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Summary. The aim of the paper is the investigation of piecewise monotonic 
maps T of an interval X. The main tool is an isomorphism of (X, T) with a 
topological Markov chain with countable state space which is described by 
a 0 -1- t rans i t ion  matrix M. The behavior of the orbits of points in X under 
T is very similar to the behavior of the paths of the Markov chain. Every 
irreducible submatrix of M gives rise to a T-invariant subset L of X such 
that L is the set co(x) of all limit points of the orbit of an x~X. The 
topological entropy of L is the logarithm of the spectral radius of the 
irreducible submatrix, which is a/1-operator .  Besides these sets L there are 
two T-invariant sets Y and P, such that for all x~X the set co(x) is either 
contained in one of the sets L or in Y or in P. The set P is a union of 
periodic orbits and Y is contained in a finite union of sets co(y) with y~X 
and has topological entropy zero. This isomorphism of (X, T) with a 
topological Markov chain is also an important tool for the investigation of 
T-invariant measures on X. Results in this direction, which are published 
elsewhere, are described at the end of the paper. Furthermore, a part of the 
proofs in the paper is purely topological without using the order relation of 
the interval X, so that some results hold for more general dynamical 
systems (X, r) .  

Introduction 

The aim of this paper is the investigation of a class of topological dynamical 
systems (X, T) called piecewise invertible. They are a generalization of piece- 
wise monotonic transformations on [0, 1] and suggest applications to dynami- 
cal systems in higher dimensions. Mainly we shall investigate the nonwander- 
ing set of (X, T) and the topological entropy of invariant subsets of X. Some 
results hold only for piecewise monotonic transformations. The method we use 
is an oriented graph, whose one-sided paths represent the orbits of (X, T). It is 
used like the transition matrix of a Markov shift and hence called Markov 
diagram. A part of the results of this paper has been proved in [2] and [4] for 
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piecewise monotonic transformations, but only with the additional assumption 
that the partition of [0, 1] into intervals, on which T is monotone, is a 
generator. This assumption excludes for example all T, which have an attract- 
ing periodic orbit. The more general case considered in this paper makes it 
necessary to give proofs different from those in [2] and [4], which use the 
order structure of piecewise monotonic transformations. Hence this paper can 
be read without any previous knowledge about piecewise monotonic transfor- 
mations. 

We call a topological dynamical system (X, T) piecewise invertible, if the 
compact metric space X has a finite partition 3 into closed sets (which are 
then also open), such that the continuous map T: X--* X has the property that 
T IZ is invertible for all Z~3.  A special case are piecewise monotonic transfor- 
mations. In this case, X is a totally ordered set, such that the topology of X is 
the order topology, the elements of 3 are closed intervals and, for Z e 3 ,  Z lZ is 
monotone and T(Z) is again an interval. One gets examples of piecewise 
monotonic transformations, if one considers maps T: [0, 1 ] ~ [ 0 ,  1], where 
[0,1] is the disjoint union of intervals J~ for l<_i<N such that TiJi  is 
continuous and monotone. For 1 <i<N,  one substitutes the common endpoint 
of J~_ ~ and J~ and all its inverse images under all T k not equal 0 or 1 by two 
points and extends T, such that T IJz is continuous for all i. Then T becomes a 
piecewise monotonic transformation and the J~, which are now closed intervals, 
form the partition 3- As an example consider x~--~2x (mod 1). Here exactly 
those points are doubled, which have two dyadic expansions. One can general- 
ize this to higher dimensions. Suppose T: [0, 112~ [0, 1] 2 is such that T IJi is 
continuous and invertible, where the Jz are pairwise disjoint, have piecewise 
smooth boundary, and their union is [0, 1] 2. If a point belongs to the bound- 
ary of m different J~, then substitute it by m different points, each of which 
belongs to one of the m different dz, and do the same with all its inverse images 
under all T k. Then extend T such that T IJ~ is continuous. In this way one gets 
a piecewise invertible dynamical system. 

The paper is divided into two chapters. Chapter I contains those results, 
which can be proved without using the order structure of piecewise monotonic 
transformations. Chapter II contains those results about piecewise monotonic 
(X, T), the proofs of which rely on the order structure of (X, T). In w of 
Chap. I, the Markov diagram ~ is defined and basic results about the repre- 
sentation of the orbits of (X, T) as onesided paths are proved. For piecewise 
monotonic transformations, the investigation of ~) is continued in w of 
Chap. II. The order structure of (X, T) gives in this case a special structure of 
the Markov diagram. In w of Chap. I, the nonwandering set •(X, T) of (X, T) 
is investigated. Every irreducible subset ~ of ~ gives rise to a topologically 
transitive, T-invariant subset L(~) of X, if either 3 is a generator or (X, T) is 
piecewise monotonic. The other parts of ~?(X, T) are called L~, P and W. For 
L~ a condition is shown, which one can hope will imply that L~ is small in 
some sense. The elements of W are not in the center of (X, T). If (X, T) is 
piecewise monotonic, then P consists only of periodic points, and, if 3 is a 
generator, then P =0. In w 3 of Chap. I, we write the Markov diagram as a 
x ~-matrix M with entries 0 and 1. Then M is a /l(~)-operator. We express 
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the topological entropy of certain T-invariant subsets of X in terms of the 
spectral radius r of submatrices of M. This and the results of w 1 of Chap. II are 
then used in w of Chap. II to show for piecewise monotonic (X, T), that 
htop(L(~))=logr(Ml~ ) and that htop(L~)=0. Also a result about the growth 
rate of the number of inverse images of an xeL(~) under TklL(ff) is shown, 
which involves the topological entropy. In w 3 of Chap. I we investigate also the 
correspondence of closed paths in ~ and periodic points of (X, T). In w an 
example of a twodimensional piecewise invertible transformation is given. 
Finally, w 3 of Chap. II describes further applications of the method of Markov 
diagrams to piecewise monotonic transformations. 

I. The Markov Diagram 

5 1. Imitating Markov Shifts 

Let (X, T) be a piecewise invertible dynamical system and let 3 be the 
partition into closed-open sets Z, such that T]Z is invertible. We give now the 
main definitions: 

Successor. Suppose that D is a closed subset of some element of ,3. The non- 
empty sets among T(D)c~Z for Z ~ 3  are called successors of D. We write 
D -+ C, if C is a successor of D. The successors of D are again closed subsets of 
elements of 3, so that one can iterate the formation of successors. 

Markov Diagram. Let ~ be the minimal set with 3 c ~ 3  such that if D e ~ ,  
then ~ contains also all successors of D. The oriented graph, which ~ be- 
comes, if one inserts arrows from every De~3 to all successors of D, is called 
the Markov diagram of (X, T) with respect to 3- 

Paths. A finite or infinite sequence DoDID 2 ... with D~e~ is called a path in 
3 ,  if D~D~+, for i>0.  We say that an infinite path DoD,D2... represents 
x~X, if Ti(x)~Di for i>0.  

We begin the investigation of ~ with a lemma. For  k = 0 set 

which is again a partition of X into sets, which are closed and open, and T k is 
invertible on each element of 3k. 

Lemma 1. Suppose that Zi~3 for i>O and that D c Z  o. Set 

Ak=Dc~T-l(Z1)c~...c~T-k(Zk) for k>O 
and 

Do=D, Dk=T(Dk_I)mZ k for k>l .  

Then Tk(Ak)= D k for k >O. 
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Proof by induction. For k=0 ,  the assertion is trivial. Suppose that Tm(Am)=Dm 
is proved. The formula f ( R ~ f - l ( S ) ) = f ( R ) c ~ S  will be used often throughout 
the paper. We use it for f =  T "+ a and get 

Tin+ a(Am+ 1) = Tm+a (Am ~ T-(m+ 1)(Zm+ a)) = Tin+ a (A,~) ~ Zm+ i 

= T(Dm)~Zm+ a =Dm+ l. [] 

The first theorem shows that the Markov diagram can serve as a transition 
diagram of (X, T). The uniqueness of the representation of orbits as paths 
holds only partially. For  x s X  let Vk(X ) be that element of the partition 3k, 

which contains x. We have Vk+l(x)cVk(x ) for k>0.  If (~ Vk(x)={x} for all 
k = 0  x~X, then 3 is called a generator. 

Theorem 1. (i) Suppose D~7~, Every xeD is represented by a path DoD 1D 2 ... in 
the Markov diagram with D o =D. On the other hand, every path in the Markov 

diagram represents an xeX,  which is unique, if ~ Vk(X)= {X}. 
k = 0  

(ii) Suppose that x ~ X  is represented by the paths Co C 1 C2... and 
DoDaD2... in the Markov diagram. I f  CoC~Vk(x)=DoC~Vk(X), then Ci=D i for 
i~k.  

Proof. (i) Choose Zi~ 3 such that Ti(x)EZi. Set Do=D and Dj=T(Dj 1)~Zj 
for j ~  1. If x e D = D  o, then T~(x)~Di for i ~ 0  follows by induction. Hence D~:0  
and D o D~ D 2 . . .  is a path in the Markov diagram representing x. On the other 
hand, if Do D 1D 2 . . .  is a path in the Markov diagram, then Di= T(Di_t)~ Y~ for 
i ~ l ,  where YiE3. Set Ak=Do~T-X(YOn. . .nT-k (Yk) .  Since the sets A k are 

closed and decreasing, there is an xE ~ A k. By Lemma 1, we get Tk(x)~Tk(Ak) 
k = 0  

=D k for k~0 ,  i.e. DoDaD 2 ... represents x. If DoD~D 2 ... represents also y~X, 

then ri(y)~Dic Yi, i.e. y~Vk(X)= (~ r-i(Yi) for all k. Hence y=x,  if Vk(X ) 

(ii) Choose Zi~3, such that Ti(x)~Zi. Since C O C 1 C 2... and Do DaD 2 ... 
represent x, we get Co c Z  o, D o c Z o ,  C i=  T(Cj_ a)c-~Zj and D j =  T(Dj_ ~)c~Zj 
for j > I. Using Lemma 1, we get for i > k that 

C i = T i ( C  O ~ T -  t (Z 1) ~. . .  ~ r - i ( z i )  ) = r i ( c  o 53 Vii(x)) 

= Ti(DoCsVi(x))~-Di �9 [] 

The following two lemmas will be useful later. 

Lemma 2. Suppose that DoD~...D k is a path in the Markov diagram. Then 
k 

~=o T-i(Di) is contained in some element of 3k. I f  C o C a ... C k is a path with C o 
k k 

=D O such that (~ T-i(Ci) and 0 T-i(Di) are contained in the same element V 
i = 0  i = O  

of ~k, then Ci=D~for O<_i<k. 
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Proof. Choose Zi~`3 such that D o c Z o and Di = T(D i_ 1) c~Z~ for 1 < i < k. Then 
k k 

(~ T-i(Di)c V:= ~ T-~(Zi)e`3k. This shows the first assertion. If Y/~`3 is such 
i = 0  i = 0  k 

that C o c Y  o and C~=T(C~_jc~Y~ for l<i<_k, then V is also (~ T ~(Y/), since 
k i = 0  

(~ T-i(Ci)cV. Since .3 is a partition, we get Z~=Y~ for l<i<_k. Since Co=Do,  

we get now C~=D~ for 1 <_i< k by the definition of a successor. [] 

Lemma 3. I f  (X, T) is piecewise monotonic, then all D~7~ are closed intervals 

with endpoints in 0 Ti(K), where K is the set of endpoints of the intervals in `3. 
i = 0  

Proof by induction. For  De`3, the assertion is trivial. If it holds for D, then it 
holds also for T(D)c~Z, where Ze,3, i.e. for all successors of D, since D is a 
closed subinterval of some Ye,3, which implies that T(D) is again a closed 
interval by the monotonicity of T IY and the fact that T(Y) is an interval. [] 

w The Nonwandering Set 

An xEX is called wandering, if x has a neighbourhood U with Tk(U)~U=O 
for all k>  1. This is equivalent with the existence of a neighbourhood U of x 
and a k o > l  with Tk(U)~U=r for k>k  o. We denote the set of all x~X,  which 
are not wandering, by f2(X, T). For z e X  let co(z) be the set of limit points of 
the orbit {ri(z): i~0} of Z. Then co(z) is contained in f2(X, T) and called the co- 
limit of z. 

We begin with the investigation of correspondences between subsets of ~3 
and subsets of X. If 96c~3, we set H(96)= ~ D and v(96)={De~" 3 C~96 with 

DEg.I 

C~D}.  We call a subset 96 of ~ closed, if Ce96 and C ~ D  imply DE96. We 
call 9 . I c ~  perfect, if 96 is closed and if for every Ce96 there is a De96 with 
D ~ C .  

Lemma 4. (i) 96 closed ~. v(96) c 96, 96 perfect ~*. v(96) = 96. 
(ii) 96 closed ~ v(96) is closed. 

(iii) H0'(96))= T(H(9.I)). 
(iv) I f  96 is closed, then T(H(96))cH(96). I f  96 is perfect, then T(H(96)) 

: H (96). 

Proof. (i) and (ii) are direct consequences of the definitions. (iii) follows from 
the fact that, if D ~ ,  then T(D) is the union of the successors of D. (iv) follows 
from (i) and (iii). [] 

We say that a path leads from C to D in the Markov diagram, if there is a 
path Co C 1... C k with Co=C and Ck=D. We call f f c ~  irreducible, if for 
every pair C, D of elements of if, a path leads from C to D, and if every subset 
of 3 ,  which contains ~ strictly, does not have this property. 

Lemma 5. Suppose G~ ~ is irreducible. Let ~ be the set of all D ~  for which a 
path leads from some element of ~ to D. Then ~ is perfect and ~'. = ~ \ ~  is 
closed. 
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Proof. That @ is closed, follows from the definition of @. That @ is perfect, 
follows from the irreducibility of ~. Now suppose De~  and D ~ C. As De~, 
we get Ce~,  since ~ is closed. If Ce~,  we get De~  by_the definition of 
irreducibility and of ~, a contradiction to DeS. Hence C e ~ \ ~ = ~  and ~ is 
closed. [] 

If 93 and ~3 are closed subsets of ~ with ~ c 93, then set 

~(93, ~3)= ~ H(93)\T-~(H(fS)). 
i=0 

For an irreducible subset ~ of ~, we set K2(G)= }P(@, 6). By Lemma 5, @ and 
are closed. This definition of K2(G) is introduced in [21 and a bit more 
convenient than those used in [4]. 

Lemma 6. Suppose ~3 c 9.1c ~ and that 93 and ~ are closed. 
(i) xr ~) if and only if x has a neighbourhood U with ri(Uc~H(93)) 

cH(~3) for some i. 
(ii) t/J(93, ~3) is T-invariant. 

(iii) If ~ c  ~ is closed, then }P(93~,  ~ ) c  tp(93, ~3). 

Proof. (i) xr ~3) is equivalent with xC~H(93)\T-I(H(~)) for some i, and 
this is equivalent with TI(Uc~H(93))cH(~) for some i and some neigh- 
bourhood U of x. 

(ii) If r(x)C~}P(93, ~), then, by (i), Ti(Uc~H(93))cH(~) for some i and some 
neighbourhood U of T(x). Since T is continuous, T- I (U)  is a neighbourhood 
of x and TI+l(T-l(U)~H(93))cH(~), since T(H(93))cH(93) by (iv) of Lem- 
ma 4. By (i), we get xr ~5). 

(iii) If xr then Ti(U~H(93))cH(~) for some i and some neigh- 
bourhood U of x, by (i). As T(H(~))cH(~) by (iv) of Lemma 4, this implies 
r i ( U c ~ H ( 9 3 w ~ ) ) c H ( ~ ) ,  and hence x r  ~3u~). [] 

Examples of piecewise monotonic transformations can be found in [3] and 
E41. We give here an example, where ,3 is not a generator. Let T be the 
transformation shown by Fig. 1. The points a and b are doubled (cf. the 
introduction). Set I =  [0, a - I ,  J =  [ a + ,  b - ] ,  K =  l-b+, 1], J1 = IT(a), a - I ,  J2 
=[ r2(a) ,  1] and Kj=[a+, r~(1)l for j > l .  Since r(a)=T3(a) we get the fol- 
lowing Markov diagram 

(% 

K > K 1 --  > K 2 > K 3 ) K4 ' ... 

We have the irreducible subsets ~ ={t ,  J, K} and E ~ = ~ \ E ~ .  This gives ~l  
= ~ ,  @,=@2=~2 and ~g=0.  Hence 

H(@~)= [0, 1], H ( @ 0 = H ( ~ ) =  IT(a), x)u[r2(a), 13, ~2(~2)= H(@2) 

and ~c~(~l) is a Cantor set. 
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The next two lemmas give the method, how the Markov diagram is used 
for the study of T-invariant subsets of X. We shall use them several times in 
the sequel. 

Lemma 7. Suppose that ~ ~ N ~ 7~ and that N and ~ are closed. Suppose N' c 9.1 
and Ve3k are such that H(N') ~ (V~ H(9.I))\H(~). I f  V~ ~(N, ~)  ~ O, then there 

k 

is a path DoD 1 ...D k in N \ ~  with DoEN' and DkGH(~ ) such that ~ T-i(Di) 
~ g .  i=o  

k 
Proof. Choose ZiE 3 such that V= ~ T-i(Zi). For every DEN' set Do=D and 

i=0  

Di= T(DI_I)~Z ~ for l <_i<_k. For VD:=Vc~D we have 

H ( ~ ) ~  U VD~H(~)m(Vc~H(N'))mVc~H(N). 
DEg.I' 

If VD~0, then D ~ Z  o as DC~Zo=gO, and Tk(vo)=Dk by Lemma 1. If for all 
DeN '  with VD+O we have D k c H ( $  ), then 

Tk(Vc-~H(N))~ Tk(H($) U ~) VD)~ Tk(H(~)) U U Dk ~H(~) ,  
D ~ '  D~9~' 

since H ( $ )  is T-invariant by Lemma 4. As Vis open, we get Vc~ T(N, ~3)=0 by 
(i) of Lemma 6. Hence there is a DeN '  with VD=#0 and Dk~-H($ ). This implies 
that Dkr and hence Di(~$ for O<i<k, as ~3 is closed. Furthermore, D k 
=Tk(VD)=#~) a s  VD::# 0 and hence Di+0  for O<_i<k a s  DkcTk-i(Di). Since D O 
=DEg.I 'c  N and N is closed, the path DoD 1 ... D k is in N\!B.  From D i c Z  i (for 
i = 0  this follows from DoC~ZoDVD+O, as every element of :D is contained in 

k 
an element of the partition 3) we get ~ T-i(Di) c V, finishing the proof. [] 

i=O 
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Lemma 8. Let if, be an irreducible subset of ~ such that H(@)\H(~)~0 .  Then 
every infinite path in ft. represents an x~fd(ff,). 

Proof. We write F for H(~) and G for H(~). As F\G~O, we find a y~F\G. 
Hence there is a C ~ \ ~ = f f  with y~ C. Suppose D o D~ D 2 ... is an infinite path 
in ft. Since ff is irreducible, we find for every i an m>=i and a finite path 
CiCi+I. . .C m in ff with Ci=D ~ and Cm=C. Choose Z j e 3  such that Dj 
=T(Dj_I)c~Z j for l<j<=i and Cj=T(Cj_I)c~Z j for i<j<m. Set A i 
=Doc~T-l(Z1)c~...c~T-i(zi). By L e m m a l  we get Tm(Aic~T-(i+l~(Zi+l) 
c~...c~T-m(Zm))=C. Hence we find an xi~A i with Tm(xi)=y. The points x i 

have a limit point x in (~ A i, since every A i is closed. Then Ti(x)~Ti(Ai)=Di 
i = 0  

for all i by Lemma 1 and DoDID z ... represents x. Furthermore, Tm(xi)=yq~G, 
i.e. xisF\T-m(G). Since m>=i and the sets F \ T - m ( G )  decrease to f2(~) for 
m ~ o o ,  we get x~f2(~). Remark that T(G)cG by Lemmas 4 and 5. [] 

The sets Vk(X ) defined above are open neighbourhoods of x~X. They define 
a topology on X, which has less open sets than the original one. We call limit 
points with respect to this topology 3-limit points�9 If the two topologies 

coincide, i.e. if (~ Vk(x)={x } for all x~X, then ,3 is called a generator of 
(X, r) .  k= 0 

Theorem 2. Suppose ft, ~ ~ is irreducible. 
(i) I f  xEint (H(~) \H(~))  and xq~f2(~) then x is wandering. 

(ii) I f  H(~)\H(~)+O, then there is a path in ft., which contains every finite 
path of ~ and which represents a zsf2(ff,). Furthermore, co(z)cf2(E) and f2(ff~) is 
a subset of the set of 3-limit points of the orbit of z. 

Proof. (i) We can choose the neighbourhood U of x in (i) of Lemma 6 such that 
UcH(~)\H(ff .)  and get TJ(U)c~U=O for j>=i, since H(~) is T-invariant by 
Lemmas 4 and 5. 

(ii) As ff is irreducible, we find an infinite path in ~, which contains every 
finite path of ~. By Lemma 8, it represents a z~f2(ff). By (ii) of Lemma 6, f2(ff) 
is T-invariant, and by definition, f2(~) is closed. Hence the limit points of the 
orbit of zef2(~) are in f2(~). On the other hand consider some Vk(X ) of an 
x~f2(~). Since X~Vk(X)C~Y2(ff ), we find by Lemma 7 applied to 9 , I=91 '=~ and 

k 
~3=~ a path DoD 1 ..D k in ~ with ~ -i  c .. �9 T (Di) V~(x). As DoD ~ .D~ is con- 

i = 0  
tained in the path in ~ representing z, there is an m with Tm+i(z)~Di for 
O<_i<_k. This implies Tm(z)~Vk(x). Since k was arbitrary, this says that x is a 
3-limit point of the orbit of z. [] 

Theorem 2 clarifies, which points of int (H(@)\H(~)) belong to ~2(X, T), if 3 
is a generator. The next theorem deals with H(~I) for a closed set 9.1, e.g. N =  ~. 

For  a sequence ~I~912R9.13~ . . .  of closed sets 9.IicX) set 9 I~=  ~ 92[ i and 
( ~  i = l  

f2((gXj)j_>l)= tP(~l~, 9.1~). One easily checks that ~Ioo is a closed set. We say 
i=1  

that a subset Y of X is represented at infinity in the Markov diagram, if for 
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every xeY, for every finite subset ~ of ~,  and for every k e n  there is a path 
k 

D o D  1 . . . D  k in ~ \ ~  with (~ r-i(Di)cVk(X). The Markov diagram for piece- 
i = 0  

wise monotonic transformations (cf. w 1 of Chap. II below) suggests, that there 
is not "enough space" for "large" sets at infinity in the Markov diagram. 
Hence representation at infinity can be considered as a kind of smallness 
condition. 

Theorem 3. Suppose (~[i)i>_--1 is a decreasing sequence of closed subsets of ~3 and 

set odor= ~ 9.1 i. Then f2((~Ii)i~l) is represented at infinity in the Markov dia- 
i = 1  gram. 

Proof This follows from the fact that (~ (gIi\g[~)= 0 and Lemma 7 applied to 
i = 0  

9.1= 9.I'= 9.1i and ~ = g x ~  for every i, since xeVk(x)c~!P(9.1 i, 9.I~) for every k and 
every xe~2((9.Ii)iel). [] 

We want to improve Theorem 2 in the case, when 3 is not a generator. This 
gives then a satisfactory result for piecewise monotonic transformations (cf. 

Theorem 4 below). To this end set 3~  = T-~(Zi )+0:ZiE3  . The elements 

of 3~  are closed and called 3-atoms. If I e 3 ~  consists only of a single point, 
we call I a trivial 3-atom. ,3 is a generator, if and only if all 3-atoms are 
trivial. 

Lemma 9. (i) X is the disjoint union of all 3-atoms and T k I I is invertible for all 
k >_ l and all I e3~ .  

(ii) The image of a 3-atom is contained in a 3-atom. 
(iii) For I e 3 ~  and k >-_ 1, either Tk(I)c~I=O or Tk(I)cI .  
(iv) Suppose (X, T) is piecewise monotonic and I e 3 ~ .  Then I is an interval 

and Tk l I is monotone for all k. 

Proof 3o~ is the refinement of the partitions 3k for k->0. Hence (i) follows. 
Since the elements of 3k are intervals, on which T k is monotone, if (X, T) is 
piecewise monotonic, we get also (iv). Every I e 3 ~  can be written as I 
=Zc~T- I (J )  with Z e 3  and Je3~o. This gives (ii). Now (iii) follows from (i) 
and (ii). [] 

For x e X  let 1](x) be a neighbourhood system of x. We define !I(x) as 
follows. By (i) of Lemma 9 there is a unique I e 3 ~  with xeI. If I = {x}, set ll(x) 
=fl(x). Otherwise, if I is nontrivial, set 21(x)={U\I: Ue~(x)}. Since I is 
closed, the elements of 21(x) are open. If xeint  I, we can set ~(x) = {0}. 

Lemma 10. Suppose (X, T) is piecewise monotonic. For every x e X  one can 
choose ~l(x) such that every nonempty element of ll(x) is an interval and a union 

of elements of 0 3,,. 
m ~ O  

Proof Let Ie3oo be such that x~I. If I =  {x}, set !I(x)= {Vk(x): k=>_0}. Now let I 
be nontrivial. If xEintI ,  set t[(x)={0}. If xebdI ,  say the left endpoint of the 
interval I (cf. (iv) of Lemma 9), set ~/(x) = {(Vk(x)\I ) C~ {yeX: y < x}: k >= 0}. As I 
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is a subinterval of the interval Vk(x), the set Vk(X)\I is the union of two 
intervals (the right one can be empty), the left one of which is an element of 
ll(x). It is the union over m of the sets (V,,(x)\Vm+l(x))c~{y:y<x }, each of 
which is a union of elements of 3,.+1 or empty. Furthermore 

(Vk(x)\I)c~{y: y < x } = 0 .  [] 
k = O  

For closed subsets 9.1 and ~3 of 9 with ~3 c ~I define 

L(g[, ~3)= {x~X: Q~ gJ(9.I, ~3)+0 for all Q~lI(x)}. 

We have L(N, ~3)c ~(gx, ~3), since 7J(9.1, ~3) is closed, and L(9I, ~3)= 7~(9.I, ~3), if 
3 is a generator. One deduces from (ii) of Lemma 6, that L(9.1, ~3) is T- 
invariant. 

Let F be the set of all irreducible subsets of 9.  For ~ F  set L(~)=L(~ ,  ~). 
If (gxi)~ 1 is a decreasing sequence of closed subsets of 9,  we set L((9.1~)~=> 0 

= (~ L(92ii, 9.Ioo), where N~ = (~ 9I i. Let L~ be the union of all such sets 
i = 1  i = 1  

L((94)~ 1). 
Theorem 4. Suppose (X, T) is piecewise monotonic. 

(i) I f  r then L( r  or L(r where z is as in Theorem 2. 
(ii) I f  x~L~, then x~co(c) for some c in the finite set K (cf. Lemma 3). 

Proof. (i) Let z be as in Theorem 2. If such a z does not exist, then H(~)\H((s 
=0 and L(ff)cO(ff)=0.  Fix some x~L(ff.). Then Q~f2(ff)=Q~gJ(ff ,  i f )+0 for 

all Q~ll(x). By Lemma 10, for all Q~ll(x), there is a V~ U 3,. with V c Q  and 
m = 0  

V~Q(ff)+0. By Theorem 2, V~O(~)=~0 implies Ti(z)~V for some i. Hence 
x~co(z) and L(ff) ~ co(z). 

Now suppose x6co(z). Let I 6 3 ~  be such that x~I. If T~(z)eI for i=m and 
n, then TP(I) c I for p = n - m ,  by (iii) of Lemma 9. Let J be the union of the 3- 
atoms which contain T~(1) for O<j<p. Then Ti(z)6J for i>m, every ~-limit 
point of the orbit of z is in J, and O( f f ) c J  by Theorem 2. This implies L(ff) 
=r if I is nontrivial. If T~(z)eI for at most one i or if I is trivial, then for 
every Qe!I(x) there is a j with r~(z)eQ, as x~co(z). Since r~(z)eO(~) for all j 
by Theorem 2 and (ii) of Lemma 6, we get x~L(ff). Hence co(z)cL(~). 

(ii) Suppose x is in some L((9.1i)i>=O and xr for all c~K. In particu- 
lar, there is a Q~g(x) with T~(c)r for all c~K and all j > 0 ,  as K is finite. We 
choose ll(x) as in Lemma 10. For every i > l ,  we find a D~I~ with Qc~D+O, 
because otherwise Q~H(~Ii)=r which implies Q ~ ( ~ I i ,  9.1~)=0 and 
xr ). By Lemma 3, the interval Q cannot contain an endpoint of the 

interval D, hence Q cD.  Let V be one of the elements of @ 3,., whose union 
m = 0  

is Q (cf. Lemma 10). If V= (~ T-e(Z~), set Do=D and D~=T(D~_~)c~Z~ for 
k - O  

l<_k<m. Since V c Q c D ,  we get D,.=T,.(V), by Lemma 1. Hence D" depends 
only on V and not on D. Thus we get the same D,, for every i. As 9.I~ is closed, 

we have D"~gAg for all i and hence Dm~gA~= (~ 92~. This implies T,.(V)=D~ 
i = 1  
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cH(gX~) and Vc~7~(9.Ii, gxoo)=0 for all i by (i) of Lemma6.  Therefore 
Qc~TJ(21i, 9.I~)=0 for all i and xr a contradiction. This proves 
(ii). [] 

Now we state the main result about s T). If I is a nontrivial ,]-atom 
and Tk(I)r for all k > l ,  then int I~f2(X,  T)=0  by (iii) of Lemma 9. If p >  1 
and TP(I)cI, set P(I)=f2(I, TPkI) and let P be the union of all such P(I). If 
(X, T) is piecewise monotone, then P consists only of periodic points by (iv) of 
Lemma9.  Furthermore, set (21(X,T)=f2(X,T). If f2k(X,T) is defined, let 
Qk+I(X, T) be the set of nonwandering points of Zl f2k(X, T). Define W as the 
set of all xeE2(X, T) with x(sf2"(X, T) for some m. 

Theorem 5. Let (X, T) be a piecewise invertible dynamical system. Suppose that 
every perfect subset of 7~ is a finite union of sets ~ with ~ F .  Then 

f2(X, T ) c  U L(ff')~2L~ouPuW. 
GaY 

I f  3 is a generator or if (X, T) is piecewise monotonic, then L(G) = co(z) for some 
z~X. L~ can be represented at infinity in the Markov diagram. I f  (X, T) is 
piecewise monotonic, then L~ c U co(c), where K is finite. 

caK 

Proof. Fix xef/(X, T) and suppose xq~L(G) for all GeF  and x~L~.  We have to 
show x e W u P .  To this end we construct a sequence 3 of closed subsets of 
with the following two properties. If 9.1 and $ are two successive elements of 
the sequence A, then 

(a) $ ~ 95[, 
(b) Qc~P(91, ~3)=0 for some Qell(x). 

The construction of A is done by induction using the following three steps. 

Step 1. Suppose A is finite and the perfect set 9514=0 is the last element of A. 
Let F' be a minimal subset of F with U ~=9.1. Fix some ~EFI Set F" 

~cF' 
~ F ' \ { ~ } ,  ~ =  U ~ and ~ = ~ u ~ .  A union of closed sets is closed, hence 

.~F" 
and ~3 are closed by Lemma 5. As F' was chosen minimal, we have ~ r  
because otherwise ~ ,  as ~ is closed, and ~ = 9 i .  Hence_~3~ 9.1, as ~ ( ~ = r  
Since x~L(~), we have for some QelI(x) that Q ~ P ( ~ , ~ ) = 0  and hence 
Q~  7J(9.I, ~ ) = 0  by (iii) of Lemma 6, as 2 I = ~ w ~  and ~ = ~ w ~ .  We add ~3 to 
A as its last element and the two properties of A remain valid. 

Step 2. Suppose A is finite and the closed set ~I4= 0 is the last element of A. Set 
9.1o=9.1 and 9.1~+a=v(9.I~) for i>0.  By (ii) of Lemma 4, all ~I~ are closed. Let 
m < oo be maximal, such that 92[~ for i<m is not perfect. Add 92[~ for 1 <_i<_m to 
A, i f m < o %  and add 9.I~for l < i < ~  to A, i fm=oo .  For 0 < i < m ,  wehave  by 
(i) of Lemma 4, that 2tz+a~9.Iz, and by (iii) of Lemma 4, that T(H(N~)) 
=H(9.1z+~), which implies 7~(9.1~,9.1~+~)=0. Hence the two properties of A 
remain valid. 

Step 3. Suppose A is infinite, say A=(gx~)~>__~. Set ~oo= (~ 9.I i. As x~L~o, we 
i ~ l  

have xq~L(9.Ii, 9I~) for some j, that is Qca~ff(9.1~, 9i~)=0 for some Qell(x). We 
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cancel 9.1 i for i>j from A and add ~1~ to A. Since 9-Ioo ~ ~Ii for all i>  1, by (a), 
the two properties of A remain valid. 

We begin the construction letting A be the sequence consisting only of 3 .  If 
is perfect, apply Step 1, otherwise apply Step 2. After each Step 1 and 3 

apply Step 1 or 2, depending on whether the last element of A is perfect or 
only closed. After each Step 2 apply Step 1, if m <  o% and Step 3, if m =  oo. 
Step 3 also makes A again finite, if it has become infinite by repetition of the 
steps. If A is finite, its last element is a strict subset of the last element of A at 
any earlier step at which A was finite. If A is infinite, it is again finite after one 
step, and the last element of A goes through a totally ordered set in the set of 
all closed subsets of ~ with inclusion as order relation. As the empty set is the 
minimum in this ordered set, the induction ends with a finite sequence A 
whose last element is the empty set. As A is finite, we can suppose that (b) 
holds for all successive 2[ and ~3 in A with the same QEII(x). 

Suppose A=(9.Ii)l<i_< n. Then 911=~  and 9.1,=0. Hence Q~g21(X, T ) ~ X  
=H(9.I 0.  Suppose we have shown that Q~2i(X,T)cH(9.Ii). We show 

Qc~Oi+I(X, T)cH(gJii+1). To this end, suppose yeQ\H(9.Ii+ O. Since Q is 
open, we find a neighbourhood U of y with UcQ, Uc~H(~I~+I)=~b, and 

TJ(U~H(9.If))cH(gX~+O for some j, by (b), (i) of Lemma 6, and the continuity 

of T. As Qc~f2i(X, T)cH(9.1i), the set Uc~H(9.1i) contains a neighbourhood of y 

in ~?i(X, T). Since U c~ H(9.1i+ 1)= r and H(9.1~+ 1) is T-invariant, we get that y is 
wandering for Tt Q~(X, T), that is y~f2~+l(X, T). This is the desired result. 

We have shown by induction, that QafP(X, T)cH(9.1n)=~b. Let I ~ 3 ~  be 
such that xE1. If I is trivial, we have xeW, since xeQ. If I is nontrivial, then 
either xeP(I) c P, or x has a neighbourhood U with T~(Ic~ U) c~(I a U) = O for 
m > l .  As Qc~?"(X, T)=~,  the set Ic~U contains a neighbourhood of x in 
On(X, T). Hence X~'~n+I(x, T), that is x~W, if x(~P. 

We have shown that Q(X, T)c  U L(~)uLoo UPUW" The other assertions 
~ E F  

follow from Theorems 2, 3 and 4, as L(9~, ~3)~ ~(9.1, ~3) and equality holds, if 
3 is a generator. [] 

We conclude w with a result which shows once more the analogy with 
Markov shifts. 

Theorem 6. Let (X, T) be a piecewise invertible dynamical system and suppose 
that 3 is a generator. If ~EF and ~ has a finite subset ~' with H(gr 
then L(~)= f2(~) is the set of all x e X  represented in ~. 

Proof. The assumptions of Lemma 7 are satisfied for ~l = ~, ~I'= ~' and ~3 = 6;. 
If x6~?(~), then x~V~(x)c~f2(~) for all k and hence, by Lemma 7, for all k, there 

k 

is a path DoD ~ ...D~ in ~ with Dose' and (-] T-i(Di)cV~(x). Since ~' is finite, 
i = 0  

infinitely many of these paths must begin at some fixed C ~ ' .  By Lemma 2, for 
two such paths the longer one is a continuation of the shorter one. Hence we 
can join these infinitely many paths beginning with C to an infinite path 

C 0 C 1 C2... in r which satisfies then (~ T-~(Ci) c (~ V~(x)={x}, as 3 is a 
i = 0  k = O  
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generator. By (i) of Theorem l, every path in !) represents some element of X, 
hence C o C a C2... represents x. 

On the other hand, every infinite path in ff represents a unique x e X  by (i) 
of Theorem 1, as .3 is a generator. By Lemma 8, we get xef2(fi;). [ ]  

~'3. Topological Entropy and Periodic Points 

Lemma 11. Suppose (X, T) is piecewise monotonic and R = X  is closed and T- 
invariant. 

(i) I f  # is a T-invariant measure on R with #( / )>0  for some Ie`3~o , then 
there is a T-invariant measure #' on R with h(ff)>h(/l), where h denotes entropy. 

(ii) h,o v (R) = lim 1 k log card 3~,, where 3k = { Ve 3k: R c~ V+ 0}. 

Proof If # ( I )>0  for 1~3~,  then, by (iii) of Lemma 9, Tm(I)aI  for some m and 
m - - 1  

/~=q/ l '+(1-q) / s  where 0 < q < l  and /z" is concentrated on U T~(I) �9 By (iv) 
i~O 

of Lemma 9, h(#")=0 and by Theorem 8.1 of [17] we get h(#)=qh(l~')<h(#'). 
This proves (i). In order to show (ii) we use the variational principle (Theorem 
86 of [17]). By (i) it suffices to take the supremum in this theorem only over 
those t~, which satisfy # ( I )=0  for all l e 3 ~ .  Hence h,op(R) does not change, if 
we consider the 3-atoms as single points, which is possible by (ii) of Lemma 9. 
But then ,3 is a generator and (ii) follows, [] 

We consider the Markov diagram as a f? x ~-matrix M with entries 0 and 
1. For C , D ~  set MCD=I, if C--*D, and Mco=O otherwise. As every C e ~  
has at most N : = c a r d 3  successors, u ~ u M  is a positive ll(~)-operator with 
][Mll~<N. The same holds for M]9.1, where 9 1 a ~ .  We denote the spectral 
radius by r. We need the complicated assumption of the following theorem in 
Chap. II. In particular, it is satisfied, if ~l has a finite subset ~ with 
H (~) ~ H(9.1)\H(~3). 

Theorem 7. Suppose either that (X, T) is piecewise invertible and ~ is a genera- 
tor or that (X, T) is piecewise monotonic. 

(i) Suppose ~ 3 a 9 . I ~  and 9.[ and ~ are closed. I f  there are q~tN and ~ ~9.1 

with card ~ . < q  for n > l  and with H ( O ~ ) ~ H ( ~ ) \ H ( ~ )  and 
/ 

i f for every n 
\ / 

and D ~ ,  there is a Ceq~,+ 1 with D ~  C, then htop(~(gI, ~ ) )< log r (Mj  9.I\~3). 

(ii) Suppose f i e f  and that there are ~,  with the same properties as in (i)for 
9.1=~ and ~ = ~ .  I f  L(~)+O, then 

htop (L((~))= h,op((2((~))= log r(M [ r 

(iii) htop(X , T)=log r(M). 

Proof (cf. [2]). Set M = M ) (gA\~) and 3~ = {V e3k: Vc~ W(oA, ~3) # 0}. Fix k > 0. 
If Ve3~,, we find by Lemma 7 a path D O D 1 ... D k in ~ \ ~  with D0e~,  for some 
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k 
n, DkdgH(23 ) and ~ T- i (Di )cV.  Choose ZiE3  such that D i c Z  i. Then V 

k i = 0  

= 0 T - i ( Z i ) .  For  all m > n  there is a C o ~ m  with D o c C  o. Set Ci 
i = 0  

= T ( C i _ j ) n Z  i. Then D i c C  i for O<_i<_k, as Di= T(Di_l)c~Zi, and C O C 1 ... C k 
is a path in 92[, since 9i is closed. We have C~r for O<_i<k, because otherwise 
CkE~, as ~3 is closed, and then D k C C k c H ( ~ ) ,  a contradiction. Hence for 

V~3~ there is an n such that for all m > n  there is a path C o C 1 ... C k in 91\~3 
k 

with C0s~m and ~ T- i (CI )cV .  Since 3~ is finite we find such an m inde- 
i = 0  

pendent of V. The number of these paths is ~ ~, /~7/(k~CD, where lw~-'(k)C~ denotes 
Ce~m D~9.1 

an entry of the matrix ~rk. The elements of 3~ are pairwise disjoint. Hence 
k 

different Vz3~ give rise to different paths C O C 1 ... C k, as (~ T-~(C~)~ V,, and 
i = 0  

card3~,< ~ ~ M~<ql lMkl lx .  
C e ~ m  De~ 

This implies htop(TJ(91, ~3))<log r(~/) proving (i). If ,3 is not a generator, we use 
Lemma 1 1. 

For  (ii) we set 91 = ~, ~3 = ~ and for (iii) we set 91 = ~3, ~3 = r ~ = ,3 for all 
n. We get then by (i) that 

htop(L([~)) ~ htop(O([~)) <log  r(M [ E), 

as L(E)cO(E) ,  and that htop(X , T)<logr(M).  On the other hand we have 
k 

[ ]~tk[[ l=sup~ ~r~k/ For  fixed C, we get by ~o -i  T (D,) ~ V~ 3k a map from the I v l  CD" 
C D i 

set of all paths DoD ~ ... D k of length k in ~3 with Do= C to the set ,3k, which is 
injective by Lemma 2. Hence [[Mk[ll <ca rd  3g. Furthermore, if D O D 1 ... D k is in 
E, then it is an initial segment of infinitely many finite paths in E and occurs 
therefore infinitely often in a path representing a z of Theorem 2. Hence 

k 
TJ(z)s ~ T - i ( D i ) c V e 3 k  for infinitely many j and co(z)~V#O, as V is closed. 

i = 0  
Now co(z)=L(E) by Theorem 4, if (X, T) is piecewise monotonic, and by 

V ~ Q "  Theorem 2 and the fact that L(ff)=~2(ff), if 3 is a generator. This gives .Ok 
: = { V~3k : VU) L(ff) # 0 }. Hence [1 (M [ ff)k ]] 1 ~ card 3~'. This and I[ M~ [I ~ _-< card 3k 
imply (ii) and (iii) using Lemma 11. [] 

Now we consider periodic points of (X, T). We call a path DoD~D 2 ... a 
closed path of length n, if Di=Di+ ~ for i>0.  

Theorem 8. Suppose x ~ X  satisfies T"(x)= x. 

(i) I f  for all D ~  with x~D there is a k with Vk(X)~D , then there is a 
unique closed path of length n in the Markov diagram which represents x. 

(ii) I f  (X, T) is piecewise monotonic, ~ V~(x)={x} and x e b d  D for some 
k = O  

D ~ ,  then there are finitely many (at least one) closed paths in the Markov 
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diagram of length n or 2n representing x. I f  (X, T) is piecewise increasing, then 
the length of these paths is n. 

Proof Existence: By (i) of Theorem l, we find a path DoD1D2... which 
represents x. Then D,.,Dr,+I Dr,+2 ... represents Trn(x)=x for all r. If there is a 
k with Do~Vk(x)=D,c~Vk(x), then Di=Di+ . for i>k by (ii) of Theorem 1 and 
we get a closed path DjnD;n+l ... of length n representing x, where j is such 
that jn>k.  This happens always in case of (i). In case of (ii) it may happen that 
D , , =  {x} for some r. Then D~,,+, = {x} and we get a closed path of length n as 
above. Otherwise suppose that x is the left endpoint of D o (cf. Lemma 3). Then 
T"(x)=x is also an endpoint of D, by the definition of successor. If it is the left 
endpoint then we find a Vk(x) with Do~V~(x)=D,c~Vk(x), since D,#{x}  and 

(~ Vk(x)={x}, and get a closed path of length n as above. This happens 
k = 0  
always, if (X, T) is piecewise increasing. If x is the right endpoint of D,, then 
T" is decreasing in a neighbourhood of x, and Tan(x)= x is the left endpoint of 
D2,. As above, we find a Vk(X ) with Do~Vk(X)=D2,~Vk(x) and get a closed 
path of length 2n. 

Uniqueness: Suppose DoDxD 2 ... and C o C a C2...  are closed paths repre- 
senting x. In case of (i) we find a k with Do C~ Vk(X)= Vk(X)= Co~ Vk(X). Hence, 
by (ii) of Theorem 1, D~= C~ for i>k. As the paths are closed, we get D~= C~ 
for i>0.  In case of (ii) there are four possibilities for Do~Vk(x ) with large 
enough k. It can be Vk(x ), Vk(x)~{y: y<x},  Vk(x)c~{y: y>x},  or {x}. The same 
holds for Co~Vk(X ). We get as above, that there are at most four different 
closed paths representing x. [] 

Remark. (i) Suppose that (X, T) is piecewise monotonic and that ,3 is a 
generator. By Lemma 3, the requirements of (i) of Theorem 8 hold for 

i=oo 

xr ~J Ti(K), and the requirements of (ii) of Theorem 8 hold for x~ ~)Ti(K). 
i = 0  i = 0  

Hence every x of period n is represented by a closed path, which is unique and 

of length n, if x is not one of the finitely many periodic points in U T~(K). 
i = 0  

(ii) The fixed point y of the example in w 2 above is represented by the path 
K 1 K 2 K 3 ..., which is not closed. 

5~ 4. A Two Dimensional Example 

It seems to be difficult to compute the Markov diagram for higher dimensional 
(X, T). One can compute it for the following simple class of transformations T a 
in [0, 1] 2. Set I =  1-0, 2 g], j = ( 2 ,  1] and K =  [0, 1] and define To(x , y)=(1 - y ,  ySx) 

(5-- a ( x  - -  2~ for (x, y)~I x K and To(x, Y)=~3 v sJ, Y) for (x, y)eJ • K, where ae( 2, 1). The 
points in {2} x K and their inverse images are doubled and T o is extended 
continuously (cf. the introduction), in order to get a piecewise invertible 
dynamical system. One can show that 3 =  {I x K, J x K} is a generator. We 
compute the Markov diagram only for a=0 .43 . . ,  and write T for T o. The 
intervals 11, 12, J1, J2, Kx and K 2 are indicated in Fig. 2 and defined such that 
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I I ,.T 

.I 
T 

Fig. 2 

J 
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I K 

y 

the following hold: 

J1 x K -  2 K) c~ (d x K), - ( 7 ,  a7 x K = T ( J  x 

T(J  1 x K ) = I  1 x K, T(I  1 x K ) = ( I ~ J )  x K1, 

r ( I x K 1 ) = d 2 x K ,  T ( J x K 1 ) = ( I u d l ) x K 1 ,  r ( d ~ x K ) = ( I 2 u J 1 ) x K ,  

T(I  2 x K ) = ( I u J )  x K2, r (d  x K 2 ) = ( I u J 1 )  x K 2. 

Finally we have T(I  x K 2 ) = I  1 x K because 
equations one gets the Markov diagram of T: 

I x K 3  

H 
J x K  

I x K  I ~ d x K  1 

> d l x ~  l x K  

I x K  2 d 2 x K  

I 2 x K  , d x K  2 

of the choice of a. Using these 

;' "]1 i K V 2  x g 1 

/1 • K1 12 x K 1 

[1 X K 2 dz x K 2 

dl x K 2 12 x K 2 



Piecewise Invertible Dynamical Systems 375 

One easily sees that F consists of three irreducible subsets of 3 .  Since ~ is 
finite, we have Loo = ~ (cf. Theorem 5). Hence all co-limit sets are in some L(G) 
=f2(G) with GeF.  One gets L(G), if one takes away T-k(H(~)) for k = 0 ,  1, 2, ... 
from H(~). In this way one gets that the three sets L(G) are a product  of two 
Cantor sets, a finite union of products of an interval and a Cantor  set, and a 
finite union of rectangles. A similar result holds for arbitrary ae(~, 1), but there 
can be a countable number  of topologically transitive subsets L(G). 

II. Piecewise Monotonic Transformations 

Throughout  Chap. II we suppose that (X, T) is piecewise monotonic. 

.~ I. The Structure of the Markov Diagram 

Our first goal is to show that the matrix M introduced in w of Chap. I 
behaves in some sense like a finite matrix. Recall Lemma  3, which says that all 
elements of ~ are closed intervals. This is used permanently throughout this 
chapter. We call the endpoints of the intervals in 3 critical points and denote 
the set of critical points by K. The cardinality of K is at most  twice the 
cardinality of 3. We call a subinterval of X critical, if it has an endpoint in K. 
For  a subinterval I of some element of 3 set e ( I ) = m i n { i > l :  ri(I)c~K+O} 
and e ( I ) =  o% if this set is empty. 

Lemma 12. (i) Suppose CeT~ has more than one successor. Then there are two 
successors of C, each of which has one common endpoint with T(C) and has the 
other endpoint in K (its two endpoints may coincide). All other successors of C 
are in 3. 

(ii) I f  De~,  set Di=Ti(D). For 0<i<c~(D), D i is then in 7~, is not critical 
and is the only successor of D i_ 1. I f  c~(D)< o% then the successors of D~(D)_ 1 are 
T~(D}(D)c~Z+O for Z e  3,  which are all critical. I f  a(D)=oo, then D is contained 
in some 3-atom. 

Proof. (i) Since C has more than one successor, the endpoints of the interval 
T(C) are contained in two different elements Z and Z' of 3. Hence T ( C ) ~ Z  
has a common endpoint with T(C) and a common endpoint with Z. The same 
holds for T(C)c~Z'. For  all other Yea ,  one has either T(C)c~Y=O or T(C)c~Y 
=Y. 

(ii) Suppose we have shown that DieTs If i < ~ ( D ) - I ,  then T(Di)c~K=O. 
As T(DI) is an interval, we get T(Di)aZ for some ZE3 .  Hence DI+I=T(DI) is 
not critical and the only successor of D~. If ~(D)<oo and i = ~ ( D ) - I  then 
T(Di)c~K=t=O. If T(Di )cZ  for some Z e 3 ,  then T(Di)=T~(D)(D)~Z is critical 
and the only successor of D~(D)_ ~. Otherwise, the successors of D~D) 1 are 
T(Di)~Z=TaD)(D)c~Z+O for Z e 3 ,  which are all critical by (i). If  ~(D)=oo, 

choose Zie3,  such that Di=Ti(D)cZi .  Then D c  ~ T-i(Zi), which is a a -  
atom. [] ~=o 
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Now we consider a critical element DE g.  Set ~o---3 and 9~+ 1 = 9 ~ v ( ~ i ) ,  
where v is defined in w 2 of Chap. I. 

Lemlna 13. Suppose that D 6 ~  has endpoints c and x with c~K and that 
c~(D)< oo. Set Di= Ti(D)e9 for 0<i<ct (D)  (cf Lemma 12). Then all successors 
of D~cD)_ 1 are in 3, except at most two. At most one of these two successors, call 
it C, is not in ~(m" I f  C exists, then C has endpoints T~W)(x) and c' with c'~K 
(its two endpoints may coincide). 

Proof. As Die~  for 0<i<c~(D) we find Zi~ 3 with Di=Ti(D)cZI .  Set E 0 = Z  o 
and E~--T(E i_ 1)~Zi for 1 < i <  c~(D). We get by induction that D i ~ E~ and that 
D~ and E i have the common endpoint T~(c) for 0<i<c~(D), since _ _  T i ( c ) E D i ~ Z i  �9 

For i = 0  this holds, since the endpoint c of D is in K and D c Z  o. Similarly, 
T(D~(o)_OcT(E~,w>_I) and these two intervals have the common endpoint 
T~'(~ The other endpoint of T(D,,tD ~_ ~)= T~(~ is T~'(~ Let Z, Z ' e 3  be 
such that T"(~ and T~W)(x)EZ. Set E~,(o)=T(E~(D)_I)~Z. Then 
T~'(~ hence E~,(D)4=O. As E o e 3  and E ~ E ~ +  1 holds, we get 
E~(D)e~(D). Suppose first that Z = Z ' ,  i.e. T~'(D)(D)cZ is the only successor of 
D~(D,_ ~. Together with T~'(~ 4 = ~ this implies that one of the endpoints of 
T~(DI(D) is in K. If T~'(O)(c)EK, then T~(~ satisfies the requirements of C. If 
T~'(~ then T~'(O)(D)=T(D,,tD)_~) has one endpoint in common with Z 
and one in common with T(E~(D)_,). This implies T~'(D)(D)=E~(D)eg~,(D) and C 
does not exist. Now suppose Z4=Z'. For all Ye3 between (with respect to the 
order relation) Z and Z', one has T~'(D)(D)c~Y= Ye3.  Furthermore, T~'W)(D)nZ 
=E~(o)e9~,(o ), since T~'(D)(D) and T(E~,(D)_I) have the common endpoint 
T~'(~ Finally T~'(9)(D)~Z ' is C, as it has a common endpoint with Z' and its 
other endpoint is T~'(O)(x). [] 

Now we use Lemmas 12 and 13 to build up the Markovdiagram. For  the 

sets ~i defined above we have 9 =  ~) 9~. We start with 9 0 = 3 .  In a first step 
i=0  

we add ~ 1 : = 9 1 \ ~ 3  o to 9 o. In the k-th step we add ~ : = g k \ ~ k _  ~ to ~ k - l '  
We fix some D e 2 3 o = 3  and observe, what successors of D we get in @1 in the 
first step. Then we observe what successors of these successors in ~,  we get in 
@2 in the second step and so on. 

By Lemma 12, D~=Ti(D) is the only successor of D~_~ for l<i<c~(D). 
Hence in the i-th step we add the only successor D~ of D~_ 1 to ~ _  1, if D~e@~. 
If D ~ g ,  then D~e~_~,  by definition of 9 i, and D~ was added in an earlier 
step. All successors of D~(~)_ 1 are in 3 = 9o  except at most two, say B and C, 
by Lemma 12. We add B and C in the 7(D)-th step, if they are in ~(D). 
Furthermore B and C are critical. 

Now consider a critical interval C a ~  k with k=> 1. As above C~= T~(C) is the 
only successor of C~_ 1 for 1 <i<c~(C). Hence in the (k+i)-th step we add C~ to 
~ + ~ _  ~, if C~e~+~. By Lemma 13, all successors of C~,(c)_ 1 except at most one, 
call it C', are in ~c)W3=~(c). Since k > l ,  C' is the only successor of 
C~(c)_ ~, which need not be in 33~+~(c)_ 1. Hence we add C' in the (k+c~(C))-th 
step, if C'a~k+~(C). Furthermore C' is critical by Lemrna 12, so that one can 
iterate this procedure just described for Ce~k. 
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~(C') 

s 

"'" ~ C~(c')- t 

Fig. 3 

C" ~ . . 

The part of the Markov diagram one gets is shown in Fig. 3. The elements 
of ~j are placed in the j-th column. Since one has such a part for every De3 ,  
we get card ~k<2  card ,3 for all k. Figure 3 shows the case where all elements 
of 3 ,  which can be different, are different. It may happen, that a D shown to 
be in ~j by Fig. 3 coincides with a CE~ i for i < j .  Then D is not added in step 
j, but has already occured in the earlier step i. This makes the sets ~k for k > j  
smaller. If ~k=0  for some k, then ~ is finite. Otherwise, there is a TeN such 
that the sets ~k for k>  ? have all the same cardinality. Then it follows from the 
above results illustrated in Fig. 3, that the relation on ~ x ~ given by D ~ C is 
a bijective map from ~k to ~k+~ for k>7.  

Theorem 9 (cf. w 1 of [11]). 

(i) For k > 0 we have card ~k--< 2 card 3. 
(ii) There is a y e n  such that for  k > 7  the relation in 7~x 7~ given by C--*D 

is a bijection between ~k and ~k+l ,  i.e. 3 3 \ ~  is the disjoint union o f  f in i te ly  

many sets ~ = { C i :  i>7} with Ci ~ C~+ 1 and C i r r i  for  i>7. 
(iii) Suppose that Die 7~ for  0 < i < m with D i_ ~ ~ D i for  1 < i < m, that D o is 

critical and that Din_ t has more than one successor. Then all successors o f  D m_ 1 
are in .3 except  at most two, one o f  which is in 7~,~. 

Proof. We have shown (i) and (ii) above. In order to show (iii), choose j <  m 
maximal, such that Dj is critical. Then j > 0 ,  as D o is critical, and ~ ( D j ) = m - j  
by Lemma 12, as T(Dm_ 1) is the union of the successors of D m_~ and hence 
T(D, ,_ I )~K=~O.  The result follows now from Lemma 13 with D = D j .  [] 

We prove two corollaries of Theorem 9. The first one shows, that there are 
not "many"  paths at infinity in the Markov diagram, and a consequence of 
this fact. For this we use the matrix M introduced in w 3 of Chap. I. The second 
corollary shows the assumption of Theorem 5. 

Corollary 1. (i) I f  n -~ 0% then r ( M  t ~ \ Z ) ~ )  ~ 1. 
(ii) Let  9.1 be a subset o f  ~3 with r ( L ) > l ,  where L = M I g A .  Then the 9 .1xN-  

matrix  L has a nonnegative left eigenvector uel~(gx) and a nonnegative right 
eigenvector ve l  ~ (~i) for  the eigenvalue 2 = r (L). 

Proo f  (i) Suppose that C e ~ \ ~ ,  is critical. Set Co= C. Suppose that C~ is the 
only successor of C~_~ in ~ \ ~ ,  for 1 < i < m  and that C~_ 1 has more than one 
successor in ~ \ ~ , .  Then m > n  by (iii) of Theorem 9. Furthermore all 
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Ds3) \3 ) , ,  which have more than one successor in ~)\3), ,  have only two 
successors in ~ \ 3 ) ,  by (iii) of Theorem 9, which are both critical by (i) of 
Lemma 12. This implies that the number of paths of length nk in 3)\3) , ,  which 

begin at some fixed D ~ \ ~ , ,  is at most 2 k. This gives r(M] 7~\7~,)<}/2. 
(ii) Set 91"=91\~), ,  where n is such that r (S)<r(L)  and S=LIg.I". This is 

Set 91'=91\91". Let L = ( ;  ~ ) b e  the partition of the 91x91- possible by (i). 

matrix L according to the partition of 96 into 91' and 91". Then ( I - x S )  -1 

= ~ xkS k exists for Ixl<,~ -1  and has nonnegative entries for O<<_x<)J ~, as 
k = 0  

)~: = r (L)> r(S). Here 1 is the unit matrix. For  E(x)=P+ x Q ( I - x S ) - I R  one has 
the following matrix equation for ]xl __<2-1 (cf. Lemma 2 of [11]). 

Since 2=r(L) ,  we find an x with Ix l=2 -1, such that I - x L  is not invertible. By 
this matrix equation, we get that I - x E ( x )  is not invertible, i.e. r(E(x))>L 
Since the entries of E(lx[) are greater than or equal to the absolute values of 
the entries of E(x), we get r(E(2-1))=r(E([xl))>r(E(x))>)~. Remark that the 96' 
x 91'-matrix E(x) is a finite matrix. For  re(0, 2 -1]  the map t--,r(E(t)) is con- 

tinuous and increasing, since the entries of E(t) are continuous and increasing 
in t. Since r (E(2-1))>2,  we find a y~(0, 2 -1]  with r(E(y))=y -1. Since E(y) has 
nonnegative entries, this implies that I - y E ( y )  is not invertible. Hence I - y L  is 
not invertible by the above matrix equation. As 2=r(L) ,  we get y = 2  -1. Since 
E(y) is a finite matrix, we find a nonnegative vector u 1 with ua(i-yE(y))=O. 
Set u2=yu 1Q(I -yS)  - t ,  which is a nonnegative /1(91")-vector, since the rows 
of Q are in 11(91"). Hence u=(ul,u2) is a nonnegative /1(91)-vector and 
u ( I - yL )  = 0  by the above matrix equation. 

Carrying out the same for the transpose of L, one gets a nonnegative I~ - 
vector v with (I - ) J  1 L)  v = 0.  [ ]  

Corollary 2. (i) A closed subset 91 of 7~ contains only finitely many elements, 
which have no predecessor in 9I. I f  f9 is one of the sets in (ii) of Theorem 9, then 
.~c~91=0 or ~\91 is finite. 

(ii) I f  23 c 7~ is perfect, then there is a finite subset F' of F such that 23 

~ e F '  

Proof. (i) Suppose .~={Ci:  i>7}. If Cje91, then Cie91 for i>j,  since Ci--~ Ci+ 1 
for i>  7 and 91 is closed. Hence ~\9.1 is finite. Furthermore .~ contains at most 
one DEg.1, which has no predecessor in 91. We get (i), since there are only 
finitely many .~ by Theorem 9 and since ~ is finite. 

(ii) Set F ' = { ~ F :  E~23+0} .  Fix a D~23. We show D ~  for some g~F'. Set 
Do=D. As 23 is perfect, we find Di~23 for i > l  with Di--*Di_ 1. Let .~ 
={C~: i>7}  be one of the sets in (ii) of Theorem 9. If D~=C, and D,,=Cs, 
where m>l>O and s>r>  7, then we have a closed path Dm~D, ,_~ . . . - - ,D  z 
= C ~ C ~ + I ~ . . . ~ C ~ = D  ~. It is contained in some EsF. Hence Eel"' and 
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D ~ .  If this holds for no .~, then each of the finitely many sets ~ contains only 
finitely many D i. Hence there is an i 0 such that / ) ~ e ~  for all i>i  o. As ~ is 
finite, we get Dk=D j for some j and k with i o< j<k .  This gives again a closed 
path Dk-~Dk_ ~ --+ . . . - - ,Dj=D k and we find a f i e f  with ~ F '  and D6E as above. 

Hence ~3~ ~ ~ follows. On the other hand, as ~3 is closed, ~3c~ff+0 implies 
~ F "  

~ c ~ 3  and we get equality. If 5c~=t=0 then ~ \ ~  is finite by (i). Hence by (ii) of 
Theorem 9 and as ~ is finite, we can make F' finite. [] 

w 2. The Nonwandering Set 

In Corollary 2 of Theorem 9 we have proved the requirement of Theorem 5. 
The next two results (Lemma 14 and Theorem 10) will be used to show the 
requirements of Theorems 6 and 7. The results, which follow from these 
theorems, are summarized in Theorem 11. 

Lemma 14. (i) There are only finitely many critical D~ 7~ with c((D)= o~. 
(ii) There is a closed T-invariant subset Y of X, such that all co-limit points in 

(X, T) are also co-limit points in (Y,, T I Y), and such that (Y, T I Y) is a piecewise 
monotonic dynamical system, whose Markov diagram contains no critical D with 
e(D)= Go and T i (D)r  for all i> 1. 

Proof (i) By (ii) of Lemma 12 each set ~ (cf. Theorem 9) contains at most one 
critical D with c~(D)= oo. As there are only finitely many sets S5 by Theorem 9 
and as ~ is finite, we get (i). 

(ii) Suppose D e ~  is critical with c~(D)=oe. By definition of the Markov 
diagram, we find a path C O C~... C k with Co~ 3 and C k =D. Choose Z ~ 3  such 

k 
that C i c Z  i and set V=  (-] T-~(Z~). By Lemma 1 we get Tk(V)=D. If Vdoes 

i=0  
k - 1  

not have a common endpoint with Zo, then V '=  ~ T-i(Zi+ 1) has no common 
i = 0  

endpoint with T(Zo), as T I Z0 is monotone, and we have T k- I(V')=D. Choos- 
ing k minimal, we can suppose that V has a common endpoint with Z o- 
Remark that D itself has a common endpoint with Z r Furthermore Ve3k is a 
3-atom, since Tk(V)=D and cr (cf. Lemma 12). As K is finite, (i) of 
Lemma 9 implies that there are only finitely many such V. 

Now fix a critical D e ~  with co(D)= oQ and T~(D)dgD for i > l .  Let ~ be the 
set of all critical intervals V, such that Tk(V)=D for some k > 0  and that V~3m 
for some m>k.  By the above, we get that ~=t=0, that ~ 3 ~  and that ~ is 

finite. The set R =  Q) ~) r - i ( V )  is open and T-l- invariant .  Hence Y : = X \ R  
V ~  i= 0 

is closed and T-invariant. Suppose there is a z ~ X  with Ti(z)~R for all i>0.  
Then T~(z) is in some Vs~ for infinitely many i, as ~ is finite. Hence we find r 
and s with r<s  such that T~(z)eV and TS(z)cV. By (iii) of Lemma 9, we get 
T~-~(V) ~ V, since TS(z)~ T~-~(V) c~ V. Because Tk(V) =D, we get T~-~(D) ~ D, a 
contradiction. Hence for all z~R there is an i with T~(z)~Y. This implies that 
the co-limit set of z in (X, T) is the co-limit set of T~(z) in (Y, T] Y), since Y is 
closed. 
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Let J be a closed subinterval of X. We call I a boundary interval of J, if I 

contains an endpoint of J and if I ~ J =  Uc~J for some U~ 0 3m. Define g(J) 
m = 0  

as follows: For  V ~  and i>0,  cancel Ti(V) from J, if TI(V) is a boundary 
interval of J and then cancel all elements of R from J. Call the remaining set 
g(J). For  Z 6 3 ,  we show g(Z)=Z\R.  To this end suppose that T~(V) is a 
boundary interval of Z for some i > 0  and some V ~  and that Tk(V)=D. Then 
Ti(V)cZ,  by (ii) of Lemma 9 and ~ c 3 ~ ,  and Ti(V) is a critical interval. For 
k<i, T~(V)= Ti-k(D) is not critical by Lemma 12, hence k>i. Now T~(V)c~Z 

= U ~ Z  implies Ti (v )=u,  where UE ~)3,~. Hence Tk-i(U)=D and Ti(V) 
r n = O  

= U~@. Therefore Ti (V)cR  and g ( Z ) = Z \ R .  This gives that 3 = { g ( Z ) :  ze3} 
is a partition of Y into intervals. Next we show for Ce~3 that g(T(C)) 
=T(g(C)). Let Z e 3  be such that C c Z .  If U~3, ,  for some m and if Uc~Z=#r 
then U=Zc~T- I (U  ') for some U'e3, ,_1.  For  Ve@ and i>O, T~(V)~C=U~C 
is equivalent with T~+~(V)c~T(C)= U'c~T(C), as T: C--, T(C) is a homeomor- 
phism. Hence T~(V) is a boundary interval of C, if and only if Ti+l(V) is a 
boundary interval of T(C), since TLC is also monotone. Furthermore, if 
Vc~ C + 0  for VE@, then V is a boundary interval of C, since V is critical and C 
o Z .  These two facts imply that g(r(c))=r(g(C)). Now, for ZE3,  r(g(Z)) 
=g(T(Z))  gives that (Y, TIY) is piecewise monotonic with partition 3, since 
g(J) is a subinterval of Y for every subinterval Y of X. Finally we prove that 
g(dc~Z)=g(Y)cqg(Z), where Z e 3  and d is a closed subinterval of X. To this 

end suppose, that Ve~, that i>0,  and that U~ ~) 3m. If T~(V)c~Z+O, then 
m = 0  

T~(V)cZ by (ii) of Lemma 9 and @~3oo, and then Ti(V)c~(Jc~Z)= U~(JcvZ) 
is equivalent with T i ( V ) ~ J = U ~ J  provided that Ti(v)~J~=O. Hence, if 
T~(V)c~Z=t=O, then Ti(V) is a boundary interval of J ~ Z  if and only if it is a 
boundary interval of d or of Z. This gives g(dc~Z)=g(J)c~g(Z). Together with 
T(g(C))=g(r(c)) this implies that the successors of g(C) are the sets g(E)+0,  
where E is a successor of C ~ .  As ,3 = {g(Z): Ze,3}, the Markov diagram ~3 of 
(Y, r l  Y) is ~3={g(C): C e ~ } \ { 0 }  with an arrow g(C)--,g(E) if C ~ E  holds in 
~.  One checks that g(C) is a critical interval in Y or empty, if C ~  is critical. 
Hence ~(g(C))<~(C) by Lemma 12 and ~3 contains less critical C with e(C) 
= oo than ~3, since g(D)=~J. Repeating this procedure finitely many times, we 
can get rid of all critical intervals De2? with c~(D)= oo and T~(D)C-D for all 
i>  1, by (i). This proves (ii). [] 

Theorem 10. Suppose 92[ ~ 7~ is closed. 
(i) H(9.1)=H(9.I~)wH(9.I2)~H(9.13), where 9.1~ is a finite subset of 9.1, 9.12 is a 

finite union of sets {cieg.I: i_>_0}, where c~(Co)= o% Ci= Ti(Co) and Cidg C O for 
i> l, and 9.I 3 is a finite union of sets {Di69.1: i>0},  where DioDe+l for i>=O and 
all Di have a common left or right endpoint d. 

(ii) For every set {Dieg.I: i=>0} of which 9.I 3 consists the union of the D i is an 
interval with endpoints d and x, say. Then TP(x)=x for some p and x is 
contained in a nontrivial 3-atom I with TP(I)cI  and I contains the other 
endpoint besides d of every Di. 

Proof For c~K set 9.I~=(D~9.I:c6D}. If Z~ is that element of 3, which 
contains c, then all D~9.I~ are subintervals of Z~ and have the common 
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endpoint c. Hence Ac-H(Nc) is a subinterval of Zr with endpoint c. Let K 1 
c K  be the set of those c, for which there is a DENt with D=A~, i.e. 

(1) CEKlC:>A~EN. 
Let K 2 be the set of those c E K \ K  1 which have nonempty N c. As c~A~, 

EEN and A~cE imply E~N c Hence 
(2) c E K z ~ A c ~ E  , if EEN, and there are DiEN c with DiTA C. 
Set ~(c)=cffAc). The endpoints of A~ are c and G, say. For c~K 2 and Di as 

in (2) we have ~(c)=min~(D~) and T~(C)(Di)TT~(C)(A~). Hence for all large O i we 
get T~(~)(DI)nZe=T~(C)(A~)c~Za for all dEKnT~(C)(A~), except one, which we 
denote by f(c) and which is uniquely determined by T~(c~(G)EZsr ). Set 9/ 
={DEN: ~CEN with C--*D}u{A~: cEK~wK2}. Together with (t) and (ii) of 
Lemma 12 we get for B ~ 9 / a n d  ZE 3 with T~(m(B)c~Z#O that 

(3) Z # Zsr if B = A~ for some c ~ K2 ~ T~m (B) n Z E U Na. 
deK 

Furthermore, the intervals T~(~)(Di)nZs(c), which are in 9.Isr ) by Lemma 12 
and definition off,  increase to T~(~)(A~)c~Zs(c). Hence 

(4) c E K z ~  T~(~)(Ac) c~ Zf(c) ~ Af(e). 
Now we can show 
(5) C E N ~  C ~ Ti(B) where B E 9t and 0__< i < ~(B). 
If C ~ 9 / u U N  d then (5) holds. Suppose CcTI(B) is shown. Let E 

deK 

= T ( C ) n Z  be a successor of C, where ZE 3. If i < e ( B ) - I ,  then EcTi+I(B) 
and (5) follows. If i = a ( B ) - l ,  then EcT~(B)(B)nZ and E is a subset of some 
element of 9/ by (3) and (4). Hence (5) is proved by induction, since for every 
CEN there is a path from 9/w ~ N  d to C (cf. Fig. 3). Now (5) implies 

dr 

H ( N ) c U  U Ti(S). Set 9/3={Ac:CEK2}, 9 / 2 = { B E ~ \ 9 / 3 :  a(U)=oo, 
B E ~  0 < i < ct(B) 

Ti(B)r for i>1} and 9/l=9/\(9/2Ug/a). If BEg/1 and a(B)=ov, then 

Tk(B)=B for some k > l .  We redefine ~(B)=k and get 0 T~(B) = U TI(B) . 
i =  0 0 < i < a ( B )  

Set N1 ={TI(B): BEg/l, 0<i<~(B)} and N2={Ti (C):  CE9/2, 0 < i < ~ } .  By (i) 
of Corollary 2, we get that 9/ is finite. Hence Na and 9/2 are finite. Let N 3 be 
the union over c6K 2 and 0< j<~(c )  of the sets {TJ(DI): i>= 1} where for every c 
the D i a r e  as in (2). This union is finite, since ~(c)=min~(Di)<~ , by (i) of 
Lemma 14. We have H(N)~H(NOuH(N2)wH(N3) .  By (1),  we have 
9 / twg /2=N.  By (ii) of Lemma 12, we get then N ~ N ,  N 2 c N  and NEON. 
Hence (i) is shown. 

It remains to show (ii). For dEK2, by (i) of Corollary 2, all D i in (2) except 
finitely many have a CiE9.1 with Cz-+D i. By (5), Ci=TJ(B) for some B69/. As 
dEDi~T(Ci) , we get j = ~ ( B ) - I < ~ ,  since TJ+~(B)~K=O for 0 < j < ~ ( B ) - I .  
Hence T~r As 9/ is finite, we get T~(B)(B)~A~ for some BEg/. Since 
Aa~Za, we have T~(~)(B)nZ~Aa. Hence (2) and (3) imply that B=Ac for 
some cEK 2 and d=f(c). By (4) we get then T~r We have shown 

(6) VdEK 2 ScEK 2 with f (c)=d and T~(~)(A~)c~Za=Aa. 
In particular f :  K 2 ~ K  2 is surjective and as K 2 is finite, we get 
(7) f :  K2-~K 2 is bijective. 
For c e g  2 define h:Ne-'-~Nf(c) by h(D)=Te(C)(D)csZf(c). If the D i are  as 

in (2), we get from (6) and (7) 
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(8) DiTAc~h(Di)'fA:(c). 
Let c and xc be the endpoints of A c and let c and x D be the endpoints 

of D~gJ c. For  large D~gJ c, i.e. c<(D)=~(c), we have by definition o f f  and h 
and by (8) 

(9) T~(O(xD)=Xh(D) and T~r 
Now fix some ceK a. By (7) we find Co=C,C 1, .. . ,cn=c in K 2 with f(ci) 

=ci+ 1 for O<i<n. By (9) we get TP(x~)=xc, where p=c~(cO+...+cr We 
find a set .~ = { C i : i > 7} as in (ii) of Theorem 9, which contains infinitely many 
elements of 9Xc. If CFgJc, choose k<j  maximal such that C k is critical. By (ii) 
of Lemma 12, we have T~(c~)(Ck)C~Zr Furthermore T~(C~)(Xc~)=Xc~ by 
Lemma 13 applied to D=Ck, since CFtS~+~(c~), if C~E(Si, and i > ~ > 0 .  As 
x c E C s c Z  ~, by definition o f f  we get CkEgJ I ~(~)=gJ ..... and h(Ck)=C ~. Fur- 
thermore c~gJ~ for k<i<j ,  since C~ is not critical. We can iterate this step 
and find a j '  < j  with C s, ~ 9Xc and h" (C;,) = Cs. Furthermore, C~  9Jr for j '  < i <j, if 
ci4=c for 0 < i < n .  Now fix some m with C~e.~mg.1 , such that xcyVp(x~) (this 
is defined before Theorem 1) for all j > m  with CFgJr As .~ c~ 9J~ is infinite, 
there is a j >  m with Cm~ Cs. We find j '  < j  as above. If Cs, ~ C;, we repeat the 
above argument and find j" <j '  with C2,,~9J~. If Cs,, ~ C2,, we iterate this, reach 

= ~  �9 , t  , , ,  Cm, since C3~9A r for i j , j ,  and get a contradiction to Cm~ C2. Hence we 
can suppose C2, c C2. Let J be the interval with endpoints Xcy and x~. By the 
choice of m, we have JcVp(xr since j '>m, and by (9) we get r;(xcs,)=Xcj. 
Hence TP(J)~J, as CycCj ,  and there is a `3-atom I containing Y with 
TP(I)c l  (cf. Lemma 9). Hence 1 is the desired 3-a tom for the set 
{Di: i > l } c g X  c Using the 3 -a tom containing TS(I) for the set {T2(DI): i>1},  
where j < cr we get (ii). [] 

Remark. For the closed set G2 in the example in w of Chap. I we have H(G2) 

=J1k)d2k3 ~) K i and 9J3 = {Ki: i>1}.  
i = 1  

Corollary. Assume that ~ contains no D with cr and Ti(D)egD for all 
i> 1. I f  9j and ~ are closed subsets of ~3 with ~ ~ 9J, then there are subsets nO, 
of 9.1 for n > 1 which satisfy the requirements of Theorem 7. Furthermore set fs 
=~ Then H(fg)\H(~,) is a subset of a finite union of nontrivial 3-atoms for 
all n> 1. I f  3 is a generator, then there is a finite subset ~' of 96 with H(~) 

H(r 

Proof Let 9J~, 9.1 2 and 9.I 3 be the subsets of 9.I found in (i) of Theorem 10. As 
contains no D with cr and Ti(D)r for all i>1,  we have 9.12=0. 

Hence H(9.1)cH(gJ~I~).  Let ~ ,  contain 9.1~ and the n-th element of each of 
the finitely many sets, of which 9.1 3 consists. By (i) of Theorem 10, these ~ 
satisfy the requirements of Theorem 7. That  H(9.I)\H(~) and hence also 
H(fg)\H(~,) is contained in a finite union of nontrivial `3-atoms, follows from 
(ii) of Theorem 10. If .3 is a generator, all .3-atoms are trivial. Hence 92[ 3 = 0 by 
(ii) of Theorem l0. We get H(gJ)cH(gJ~) and hence H(~)cH(fs for ~' 
= N t .  [] 

Remark. The proof of (i) of Theorem 10 shows even, that for every D~92[ there 
is a c ~ g J ~ g x a ~ g J  3 with D e C .  Let r 9 J = ~  and ~ = ~ .  As ~ is irreduc- 
ible, by the properties of the elements of 9.12 it is impossible, that D ~ C for 
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D c ~  and Ceg[ z (cf. (ii) of Lemma 12). We get H(~)cH(9.IIug.I~). The above 
proof shows now, that the corollary holds without the assumption. 

We state now the m a i n  results about f2(X, T) for piecewise monotonic 
(X, T). To this end we assume that the Markov diagram of (X, T) contains no 
D with c~(D)=oc and Ti(D)egD for all i > l .  Otherwise we consider (Y, TIY)  
found in Lemma 14 instead of (X, T). We can do this without loss of generali- 
ty, since moving to (Y, T I Y) may decrease the set W, but all other parts of 
f2(X, T) remain unchanged by Lemma 14 and Theorem 5. The proof of Lem- 
ma 14 gives a method, how one can reduce (X, T) to (Y, T]Y) and how one can 
get the Markov diagram of (Y, T I Y) from that of (X, T). 

Theorem 11. Suppose (X, T) is piecewise monotonic. Then 

Q(X, r ) =  ~ C(r 
gee 

(i) For ~eF, L(~)=co(z) for some z e X  and htop(L(~))=log r(M[~). / f  3 is 
a generator, then L(E) is the set of all x which are represented in ~. 

(ii) L~o is contained in a finite union of co-limit sets and satisfies htop(Loo)=0. 
(iii) I f  x e W  then x6~?"(X, T) for some n. 
(iv) P is the set of periodic points contained in nontrivial 3-atoms. 

Proof By (ii) of Corollary 2 of Theorem 9 we can apply Theorem 5. As Loo, P 
and every L(E) consist of oMimit points and as Wcg2(X, T) by definition, we 
get the equality for s T). If EeF, the corollary of Theorem 10 shows the 
requirements of Theorems 6 and 7. Hence (i) follows from Theorems 5, 6 and 
7. We have assumed that the Markov diagram contains no D with ~(D)= oo 
and Ti(D)egD for all i>  1. By the corollary of Theorem 10, the requirements of 
Theorem7 are satisfied. Hence htop(T(gll, 9.I~o))<=logr(M]gXi\9.I~o) for every 

decreasing sequence of closed sets 9[ i. As (~ (~Ii\9.1~)=0, we get by (i) of 
i=0 

Corollary 1 of Theorem9, that htop(g2((9.1i)i=>l))=0. We apply the variational 
principle in the version of Corollary 8.6.1 of [17]. Every ergodic T-invariant 
measure on L~ is concentrated on one of the T-invariant sets 
~'2((9~[i)i>=l)DL((9~[i)i>l) a n d  has therefore entropy 0. This implies htop(Loo)=0. 
The other assertion of (ii) follows from Theorem 4. Finally (iii) is the definition 
of W and (iv) follows from the definition of P and (iv) of Lemma 9. [] 

Remark. One can show that every path in ~ represents an x~L(~), also if ,3 is 
not a generator. 

We conclude with a result about the growth rate of the number of inverse 
images of an x~L(~) under TklL(~), where ~ F .  We need the following 
consequence of Corollary 1 of Theorem 9. 

Lemma 15. Suppose ~ F .  Set 57/=M1~ and~2=r(M). Let u~l*(~) be the left 
and v~I~(~) be the right eigenvector of M for the eigenvalue 2 found in 
Corollary l of Theorem9. We have uc>O and vc>O for all Ceg. Set Pc9 
=)flcDVD/2V c and nc=UcVc, where C , D ~ .  The ~• P is then a 
stochastic matrix and ~ze l 1 (~) satisfies nP= ~z. 

Proof Since ~ is irreducible, we get from Corollary 1 of Theorem 9, that u c> 0 
and vc>O for all Ce62. The results about 7z and P follow by a simple 
computation from u~I=2u and Mv=2v.  [] 
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Theorem 12. Suppose ff.~F and L:=L(f f ; )40 .  Set 2=r(M[ff~) and nk(X ) 
=card(T[L)-k({x}) for xEL. Then there are c > 0  and el< 0o with 

c < lim inf (2 - k inf n k (x)) < lim sup (2- k sup n k (x)) __< d. 
k ~ o~ x ~ L  k ~  ~ x e L  

Proof. We consider the finite sets ~ ,  ~ ~ of the corollary of Theorem 10 with 9,i 
= ~  and ~ = ~ .  Fix xeL(f~), fix some C~ff and fix some ~n- Set ~ = ~ n .  By the 
corollary, H(ffO\H(~) is contained in a finite union of nontrivial 3-atoms.  
Hence, by the definition of H(x), we can suppose that Qc~(H(ff)\H(~))=O for 
all Qett(x).  We suppose that !l(x) is as in Lemma 10. For  every Q~Ui(x) we 
find an element V of some 3m with V~Q and Vc~f2(ff)~0. Then 
H(~)~Vc~H(E)~(Vc~H(~))\H(~) and hence, by L e m m a 7 ,  for every Q~H(x) 

there is a path DoD ~ ...Dm in ff with Doe ~ and (~ T-i(D~)~V~Q. As ~ is 
i = 0  

finite, there is a D ~  with Do=D for infinitely many Q~U(x). Choosing a 
subsystem of !l(x), we can suppose D o = D  for all Q~U(x). Let C o C 1 ... C k be a 
path in ff with Co=C , which was fixed above, and Ck=D. Then 
C o C 1 ... Ck_ 1D o .. .D,, is a path in ~. Let z be as in Theorem 2. Then z is 
represented by a path, which contains every finite path of ft. Hence for every 
Q~Fi(x) there is an i with 

k--1 k--1 
T-s(C)  

j=O  j = 0  j = 0  

k--1 
Let y be a limit point of these points T~(z). Then y~ ~ T-J(C#), which is a 

j = 0  

closed set, y~L(~) by Theorem 4, and Tk(y)=x, since yET-k(Q) for all Q~H(x). 
For every xEL(ff) we have found a D ~ ,  such that for every path 

k - 1  

C O C~ ... C k in ~ with C o=  C and Ck=D there is a y e  ~ T-J(Cj)c~L(~) with 
k--1 j=O  

Tk(y)=x. By Lemma  2, the sets (~ T-#(C#) are contained in different elements 
j = 0  

of 3k, hence different paths C O C~ ... Ck_ ~ give rise to different y. Therefore 
( x )  >__ - (k) inf MCD, where _M = M [ ft. 

Da~ 

On the other hand nk(x)=card 3k, as 

and T k is monotone  on Ve3k. The assumption of (i) of Theorem 7 is shown to 
hold by the corollary of Theorem 10. Hence we get as in the proof  of Theo- 
rem 7, that nk(X ) <= ~ ~ ~,~-z(g)co for some m. 

C e ~ m  D e f t .  

By Lemma 15 and the renewal theorem (cf. [1]), we have 

- = > o .  

Hence the result follows with c =  inf u. v c, which is greater than zero, since 
Ds~ 

is finite, and with d = q  Ilullall vii ~, where q > card ~., for all m. [] 
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w 3. Further Results 

The Markov diagram has been used for the study of different properties of 
piecewise monotonic transformations. We give a description of these results: 

The Nonwandering Set. A part of the results of Theorem 11 is shown in [2] 
and [4], in the case where 3 is a generator. Also some further results are 
proved there in this case: For  ~ ,~ ' eF ,  it is shown that L(~)c~L(~') and 
L(~)c~Loo are finite or empty. The set W is finite and I/Vc~f22(X, T)=0.  The 
geometric structure of L(~) for ~ e F  is determined. The matrix M I~ has 
period p, if and only if TPl L(~) consists of p ergodic components, on each of 
which T p is weak mixing. The special case of monotonic mod 1 transfor- 
mations is considered in [7]. The special structure of these transformations 
gives a special structure for the Markov diagram, which can be used to get 
further results about ~2(X, T). In [12], [13] and [14] other methods are used 
to investigate the nonwandering set of piecewise monotonic transformations on 
[0, 1], which are additionally continuous. In [14] those parts of the non- 
wandering set are considered, to which most (in a topological sense) orbits 
converge. In the language of this paper, these parts are the sets L(~) with ~ F  
and ~ = 0 ,  the sets L((9.1~)~l) for decreasing sequences of closed sets ~I~ with 

(~ 9.I~ = 0, and the attracting periodic orbits in P. 
z=o 

Maximal Measures. By Lemma 11, one can assume without loss of generality, 
that 3 is a generator. For  g~F, it is shown in [3], that there is a 1 - 1 -  
correspondence between maximal measures for T IL(~) and maximal measures 
for the Markov shift S with transition matrix M lg. Furthermore it is shown 
that there is at most one maximal measure on S. Lemma 15 of this paper gives 
a maximal measure on S. Hence S and TIL(~)  have unique maximal measure. 
This problem for the special case of the/~-transformation is considered in [16], 
where a transition matrix is used, which is exactly the Markov diagram for this 
special case. In [5], it is shown that the transformations x ~ / ~ x + e ( m o d  1) with 
/3 > 1 have unique maximal measure. Its support is a finite union Y of intervals 
and the nonwandering set of x ~ / 3 x + ~ ( m o d  1) consists of Y and finitely many 
periodic orbits. In [6], the region of the (/3, ~)-plane is determined, where Y is 
the whole unit interval. 

Periodic Points. If ,3 is a generator, then all periodic points are represented as 
closed paths in the Markov diagram by Theorem 8. Consider the set Z(X, T) 
of p e N  such that an xsX exists, which has minimal period p under T. In [8], 
the sets, which occur as Z(X, T) for monotonic rood 1 transformations, are 

determined. The ~-function of (X, T) is defined by ~(x)=exp p, - - ,  where Pn 
n n= l  

1 
is the number of fixed points of T". In [8] it is shown that ~ ( ~  is a kind of 

characteristic power series of the matrix M. This interpretation is supported by 
results of [11], where it is shown that, for 1 < t < r ( M ) ,  1/~(t-~)=0 if and only 
if t is an eigenvalue of the l~(~))-operator M. 
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Transfer Operator. The transfer operator P on the set of functions of bounded 
variation is defined by Pf(x)= ~ g(y)f(y), where g is a given positive 

y E  T - l { x }  

function of bounded variation. It is shown in [9] and [15], that a spectral 
theorem about P, which holds under certain conditions on g, implies existence 
and ergodic properties of equilibrium states for log g. In [10], the requirements 
of this spectral theorem are proved to hold in different situations, using the 
Markov diagram (cf. Theorem 1 of [10], a special case of Theorem 12 above 
and Theorem 3 of [10]). For piecewise constant g, the spectrum of P is 
investigated further in [11] using the inverse of the I-function as a characteris- 
tic power series of M. 
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