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1. Introduction 

Let (Xs)s>_0 be a right Markov  process on a nice state space (E, ~), with semi- 
group (P~)s__>0. Given a measure t/ on E which is excessive for (P~) (i.e. t 1 is o-- 
finite and t/>r/P~, s>0),  one can construct a stationary right continuous Mar-  
kov process (Yt), defined on a random time interval ]c~,/3[ and admitting (P~) as 
transition semigroup and r/ as one dimensional distribution. Similar construc- 
tions have been made by Kuznetsov [13] and by Mitro [15], the latter under 
duality hypotheses. 

The process (Y3 is a natural tool in the study of the class of excessive 
measures for the process (Xs). Our purpose in this paper is to use this tool in 
developing several aspects of the theory of excessive measures. 

In Sect. 3, we obtain a characterization of the class of measure potentials 
(for (Xs)). This characterization leads to a natural  Riesz decomposit ion of an 
excessive measure into potential and harmonic components.  These results are 
obtained without transience hypotheses and so generalize recent work of Ge- 
toor and Glover ([8], [9]). 

In Sect. 4, we show that Dynkin 's  [3] decomposit ion of an excessive mea- 
sure into dissipative and conservative parts is the analog of the Riesz decom- 
position, appropriate  to the simple ordering of excessive measures. 

In Sect. 5, we develop a notion of balayage associated with a given terminal 
time R. This balayage operation is shown to coincide with that of Hunt  when 
(Xs) is transient and R is the hitting time of a Borel set. 

Inspired by recent work of Atkinson and Mitro [-1], and Getoor  and 
Sharpe [10], we consider characteristic measures in Sect. 6. The principal result 
of this section is a last exit decomposit ion of the balayage L R t/ of an excessive 
measure t/. This decomposit ion resembles, in form, certain invariant measures 
constructed by Silverstein [18], Getoor  [6], and Kaspi  [11], [12], using in- 
variant measures of a "process on the boundary".  
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2. Notation and Basic Results 

Let E be a Borel subset of a compact metrizable space and let g denote the 
Borel sets in E. Let A be a point not in E and set EA=EU{A},  g ~ = g v  {A}. 
We consider A as isolated in E a. As usual, a function f on E is extended to E A 
by setting f (A)  = O. 

Denote by Wthe set of paths w: N ~ E  a which have the following property: 
there exists an open interval on which w is E-valued and right-continuous, and 
outside of which w is identically A. The coordinate process on Wis denoted by 
(Yt)t~a. Let ((r176 ~ denote the natural filtration of (Yt) and set fr V fr We 
define random variables t 

c~=inf{teN,: YteE}, f i=sup {telR: YteE} 

with the conventions in f0=  + o% s u p r  oe. We also define two families of 
shift operators on Wby 

a~w(s)=w(t+s) s, telR; 

z~w(s)=w(t+s) s>0, tEP., 

=A s<0,  t~N. 

Clearly at o G = at+s and % = % o at. 
Let s Yo+ exists in E}~{[A]}, where [A] is the constant path 

t-+A. Let X s (resp. 0s, resp. () denote the restriction of Y++ (resp. %, resp. f iv  0) 
to f2, where s>0.  Set ~ ~ 1 7 6  ~~162176 Let (PX)x~E be an g-measurable 
family of probabilities on (f2, ~o)  such that W ( X o = x ) = l  and such that for s, 
telR+ and f e b g ,  

W ( f  o Xt+ s I ~~  o Xs). 

Finally, we assume that the Markov process X=(~2, j~0  j~t0, 0t ' Xt ' px) satisfies 
the right hypothesis (HD2) of Sharpe [17]. This is equivalent to the almost 
sure right continuity of t--+PX+(fo X~), whenever f is bounded and continuous 
on E. Thus X=(X~) is strong Markov with (Borel) semigroup (P,) given by 
PJ(x )=pX( fo  Xs), f e b &  The resolvent family of X is denoted by (Ur)r~0, with 
U =  U ~ 

The family (rt)t~ plays an important role in the sequel. Owing to the iden- 
tity Yt++=X,o% on {c~<t}, tMR, s>0,  this family provides the link between W 
and f2 that is essential in many calculations. 

Recall that a measure t/ on (E, g) is excessive (for (Ps)) if t/ is a-finite and if 
t/>t/P~ whenever s>0.  As is well-known ([8]), if t/ is excessive then t/P~Tr/ as 
s$0. We let Exc denote the class of excessive measures for (P~). 

(2.1) Theorem. Fix r/eExc. There exists a unique a-finite measure Q, on (W, No), 
carried by W\{[A]}, and under which (Yt)tm is markovian with semigroup (P~) and 
one-dimensional laws rl: for t eN ,  feg+ and Fe( f f~  

( 2 . 2 )  Q,(Fo%IN~ on ( e< t< f i } ,  

(2.3) Q,(f~ Yt)= r/(f). 

Moreover, Q, is stationary relative to (as)s~. 
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This is essentially a right-continuous version of a result of Kuznetsov [13], 
and follows easily from our hypotheses on the process (Xs) , together with [13]. 

Note that because of the uniqueness assertion in (2.1), if t/ and ~ are ex- 
cessive, then Q~+~=Q,+Q~. 

For r/EExc let N" denote the Q,-completion of No and let Nt" denote 
No+ v JV", where ~/'" is the class of Q, null sets in ~". As noted by Dynkin in 
[3], if {A 1, A2} is a partition of W into ~r (at)-invariant sets, then 
Qn can be decomposed as Q,I+Q,2, where ~l i : f~Q,( fo  Yt; Ai) is excessive (and 
independent of tEN). Clearly Q,, = Q,(.;Ai) and t/=r/1 +t/2. 

As an application of this observation, we deduce the "elementary" Riesz 
decomposition of an excessive measure t/. Recall that JT~Exc is invariant if ;7 
=r/P~, s>0,  and that t/ is purely excessive if r/P~+0 as sToo. Let Inv and Pur 
denote the classes of invariant and purely excessive measures respectively. Then 
t/EExc can be decomposed uniquely as t/i+~/p when rheInv, t/psPur. In fact, 
rli(f)=Qn(f~ Yt; ~ = -  oo) and rlp(f)=Qn(fo Y t ; ~ > -  oo), for f~$+ .  To see this, 
note that i f f z g+  with r / ( f )<  o% then ~lP~(f)$rh(f) as s~oo, and so, 

th ( f )=  lim Q~(P~f o Yt) 
s ~ o o  

= lira Q.(fo ~+s; c~<t) 
S ~ X 3  

= lim Q.(fo Y~; c~<t-s)  
S ~ CX3 

= Q , ( f ~  Yt; c~= - oo). 

We close this section with a result that is a key to later developments. In 
oo 

particular, it shows that if r/EPur, then t/= ~lztdt where (#t)t>o is an entrance 
o 

law for (Ps): each #t is a-finite and I~+s=#tP ~ for t>0 ,  s>0.  This representation, 
which is well-known (see [3]), will be easily obtained via Q,. 

Following Weil [19], a stopping time S of ((#7) will be called intrinsic 
provided c~<S</~ on {S<oo} and S = t + S o a t ,  Vt~IR, except on a Q,-null set. 
For the next result note that Zse{~=0 } on { - o o  < S <  oo}. 

(2.4) Theorem. Let t/~Exc and let S be an intrinsic stopping time of ((#~). Define 
the measure 17 s on (W,(#~ carried by f2o={C~=0 }, by 

(2.5) r t ,~(~)=Q,(0<s__<l;~s~) ,  c E ~  ~ 

Then 
(i) fl~ is a-finite and for qSe(N~|176 

(2.6) Q, (4 (S, Zs); S c IR) = (2 | n s) (qS), 

where ). is Lebesque measure on IR; 
S S (ii) set /~.= Y.(H,) on E for u > 0 ;  then Jbr tdR,  

~o 

(2.7) Q,(Y~" ; - oo < S < t ) =  ~ l~Sdu; 
0 
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(iii) the measures #s are a-finite and under H s the process (Y,),>o is mar- 
kovian with semigroup (P~) and entrance law (#s); 

(iv) /f cx<S a.e. - Q,, then under H s, I1o+ exists in E a.e. and the process 
(Y,+),>=o is markovian with semigroup (P~) and initial measure #s 
= Qn(Ys~" ; 0 < S <= 1); in particular 

(2.8) Q..(~e" ; s < t )=#s  u. 

The most important  case is S=c~; we will then write simply / / , ,  #u rather 
oo 

than H~,/~.  In this case, (2.7) yields ~p= ~#,du;  since (#,) is an entrance law 
for (Ps), one has 0 

(2.9) #,UTt/p as t$O. 

Proof (i) Fix q6g+ such that q > 0  and r/(q)<oo. Then H - ~ q o  Ytdt>O on ~2 o 
since there ~ < fl; we have 

HS(H)= Q,, qo Ys+.du; 0 < S < I  

<Q~(~qo Ytdt;O<S<=l) 
N 

=~Qn(q~ I1o; - t  <S  <= - t  + l )d t  
IR 

= Q,(q o Yo)=~(q)< o% 

where the second equality is due to the (at) invariance of Q,. Thus H s is a- 
finite. For  (2.6) it now suffices to show that  if t e N ,  GeN ~ with US(G)< 0% then 

ck(s)=-Q,(t<S<t+S, ZseG)=sFlS(G), s>0 .  

But O(s+s')=O(s)+ 4(s') by the as-invariance of Q, and the identity Vs=Zs o a s 
on {SEN}. Since ~b(1)=//S(G) and since s ~ ( s )  is right continuous, it follows 
that  q5 (s) = sIlS(G). 

(ii) For  f6d~ 

Q,( f~  Yt; - o o < S < t ) = Q , ( f o  Yt s(Zs); - o o < S < t ) = H  s fo  Yt_~ds , 

by (2.6) and Fubini 's theorem. This is (2.7). 
(iii) The strong Markov  property of Y holds under Q, at every stopping 

time of (N~") (the argument  is the same as in [15]; for a detailed proof see [2]); 
applied at time S + t this property yields 

(2.10) S 17,(G tF zt)= s o r / ( 6~PY~(v ) )  

oo 

for t > 0  and Gt~ffq~ F ~  ~  With Gt=l  and F =  y fo  Y, du, f~E+, we obtain 
0 

(2.11) n s fo  Y.du = # s u ( f ) .  
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When f = q ,  we have #SU(q)<q(q)<o�9 and since Uq>O, #s is a-finite. The 
Markov property of (Yt)t>0 under H s follows from (2.10). 

(iv) If c~<S a.e. - Q,, the strong Markov property of Y at S under Q, im- 
plies the Markov property of (Yu+)u>=o under H s and (2.8) follows. [] 

(2.12) Remark. Let r/~Exc and suppose that (#t)t>o and (vt)t> 0 are two en- 
oo ~x3 

trance laws for (Ps) such that ~ #tdt= ~ v td t=t  1. Then # ,=v  t for all t>0 .  In fact, 
for s > 0  o o 

#tdt = #~du=#~U; 
\ 0  / s 

hence #~ U = v~ U and so #s= v~ by Proposition (1.1) of [-8]. 

3. Measure Potentials and Riesz Decomposition 

(3.1) Definition. An excessive measure r/ is a measure potential (or simply a 
potential) if t /=#  U for some (necessarily o--finite) measure # on E. The class of 
potentials is denoted by Pot. 

Note that Pot  c Pur. 

(3.2) Proposition. Fix t /=pU~Po t .  Then Q, is carried by {c~>-  co, Y~+ exists 
in E}, H, (=H~)  is carried by f2, and /7 ,=P"  on g2. 

c~ 

Proof. Since t/ is purely excessive, t /= ~ #tdt with # t=  Yt(H,), using (2.7) with S 
oo 0 

=c~. But r l=pU= ~X,(P")dt. By Remark (2.12), the process (Y~),>o under /7, 
o 

and the process (Xt)t> o under P" have the same distribution; thus /7 ,  is carried 
by f2 a n d / 7 ,  = P" on ~2. 

The main result of this section, Theorem (3.3), is essentially the converse of 
(3.2). It may also be viewed as a time-reversed version of Theorem A-8 of [9]. 
However, unlike [9], we do not assume that X is transient. Our Riesz decom- 
position of t/eExc into potential and "harmonic"  parts is a simple corollary of 
(3.3). 

To state (3.3), we introduce some notation. Let C,,(E) denote the space of 
real bounded d-uniformly continuous functions on E, where d denotes a metric 
on E compatible with its topology. Then C,(E) is separable in the uniform 
norm; let D be a countable dense subset of Cu(E) +. Given t/~Pur, choose q~g+ 
with q > 0  and t/(q)< oo. Set h=  Uq and define 

f2q={c~=0, I1o+ exists in E, 4(Y1/~)~6(Yo+), as n--,oo, for 
~b=h and ~b= Urg, g~D, r~lI~*}, 

where I1~* denotes the set of strictly positive rationals. 

(3.3) Theorem. Fix r/~Pur and let q and ~2q be as above. Then tT~Pot if and 
only if H, is carried by g2q. In this case, v= go+(~7,) is a-finite and under 
/7,, (Yt+)t=>o is markovian with semigroup (P~) and initial law v. That is, H , = P  ~ on 
f2. In particular, t 1 = v U. 
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Proof If 71=#U, then /7n is carried by s because of (3.2) and our right hy- 
potheses (which imply that the mappings toO(Xt) are right continuous a.e. 
-P") .  Conversely, suppose that / / ,  is carried by Qq. Then by Fatou's lemma 
and (2.9), 

v (h) = H,  (h o I1o + ) < lim inf Hn (h o Y1/n) ~ t] (q). 

Since h=Uq>O, v is a-finite. For feb#+ let H I denote the finite measure 
(hf) o Yo+. H,. In order to prove that (~+)t>o is markovian, it suffices, in view 
of (2.4), to prove that for every geD 

n~(go ~)=H~(P~g(Yo+)), t>0. 

Both sides of the above equality being right continuous in t>0 ,  it suffices to 
show the equality of their Laplace transforms. But for re@* 

oO 

e- ' tHf(g o Yt)dr= lim e r/"Hf(Urg o I11/,)= HI((Urg o I10+), 

where the second equality follows from the definition of f2q and dominated 
convergence. [] 

(3.4) Definition. Let ~ and t/ be excessive measures. We say that t/ strongly 
dominates ~ if there exists ?eExc such that q-= ~_+?. 

Of course, if q strongly dominates 4, then r/ dominates ~ (for the simple 
order of measures), that is ~I(A)>~(A) for all Aeg.  

(3.5) Definition. We say that t/eExc is harmonic if 0 is the only potential 
strongly dominated by t/. The class of harmonic measures is denoted by Har. 

We can now formulate the Riesz decomposition of t/eExc into potential and 
harmonic parts. Choose qe#+ and define (~q as for Theorem (3.3). The set 
= { c ~ > -  oe,~ef2q} is in No+ and is (ar)-invariant. By the discussion of Sect. 1, 
we can decompose t/ into (excessive) components #U and p as follows: 

(3.6) #U(f)=Q~(fo Yt; Wq), 

p( f )=Qn(fo Yt; wq~) . 

By Theorem (3.3), the first equation in (3.6) actually defines a potential #U. 

(3.7) Theorem. Fix t/eExc and let t l=#U+ p be the decomposition of rl de- 
scribed by (3.6). Then p is harmonic and the decomposition (into potential and 
harmonic parts) is unique. Moreover, 

(i) #U is the largest element of Pot (in either order) which is strongly 
dominated by ~1; 

(ii) p is the largest element of Har (in either order) which is strongly domina- 
ted by ~1. 

Proof Let us first prove that peHar.  In fact, if p = v U + 7  with 7eExc, then Qp 
=Q,u+Q~>__Q~u. Thus Q~v is simultaneously carried by Wq c and Wq ((3.3) ap- 
plies to vU since vU(q)<tl(q)< co). Thus vU=O and peHar.  As for the unique- 
ness, suppose that t / = v U +  7 with vUePot,  7eHar. Then Q,=Q~v+QT. But 
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Q~o is carried by Wq and Q~ is carried by Wq(Q~(Yte" ; Wq) is a potential by (3.3) 
and is strongly dominated by 7). Thus Qvv <Quv and Q~ < Qp. These inequali- 
ties are in fact equalities since (2,~ = Quv + Qp = Q~v + Q~ and so v U = # U  and ~/ 
= p .  

To prove (i), let rl=vU+tf  with t/'EExc. Then t/ '(q)<oo and t/' has the 
Riesz decomposition r / '=# 'U  +p'. The uniqueness assertion proved earlier im- 
plies that # U= v U+ v' U; thus # U  strongly dominates v U and (i) follows. The 
proof of (ii) is similar. [] 

(3.8) Remarks. (a) It is clear from (3.7) that the Riesz decomposition does not 
depend on the choice of q used in defining f2q. 

(b) A comparison with E(2.10), 9] shows that our decomposition (3.6) coin- 
cides with that of [9] when (as in that paper) X is assumed to be transient. 
The present decomposition, valid for an arbitrary Borel right process, appears 
to be new. 

(c) The following properties of Exc are proved in [4]: 
(i) Let ~,t/1, t/2EExc and suppose ~<t/~+t/2. Then there exist ~ ,~2~Exc  

such that ~1<t/1, ~2<t/2 and ~=~1+~2-  
(ii) If ~ E x c  and # U ~ P o t  satisfy ~ < # U ,  then ~=vU for some measure v 

on E. 
(See [8] for (ii) under transience hypotheses.) Using (i) and (ii), we have the 

following variant of (3.7, ii) (cf. [(2.10, i), 9]): 

(3.9) p is the largest harmonic measure dominated by r/. 

To see this, let 7~Har with 7<t/. Then 7<#U+p and by (3.8, c, i) there exist 
7 ~ < # U  and 72<P, both in Exc, such that 7=~1~+72. By (3.8, c, ii), 71 
= v U ~ P o t .  But since 7~Har, we must have vU=O. Thus 7=Ta<p .  

4. Dissipative Measures, Conservative Measures 

According to Dynkin [3], each r/~Exc has a unique decomposition r/=r/d+r/c 
where t/d is dissipative and t/c is conservative. Dynkin's proof is based on the 
Hopf  decomposition of t/ with respect to each of the operators P, t > 0  (see 
Neveu [16], Proposition V-5-2). In this section, we show that this decom- 
position is the analog of the Riesz decomposition t l=#U+p, appropriate to 
the simple ordering on Exc. The following definition is different from Dynkin's, 
but it will turn out to be equivalent, due to Theorem (4.3). 

(4.1) Definition. Let t/eExc. We shall say that 
(i) 11 is dissipative provided r I = sup {rcEExc: ~E Pot, ~__<r/} (here sup denotes 

the least upper bound in the simple order on Exc); 
(ii) t/ is conservative provided 0 is the only potential (simply) dominated by 

It is clear from (2.9) that Pur ~ Dis. Hence the following inclusions between 
the various classes of excessive measures: 

Pot c Put c Dis, Har ~ Inv ~ Con. 
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Let ~/ be a fixed excessive measure and let qeg+ be such that q > 0  and 
t/(q)<oo. Following [3] we define 

(4.2) t/d=t/(. ; {Uq < oo}) , t/c=q(. ; {Uq=  oo}). 

(4.3) Theorem. The measure tld (resp. tlo) as defined in (4.2) is a dissipative 
(resp. conservative) excessive measure. The decomposition t/=r/d+t/c into dissi- 
pative and conservative parts is unique and 

(i) qa=sup{~ePo t :  7r<t/}, so that rla is the largest element of Dis which is 
(simply) dominated by ~l. 

(ii) r/c is the largest element of  Con which is dominated by r 1. 
In particular, tld and tlc do not depend on the particular choice of q in (4.2). 

Proof. 1) Let us show that t/deEXc. In fact, since G =  {Uq< oo} is absorbing for 
(Xs)seo, we have tldPsf=tl(1GP, f)=rl(1GP~(l~f))<tlP~(1Gf)<qd(f ) for any 
feN+.  

2) We now prove that there exists a sequence (#,) of measures on E such 
that /~, UTr/d. In fact, let (S,) be a decreasing sequence of intrinsic stopping 
times such that S , > e  and S,$~ a.e. -Q,d- Such a sequence exists by Lemma 
6.3 of [3]; for the convenience of the reader, we provide a quick proof of this 
fact in (4.4) below. Then the measure re,= Q,d(Yte', S ,<t)  is a potential (apply 
(2.8) with S = S ,  to r/d ), and re, increases to t/d as nToo. 

3) Let r c = # U ~ P o t  with re<t/. Then #(Uq)<=tt(q)< oo, so # is carried by G 
= { U q < o o } .  Since G is absorbing, # U  is carried by G as well and so 7z<qd. 
From this and 2), it follows that r/d=sup{TrePot: re<t/} and that t/d is dissi- 
pative. Point (i) is proved. 

4) Let us now prove that qceCon. First note that r/c~Exc, as proved by 
Dynkin in [3]. If rc is a potential dominated by t/c, then ~ is simultaneously 
carried by G and Gfl Thus ~ = 0  and ~/~Con. 

5) If t/'c~Con and ~/'c<t/, the measure p=t/'c(. ; G) is dissipative by 3); thus p 
is a sup of potentials. But a potential dominated by p is dominated by rfc and 
must be 0. Thus p = 0  and t/' is carried by G c, proving that t/'<t/~. Point (ii) is 
thereby established. The uniqueness of the decomposition is clear from (i) and 
(ii). [] 

(4.4) Lemma. Let r/~Exc be such that there exists q > 0  with q(q)<oo and 
Uq< oo a.e. q (this amounts to saying that t/eDis, once (4.3) is proved...). Then 
there exists a sequence (S,) of intrinsic stopping times of (f#o) such that S ,>e,  
S,,~c~ a.e. Q~. 

Proof. Let keg+ be such that 0 < k < l  and q(kUq)< oo (note that the measure 
Uq.~l is o--finite since Uq < oo a.e.). We have 

( t '  ) Q, qo yt_ooi ko ysds =_~r/(kP~ ~q d s = t l ( k U q ) < ~ ;  

thus, K t -  i ko Ysds< oo a.e. Q~. The sequence (S .= inf{ t<f i :  Kt>l/n})._>l has 
- - o o  

the desired properties (this argument is adapted from Well [-18], Proposition 
1). [] 
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(4.5) Remark. It is clear from Theorem (4.3) that t/eExc is dissipative (resp. 
conservative) if and only if it is carried by {Uq< oo} (resp. {Uq= oo}) for some 
(or every) q~d~ with q > 0  and t/(q)< oo. Hence our definitions are equivalent 
to Dynkin's. In addition, part 2) of the proof of (4.3) implies the following 
useful characterization of Dis. 

(4.6) Corollary. Let ~ ~Exc. The following properties are equivalent: 
(i) ~/EDis; 

(ii) there exists a sequence (S,) of intrinsic stopping times of (~7) such that 
S,>c~, S,,Lc~ a.e. Q~; 

(iii) there exists a sequence (~,) of potentials such that ~,Trl. 
In addition, if (ii) is satisfied, then #s, UTrl ' where 

(4.7) l~ s" =Qn(Ys 6"; 0 < S , <  1). 

Proof (i)~(ii) by Lemma (4.4); (ii)~(iii) since /~s, U =Q,(Yt~'; S, < t)Tt/; (iii)~(i) 
by definition. [] 

(4.8) Corollary. Let (rl,) be an increasing sequence from Exc with limit tl. Then 
~l,aTrla and tl,cTtlc. 

Proof Let q be as in (4.2). By Remark (4.5), we have ~/,a=~/,(.; {Uq< oo}), q,c 
=t/n(. ; {Uq=  oo}); the desired result is now immediate. [] 

(4.9) Remarks. a) Given t/~Exc, if rl=#U+p=rlp+rli=rla+rlc are the as- 
sociated Riesz-type decompositions, then/~ U < ~/p < t/a and p > t/i > r/c. 

b) The classes Exc, Pot, Pur, Dis, Har, Inv, and Con are convex cones. In 
addition, Exc, Pot, Pur, Dis, and Con are A-stable. The only properties not 
immediate from the definitions and Remark (4.5) are that Har is stable under 
+ and that Pot is A-stable. But consider ~, ~eHar  and ~U, vUEPot. If ~ P o t  
is strongly dominated by ~+~/, then Q~<Qr and so Q~ is carried by W~ 
(where qeg+ is such that q>0,  (~+t/)(q)< oo and Wq is as in (3.6)). Thus Q~=0, 

= 0 and ~ + tt~Har. The measure ~ U A V U is excessive and dominated by # U; 
by Remark (3.8 ii)/~U A vU~Pot. 

c) Suppose that X is transient, i.e. there exists q~g+ such that q > 0  and 
Uq< oo (see [7]). Given ~/eExc, we can reduce q if necessary to insure q(q)< oo 
and then by Remark (4.5) ~/eDis. Thus, under the transience hypothesis, Dis 
= Exc and it now follows from Corollary (4.6) that every excessive measure is 
the limit of an increasing sequence of potentials. This is Hunt's approximation 
lemma (see [8], Theorem (1.5)). 

5. Balayage 

Our purpose in this section is to define and study a balayage operation on the 
class Exc which extends the original balayage of Hunt. Hunt's balayage (in the 
context of transient right processes) is discussed in [8] and [9]. Recall from 
[9] or Remark (4.8c) that if X is transient and t/eExc, then there exists a 
sequence of measures (/~,) on E such that /~, UTt/ as nToo. One then defines 
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LBtl, the balayage of 1/ on BEg, by the monotone limit 

LBr /= l imp,  P ~ U. 
n 

Here PB is the usual hitting operator for B: PBf(X)=P~'( foXrB) ,  where T B 
= i n f { t > 0 :  X t e B  }. 

Our balayage operation will be defined by means of Q, which allows us to 
proceed in slightly increased generality. To wit, let R be a perfect, exact ter- 
minal stopping time of (~)~_>o (the usual completion of (~,~~ with respect to 
all the measures W): R = s + R o O  S on {R>s} and s+RoOsJ.R as s~0. The ran- 
dom time /~ is then unambiguously defined on W by the condition 

(5.1) /~= inf ( t+Roz t ) .  
ct<t<fl 

One checks easily that /~ is an intrinsic stopping time of (NT) and that /~ = t 
+ R o ~  t o n  { R > t , e < t < f i } .  

(5.2) Definition. Let t/ be an excessive measure. For  every intrinsic stopping 
time S of (~t") let LS~= Q, (Y~e ' ;S< t ) ,  where t e n  is arbitrary. For  every per- 
fect, exact terminal time R of (~)~>__0 we define LRth the R-balayage of t/, by 
L R tl = I~ tl. 

Since Q , ( f ~  S < t + s ) = Q , ( f ~  S ~ 1 7 6  S<t ) ,  LSrl 
and LRq do not depend on the choice of t eN.  In the sequel S denotes an 
intrinsic time; R and R wilt be as described in the paragraph preceding (5.2). 

For the next result, define a family of "birthing" operators (bt)t~ on W as 
follows: 

btw(s)= w(s) if s > t, 

=A if s<_t. 

The mapping (t, w)--,bt(w) is measurable. As is customary, b s denotes the map 
w~bS(W)(w). 

(5.3) Proposition. Let tl and tf be excessive measures. Then LStl is excessive and 
LSrl <= t I. Moreover 

(i) L s 0I + if) = L s (tl) + L S (tf); 
(ii) Q.LSn =bS(Q.( �9 ; S <  ~));  

r  

(iii) (LStl)p = Q.(Yte" ; - ~ < S < t)= ~ #Stdt, 
where (#s) is as in (2.4); o 

(iv) (LSr/)Pot = Qn(Yte" ; - ov < S < t, Zsef2q) = #s U, 
where #s = Q, (ys + e" ; 0 < S < 1, z se f2q) and q > 0 is such that rl (q) < o~. 

In particular, LStl is purely excessive (resp. a potential) if and only if 
Q,( ' ;  S <  oo) is carried by {S> - ~ }  (resp. {S> c~, Zsef2q} ). 

(5.4) Remark. The last assertion of this proposition implies L s Pur ~ Pur and 
L s Pot ~ Pot (since S > e a.e. Q,). However, L s does not preserve the classes Inv 
and Har. 
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Proof. For feN+ and s>0 ,  

LSq (P~f) = Qn(PssfO Y~; S < t) 

= Q n ( f  ~ Yt+,; S<t)  

=Qn( f  ~ Yt; S < t - s ) < I ~ t l ( f ) .  

The first assertion follows, the inequality LSt/<t/ being obvious. Point (i) is 
clear since Qn+n,=Qn+Qn,. It is a simple matter to check that the finite dimen- 
sional distributions of the two measures in (ii) are identical; (ii) then follows 
from the uniqueness assertion in (2.1). Finally, (iii), (iv) follow from (ii), Theo- 
rem (2.4), and Theorem (3.7). []  

In Proposition (5.3), the operation L s can be replaced by L R, since LR=L ~. 
The next result shows that when restricted to Pur, the operation L R can be 
described by means of the hitting operator PR defined by 

P R f ( x ) = W ( f o  X,) ,  x~E, feN+. 

(5.5) Proposition. Let t/~Pur and let (#t)t>o be the entrance law for (P~) such 
oo 

that tl= ~ #tdt. Then #tPR UTLRt 1 as t+O. In particular, if r l=#U is a potential, 
o 

then LR(#U)=#P R U. 

Proof. For G~ff ~  set cl)(s,w)=G(z~w), l10,11(s+/~(w)) and apply (2.6) with S 
=c~; we obtain 

n~. (G) = Q~n(~(~, ~))= II~(Go ~ ; / ~ ) .  

For G= ~ fo  Ytdt, the above combined with (5.3 iii) yields 
0 

o9 

) -- lim FI n o Y, du 
t,[ O t + R o r t  

= lim FIn(G o z R o zt) 
t.~0 

= l i m # t P  R Uf  
t+o 

This proves the first assertion. If t /= # U, one has #t = #P~ and the second asser- 
tion follows from the first. []  

(5.6) Remark. As a consequence of (5.5) one has the following identity: for 
each measure # on E such that #U is a-finite 

(5.7) #PR = Quv,(Y~+ ~';  0 </~ < 1). 

This suggests the possibility of extending the notion of hitting operator by set- 
ting pS(x, ")=Q~.v(Ys+ ~';0 < S < 1), but we shall not pursue this idea. 

The main result of this section is the next theorem, which provides a de- 
scription of (L R tl)a and (L R tl)c. As a consequence, Dis and Con are stable un- 
der L R and L R is seen to be a true extension of Hunt's balayage. 
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(5.8) Theorem. Fix t/~Exc and let t/=t/a+r/c be Dynkin's decomposition of 
q: r/deDis, r/ceCon. Then 

(i) (LSt/)d=LS(t/d) and if ~ ,)  is a sequence of measures such that #, UTile (see 
(4.6)) 

(5.9) #n PR UT(LR rl)~; 

(ii) (LStl)c=LS(rlc)=Qno(Y~e �9 ; S =  - oo). 

Proof. Note that LS(rla)<rld and that LS(tld) is dissipative by Remark (4.5). Simi- 
larly LS(tlc)<rlc and LS(tlc) is conservative. Since LS(tl)=LS(rla)+LS(rlc) and since 
Dynkin's decomposition is unique, we must have (LStl)d=LS(rla), (LStl)c=LS(tl~). 
The measure Q,o is carried by {cr -oo}  since t/c is invariant and so, by (5.3 iv), 
Q , c ( Y ~ . ; - o o < S < t )  is a potential. This potential, being dominated by r/c, 
must be 0. Thus 

LS(rlc) = Q,c(Yt~" ; S < t)= Q,o(Yt~" ; S = - oo). 

For the proof of (5.9), we can (and do) assume that q =t/e. Because of Lemma 
(5.10) below, it suffices to prove (5.9) for one particular sequence (#,). We 
choose # = # s .  given by (4.7). By (5.5 ii) 

#,PR U=LR(#,  U)= Qu.v(YtE. ;/~ < t). 

But #, U=IY"t 1 and so, by (5.3 ii), 

#,PR U=Q,(Yt ~ ;/~o bS. <t, S, < co) 

= Q,(Yt~. ;RobS"<t,S,<t) ,  

which increases to Q,(Yt~. ;/~ < t), since SnSe and /~ o bSn+_R a.e. Q,. [] 

(5.10) Lemma. I f  t/~Dis and if (#,) is a sequence of measures on E such that 
#, U'rt l, then the sequence (#,PR U),>=I increases to a limit v which does not de- 
pend on the particular sequence (#,). 

Proof. Fix fedo+. If U f <  oo everywhere, then the excessive function g=PR Uf  
satisfies Ptg+0 as tToo; by Lemma (3.1) of [-7] we can deduce the existence of a 
sequence (fk)c d~ such that Ufk'Fg. In general, by restricting X to the absorb- 
ing set {Uf<oo},  one can still find (f~)cdo+ such that Ufk~g on { U f <  oo}. 

Now if t / ( f )<oo,  the measures #, are carried by {Uf<oo},  since 
# , U f < t l ( f ) .  Thus #,(Us as k]'oo. Since #, UfkTtl(fk ) as n]'oe, the se- 
quences (#,(g)) and (t/(fk)) increase to the same limit, proving the lemma. 

(5.il) Remarks. a) If R =  TB, where B is nearly Borel, and if X is transient, 
then 

LRtl=L~tl t/EExc, 

owing to Remark (4.9c) and Theorem (5.8i). Here L B is Hunt's balayage as 
described at the beginning of this section. 

b) It follows from the proof of Lemma (5.10) that for given f~do+ there 
exists a sequence (fk)c d~ such that 
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(5.12) ~(X)rLR~(f), 

provided r/sDis is such that t / ( f )<  oo. 

(5.13) Corollary. Let (tln) be an increasing sequence from Exc with limit r/~Exc. 
Then 

LR ~,,TLR 17, (LS~,)cTLS~c. 

Proof. LRtln=LR(tl,d)§ and ~,d~t/d, t/,c~t L by Corollary (4.8). Thus, we 
need only consider the special cases t/~Dis and t/~Con. 

(i) Suppose r/eDis and consider f~o~+ such that t / ( f )<oe.  The sequence 
(tln(fk)), with (fk) as in Remark (5.11b), is increasing in both n and k; by (5.12) 
applied to t/ and t/, (note that t / , ( f )<  oo) 

L R r / ( f )= limTlim]'t/n (fk) 
k n 

=limTLRtl,(f). 
n 

(ii) Suppose now that r/ is conservative. Then each measure ~, is conser- 
vative and hence invariant. For n>  1 consider the measure ~, such that t/~ 
+ 7, = ~n (7, is well-defined since each r/, is a-finite). Then ~/~ is clearly invariant 
and even conservative since 7,<t/ , .  If we put 70=t/o, then we have t/= ~ ~ 
and Q,=~,Q~,; thus ,__>o 

n 

y~ Q,~(Y~-  ; s =  - ~ ) ~ Q ~ ( r ~ . ;  s =  - ~ ) .  
k < n  

By (5.8ii) this is equivalent to LS~,= ~ I27k~LSrl as nToe. [] 
k<=n 

(5.14) Remarks. a) If ~,t/ are excessive measures, then ~<--_rl~LR~LRtl  �9 u s e  

(5.13) with t/o=~ and t/ =r/ for n > l .  
b) Let (R~) be a decreasing sequence of perfect, exact terminal times with 

limit R. Then the conclusion of (5.13) can be strengthened to: LRtlnTLRrl. In 
fact, Lgnrlk is increasing in n with limit LRtIk since R~J,R; Lntlk is increasing in 
k by (5.13). Thus LRrl . increases to limLRtlk=limLRtlk=LRrl. 

n , k  k 

c) If S 2 and S 1 are intrinsic times of (NT), it follows from the definition of 
LSrl that LS~S~tl + LS~ "S~tl= LS'tl + LS~tl. 

6. Characteristic Measures and a Last Exit Decomposit ion 

Let (Bs)s>O be a perfect additive functional over (Xs)s>=O. More precisely, we 
require that (Bs) be an increasing (right continuous and (4 )  adapted) process 
such that 

B~+s=B~+BsoO t t,s>O. 

Define a homogeneous random measure B(w, dt) (w~W), carried by ]~(w), oct, 
by the formulae 
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(6.1) B(]t,t+s])=B~oz~ on {~<t}, 

where t e n  and s>0.  

(6.2) Definition. The characteristic measure of B, relative to t/eExc, is the 
measure v B defined on (E, d ~) by 

(6.3) v~(A)=Qn ( ~ 1AO Ysf~(ds)), Aer 
]0,11 

(6.4) Remark. The Revuz measure, as defined in [10], requires the existence of 
left limits for Y on ]~, fi[ and then Y~ is replaced by u on the right hand side 

B the characteristic measure of B. of (6.3). We follow Dynkin in calling v, 

B is a-finite. Then for f>O and ~a| (6.5) Theorem. Suppose that v, 
measurable, 

Q,~ f(s, Y~)B(ds)= ~ f(s,x)dsv~(dx). 
IR g l x E  

Proof Fix Aeg with t/(A)< o% and teN.  Define qb on IR+ by 

4(u)=Q, 5II,,t+~1(S) IA(Y~)B(ds), u>0.  

Then ~b(u + v)= 0(u)+  ~b(v), owing to the a,-invariance of Q, and the fact that 
/~ (u +- )  =/~ o a,. Since ~b (1) = v~ (A) < oo and since u--+ q5 (u) is right continuous, it 
follows that $(u)=u$(1)=uv~(A). [] 

We maintain in this section the notation R, /~ introduced in Sect. 5. We 
shall also define 

Rs=R oOs, G= {se]O, ~[:Rs_ =0, Re>0}, 

/ ~ = R o ~  t on {e<t},  d={te]c~,f i[ : /~ t =0 , /~ t>0  }. 

Note that G is the set of left hand endpoints of contiguous intervals contained 
in 10, ([  of the homogeneous set M =  {s+Rs:  seN+}.  

We assume that R is J~*-measurable (~*  denotes the universal completion 
of o~o). An obvious adaptation of the results of [141 yields the existence of a 
function le(g*)+ (g* denotes the universal completion of g~) and an exit sys- 
tem (*P', B), where *P" is a kernel from (E, 8*) to (f2, ~ * )  and B is an additive 
functional of (X~) with bounded 1-potential, such that 

t 

(6.6) (i)~l{R~=o}ds= I loXsB(ds),t>=O; 
o [0, t] 

(ii) P'(~ U~f oO~)=n*( ~ U~*pXs(f)B(ds)); 
s~G ~R+ 

(iii) l+*P'(1-e-R)=l on F = r e g R ;  
(iv) / = 0  and *P'=P'/P'(1-e -n) on Ea\F. 

In (6.6ii), U > 0  is (~ )  optional and f > 0  is ~*-measurable.  Recall also 
that r e g R = { x :  PX(R=0)=I} .  Evidently one has l{~<t,~t=o}dt=l(Yt)B(dt ) and 

(6.7) Q,( ~ Vtf ~ zt) = Qn ~ vt*Pr~(f) [~(dt), 
t~G ~R 
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where t/eExc, V > 0  is (NT) optional and f>__0 is ~,~*-measurable. For a detailed 
proof of (6.7) see [-2]. 

Combining (6.7) with (6.5) we have 

B is a-finite and (6.8) Theorem. Let t/eExc. With the above notation, v, 

(6.9) Q,(~f ( t ,  Yt, zt))= ~ dtvB,(dx)*W(f( t, x, ")) 
t~G ~, x E 

for f > 0 universally measurable over ~a @ r | ~-o. In particular, for h~E+ 

(6.10) L e r/(h) = v~(lh + Wh), 

R 

where Wh(x)=*P~(!hoX~ds). 

oo 

Proof Set H=ye-tqoYtdt ,  where qEd~+ is such that 0 < q < l  and tl(q)<oo. 
o 

One has 

H> ~ e ~qo Y~l{~=o~dt+ 2 e ~ e ~qoX~ds ~ 
0 teCr, t > 0 

Therefore, it follows from (6.6 i) and (6.7) that t/(q) 
= o , ( n )  > Q, ~ e - t r  o Yt B(dt) > e -a vBn(r) 

~.+ 
R ^ I  

B is  a-finite. where r=lq+*P" y qoX~ds. By (6.6iii, iv), r > 0  and so v, 
0 

Formula (6.9) follows now from (6.5) by an easy extension of (6.7). To see 
(6.10), first note that ho Y~l{k<~}=ho Y~l~k~=0}+ho ~l{k<t,k~>o} a.e. Q,, since 
Qn(/~=t)=0. By the (as) invariance of Q,, Q,~(ho Yt;Rt=0) does not depend on 
t~lR and so is equal to 

1 

(6.11) yQn(h o Yt;Rt=O)dt=Q, ~ ho Y~lo YtB(dt) =v~(lh). 
o ]o ,  1] 

On the other hand, 

ho Y~l{~<~,~>01= ~ (hoXt_sl{R>t_s})O'Cs. 
s ~ G , s < t  

By an application of (6.9): 

(6.12) Q,(ho Yt l{~<t,~t>o~) = Q~( y dsv~(dx)*PX(hoX~_~;R>t-s)) 
] - - ~ , t [ x E  

= y duv~(dx)*ex(h~ 
N+ x E  

Adding (6.11) to (6.12), we obtain (6.10). []  

(6.13) Remark. Formula (6.10) is the "last exit" decomposition of LR~/ men- 
tioned in the introduction. 
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B for a general ad- The next result describes the characteristic measure v, 
ditive functional B and for t/sDis, by means of the potential operator U B of B. 
Recall that 

U , f = P "  ~ f o X ,  B(ds), f e$+.  
1R+ 

(6.14) Theorem. 1) l f  ~ = # U  is a potential, then B v~ =#Us. 
oo 

2) Let t /= ~ #tdtePur,  where (#t) is an entrance law for (Pss). Then #t UB'rVB, as 
t,~ O. o 

3) Let t/~Dis and let (#~ U) be an increasing sequence of potentials such that 
#, UTtl. Then for any f6#+ such that v~(f)< oQ one has #, UB(f)TvB,(f). In par- 
ticular, #, UB~V B " B if V, is a-finite. 

Proof. Fix f 6 g +  and set O(u,w)= ~ l lo,1](u+s)foY(w)B(w, ds ). Then if q is 
purely excessive ~+ 

(6.15) vS(f) = Q,(~b(~, %))= 17, ~ fo  Ys B(ds), 
P.+ 

by Theorem (2.4). Points 1) and 2) follow easily from (6.15). 
For the proof of 3), consider a sequence (Sn) of intrinsic stopping times 

times such that S ,>  c~, S,,~c~ a.e. Q,. By (5.3 ii), 

v~Bsnv(f)= V~s,n(f) = Qn ~ fo  gt l~sn<t/B(dt) . 
]0,11 

Hence, #s~uB(f)Tv~(f). Since by assumption, vB(f)< 0% each of the measures 
#s~, #sn U, t/, #, U, and #, P~ is carried by the absorbing set A = { UBf < 00}. If we 
consider a sequence (fk)~g+ such that Ufk'rUBf on A (the existence of (fk) is 
proved as in (5.10)), then #,PtUf~T/~,PtUBfas k'Ioe for all n and t>0.  But the 
family (#P~Ufk) is also increasing in n and decreasing in t. Thus # , U s f  
= l i m # , P  t Usfincreases in n, while t / (fk)=limlim#~P t Ufk increases in k, with a 

t~O n t$0 
limit independent of (#,). With the choice s~ # , = #  , we see that #, UBf'Fv~(f) as 

B is a-finite, then we can f indfEg+ desired. For the last assertion, note that if v, 
such that 0 < f < o o  and v~(f)<oQ. By the previous argument, if g~b#+ then 
#, UB(gf)Tv~(gf), proving that #. UBTvB,. [] 

B (6.16) Remark. Fix r/EExc. Easy calculations (for which the o--finiteness of v, 
is not needed) show that for r > 0  and feN+,  

Uf~f = v,~(f), r ~  i r B 

rrlp Uf~f =17. ~ (1 - e - ~ ) f o  Y,~(du). 
N +  

Thus rr 1Uf~'[v"~ B as r'~oo (owing to (6.15)) and we recover the original definition 
of Revuz. 

Postcript. 1) Our Theorem (4.3 i) generalizes part of Theorem (1.5) of Getoor 
and Glover [8]. On the other hand this latter result, when combined with 
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Dynkin's decomposition of an excessive measure, yields a direct proof of (4.3 i) 
without using Q,. One reason for the use of Q, is to provide a new and simple 
proof of Getoor and Glover's result. 

2) The following alternative proof of the sufficiency in Theorem (3.3) has 
been pointed out to us by H. Kaspi. Let r/~Pur be such that H, is carried by 
f2~ (where q and f2q are as in (3.3), and t/(q)= 1). It follows from Theorem 0.1 of 
Dynkin [3] that ~i= ~ a(d~)3, where a is a probability measure on the set Mq 

Mq 
of minimal purely excessive measures ~ satisfying ~(q)=l ,  and such that H~ is 
carried by f2q. Using Theorem 7.2 of [3], one can show that each ~Mq has 
the form Uq(x~)-lU(x~, .) for some (unique) x~eE. (In fact Mq is precisely 
{Uq(x) ~U(x,.): xEE, Uq(x)<oo}.) One checks that ~---,x~ is measurable, 
thereby obtaining r l=# U, where/~= ~ a(d~) Uq(x~)-lex. Of course this proof 

Mq 
is less elementary than our own, but it serves to relate our result to the deep 
results of Dynkin. Moreover, in working out the details of the above argument, 
we found that an alternative characterization of Pot could be obtained by re- 
placing ~2q by the set 

~ ' q : { ~ : 0 ,  Yo + exists in E, 0(Y1/~)--,@(u ) as n ~ o o ,  for 4)=Uq and 

@ = Ug, g~D with g<=q}. 
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