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Fermion Martingales 

J.M. Lindsay* 

School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, U.K. 

Summary. We show that strictly quasi-free Fermion martingales may be 
expressed as a sum of quantum stochastic integrals with respect to the 
Fermi creation and annihilation processes and a multiple of the identity. 

w 0. Introduction 

Fermion stochastic integrals have been constructed and studied in [1, 3]. In 
particular, the notion of a martingale has been made precise by means of a 
family of conditional expectation maps for a quasi-flee ('Gaussian') state of the 
C*-algebra of the canonical anti-commutation relations (CAR) (see (1.1)) which 
is determined by a multiplication operator on LZ(IR+), and, for the Fock state, 
an analogue of It6's product formula has been proved for such stochastic 
integrals. 

In the present note it is shown, by means of an orthogonal decomposition 
of the underlying Hilbert space, that for a strictly quasi-free filtration, any 
Fermion martingale M may be represented uniquely in the form 

t t 

M(t) = M(O)+ ~ dA* F + ~ GdA (0.1) 
o o 

where (A, A*) is the quasi-free creation, annihilation process, F and G are L 2- 
adapted processes and M(0) is a multiple of the identity. 

The methods used here also yield an elementary proof of the corresponding 
result for Boson martingales [-6] (see also [9]). In that case an It6 formula 
[1, 7, 8] is not needed in view of the existence of 'Weyl martingales' with known 
stochastic integral representation. A unified treatment is given in [8]. 

Finally, I should mention the stochastic calculus of the Clifford process - 
the CAR analogue of the Wiener process [2]. Martingales with respect to the 
Clifford filtration are expressible as stochastic integrals, giving a third category 
of non-commutative martingale representation. 
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The plan of the paper is as follows. Section 1 introduces the stochastic 
calculus and some elementary properties of the stochastic integrals and the 
quasi-free representations are proved there. The purpose of this section is to 
fix notation and facilitate the later arguments - the material is more or less 
covered by [3]. In the second section a Fermion It6 formula is established, 
which is then used to give stochastic integral representation for a large class of 
martingales. In the final section it is shown that all Fermion martingales have 
an integral representation (0.1), moreover those having an adjoint process M * 
have stochastic derivatives which consist of closeable operators, and 

l t 

Mr(t) = M r  (0) + ~ dA* G t + f F d A  (0.2) 
0 0 

(X t denoting the restriction of X* to the appropriate domain - see Sect. 3). 
Both are proved by decomposing the relevant Hilbert spaces into three orthog- 
onal components - cf. the proof of the classical Kunita-Watanabe theorem in 
[105 

N. Marshall [12] has also obtained a representation of quasi-free Fermion 
martingales in terms of integrals with respect to the creation and annihilation 
processes, in which he gives an explicit form for the 'stochastic derivatives'. 

w 1. Q u a s i - f r e e  S t o c h a s t i c  Ca lcu lus :  B a s i c s  

If ~ is a complex HUbert space, then the CAR algebra over 4, 9A(h), is the 
unital C*-algebra generated by elements {a(f), a*(f):  f~h} satisfying: 

a*(f + 2g)=a*(f)+ 2a*(g); a*(f)=a(f)* 

a(f) a(g) + a(g) a(f) = 0 
(1.1) 

a(f) a* (g) + a* (g) a(f) = (f ,  g> I 

Lla(f)ll--Ha*(f)ll=llfll Vf, g~d, 2~r 

The Fock representation of the CAR algebra is defined by 

a*(f) gl A . . . A g " = f  Agl A . . .Ag  ", n~N,f ,  gi~A a 

where A ~  and, for n > l  .A" denotes the n-fold anti-symmetric tensor 
product; it is irreducible and cyclic with cyclic vector Qo =(1, 0, 0, ...) satisfying 

a(f) ~o = 0 Vfeh. (1.2) 

x For u e A J d ,  v~A~'d 

u A v: = I/(j ~ /  + k) ! Aj+k(u | v) 
~ j ! k !  

(i+k) 
where Aj§ k is the orthogonal projection of @ d onto A~ - not the usual normalisat ion for 
wedge products 
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Quasi-free representations may then be constructed as follows 

= ro( | ro( 

a~ (f) = a~ (l/I ~ R f)  | I + 0 | a o (J l /R  f )  

where R~3(~)  satisfies O<R<__I,J is an involution on ~ and 0 is the parity 
operator whose restriction to An~ is ( -1 ) " I .  The vector g2=flo|  o then 
determines the guage invariant quasi-free state o R of the CAR algebra for 
which 

OR(a* (f)  a(g)) = (g, R f } .  (1.3) 

That is to say the higher order 'cumulants'  vanish and the state on ~(d)  is 
thereby determined by its action on the products {a*(f)a(g):f, ge~}. (1.3) 
gives the 'covariance' of the state - quasi-free states being the analogues of 
Gaussian distributions. For further details of the CAR algebra, its repre- 
sentations and (quasi-free) states we refer to [4]. 

We are interested in the case where ~=L2(IR+),R is a multiplication 
operator Mp where p is bounded away from 0 and 1 locally (i.e. on each finite 
interval) and J is ordinary complex conjugation. The vector f2 is then cyclic 
and separating for JV:={aR(f )  , a*(f) :  f ~ } "  - the yon Neumann algebra 
generated by this representation - which allows us to establish results about 
operator-valued processes while working at the Hilbert space level. (All our 
quantum stochastic processes will be operator-valued.) From now on we shall 
drop the subscript R, denoting FR(L2(N+)), aR(. ) and a*(') respectively F, a( ') 
and a*('). Let ~ denote the *-automorphism of ~r  given by 

o-: a* (f)  --* a* ( - f )  (1.4) 

- this is implemented by the unitary operator 0 | 

Now let fl=p+, c t=(1-p)~,  Jg~t= {a(f), a*(f) :  s u p p f c [ 0 ,  t]}" and F t=Yt  f2 
for each t >0. The following straight forward result will be repeatedly used. 

Lemma 1.1. Let t>O, OeFt andfd~ with s u p p f c [ t ,  oo). Then 

(~, a ( f )~}  = (~, a*(f)(2} = 0, (1.5) 

(t), a(f) a*(f)t2}=(t),  ~} ~ I~f/~, 
' ( 1 . 6 )  

co 

(0, a*(f) a( f )  n}  =(/p, O} ~ I f l f l  a 
t 

Prooj~ Applying the CAR's (1.1) and (1.2) we have 

Vfe~, a(f)f2=t2o|174 0 

a(f) a*(f) a -- [ao(ctf) |  + 0 | a* (fif)] (a*(~f) 0 o | 

= [ II~f II 2 1 - a~ (~f) | a~ (flf)] (2 

so, for N =  f l  a*(fi)| ( I  a~(g i) with s u p p f  i, gJ~[0,  t] and h, k with support 
in It, c~), i=l j'=t 
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Hence, 

[I | ~ 2  = ( - 1)" ~g(O o |  ) f2o) = 0, 

[ao(h)| ~ f 2 = ( - 1 )  ~ ~P(a0(h) f20 | =0,  

[ao (h) | ~gf2 = ( - 1) ~+~ T(ao(h ) f2 o |  ) ~2o) = 0. 

<~eQ, a(f) o> = <U | ~eo, ~> =o, 

(~Pf2, a(f)a*(f)f2)= <~f2, i lc~fl2 f2 ) 

and the lemma follows by the totality of the vectors ~Yf2 in F t and the CAR 
(1.1). [] 

Let ~ = { R ~ : ~ e ~ ( R ) }  and ~/~(t)={R~:~(R)=~/~t't2} where ~ de- 
notes affiliation (for not necessarily closed operators) and ~( - )  denotes the 
domain of an operator. We extend a to ~ ( t )  as follows: for RsdV,,(t), ~r(R) is 
the element of A/~(t) satisfying 

a(R) f2=O| 

- since 0 |  leaves F~ invariant, this is well defined. We define the following 
classes of processes: 

d =  {X: ~ * - * W , ;  X(Oe~(t )vt}, 
5 P = { X ~ r  3{t,} with O<tl<t2<...<tn~oo and 

X (t)= Xnlw; o, X.Ed/;. for t~[tn, t~+1) } 

is  ebes ue me surab,e i 0 

and L 2 the set ~o2 with processes, that agree on ~2 almost every-where, 
identified. We call the elements of ~4 adapted and elements of ~ simple. There 
are the following one to one correspondences: 

d~--~{x: N + --*F; x(t)eF t V t}, denoted ~. 
La~--~{x~L21oo(N+;F); x(t)cF t for almost all t}, denoted l 2 

given by 

x(t)=X(t)f2; for Re~tt', X(t)Rf2=Rx(t). (1.7) 

The prototype processes are 

A~(t): = a* (fX[o, tl)lW~'~; Af(t): = a(fXto,,l)[wt,9, f~L~o~(]R § (1.8) 

and when f is the constant function equal to one, are called the creation and 
annihilation processes respectively and written A*, A. Since these processes 
take bounded values, we use the same notation for the unrestricted operators. 

For  each t >= 0, the time-t conditional expectation lE t is defined by 

lEt: ~ ---* ,/ff~(t ) IEt[X]Rf2=RPtX~2 for R ~,/ff~' 

where Pt is the orthogonal projection onto the subspace F t - this extends the 
conditional expectations given in [3, 5] to deal with unbounded operators. An 
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adapted process X is then called a martingale if it 
identity 

IEs[X(t)] =X(s) Vs<t  

and we denote the set of martingales by Jg. 
We next define stochastic integrals of simple 

= ~ Fz ZE,~,,~ + ,) (slightly abusing notation), 
i 

t 
dA* F: = ~ a* (Z[t.t,+ ~)) Fi + a* (Zt,.~. t)) F/(t) 

0 i < i(t) 

where i ( t )=max i. 
ti <t  

By Lemma 1.1 we have 

< a : ~ ( ~ [ , i , t i + i ) ) F ~ ' ~ , a * ( ~ [ t j  tj+ 1)) Fj~r --{0i 1 ' - ,, I[<~lle {c4s)} 2 as 

from which we obtain the isometric relations 

satisfies the martingale 

processes. For F~2f  

(1.9) 

i+ j  

i = j  

2 i s dA*FK2 = [JF(s)~ll2{c~(s)} 2 ds (1.10) 
0 

FdA, ~ FdA* and S dAF are defined in the same way and satisfy 

5 d A F =  ~ a(F)dA; ~FdA*=SdA*a(F) ,  (1.11) 
0 0 0 0 

- o JIF(s) fall 2 {fi(s)}2 ds. (1.12) 

We next show that L2-processes may be approximated by simple processes 
permitting an extension of the stochastic integral (1.9) to L2-processes. 

Lemma 1.2. Let X ~ L  2. Then there is a sequence X ('), n= 1, 2, ... of simple 
processes such that, for all t > 0 

i ll(X(s)-X(n)(s))f2ll2ds--+O as n-+ov (1.13) 
0 

and we shall write X(")-+ X when (1.13) is satisfied. 

Proof. Let x be the element of l 2 corresponding to X (1.7) and, for each h e N  +, 
u(")=XZto, 2~). On L2([0, 2"J; F) let S k , be the shift 

(Sk f)(x)={Of x < 2 - k  
(x - 2  -k) x > 2  -k 

and Q,k the orthogonal projection onto the subspace L2([0, 2"], o~f; F) where 
F f  is the a-algebra generated by the sub-intervals {[i2 -k, ( i+ l )2-k) :  
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0<i<_2"+k-1}.  Now S~ and Qk are contractions which converge strongly to 
the identity as k~oe,  so that, considering u (") as an element of Lz ([0, 2"] ; F), 
there is a number k(n) such that 

r _ ~ k ( n )  ck(~)~ ,,(n) < 1/2n. 
~t . ~ n  ~  ] ~ L 2 ~-- 

Writing v (~) for Qk(,)S~(~)u(,), letting w(")cL2([0, 2"], if, k(,); F) be Yf2-valued and 
satisfy 

II v (") - w(")II g~ =<- 1/2 n 

and x (') be w (n) considered as an element of 12, w e  have: 

II(X(s)-X(")(s))Oil2ds ~ Ilu(~)--w(~)liLz as soon as 2n>t  

< 1/n 

and X(")e~  completing the proof. [] 

Corollary 1.3. Let X s L  2, then there are adapted processes Y,, Z, U and V such 
that if X (") ~ X, then 

t 

idA*X(n)f2~Y(t)f2; ~X(n)dAf2--~Z(t)f2, 
0 0 

iX(~)dA*f2~U(t)Y2; idAX(")f2~V(t)f2 Vt>O 
0 0 

moreover 

II g(t)f2il2 = i ItX(s)f2112{c~(s)I2ds; liZ(t)f2ll2=i IIX(s)f2ll2i~(s)}ads.(1.14) 
0 0 

Proof. This follows from (1.11), (1.12) and (1.13). [~ 

Definition. For X e L  a, ~dA*X, SXdA, ~XdA* and ~dAX are the adapted 
0 0 0 0 

processes Y, Z, U and V respectively of Corollary 1.3, and ~ Xds is the adapted 
0 

process corresponding to the collection of strong-sense integrals 

X(s)f2ds: t > 0  . We write ~dA*X for ~dA*Xztr,~), etc. 
r 0 

Note. The integrals are linear and satisfy (1.11) for FEL 2 in view of the identity 
I [ ( c r ( f  (")) -a(f))f211 = II(f (n) - F )  f2H, and (1.10), (1.12) in view of (1.14). 

Lemma 1.4. For X~L  2, ~ dA*X, ~ XdA~J/l whereas S Xds~J/t unless X=O. 
0 0 0 

Proof For X=Fztu ,  v), F~JVu, s < t  and O~F, 

= 0  by (1.5) 
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then, by linearity and taking strong limits on (2, this holds for X ~ L  2, i.e. 

[} 1} IE~ X d A  = XdA,  or XdA~J/g 
L 0 -I 0 0 

a similar argument  shows that ~ dA*X~J//l also. 
0 

On the other  hand, 

iX(s)  d s E ~ l E ~ [ i  X(,')dr] = 0  

~, X(r)dr = 0  

t 

~ <~, x(~) ~) d~ =0 
$ 

V s < t  

ves~,s<t  

v o e ~ , s < t  

~x(t) ~ 0  r, | r~ = {0} 
S - < t  

~ X  =0.  []  

Lastly, a point  of notation.  A sentence or equat ion which contains terms of 
the form A ~, A ~ should be read as two sentences or equat ions - one in which 
all t h e ' s  are deleted and each D is replace by *, and one in which all the ) ' s  
are deleted and each ~ is replaced by *. 

w 2. Fermion It6 Formulae 

In this section we establish a Fermion  It6 formula [cf. 1]. Wick ordered 
products  of processes of the form (1.8) which are normal ly  ordered with respect 
to the state m R are mart ingales [5] and we show that  these have a stochastic 
integral representation. 

L e m m a  2.1. Let r <t  and write A~ for A} where f =xEr, oo~, then 

t t 

A* (t) A~(t) = ~ dA* A~(s) + ~ A* (s) dA + i {fi(s)) 2 dsI, (2.1 a) 
r r r 

A~(t) A*(O = dAA* (s) + ~ Ar(s ) dA* + ~ {c~(s)}2 dsI (2.1b) 
r r r 

t 

(A~(O ~ =) i dA~ A~(s) + ~ A~(~) dA~ = 0, (2.1c) 
f r 

t 

A~ (t)(t - r) = } dA ~ (s - r) + ~ A~ (s) d s. (2.1 d) 
r r 
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Proof For each n~N +, let A (")~ be the simple process defined by 

A(")~(s)=A~(s,) where s , = ~ -  ~ 2 "  + r  

[ . ]  denoting the integral part, then A~(s) - A  (")~(s) = a ~(z~ .... )), so that 

t 

~llA~(s)--A(")~(s)H2ds<2-"(t-r)2~O as n ~ o o .  (2.2) 

Writing a/~ for a~()~rs,,s,+,)), i=0,  1 . . . .  ,2" - 1  we have 

t 2 n -  1 

~dA*A(")(s)= ~ a*a(Z~so,,,))= ~ a*aj 
r i = 1  O < j < i < = 2 n - - 1  

and ~ A (")* (s) dA = ~ a* a j, so that 
r O < _ i < j < = 2 n - - 1  

B u t  

t t 

dA* A ~"~ (s)+ ~ A (")* (s) dA = ~, a* aj = A* (t)A~ (t) -~,,  a* a i. 
r r i 4 - j  i 

(2.3) 

a* (f)  a(g) f2 = [a~ (e f )  | I + 0 | a o (fir)] (g2 o | a* (fl g) f2o) = ~ f12f~,~2 + c~f | fig 

and 

2 n - - 1  1) 2 2 n - 1  

~0 (~Z[ . . . . . . .  )@fiX[ . . . . . .  ~--  ~ [Ic~Z[ .... ,+1)[I 2 [[flXr ....... )l[ 2 
i i = 0  

< 2 - " ( t - r ) 2  ~ 0  as n--, oe 
so from (2.2) and (2.3) 

)( ' ) t dA*Ar(S )+iA*(s )dA  = A*(t )A~(t ) -~{f i (s) I2dsI  ~2 
r r 

and (2.1a) follows. 
(2.1b, c) may be deduced from the identities 

t t 

A*(OAr(t)+Ar(t)A*~(t)=(t-r); SdA~IA~2(s)= --SA~2(s)dA ~1 
r r 

- the latter following from (1.11). (2.1d) is proved in a similar way to 
(2.1 a). [] 

Next we prove the Ferrnion It6 formula for simple integrands. 

P r o p o s i t i o n  2.2. Let F, G ~  and t >0, then the following product relations hold: 
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M(t) N(t) (MN)(t) 
t t t 

i dA* F i GdA ~ dA* FN + ~ MGdA + ~ a(FG) f 1 2  d s ,  (2.4a) 
0 0 0 0 0 

t t 

iFdA  idA*G idA*a(M)G+yFa(N)dA+ya2FGds ,  (2.4b) 
0 0 0 0 0 

t t 

Y FdA~ } GdA~ I {MG + e a ( N ) }  dA ~, (2.4c) 
0 0 0 

t t 

i dAt*F i Gds ~ dA~FN + ~ MGas. (2.4d) 
0 0 0 0 

Proof Without loss of generality we assume common intervals of constancy for 
F and G, and let t lie in the interval [r, u), then in (2.4c), 

Thus 

and since 

while 

M(t) N(0 = [M(r) + F(r) Ar (t)] IN(r) + G(r) A~(0]. 

M (t) N (t) -M(r)  N (r) = M (r) G(r) At( 0 + F(r) A~(t) N (r) 

t 

i MGdA = ~ [-M(s) - M ( r ) ]  G(r) dA + M(r) G(r) Ar(t) 
r r 

t 

= ~ F(r) a(G(r)) A~(s) dA+M(r) G(r) A~(t) 
i" 

t t 

dAa(F) N = ~ dAa( F (r))[ N (s) - N ( r ) ]  + A,.(t) a(F (r)) N (r) 
t" r 

t 

= ~ dA a(F(r)) G(r) A~(s) + F(r) Ar(t ) N(r) 
r 

t 

= F(r) a(G(r)) ~ dAA~(s) + F(r) Ar(t ) N(r). 
r 

(2.4c) follows from (2.1c) by summing over the intervals up to r. In (2.4a) we 
have 

M (t) N (t) - M (r) g (r) 
= M(r) G(r) At(0 + A* (t) F(r) N(r) + A* (t) F(r) 6(r) A~(t) 

now 
t 

M G dA = i [M(s) - M ( r ) ]  G(r) dA + M (r) G(r) A~(O 
r r 

= ~ A~* (~) F(r) G(r) dA + M(r) C(r) A~(t) 

= a(F(r) G(r)) i A* (s) dA + M(r) G(r) Ar(t ) 
r 
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while 
t t 

dA* FN = ~ dA* F(r ) IN(s ) -  N(r)~ + A* (t) F(r) N(r) 
r r 

= i d A* F (r) G (r) A~ (s) + A* (t) F (r) N (r) 
r 

= a(F(r) G(r)) i dA* A~(s) + A* (t) F(r) N(r) 
r 

and (2.4a) follows from (2.1a) by summation. (2.4d) is deduced from (2.1d) in a 
similar way and (2.4b) from (2.1b). [] 

Proposit ion 2.3. Let m, n6N, f i, gJ~LZ(IR +) ( i= 1, ... ,  m, j =  1, ... ,  n) be simple (i.e. 
sums of elementary functions: ).Zr, ).~tE, I sub-interval of IR +) and let A*, Aj 
denote the processes A~,, Agj respectively, then 

m t i t 

M(t): = 1--I A*(t)= ~ dA*F; N(t): = l~[ Aj(t)= ~ GdA (2.5a, b) 
i= 1 0 j=n  0 

and 

where 

t t t 

M (t) N (t) = ~ dA* FN + ~ MGdA + ~ a(FG) fi2 ds 
0 0 0 

(2.5 c) 

F =  ~ ( - -1 )k+*f fF [A: ;  G =  ~ ( -1 )" -~g~I ]A , 
~=~ ~*k ~=1 j,~ 

and the ordering is respected, i.e. with subscript increasing in the former and 
decreasing in the latter case. 

Proof. For f =  2ZI, I = [u, v) c [0, t) 

i dA* f=  2 a* (Zi) = a* (f)  = a* (fZEo,,) = A~ (t) 
0 

hence, by linearity (2.5a) is true for m =  1. Suppose now that it is true for m 
P 

=1 .. . .  ,p  and F =  ~. (--1)k+lfkI--[A*. Then, letting N(N)=SdA*F(N)where 
k=l i:~k 

F(msS~, N = I ,  2, ... and F ( m ~ F ,  

p + l  t 

1-I A*(t)f2 =A*(t) S dA* FY2 
i=I 0 

= lim ~dA*f  1 dA*F(N)~ 
N~oo 0 0 

= lim } dA* { f l  N(N) - A *  F (N)} 0 
N-+oo 0 

f p+l p+l } 
0 1 * * k = 2  i~.k A* f2 = i d a *  i f i~=2 A i  - - A 1  Z ( - - e ) k - # - l f k  

p + l  

= } dA* ~, ( - -  i l  k+ *fk [[ A* f2 
0 k= 1 i * k  
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so that (2.5a) follows by induction. (2.5b) is proved similarly, or may be 
established by taking adjoints and ensuring that F (N)* ~ F *  in the approximat- 
ing sequence. (2.5c) holds for n = 0  or m=0,  so assume as induction hypothesis 
that it holds for all n and for m = 0, 1, ..., p. Writing 

p 1 t t t 
H A*(t)[l Aj(t)=~ dA*F+~ GdA+ ~ Hds 
i=1 j=n 0 0 0 

and letting N (N) = ~ dA* F (N) + ~ G (N) dA + ~ H (mds where 
H (N) ~ F, G, H we have 

F (N), G (N), 

p + l  1 i 
[I A*(OHAflt)= lim dA*f t N(m(O(~ 
i=1 j=n N~co 0 

= l i m  S dA*(f l  N(N)-A* F(N))+ S A~ G(N) dA + (A* H 
N~oo [ 0  0 0 

+fl a(O(N)) p2) ds} f2 

= d A * Z ( - 1 ) k + ~ f k I ] A * I - I A j +  ~ (-1)"- 'gZI~A*I-[AjdA 
k = l  i~-k j=n 0 /=1 1 j~:l 

i P + I  i k+P+l k l A *  t + fi2 ~, (-I) f g H , H A j  ds (2 
0 k= 1 1= 1 i:l-k j:~t J 

and (2.5c) follows by induction on p. [] 

I ]  1 im I 1 If P = :  a*(fi)I] a(g~): denotes the normal ordering of a*(fi)H a(g j) 
i=1 j=n i=1 j=n 

with respect to the state o R, as defined in [-5], then the time-t conditional 
m 1 

expectation of P is: I ]  A*(t) ~ Aj(t): hence processes of the form 
i=1 j - n  

1 

M: [I A *(013 Aj(t): (2.6) 
i= l j=~ 

are martingales and we have 

Corollary 2.4. Let fi, gj be as in the previous proposition and M defined by (2.6). 
Then there are L2-processes X and Y such that 

t 
M(t)= j dA* X + i YdA 

0 0 
Vt>O. 

Proof M(t) is a polynomial in the A*'s and Aj's. Wick ordering each product, 
applying the proposition and using the linearity of the integrals, the result 
follows from Lemma 1.4. []  
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w 3. Martingale Representation 

We are now in a position to establish the key lemma for the proof of the main 
result. 

Lemma 3.1. Let t > O. Then 

so that FdAQ: F~ 

the result follows. [] 

F~=II2r2@{i dA*F(2: F6La}O{i  GdA(2: G6L2}. 

Proof The mutual orthogonality of the vectors s SdA*Ff2, GdAs follows 
0 0 

from (1.5) and the CAR's (1.2) when F, Ge5  p and for F, G~L 2, it follows by 
taking limits. The density of the direct sum is a consequence of Corollary 2.4 
and the totality in F t of the set of vectors of the form ".~IA*(t)[-[Aj(t):fL It 

remains to show that these subspaces are closed. Let F ~+>dAf~: n= 1, 2 .... 

be a Cauchy sequence with F(">sL 2. Define f~I 2 by f(s)=limf"'(s) where {f"'} 
is a point-wise (almost everywhere) convergent subsequence of {X~o,t~F(")f~}, 
and F the corresponding L2-process, then 

o - o ll(F - F  (")) 01[ 2 fi2 ds 

<]lf-f(n)l]2--+0 as n---,oo 

is closed. Similarly dA*Ff2: FeL z is closed and 

Theorem 3.2. M~dg ~ 3! 2~ff2, F, GEL 2 such that for all t > 0  

t 

M(t)=2I + ~ dA* e + i GdA. 
0 0 

Proof. Let t>0 ,  then M(t)(2~F t so by Lemma 3.1 

t 

M(t) =,t~ + ~ dA* F~ + i GdAs 
0 0 

for some F, G~U and 2 ~ .  Now )~I=M(0) and, by the orthogonality of the 
vectors and the isometric relations (1.14), F and G are uniquely determined on 
[0, t], hence the vectors {M(t)f2: t>0}  together determine F and G uniquely 
on IR +. [] 

We next consider the representation of martingales which consist of close- 
able operators. Sufficient conditions for this are f2e~(M(t)*) for each t [3]. The 
question is, do the stochastic derivatives then consist of closeable operators 
also? A positive answer to this is the content of the next theorem. First we 
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introduce some notation. Let Z denote the domain of the Tomita-Takesaki 
operator [11] S=So,  where So:Y2~N, TO~T*Y2, considered as a Hilbert 
space with the graph norm: 

x~(llxl[2+ I[Sx[12)L 

We denote the set of processes X ~ d  for which X(t)Oe~(S)  for each t, 
(equivalently, f2~(X( t )*)Vt , )  by s~cs, and let X * be the process defined by 
Xt(t)f2=SX(t)f2 (i.e. X*(t)=X*(t)IG, o) and write Jr L 2 for the sets 
{ X ~ ' "  X * e ~ } ,  {X~L2: X*EL 2} respectively. We then have the following ex- 
tension of Lemma 1.2. 

Lemma 3.3. Let X6 L  2, Then there is a sequence X<">65 P n = 1, 2 . . . .  such that 

X<n)-+ X and X<")t--* X t. (3.1) 
Moreover, 

5dA~Xe=~gz and (}dA~X)*=iX'dAb. (3.2) 
0 - - -  0 \ 0  / 

Proof (3.1) is proved in the same way as Lemma 1.2 except that F should be 
replaced by the Hilbert space S throughout. Let X <") satisfy (3.1), then for all 

t 

t>0 ,  ~ dA~XY2 = lim i dA~X<")Y2 and 
0 n ~  0 

* =S x + t  _+ dA~X <~ p dA~O X+dAbO 
0 0 

(i )' so that dA~XY2sN(S) and S dA~X~? =~XdA~Y2, i.e. (3.2) is satisfied. [] 
0 0 

Theorem 3.4. M+JZz~ 3! 2eC and F, GELS, such that 

t t 

M(t) = 21 + S dA* F + ~ GdA 
0 0 

t t 

M t (t) = 2I + y dA* G ~ + ~ F tdA. 
0 0 

(3.3) 

Proof Denoting the subspaces FtnZ of X by ~t (t>0) we have, for each t>0,  
the orthogonal decomposition 

St=ff2f2Q{i dA*Ff2: F~L2~}@ {i  GdAY2: GeI~} 

which is proved in a similar way to Lemma 3.1 using the above lemma. The 
proof is completed in the same way as Theorem 3.2, with (3.3) following from 
(3.2). [] 
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