 
B~,(0)) is tight. Furthermore 

dAb( t )=(- (D~ + b + 1)A~(t)+h(e, A~(t), B ~(t), t)) dt + g ~ (eA~(t) + E X  ~(t)) dWl (t ) 

dB~(t) = ( - D  2 Be(t ) + b A,(t) - h(8, A~(t), n~(t), t)) d t + g2 (sn,(t) + E Y~(t)) d W 2 (t) 

where h is defined in (22). Now 

supe2EA2,(t)lB,(t)l+eEA2~(t)+2~E[A~(t)B,(t)[=o(1) as *.LO 
t > o  

due to (23), (24) and Lemma 4.2. Using again Theorem 11.1.4 in ]-18], (A~, B~) 
converge weakly to the solution of (25) provided we can show that (25) has at 
most one solution satisfying s Bo(~))=5r Bo(0)) for some ~->0 
(cf. the proof of Theorem 4.1). 

Any solution (A o, Bo) of (25) with these properties can be represented in the 
form 

(see [1]), where 

Q(s)" = (g~(~ *(s)) g~ (~* (s))) 

and ~b(t) is the fundamental matrix of the corresponding deterministic system, 
which, according to Floquet's theorem ([23], p. 194), can be represented in the 
form ~b(t)=P(t)e ct, where P(t) is a matrix-valued function satisfying P( t+z)  
=P(t)  for all t>0 ,  ~ is the period of ( f ] , f 2 )  and C is a constant 2 x2-matrix. 
We assume that D~ and D 2 are so large that the eigenvalues of C (the 
characteristic exponents) have negative real parts. 

Define A(o")(t):=Ao(t+nz), B(o")(t)'.=Bo(t+n~), t>-_O, and let ~'=(W1, I412) be 
a pair of independent Wiener processes on IR with WI(0)=W2(0)=0. Then 
(ACo "), B(o ")) converge in law in the space/r [0, oo), 11t 2) to the process 
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G(t)=O(t) i O(s) -1Q(s) dW(s) 
- - o 3  

= n(t) i eC(~-~) P -  i (s) Q(s) d W(s) 
- - o 3  

t + n z  

= n (t + n z) ~ e c(t + ~"- ~) P -  ~ (s) Q (s) d W(s - n v) 
- -  o 0  

t + n z  

=q~(t+n'c) ~ (o-i(s)Q(s)dW(s-n'c)  
- - o 3  

M. Scheutzow 

(26) 

a 

Proof Ponzo and Wax [15] used the transformation X - l + ( b _ l ) x ,  t 

(b - 1 )  1 /2  
- - - z  which maps the solution (X, Y) of (1) to the solution of the 

a 
equation 

2 + x - ~ =  O, #=(B--1)3/Z/A, 3,= 1 2 + #  2 x - 1  +)~2(x+;t)2 B - I '  

which is a process having a periodic Gaussian law as can be seen from (26). 
Since the law of (A o, Bo) is (not necessarily strictly) periodic for all neN,  it 
follows that 5r Bo(r))=L~~ Bo(0)) and hence the laws of (A(o "), B~ )) 
and (Ao,Bo) coincide which implies that also the laws of (Ao, Bo) and G 
coincide proving uniqueness of a solution of (25) with a (not necessarily 
strictly) periodic law. [] 

Remark. If gl and g2 vanish on the range of fi* and f2* respectively, then 
Ao(t)=Bo(t)=-O. 

Theorem 4.3 describes the fluctuations of the periodic processes (X~, Y~) 
around (EX~, EYe) as ~$0. We know from Theorem 4.1 that 
(EX~, EY~)~ ( f~ , f * )  as e$0. Hence one may pose the question whether in the 
limit e l0  the fluctuations around ( f * , f * )  are the same as around (EX~, EYe). 
This question is closely related to the rate of convergence of (EX~, EYe) 
towards ( f*,  f* )  which will be established in Lemma 4.5. To do this however 
we need to know that the solutions of the deterministic system (1) converge to 
the periodic solution with exponential speed, which we will show in the 
following Lemma. 

b 
Lemma 4.4. Let f(c) be the solution of (1) with f~)(0)=a,  f2(c)(0)= c > - a n d  

a 

G : = m i n ~ t > 0 : j 1  ~ i -  ,J2 ~, aJ '  

Then there exists some 6 > 0 and 0 < q < 1 such that 

If2 (~1 (r c) - f *  (0)[ _-< q [c -f2* (0) 1 

whenever Ic - f* (0 ) l  < 6 (i.e. f *  is "exponentially stable"). 
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which is equivalent to the "Lienard" system 
g(x) 

=/~ [-y - F (x)], 3) = - - -  (27) 

w h e r e F ( x ) = x 2 - x + ~ [ ~  1 ] andg(x )  - x x + 2 x + 2" Uniqueness and stability 

of a limit cycle are established in the appendix of [,,14]. Denoting the unique 
periodic solution by f with the initial condition j~(0)=0, f2(0)>0, choosing 
A <B both sufficiently close to J~(0) and defining A:=fz(A)(~A) and /~:=fa(B)(ZB), 
where f(A) and f(m are the solutions of (27) starting in (0, A) and (0, B) 
respectively and zA:=min{t>0: f~m(t )=0}  and ZB.-=min{t>0: f f ) ( t )=0},  
Ponzo and Wax show that 

B2 _ ~2 < B 2 _ A 2 _ 2M A( B _ A + A -  B), (28) 

where M A > 0 is the value of f(2A)(t) at the (unique) intersection o f f  (A) with the 
curve y=F(x )  for 0 < t < z  A. Since B - A > O  and A - B > O  it follows that /~2 
- A 2 < B 2 - A 2  and, because the same arguments can be repeated for the next 
"half-revolution" they get stability of the limit cycle. We show that their proof 
can be extended to prove even exponential stability: (28) implies 

~2 _ 4 2  2M A 
B2 A~< I - B + ~ < = q l  <I  

for all A,B  in a suitable neighborhood of f2(0). Defining 7t:=f(za)(gA), 
B'. =fz(B)(~-B) with fA=min  {t>'CA: J~A)(t)=0} and ~-B=mm {t>~B: f~B)(t)=0} we 
get, for a suitable constant q2 < 1 

/~2 ~2 ( B - A ) ( B + A )  

q2 > B 2 _ A  2 = (B - A)(B + A) 

and hence B - A  < q 3 ( B - A )  for a constant q3 < 1 and A, B close to f2(0), since 
( /7+~)(B+A) -1 is close to one in small neighborhoods of ~(0). Transforming 
back to the original coordinates, the assertion follows. [] 

Lemma 4.5. Fix wi, w2, w3, W4~0 and a Z < b - 1 .  Let 0<~=<1, D2~Wl DI +w 2 
and D 1 _<WaDzJFW4 and D 1 and D 2 be sufficiently large and define 

EX  ~(t) - f~' (t) E Y~(t) - f *  (t) 

Then (qSi,~, (b2,~) ~i~ (~bi' qb2) uniformly on compact intervals, where ((/)1' (~2) is 

the unique periodic (or constant)function satisfying 

IA, b l 

( k i ( t ) f * ( t ) + 2 k z ( t ) f y ( t )  ] 
+ \_k~( t ) f . ( t )_2k2( t ) f~ , ( t ) ]  (29) 

with q~ 1 (0) = 0, where k 1 (t) = EA2(t) and k2(t ) = EAo(t ) Bo(t ). 
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Remarks, k~(t) and k2( t  ) c a n  be calculated by solving a linear system of three 
ordinary differential equations with periodic coefficients provided (f*, f*)  is 
known explicitely (see [1]). 

Note  that  the homogeneous part  of (29) (i.e. for k l = k 2 = 0  ) is the same as 
Eq. (1), linearized around the periodic solution ( f* ,  f*). 

Proof. Since the homogeneous part  of (29) is exponentially stable because of 
the last remark and L e m m a  4.4, uniqueness of a periodic or constant  solution 
follows as in the proof of Theorem 4.3. Obviously 

d 
d t  ~b ~, e(t) = - (b + 1) q52, ~(t) +/3- 2 ( E X  2 (t) Ye(t) -- ( f ~  ( t ) ) 2 f f f  (t)) 

= - ( b  + 1) ~bl, ~(t)+e -2 E(eA~(t) 

+ EXe(t)) 2 (eU~ (t) + E Ye(t)) - ( f*  (t)) 2 f f f  (t)) 

= - (b + 1) ~b 1,~ (t) + eEA 2 (t) Be(t ) + (E Y~(t)) EA 2 (t) 

+ 2 EX~ (t) EA~ (t) B e (t) +/3- 2 ((EX~ (t)) 2 E Y~ (t) - ( f ; *  (t)) 2 f2* (t)). 
Now 

/3- 2 ((EX~(t))2 E Ye(t) - ( f*  (t)) 2 f *  (t)) 

= (EX,(t)) 2 EYe(t) - f *  (t) + f ,  (t) (EX*(t))2 - ( f~ (t))2 
/32 /32 

= (EXe(t)) 2 02, ,(t) +f~  (t)(EX~(t) +f~  (t)) 0,, ~(t). 

Since (EX~(t), EY~(t))~(f*(t), f]*(t)) uniformly on compact  intervals, and be- 
cause of L e m m a  4.2 and Theorem 4.3, all we have to prove to apply Theorem 
11.1.4 in [18] is lira sup ]02,~(0)[ < oo. 

e.~0 
From (16) and L e m m a  4.2 it follows that  there exists a constant  c 9 such 

that  
sup ((EX~(t) -.1"1, ~(t)) 2 + (EYe(t)-f2, ~(t))2) 1/2 < C9/32 

O < t < T  

for all O < e < l ,  where (fl,~,f2,~) is the solution of (1) with f l , , (O)=a ,  f2,~(O) 

=EY~(O). Let ~(~):=inf{t>O: fl,~(t)=a, f2,e(t)>!} and let % be the period of 

EXe(t ). According to L e m m a  4.4 there exists some q < l  such that, for e 
sufficiently small, 

< 1  
/32 Iq~2, ~(O)l = If2, ~ (0 ) - f*  (0)1 = 1 - q  If2, e("c(~)) - f2 ,  ,(0)1 

1 < 
=1 - q  

1 < 
=1  - q  

where Clo is an upper bound of the derivative of the second component  in (1) 
in the bounded set {(f~,e(t), fz, e(t)), t>O, 0</3<1}.  There exist constants 6~, 

d 
5 2 > 0  such that ~-fl,~(t)>c51 if a-O2<fl ,~( t )<a+32 uniformly for all 

(IL, ~('c3 - E  g(~31 + If2, ~(*~) -L ,  ~(z%l) 

(e 9 g2 _{_ C10 its: ,.c(e) i) 
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0 < e < 1. Hence 

Iz~-~<~)l < 1  sup IEX~(E)-L,~(t)I < %  e 2 
=(~l O<=t<= T =(~1 

for e sufficiently small. Consequently limsuplqSe,~(0)l<oo and 
e$O 

follows from Theorem 11.1.4 in [18]. [] 

Corollary. Let the assumptions of Lemma 4.5 be satisfied and define 

x~(t) -fy(t) ~(t) -f2(t) 
~ , , ~ ( t )  - , r 

the assertion 

Then as e$ O, (Ol, ~, 0//2, ~) converge to (Ao, Bo) i.e. the same limit as (A t, B~). 

Proof This follows immediately from Lemma 4.5 since 

t~1,~(t)=A~(t)+r ~t2,~(t)=B~(t)+e~2,~(t) 

a n d  (e~bl,~(t), e~b2,~( t ) )~(O , O) u n i f o r m l y .  [ ]  
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