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Abstract. Let Z1, Z 2 ,  . . .  be a sequence ofi.i.d, r andom transformations (possi- 
bly discontinuous) of a compact  metric space M, and let E denote the space 
of normalized mass distributions on M. Given # in E, let #, denote the 
random measure g o(Z,o . . . .  ZO -~ (when well-defined). We construct the 
transition probabil i ty P of the E-valued Markov  chain (#,), and give a neces- 
sary and sufficient condition for P to have a unique invariant measure con- 
centrated on the degenerate mass distributions. Convergence to 'statistical 
equil ibrium' of the associated discrete-time stochastic flow is investigated. 

Introduction 

The Physical Model 

Imagine a bounded region T of space occupied by infinitesimal particles, with 
some normalized mass distribution ~/at time 0. Suppose that all particles undergo 
simultaneous random movement ,  such that the mot ion of any finite collection 
of k particles has a known probabil i ty law (motions are generally correlated). 
This probabil i ty law allows the trajectories of two particles to collide, in which 
case they coalesce to a single trajectory thereafter. However  ' b i r th '  of new parti- 
cles is not considered in this model. If the k-particle motions are diffusions, 
this could be regarded as a probabilistic model of reaction-diffusion (see Fife 
(1969), and references therein). 

In the present article we look at such a system at discrete times 0, 1, 2, . . . .  
The evolution of the system over a single time interval is represented by a 
probabil i ty measure Q on the set of all functions (possibly non-measurable) 
f f rom the region of space to itself; thus f ( x )  represents the location at time 
1 of a particle which is at x at time 0. The system is assumed to be time- 
homogeneous,  with ' independent  increments ' ,  so the evolution of the system 
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from time 0 to time n is represented by a random transformation X,  which 
is the composition of n independent and identically distributed random transfor- 
mations each with law Q. 

The random transformations X 0 = identity, X1, X2 . . . .  take values in a space 
of functions which does not have a countable base. However the quantity of 
interest is the evolution of the normalized mass distribution t/, i.e., the random 
measure valued process (#,, n > 0), where #, = 1/oX2 1 (when well-defined). This 
is easier to study because the space of normalized mass distributions is a separa- 
ble, metrisable space under the weak topology. The goal of this research program 
is to discover all the "statistical equilibria" of the particle system, and to describe 
the convergence of the random measure valued process (#,, n _> 0) to some specific 
equilibrium. In the language of Markov processes, this is the problem of deter- 
mining the structure of the set of invariant measures for the Markov chain 
(#,, n > 0). The present paper is directed in particular to answering the following 
question: 

(.) Under  what conditions is there just one statistical equilibrium, in which 
all the particles have coalesced to a single, randomly moving point ? 

Background 

The main inspiration for the project came from the work of Le Jan (1984, 1985) 
and Baxendale (1986) on stochastic flows of diffeomorphisms. If T is a differenti- 
able manifold (usually compact), a stochastic process (Xst, O<s<t< oo) with 
values in the diffeomorphism group of T is called a stochastic flow of diffeo- 
morphisms if for all s<t<u, Xt,oX~t=X~u. (For x in T, interpret X~t(x ) as 
the position at time t of a particle which is at x at time s.) Given a measure 
# on T, the flow induces a measure-valued process (#t, t > 0) where #t = #o Xo, 1. 
Le Jan (1984) considered isotropic stochastic flows on the d-dimensional torus; 
when d = 1 or 2, the equilibrium state is a random Dirac measure with uniform 
distribution on the torus, whereas when d >  3, it is a singular diffuse random 
measure. Le Jan (1985b) and Darling and Le Jan (1988) also studied equilibrium 
states for isotropic stochastic flows on IR a. Baxendale (1986) investigated a sto- 
chastic flow of diffeomorphisms on the sphere where the equilibrium state is 
almost surely a Dirac measure. LeJan  (1985a) obtained an upper bound for 
the Hausdorff  dimension of the equilibrium measure, in terms of the Lyapounov 
exponents of a stochastic flow of diffeomorphisms of an arbitrary compact mani- 
fold. The subject of Lyapounov exponents of stochastic flows has been discussed 
by many authors; the reader is referred to the conference proceedings edited 
by Arnold (1986), and Kifer (1985). 

Overview of This Paper 

The situation discussed in this paper is far more general, since Xs~ need not 
even be a homeomorphism. We assume only that the mappings x-*Xs,(x) are 
continuous in probability for all s < t. 
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The motivation to study the non-homeomorphic  case arises from the physical 
considerations discussed above (see [.J), and from work on coalescing stochastic 
flows by Arratia (1979, 1984), Harris (1984), and Darling (1987). 

In order to concentrate on essentials, we discretize time, and take as our 
initial data a probability measure Q on the space of functions from M to M, 
where M is a compactification of T. The idea is to take an initial normalized 
mass distribution t/, and push it forward under a sequence of independent, identi- 
cally distributed random transformations with distribution Q. 

Sect. 1 is devoted to the construction of a transition probability P on the 
space of normalized mass distributions by elementary functional-analytic means. 
In Sect. 4 we answer (*) by characterizing the case where P is ergodic, in terms 
of the transition probability of the two-point motion. 

In Sect. 3 we obtain a realization (#,, n>0)  of a measure-valued Markov 
chain with transition probability P, by the means described in 'The Physical 
Model '  above. After disposing of some measure-theoretic technicalities, we 
obtain a " random ergodic theorem" (Proposition 3.3) showing the convergence 
in law of (p,, n > 0), at least when the initial value is suitably chosen. 

1. Construction of a Measure-valued Markov Chain 

Notation. For  every Hausdorff  space Y discussed in the sequel, let N(Y) and 
~o(Y) denote the Borel and Baire a-algebras respectively; and let b(Y) and 
C(Y) denote the Banach spaces of bounded, Borel measurable (resp. continuous) 
functions from Y to 1R with the supremum norm. For  a transition probability 
P: Y x ~ (Y) ---, [0, 1], the expressions P ~b (for ~b in b (Y)) and # P (for # a probabili- 
ty measure on ~(Y)), and (qS, Y), have the same measuring as in Revuz (1984). 

Henceforward T will denote a locally compact space with a countable base. 
If T is compact, take M =  T; if T is non-compact, let M denote a suitable 
compactification of T. 

M is metrizable, and p will denote a metric on M compatible with the 
topology of M. Let F denote M M, considered as the space of functions from 
M to M with the topology of pointwise convergence (i.e., product topology). 
F is compact by Tychonoff 's theorem, and a basis for the topology of F is 
given by sets of the form {f: f (x l )~  G1 ....  , f ( x , ) e  G,}, where X l ,  . . .  , X n are points 
in M and G~, ..., G, are open subsets of M. The Borel sets and Baire sets 
of F were studied by Nelson (1959). 

The canonical F-valued random field is the function: 

(1.1) Z: M x F ~ M ,  Z(x, F ) = f ( x ) .  

For  each x in M, Z(x, �9 ): F ~ M  is automatically (~o(F), N(M))-measurable. 
The starting-point of our study is a probability measure Q on ~o(F). Our 

goal will be to construct in a natural way a transition probability on the space 
of normalized mass distributions on M. 

Definition 1.1. A probability measure Q on ~o(F)  will be called stochastically 
continuous on M if the mapping x ~ Z ( x ,  .) is stochastically continuous on M; 
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i.e., for all x in M, and for all ~ > 0, 

(1.2) Q({f:  p ( f ( x ) , f ( y ) ) > e } ) ~ O  as y ~ x .  

Remark 1.2. For  each x and y in M and each e>0 ,  the set A = { f :  p ( f ( x ) , f ( y ) )  
> e} is indeed in No(F ). Note  first that A is open in F, since A is the union 
of the basic open sets {f :  p( f (x ) ,  w)<e/2, p( f (y) ,  3)<e/2} over the set of (w, 3) 
in M 2 such that  p(w, 3)>2e.  Hence A C is closed in F and therefore compact.  
A c is a Go since it is the intersection of the open sets {f:  p( f (x) ,  f ( y ) ) < e +  1/n}. 
Since A c is a compact  Go, it follows that A is a Baire set. 

For  k > l ,  x l ,  ...,Xk in M, and u in b(Mk), define 

(1.3) R ~k~ u(x l, . . . , xk) = E ~ [u( Z (x ~) . . . .  , Z(xk))], 

where the Q on the right side means that we regard Z as a F-valued random 
variable on the probabil i ty space (F, N o (F), Q). Thus R (k) is a linear map  from 
b(M k) to b(Mk). 

Lemma 1.3. I f  Q is stochastically continuous on M (Definition 1.1), then R(k)u 
is in C(M k) for all u in C(Mk). Also R (k) is a positive contraction on C(M k) 
with R (k) 1 = 1; hence R (k) is associated with a unique Feller transition probability 
on M k, also denoted R (k), namely 

(1.4) R(k)((xa, ..., Xk), G)= Q({ fEF:  (f(xx,  ... ,  f(xk))6G}).  

The proof, which is elementary, is omitted. 

Definition 1.4. The transition probabil i ty R (k) defined in Lemma 1.3 will be 
called the k-point transition probability. Henceforward we shall deal mainly with 
the cases k = l  and k = 2 ;  so abbreviate R (1) to R and R (2) to S. The iterates 
of R (k) will be denoted ink) _ ink) ~(k) 

Definition 1.5. Suppose Q is stochastically continuous on M. Define probabil i ty 
measures QI, Q2, -.. on N0(F) as follows: Q1 =(2, and for j > 2 ,  Q~ is the unique 
Baire measure consistent with the system of finite dimensional distributions 
{Qj.,, a a finite subset of M}, defined as follows: 

If  e = {Xl, ..., Xk} and G is in N(Mk), then 

(1.5) Qi, ,({f:  (f(xx), ..., f ( xk ) )eG})= R} k) la(Xl . . . . .  Xk). 

This is equivalent to saying that  for each k > 1 and all u in C(Mk), 

(1.6) R} k) u(x, ,  ..., xk) = E ej [u(Z(xl) ,  ..., Z (Xk))]. 

Lemma 1.6. I f  Q is stochastically continuous on M, then so is Qj for every j > 2. 

Proof. To show stochastic continuity of Qj, take k = 2 and consider the distance 
function p o n  M 2. Suppose (x,) is a sequence in M converging to x; then Lemma  
1.3 and the continuity of p imply that R52)p is continuous for every j > 2 ,  and 
so by (1.6), 

r~(2) X X 0 lim E ~ [p (Z (x), Z (x,))] = lim r,~ p ( , ,) = . 
n n 
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Hence for fixed j, (p(Z(x), Z(x,)), n = 1, 2 . . . .  ) is a sequence of non-negative ran- 
dom variables on (F, ~o(F) ,  Qj.), converging in mean to zero. Therefore the 
sequence converges to zero in probability, proving that Qj is stochastically con- 
tinuous on M. []  

Let E denote the space of Borel probability measures on the space M, other- 
wise known as normalized mass distributions on M, with the weak topology, 
as discussed for example in Bauer (1981), Chap. 7.7. 

Definition 1.7. Define sets of functions Vo, V1, V2 . . . .  from E to IR as follows. 
Vo is the constant functions, and for j > 1, V~ is the set of functions ~o: E ~ I R  
of the form 

(1.7) 0(2) = (~01, 2> (~92, 2> . . .  ((])j, 2>, 2fiE, 

for some j >  1 and some ~o 1 . . . . .  ~oj in C(M). Define V to be the linear span 
of  Vo, Vl, V 2 . . . . .  

Lemma 1.8. V is a dense subalgebra of C(E). 

Proof Use the Stone-Weierstrauss theorem (we omit the details). Similar results 
are noted by Fleming (1982) and Dawson and Kurtz  (1982) for dealing with 
measure-valued processes. 

Lemma 1.9. For each j >  1, and for each function u in C(MJ), the mapping 

(1.8) 2 ~ (u, 2@.. .  @2)  = ~ u(y 1 . . . .  , yj) 2(dyl).. .  2(dyj) 
is in C(E). MJ 

Proof Fix j > l ,  and let J denote the linear subspace of C(M j) spanned by 
the functions v of the form v(yl . . . . .  Yj)=91(YO (])2(22)"'" q)j(Yj), where ~0~ . . . .  , ~oj 
are elements of C(M). It is easy to check that J is a subalgebra of C(M j) which 
contains the constant functions and which separates the points of M j. The Stone- 
Weierstrauss theorem implies that J is dense in C(Mi). Moreover  the weak 
continuity of 2 ~ ( 9 , 2  ) for ~o in C(M) implies that (1.8) is in C(E) whenever 
u is in J. 

Given a function u in C(MJ), then denseness of J implies that there exists 
a sequence (v,) in J converging to u in the supremum topology. Hence for 
each 2 in E, 

[(u, ,~| ... |  (v, ,  2 |  |  < Iru-v, IF 2 ( M / =  f lu-  v, lr. 

Thus (v, ,  2 |  |  converges to (u, 2 |  |  uniformly over 2 in E. Each 
v, satisfies (1.8), and the uniform limit of continuous functions is continuous; 
hence u satisfies (1.8), as desired. []  

Now we will show how a stochastically continuous probability measure 
Q on function space gives rise in a natural way to a transition probability 
P on the space E of normalized mass distributions. The idea is that for # in 
E and A in ~(E),  the probability P(#, A) is Q(poZ-  ~ cA). To construct P rigor- 
ously, we proceed as follows. 

Suppose 0 is in Vj (Definition 1.7); thus 

(1.9) 0(2) = ((P~, 2) (~o 2, 2 ) . . .  (qoj, 2) ,  2 e E  
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for some (Pl,..-,~0j in C(M). If u(yl . . . .  ,yj) denotes the product 
~ol(yl) qOz(y2).. .q)j(yj) , then u is an element of C(MJ). Let R ~ be as in (1.3); 
thus 

(1.10) R (J) U(Xl,  . . .  , x j )  ~- E Q E(pl ( Z  (x1)) . . .  ~ 9 j ( Z ( x j ) ) ] .  

If Q is stochastically continuous on M, then RU) u belongs to C(M j) by Lemma 
1.3. Hence <RU)u, 2| ... | is well-defined for 2 in E. 

Proposition 1.10. Suppose that Q is stochastically continuous on M. Then there 
exists a positive linear contraction A: V ~  C(E) such that A 1= 1, and such that 
for ~ as in (1.9), and RU)u as in (1.10), 

(1.11) A~9(2) = <R u) u, 2 |  |  

= j" E Q [ q ) I ( Z ( X l ) ) . . .  q ) j ( Z ( x j ) ) ]  2 ( d X l ) . . .  2(dxj) 
M~ 

for 2eE. 

Proof. For 0 in Vj, define AO by (1.11); also define A I = I .  Lernmas 1.3 and 
1.9 combined show that AO is in C(E) for each ~b in Vj. It is clear from (1.11) 
that A is linear on V i. Hence there is a unique linear extension of A to V 
(see Definition 1.7). 

Next we prove that A O > 0  for all 0 > 0  in V. Since AO is continuous on 
E, and since the discrete probability measures are dense in E, it suffices to 
prove that AO(#)>0 for all discrete probability measures #, for ~ > 0  in V. 
For such a #, and for ~ as in (1.9), 

AO(#)= j" {j" Q(df) qol(f (xl) ) .... ,pj(/(xj))} #(dxx) ... #(dxi) 
MJ F 

= ~ Q(df) { ~ ~ot(f(xl)) . . .  q)j(f(x3)) #(dxO. . .  #(dxi) }. 
F MJ 

(Interchanging the order of integration is allowed because the integral over 
M j is really a finite sum, since # is discrete.) 

(1.12) = ~ Q(df) { ~ ~P~(YO... q~j(Yj) vf(dy~).., vldyj) } 
F MJ 

where for f in F, v s is the discrete Borel measure defined as follows: 
If #(A)= ~ fli 1A (~i), some fl~ . . . .  , fir > 0 with 

l<=i~=r 

fli= 1, some ~1 . . . . .  3r in M, 
then 

vs (A)=#( f - l (A) )  = ~ flilA(f(3~)). 
l <_i<_r 

Equation (1.12) says that 

A~p(#)= ~ ~p(vs) Q(df)>O 
F 

since 0 > 0. Then same conclusion holds for all 0 in V, by linearity. 
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To show that A is a contraction, suppose that O is in V and sup{~(2): 
2 ~ E } < l .  Then 1 - ~ > 0 ,  and the positivity of A implies that 
1 - A ~ = A ( 1 - O ) > 0 .  Hence sup{A0(2): 2~E} =< 1, as desired. IS] 

Corollary 1.11. A has an extension to a positive linear contraction A" C(E)~  C(E) 
such that A1 = 1. Hence there corresponds a unique transition probability P on 
E, and P is Feller. 

Proof. Given O in C(E), Lemma 1.8 shows that there is a sequence (0,,) in 
V which converges to O in the supremum topology. Hence (Or,) is a Cauchy 
sequence in C(E). The fact that A: V-~C(E) is a contraction shows that (AG,) 
is a Cauchy sequence in the complete, separable metric space C(E) (note that 
E itself is compact, separable and metrizable). Hence (A~,,) has a limit in C(E), 
and we define A O to be that limit. Evidently the mapping A: C(E)-~ C(E) inherits 
the property of being a positive linear operator with A 1 = 1. The last paragraph 
of the proof of Proposition 1.10 may be repeated to show that A is a contraction. 
Since E is a compact space with a countable base, we obtain a Feller transition 
probability P on E as desired. [] 

The iterates of the transition probability P will be denoted P1 =P, P2,..-- 
In terms of the probability measures Qm introduced in Definition 1.6, observe 
that for ~k as in (1.9), and u as in (1.i0), 

(1.13) P,,,~()O=<R~)u,)o|174 

= ~ Eo~[~0~(Z(x0)  . .  q , j ( z % ) ) ]  )~(dxl)... ~(dx). 
MJ 

2. Constructing Measurable Versions 
of Sequences of Random Transformations 

This section contains some technical measure-theoretic results; the reader may 
prefer to skip to Sect. 3, and refer to Sect. 2 as necessary. 

Suppose q is a normalized mass distribution on M, and Q is a stochastically 
continuous probability measure on ~o(F). The goal of this section is to construct 
a sequence ... .  IV_ 1, W0, W~ . . . .  of independent random transformations of M, 
each with law Q, such that all compositions of form Wpq = Wq o Wq_ ~ . . . . .  Wp + 1, 
for p < q, are jointly measurable, in the sense that 

(2.1) (x, co)~ Wpq(X, co) is t/ |  into ~(M),  

where (O, ~,  Pr) is the underlying probability space. To achieve this, we need 
to place a mild condition on the normalized mass distribution t/, namely we 
assume that 

(2.23 For A in ~(M),  I I (A)=O~SQ({ f :  f(x)EA})~/(dx)=0. 

This is equivalent to saying that t l R is absolutely continuous with respect to 
~/(see Definition 1.4), and implies that 11Rk ~ r/for all k = 1. An invariant measure 
for R satisfies (2.2), for example. 
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Let (f2, ~,, Pr) denote the product of Z copies of (F, No(F), Q), where ~ is 
the completed product o--algebra. A sample point in • may be written as co 
= (.-., f -  1, )Co, fl  . . . .  ) where each fp is in E On this probability space there exist 
independent (F, N o(F))-valued random variables .... Z - l ,  Zo, Z1, ..., each with 
law Q, namely Zj(co)=fj. The shift z: f2~f2 is characterized by Zj(zpco) 
= Zj+p(co), for p in Z. 

Proposition 2.1. Suppose Q is a stochastically continuous probability measure on 
No(F), and ~1 is a normalized mass distribution on M, satisfying (2.2). Then, on 
the probability space ( f2, ~,  Pr) above, there exist independent ( F, N o ( F))-valued 
random variables W1, W2 .. . .  , with the following properties: let 

(2.3) W,o(co) = Wq(co) o Wq_ 1 (co) . . . . .  Wp+ 1(co), 

for O<=p<q, co in f2; 

then (2.1) holds for all O<p<q, and 

(2.4) Wpq has law Qq_p (see Definition 1.6). 

Proof Step I. The proof is related to that of Doob's result on the existence 
of measurable versions, as presented by M.M. Rao (1979), p. 179. Since (M, p) 
is compact, there exists for each n >  1 an open covering {G,,i, i=  1, 2, ..., k(n)} 

of M such that diam(G,,i)< ~ for each i. Let H,, t=G,,  1, and let H,,i=G,,i  
n 

--~jl<_j<_i_lG,,~ for i = 2  . . . .  , k(n). We may assume H,, i is non-empty for each 
i, and so we select an arbitrary point y,,i in H,, ~ for each i. 

For n > 1, define a function L,: M x f2 ~ M by 

(2.5) L,(x, co)=Zl(y,,~,co)=f~(y,,~) if xeHn,~. 

Observe that L, is N(M) x ~-measurable into N(M). Moreover for any e>0,  

(2.6) Pr({co: p(L,(x, co), Zl(x, co))>e}) 

=Z1H,.,(x)Pr({co: p(Zl(y,.i,co),Zl(x, co))>e})--+O as n ~ o o  
i 

by the stochastic continuity of Z 1. Hence for every x in M (L,(x), n > l )  is 
a Cauchy sequence in probability. Since p is a bounded metric, Fubini's theorem 
implies that 

(2.7) ~ p((L,(x, co), L,,(x, co)) ~/| do)) 
M x ~ ?  

= ~ [p (L . ( x ) ,  L~(x))] ~(dx) 
M 

and the right side tends to zero as n, m ~ oe by (2.6) and the bounded convergence 
theorem. Thus (L,, n>0)  is Cauchy in D(t/| and hence it converges in 
#| Therefore there is a subsequence (L,o), j >  1) which converges 
pointwise to a limit, denoted 1411, except on a set J~ in M x t-2 such that 
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q |  moreover J1 is in .~(M)x ~,  since each L, is ~ ( M ) x  g-measur-  
able. Let Wl(x, co)=Zl(x, co) for (x, co) in 31. 

Using the shift z: ~2~f2 defined above, define Wp(co)=Wt(%_~co), for p 
=2 ,3  . . . .  , and define Jp in M x f 2  by: Jp={(x, co): (x, zp_~co)eJ~}. Then Jp is 
in N ( M ) x  ~ and r/ |  for every p >  1. Since each L, is t] |  
able, it follows that I/V~, and hence every Wp, is r/ |  into M(M). 
Also (2.6) shows that Pr(Wp(x)=Zp(x))= 1 for all x, so Wp(.,co) induces the 
law Q on ~o (F). 

Step II. Let H(q) be the inductive hypothesis that (2.1) and (2.4) hold for all 
p such that O<p<q. The previous paragraph shows that H(1) is true. Suppose 
that H(q) is true for some q > 1. Observe that 

(2.8) %,~+~(x, co)= w~+~(w~(x, co), co) 
=l im Ln(.i)(Wpq(X , co), -Cqco), if (Wpa(x , co), co)6 Jff+ 1. 

J 
Now 

(2.9) L,(Wpq(X, co),Zqco)= ~ Zq+t(y.,,, co) 1H,,,(Wpq(X, co)) (formal sum). 
i 

By the inductive hypothesis, {(x, co): Wpq(X, (o)eH,.i} is q|  also 
Zq+ 1 is ~-measurable, so the left side of (2.9) is an t/ |  function 
of (x, co). 

To prove that Wp, q+l is t/ |  for p=0 ,  1, ...,q, it suffices by 
(2.8) to prove that: 

(2.10) ~/| co): (l/Vpq(x, on), og)~Jq+t}) =0 .  

We noted in Step I that Jq+l is in ~ (M)  x ~-; moreover the inductive hypothesis 
for (2.1) shows that the set {...} in (2.10) is t/ |  Hence by Fubini's 
theorem, the left side is equal to: 

I rl(dx) Pr({co: Wpq(x, co)~{y: lim L,(j)(y, zqco) does not exist}}) 
) 

= ~ rl(dx) [Qq_p| h): g(x)~A(h)})] 

by the inductive hypothesis for (2.4) and the independence of Wpq and Zq+l, 
where for h in F 

A (h) = {y: lim ~ h (y,(j), i) lu,(~,,, (y) does not exist} 
j i 

(see [2.5]). Now A(h) is in ~ ( M )  for each h in F, and ~(A(h))=0 for [Q]-almost 
all h since Jq+ t is an r/| So the integral (2.10) is 

= I rl(dx) ~ Q(dh) Q0-p({g: g(x)eA(h)})=0, 

since Qq_p({g" g(x)~C})=O when ~/(C)=0, by (2.2). This proves that Wp,~+~ 
is q|  for p=0 ,  1 . . . . .  q. 
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Step III.  To prove H(q+ 1), it only remains to prove that for any x~, ..., x i 
in M, and any u in C(MS), 

E [ i A ( W p ,  q+ l ( x 1 ) ,  W p ,  q+ l ( X j ) ) ]  - -  l~(J) �9 . . ,  - - . . q + l _ p U ( X 1  . . . .  , X j )  

(see Definitions 1.4, 1.5). The left side is 

E [E [u(Wq. l(Wpq(X1)),..., Wq+ 1 (W~q(xj))) 1%q]] 

= E [R (j) u(Wpq(Xl),..., Wvq(Xi))]. 

has law Q. By the second part of the inductive hypothesis, this 

= R(qJ)_p(R (j) u )  ( x 1 ,  v h - ];?(J) u ( x 1  x j ) ,  . . . ,  .~j! - -  ate.q+ 1 -  p ~ " " ,  

This completes the induction and the proof. [] 

as desired. 

Definition 2.2. Suppose Q is stochastically continuous, t/ satisfies (2.2), and 
(g2, ~,, Pr) is the probability space described above. For k=0 ,  1, 2 . . . .  , define 
t/ |  maps Xk: M x ~2--*(M, N(M)) as follows: 

(2.11) Xo(x, co)= x, Xk(X, CO)--= Wok(X, CO) 

= ~(CO) o ~ _  1(CO) . . . . .  ~(CO) (x), 

(2.12) Yo(x, CO)=x, Yk(X, CO)=Wok(X,Z_k_lCO) 

=Xk(x,z-k-lCO), for k > l .  

By Proposition 2.1, each Xk and each Yk can be regarded as an (F, No(F)-valued 
random variable with law Ok. 

Lemma 2.3. For k > 1, Xk (CO) = Wk (CO) o X k_ 1 (co) : M ~ M, and 

Yk(CO) = Yk-l(co) ~ W-k(CO): M ~ M ,  

where by definition VVv (co) = Wl(zp_ 1 CO) for all p in Z. 

Proof. The assertion about X is obvious. As for the other, 

Y~(~k + l CO)= Wok(Co)= ~(CO) . . . . .  ~ (co) 

= W~_ 1 (z co) . . . . .  W~ (~ CO) o Wo (~ co), 

since Wp (CO) = W1 (zp_l CO), 

= Wo,k- 1(~ co)~ Wo(~ co), 

= ~-l(~k+,co)~ ~(co)  

= ~-1(~k.1 co)o W-k(~k+l CO). []  
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3. The Measure-valued Process and Its Statistical Equilibrium 

The first goal of this section is the construction of a measure-valued process 
(/~,, n>0),  which is a Markov chain with transition probability P as in Sect. 1. 
The idea is to take #o = q, where q satisfies (2.2), and/% =t/oX~ -1 (see Definition 
2.2). To study the asymptotic behaviour of (#,, n>0),  it is helpful to consider 
another measure-valued process (v,, n>0),  Where Vo=t/ and v,=~/o Y,-a (i.e., 
apply successive random transformations on the right, rather than the left). 
A convenient and elegant way to specify the random measures #, and v, will 
be the following. 

Suppose that Q is stochastically continuous, and q satisfies (2.2). Using Defini- 
tion 2.2 and Fubini's theorem, we see that for all functions (p in b(M), and 
all n > 0, the functions 

(3.1) 

and 

(3.2) 

co --, ~ ~o ( x .  (x, co)) ,7 (dx) -- M .  (~0, co), 
M 

co--' 5 ~o(:ro(x, co)) n(dx)= N.(~o, co) 
M 

are ~-measurable (recall that ~ is complete). For  each co in f2, the mappings 
~o ~M.(cp, co) and ~o-+ N.(qo, co) are positive linear functionals on C(M). Accord- 
ing to the Riesz representation theorem, there exist (random) probability mea- 
sures #.( . ,  co) and %(-, co) on N(M) such that for all ~ in C(M), 

(3.3) (q), #,(( ' ,  co)) = M. ((p, co), (% v,(-, co)) = g ,  ((p, co). 

It follows from this construction that each /4, and Vn is ~-measurable into 
the weak topology on E (see Sect. 1); i.e., (#,, n>0)  and (v,, n>0)  are E-valued 
random processes on (f2, Y,, Pr), determined by the equations: 

(q~, m )  = ( ~ o X . ( . ) ,  ~) ,  
(3.4) 

(~o, v,)  = (~o o Y,(.), ~>, ~oeC(M). 

Proposition 3.1. The process (p~, n_>_ 0) specified by (3.1) and (3.3) is a homogeneous 
Markov chain with respect to the a-algebras o~o = {0, (2}, ~,~ = a { W~ . . . .  , W,}, n__ 1, 
and with the transition probability P defined in Corollary 1.11. 

Remark 3.2. There is no reason why (v,, n>O) should be Markov. However 
(#,, n=0)  and (v,, n>0)  are related by means of the shift z: f2-~f2; (2.12) and 
(3.4) show that v,(co, ")=#n(z_~_lco, .). For each fixed n, /~o and v, have the 
same law. 

Proof. It suffices to prove that for any integers n>m>O and any 0 in b(E), 
we have 

(3.5) E I0 (#,) [ g,,] = P,- m ~ (#m), [-Pr3-a.s. 

Actually it suffices to prove (3.5) for all ~ in V of the form (1.7), since the 
extension to C(E) and to b(E) is routine. In this case, for m >  l, 
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= E IS d , . . .  W,, . . . ,  

= E E I  e ,  o W, . . . . .  Wm+  ... I 

o w.  . . . . .  Wm+~ ~ d~lVr . . . .  , Win] 

oVV, . . . . .  W,,+ 1(.) d#,,[ W1 . . . .  , W,,] 

using the measurability assertions of Proposition 2.1, and the definition of #m. 
Since W,,+~, ..., IV, are independent of W~, ..., W,,, (1.13) implies that this is 
P, - ,, IP (#m) [Pr]-a.s. [] 

Proposition 3.3. Suppose that the one-point transition probability R (see Definition 
1.4) has an invariant probability measure ~. 

(i) I f  vo = ~ = 7t in (3.2) and (3.3), then (v,, n>O) converges almost surely in 
the weak topology to a random measure voo, as n tends to infinity. 

(ii) I f  #o=~/=u  in (3.1) and (3.3), then (#,, n>0)  converges in law to voo 
in the weak topology, as n tends to infinity, meaning that E[#J(#,)]~E[qJ(voo)] 
for all ~ in C(E). 

(iii) Let q be the probability measure on 2 ( E )  given by: q(A)=Pr({co: 
voo(co, . )cA})for  A in 2(E) .  Then q P = q ,  i.e., q is a P invariant measure. 

Remarks. The random measure Voo is called the statistical equilibrium for the 
discrete-time stochastic flow {Xk, k > 0}. Assertion (i) was noted by Le Jan (1984) 
in a special case. In effect it is a statement about the limit of the nonlinear 
random transformations (Y,), and thus is a form of random ergodic theorem; 
compare Kifer (1985), Chap. I, Corollary 2.2. 

A kind of invariance similar to (iii) was studied by Liggett (1978) in the 
case where the motions of any k distinct points are independent. 

Proof Notice first that 7c satisfies (2.2), so the results of Sect. 2 apply. 
(i) Take an arbitrary cp in C(M), and consider the process (N,(cp), n>0)  

defined in (3.2). Evidently [N,(q~)l< Ilcpll, so the process is bounded. Define an 
increasing sequence of a-algebras contained in ~ as follows: fr = {0,O}, and 
~,  = a { W _ l ,  ..., W_,} for n >  1. Then for n>0 ,  (3.2) and (3.3) say that 

E [-N, + x (q~) Ifr = E  [Qpo I1o W_,_ ~('), re51 fr 

= E [(cp o Y,('), ~ R> [ f~,] 

using the Lemma 2.3, Proposition 2.1, and the independence of Y, and W-,-1.  
This equals <cp o y,(.), ~5 = N,(cp), [Pr]-a.s. Thus (N,(~0), n > 0) is a bounded mart- 
ingale, and therefore has a limit almost surely as n tends to infinity, denoted 
N~(q,). 

Since M has a countable base, there exists a countable collection of functions 
{q)~, cp2 . . . .  } such that a sequence (2,) in E converges weakly to 2 in E if and 
only if Qpl, 2,) converges to (q)~, 25 for every i >  1. We see that for each i>  1, 
there is a nullset K~ in f2 such that 

lim (cp, v,(co, -)5 = Noo(qoi, co), for co outside K~. 
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Hence lim v,(co,-) exists in E for all co outside the nullset K =  ~ K~, which 
n i>___l 

verifies (i). 
(ii) We saw in Remark 3.2 that for each fixed n, #, and v, have the same 

law. However (v,, n > 0) converges in law as n tends to infinity, since it converges 
almost surely by part (i). This proves (ii). 

(iii) First we shall verify that 

( 3 . 6 )  (O,q)=E[O(voo)] for all 0 in b(E). 

Observe that if 0 = 1A for A in ~(E), then both sides of (3.6) equal q(A). By 
linearity, (3.6) holds for all simple measurable functions. However every 0 is 
b(E) is the pointwise limit of an increasing sequence of simple measurable func- 
tions, and Lebesgue's Monotone Convergence Theorem establishes (3.6) for the 
limit. 

To show that q P = q ,  it suffices to show that ( P 0 ,  q ) = ( 0 ,  q) for all 0 
in C(E), since (~,  q P )  = ( P 0 ,  q). By (3.6) it suffices to show that 

(3.7) 

Now 

~[4,(vo~)] =~[e0(voo)], ~,ec(E). 

E [0  (v o~)] = E [0  (lim v.)], 
n 

= E [lim 0 (v.)], by continuity of 0.  
n 

= lim E [0(v.)] ,  by dominated convergence, 
n 

= lim E [-0 (#,)], since #, and v,, have the same law, 
n 

=l im E [ 0 ( # . + 0 ] ,  
n 

=lim E [E [0(#,+1)1#J] , 
n 

=lim E[P0(# , ) ]  by (3.5), 
n 

=l im E [ P O ( v . ) ]  , since #, and v, have the same law, 
n 

= E [ P 0  (v~)] by the reasoning above. 

This verifies (3.7) and completes the proof. [] 

Remark 3.4. The convergence described in Proposition 3.3, (i) and (ii), may still 
occur even if the initial state t/ is not R-invariant. For example, suppose that 
q satisfies (2.2) (i.e., qR<q) ,  and that for some c > 0  and fl>0,  ][((~-rc)| 
-~ ) )S ,  II <cn -l-p,  for all n (absolute variation norm) where ~ is an invariant 
measure for the one-point motion (i.e. ~ R = ~), and S is the two-point transition 
probability (Definition 1.4). (Stochastic continuity of Q remains in force.) If vo 
=ti = #0, then v, converges almost surely, and p, converges in law, to the same 
random measure voo, as when v o = ~  =#o- 
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The preceding condition will hold, for example if S satisfies a Doeblin condi- 
tion (see Doob, 1953, p. 197). The author thanks P. Baxendale for giving a proof 
of this result (which is omitted here). 

4. Conditions for the Measure-valued Process to be Ergodic 

Recall the transition probabilities R and S from Definition 1.4, and P from 
Corollary 1.11. A transition probability is called ergodic if it has a unique invar- 
iant probability measure. 

Theorem 4.1. Suppose Q is a probability measure on ~o (F) such that 
(a) Q is stochastically continuous on M (Definition 1.1), and 
(b) the one-point transition probability R is ergodic, with a unique invariant 

probability measure re. 

Then (i), (iii) and (iii) are equivalent: 

(i) S is ergodic. 
n-1 

(ii) lim 1_ ~ Sj p(x, y) = O, x, y in M. (p is the distance function). 
n /'/ j = 0  

(iii) P is ergodic. 

I f  (i)-(iii) hold, then the unique invariant probability measures 0 and m, of S 
and P respectively, are as follows: 

0 is concentrated on the diagonal, and is determined by: 

(4.1) O(G x H ) = ~ ( G ~ H )  for 6, H in ~ ( M ) .  

m is concentrated on E~, the set of degenerate normalized mass distributions, 
and (denoting by fix the point mass at x), 

(4.2) m({cSx: x~G})=~z(G), for G in ~ ( M ) .  

Remarks. 1. Of course, the measures 0 and m are invariant, for S and P respective- 
ly, even if (i)-(iii) do not hold. The calculation is omitted. 

2. The diagonal in M 2 is an absorbing set for the Markov chain with transi- 
tion probability S, and Ea is an absorbing set for the measure-valued Markov 
chain. 

3. In the case where Q is concentrated on the smooth diffeomorphisms of 
a compact manifold M, S is ergodic if the maximum Lyapounov exponent is 
negative; see Le Jan (1985a). 

Proof. "(i)~(iii)". Assume S is ergodic. P is a Feller transition probability on 
the compact metrizable space E; according to Revuz (1984), Ch. 4, Ex. 3.14, 
ergodicity of P is equivalent to the following assertion: 

n- -1  

(4.3) lim 1 ~ Pj0(2) is a constant, for each 0 in C(E). 
n n j = o  
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n - 1  
Since the mapping O ~ 1_ ~ P~ ~ is a contraction for every n, it is clearly sufficient 

Hj=O 
to prove (4.3) for every ~ in V; in fact, by linearity, we need only consider 
~ in Vk, for k =  1,2 . . . . .  

The case k >  1. Suppose ~, is in V1, i.e., 0 (2 )=  ~ p d 2  for some ~ in C(M). Define 
real numbers (a, (2), n > O) by 

(4.4) a , (2)= n j Rj~o, 2 ) = - /  n j=o2 Pj~t(2). 

Assumption (b) and the mean ergodic theorem for R implies that for all x 
in M, 

(4.5) l ima.  ('1) = ~ ~o d ~ for all 2 in E; 
n 

this verifies (4.3) for ~ in V 1 . 

The case k>2 .  Suppose k = m > 2 ,  and O is in V,,, i.e., of the form ~(2) 
= (opt,2> ... (~0~,2) where qh, .--, q)m are in C(M). By (1.13), for discrete mea- 
sures 2 and kt in E, 

1 ~ - 1  I , - 1  
(4.6) • ~ P : O ( 2 ) - -  ~ P j 0 ( g )  

?'lj= 0 rlj= =o 

" c , . @ ] ,  
1 

= 2 E~,[c~(,~)... c~(2)-c~@... 
j =  0 

where the random variables (ci(2), i=  1, ..., m) are given by q (2)=  (~oioZ(.), 2) 
= S c&(Z(x))2(dx). (Interchanging the order of integration in (4.6) is allowed 
because 2 and # are discrete, and so the integral over M m is really a finite 
sum.) Notice that ] ci(2) 1 < l] q)ill~ The expression (4.6) is equal to 

rt--1 

! E EQJ[cI('1) C2(2) "'" Cm('~)--Cl(#) C2(;~)" '"  Cm()~) 
/ ~ j = O  

+ c~ (~) c2 ('1)... c~ ( , t ) -  c~ (~) c2 (~) + ~('1)...c.~('1) ... 

+ c~@ ... c,,_ ~(~) c~( '1) -  el @ . . .  c , , @ ] .  

For i = 1 , 2  . . . .  ,m, let L/=[lqoll] ...][qOi_ll[ Hq0i+IH . . .  N(Drnl] (i.e.,  product of the 
norms, except the ith). The previous expression is 

n-1 
~ L  1 ! ~EQJlc l ( '1 )__q(~) l+. . .+Lm~EOJlcm(2)-cm(~) l  " 

n j= 0 n 
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Now 
1 n - 1  

- ~, EeJlci(2)-ci(#)l  
n j = O  

1 n - 1  

= -  ~ EaJ ]~ [~o~(Z (x)) - ~o~(Z (y))])~(dx) # (dy) l 
Y / j = 0  

< ~ EeJ[u~(Z(x),Z(y))] 2(dx)#(dy)  
j = 0  

where ui(x, y)=l~0i(x)-~0i(y)l. (Interchanging the order of integration is allowed 
because 2 and # are discrete.) Returning to (4.6), we have now shown that 

~ n - 1  1 n - 1  [ 

(4.7) E PJ0(2)-  n Z PJ~'(#) 
j=O j = 0  

<__ y c~ ui(x,y X(dx)~(dy). 
i=1  j = o  

Both sides of this inequality are continuous in )~ and #, and discrete measures 
are dense in E; hence (4.7) holds for all 2 and # in E. 

The assumption (i) and the Mean Ergodic Theorem imply that 

1 n--1 

lim - ~ S # ui(x, y) = ~ u~(x, y) 0 (dx, dy) = ~ ui(x, x) zc(dx) = O. 
n n j =  0 

Using Dominated Convergence, we see that every term on the right side of 
(4.7) converges to zero as n tends to infinity. Hence the expression (4.6) converges 
to zero for all 2 and # in E, which verifies (4.3) for all 0 in Vm, as desired. 

"(iii)=~(ii)". Assume that P is ergodic. Define ~ in C(E) as follows: 

(4.8) 0 (2) = ~ p (3, w) 2 (d 3) )~ (d w). 

(Continuity of t) follows from Lemma 1.9.) Fix x and y in M, and define v = (6x 
+ 6y)/2 in E. Then t) (v) = p (x, y)/2, since p (x, x) = p (y, y) = 0. Moreover S t p (x, y) 
=2Pj~(v) for all j >  1, by (1.13). Using the Mean Ergodic Theorem for P, and 
(4.8), we have 

1 n--1 

lim Z S j p ( x , y ) = 2 1 i m  , 1p~ 
1 

_ 

- - O ( v )  

n Y/ j=O  n F/ j=O  

= 2 ~ ~ (2) m (d 2) = 2 ~ ~ (6x) ~r (dx) = O, 

which verifies (ii). 

"(i i)~(i)".  Assume that (ii) holds. According to the criterion mentioned in (4.3), 
S is ergodic if: 
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n - I  

(4.9) lira-1 ~ Sju(x,y) is a constant, 
n n j =  0 

for each u in C(M2). 

Given u in C(M2), define ~o in C(M) by: (p(~)=u(~, 3)- By uniform continuity, 
there exists a constant ~ such that [u(3, w)-u(~, ~)[ <= ~ p (w, 3), for all w, 3 in M. 
Hence 

. -  1 . -  1 

Z Sj u(x, y ) -  1 Z Rj (x) ~0 
j=O n j = o  

1 n - - 1  

_-<- Y~ ~Q~lu(Z(x), z(y))-u(Z(x), Z(x))j 
n j = o  

n - 1  

<=~- ~ sjp(x,y). 
n j = o  

By assumption (ii), the last expression converges to zero as n tends to infinity. 
Hence 

1 n - 1  1 n - 1  
l i m -  ~, Sju(x, y ) = l i m -  ~ ejq)(x)=(q),~z) 

n n j = o  n n j = o  

by the Mean Ergodic Theorem, which verifies (4.9). Hence (i) holds. [] 

Corollary 4.2. Suppose the two-point transition probability S has an invariant 
measure concentrated off the diagonal of M 2, and that (a) and (b) hold. Then 
the measure-valued chain {#,, n > 0} introduced in Sect. 3, with #o = 7r, has a statis- 
tical equilibrium voo which is not a random Dirac measure. 

Example 4.3. Let M denote the one-point compactification of 1113, and let i: 
M ~ S 3 be the inverse of the stereographic projection onto the unit 3-sphere. 

The metric p on M we take to be the pullback of the usual Riemannian 
metric on $3; thus the restriction of p to 11t 3 is equivalent to the Euclidean 
metric on 11t 3, while p (x,, y,) ~ 0 if ]x, ] ~ ~ and l Y,,] ~ oo. 

Let {X~t, 0___s_<t<~} be any time-homogeneous pure stochastic flow on 
II( 3 with the following properties: 

(4.10) For each fixed x in 1113, {Xot(x)-x ,  t>0} is transient in IR a. 

(4.11) For each fixed t>0 ,  and e>0,  and x in M P(p(Xo,(X), Xot(Y))>e)~O 
as y ~ x  in M where we define Xot(Oo, co)= oo for all t > 0  and co in s 

(4.12) For each fixed x and y in IR3, with probability one IXot(x)-Xo,(y)[-~O 
or to o% as t--) oo (typically P(lim IXot(x)-Xot(Y)[ =0) is a function o f x  and y). 

t--+ oo 

In Darling (1988, Appendix B) an example is given of a class of isotropic 
stochastic flows in 1113 which satisfy these conditions, and where almost all 
the mappings Xot(co): M ~ M are discontinuous, although the stochastic contin- 
uity condition (4.11) holds (see Darling, 1987a, Sect. 14, for the proof). Indeed 



228 R.W.R. Darling 

for d is t inct  x and  y, there  is a pos i t ive  p r o b a b i l i t y  tha t  the t ra jec tor ies  f rom 
x and  y meet  a n d  coalesce  in finite time. 

The  a p p a r a t u s  of  this  p a p e r  m a y  be used to de te rmine  the poss ib le  n o r m a l -  
ized s ta t is t ica l  equ i l ib r ia  of  such a s tochas t ic  flow. 

Le t  Q deno te  the  law of  X o l .  Since the  one -po in t  m o t i o n s  are  t rans ien t  
in R 3 by  (4.10), it  fol lows tha t  the  on ly  i nva r i an t  measure  for the  one -po in t  
m o t i o n  is ~=6oo (unit mass  at  infinity);  thus  the  one -po in t  m o t i o n  on M is 
ergodic .  A s s u m p t i o n  (4.12) impl ies  tha t  p(Xo,(X), Xo~(y))~O a lmos t  surely as 
t t ends  to  infini ty ( th rough  the integers),  for each  x, y in M ;  this verifies tha t  
cond i t i on  (ii) of T h e o r e m  4.1 holds .  

T h e o r e m  4.1 proves  tha t  the  on ly  r a n d o m  no rma l i z e d  mass  d i s t r i bu t ion  
whose  d i s t r i bu t i on  is i nva r i an t  u n d e r  the  ac t ion  of  the  d i sc re te - t ime  s tochas t ic  
flow on M is the  degenera te  no rma l i zed  mass  d i s t r i bu t ion  c5~. By the homoge ne i -  
ty of  the or ig ina l  c o n t i n u o u s - t i m e  s tochas t ic  flow, it fol lows tha t  there  does  
no t  exist  any  normalized s ta t is t ica l  equ i l ib r ium for the  or ig ina l  s tochas t ic  flow 
{Xst, 0 _< s_< t < oe } o n  IN 3. (The non-ex is tence  of  unnormalized s ta t is t ica l  equi l ib-  
r ia  for cer ta in  i so t rop ic  s tochas t ic  flows on N 3 is shown in D a r l i ng  and  Le Jan,  
1988.) 
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