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Fermion Martingales

J M. Lindsay*
School of Mathematics, University of Bristol, University Walk, Bristo! BS8 1TW, U.K.

Summary. We show that strictly quasi-free Fermion martingales may be
expressed as a sum of quantum stochastic integrals with respect to the
Fermi creation and annihilation processes and a multiple of the identity.

§ 0. Introduction

Fermion stochastic integrals have been constructed and studied in [1,3]. In
particular, the notion of a martingale has been made precise by means of a
family of conditional expectation maps for a quasi-free (‘Gaussian’) state of the
C*-algebra of the canonical anti-commutation relations (CAR) (see (1.1)) which
is determined by a multiplication operator on L*(R*), and, for the Fock state,
an analogue of Itd’s product formula has been proved for such stochastic
integrals.

In the present note it is shown, by means of an orthogonal decomposition
of the underlying Hilbert space, that for a strictly quasi-free filtration, any
Fermion martingale M may be represented uniquely in the form

M(t)=M(O)+jdA*F+iGdA 0.1)
0 0

where (A4, A*) is the quasi-free creation, annihilation process, F and G are [*-
adapted processes and M (0) is a multiple of the identity.

The methods used here also yield an elementary proof of the corresponding
result for Boson martingales [6] (see also [9]). In that case an It6 formula
[1, 7, 8] is not needed in view of the existence of ‘Weyl martingales’ with known
stochastic integral representation. A unified treatment is given in [8].

Finally, I should mention the stochastic calculus of the Clifford process -
the CAR analogue of the Wiener process [2]. Martingales with respect to the
Clifford filtration are expressible as stochastic integrals, giving a third category
of non-commutative martingale representation.
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The plan of the paper is as follows. Section 1 introduces the stochastic
calculus and some elementary properties of the stochastic integrals and the
quasi-free representations are proved there. The purpose of this section is to
fix notation and facilitate the later arguments - the material is more or less
covered by [3]. In the second section a Fermion Itdé formula is established,
which is then used to give stochastic integral representation for a large class of
martingales. In the final section it is shown that all Fermion martingales have
an integral representation (0.1), moreover those having an adjoint process M*
have stochastic derivatives which consist of closeable operators, and

MT(;):MT(0)+fdA*GT+}F*dA (0.2)
0 Q

(X' denoting the restriction of X* to the appropriate domain - see Sect. 3).
Both are proved by decomposing the relevant Hilbert spaces into three orthog-
onal components - cf. the proof of the classical Kunita-Watanabe theorem in

[10].

N. Marshall [12] has also obtained a representation of quasi-free Fermion
martingales in terms of integrals with respect to the creation and annihilation
processes, in which he gives an explicit form for the ‘stochastic derivatives’.

§ 1. Quasi-free Stochastic Calculus: Basics

If # is a complex Hilbert space, then the CAR algebra over #, N(h), is the
unital C*-algebra generated by elements {a(f), a*(f): feh} satisfying:

a*(f+2g)=a*(f)+4a*(g); a*(f)=a(f)*
a(f)a(g)+a(g)a(f)=0
a(f)a* (@) +a*@)a(f)=<{fe>]
laNl=la*NI=1s1 VS ges, 1eC.
The Fock representation of the CAR algebra is defined by

Li#A)=@ A%

nelN

(1.1)

a*(f)gtn...ag'=fArgt A ng", nelN, f ges!

where A°4=@C and, for n=1 A" denotes the n-fold anti-symmetric tensor
product; it is irreducible and cyclic with cyclic vector Q,=(1, 0,0, ...) satisfying

a(f) Q,=0 Vfeh. (1.2)

uAu:zI/MA'.k(u(@v)
Jrkt 7%

) )
where A, , is the orthogonal projection of & # onto AY*®£ - not the usual normalisation for

wedge products

b For ued’ 4, ved* 4
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Quasi-free representations may then be constructed as follows
I(#)=I,(A @Iy (%)
a4(N=a3(/1-RN®I+0®a,(VRS)

where ReB(#4) satisfies 0ZR <1, J is an involution on # and 6 is the parity
operator whose restriction to A*% is (—1)"I. The vector Q=0Q,®Q, then
determines the guage invariant quasi-free state wy of the CAR algebra for

which
orla*(f)a(g)=<g Rf>. (1.3)

That is to say the higher order ‘cumulants’ vanish and the state on U(#) is
thereby determined by its action on the products {a*(f)a(g): f, ge4}. (1.3)
gives the ‘covariance’ of the state - quasi-free states being the analogues of
Gaussian distributions. For further details of the CAR algebra, its repre-
sentations and (quasi-free) states we refer to [4].

We are interested in the case where Z=I*(R¥),R is a multiplication
operator M, where p is bounded away from 0 and 1 locally (i.e. on cach finite
interval) and J is ordinary complex conjugation. The vector @ is then cyclic
and separating for A":={ag(f), a%(f): fe#4}” - the von Neumann algebra
generated by this representation - which allows us to establish results about
operator-valued processes while working at the Hilbert space level. (All our
quantum stochastic processes will be operator-valued.) From now on we shall
drop the subscript R, denoting I(I*(R ™)), agx(+) and a}(-) respectively I a(+)
and a*(-). Let ¢ denote the *-automorphism of A4~ given by

o:a*(f)—a*(~f) (1.4)

— this is implemented by the unitary operator 6®8H.
Now let f=p*, a=(1-p)}, N;={a(f), a*(f): suppf <[0,1]}" and [,=H,Q
for each t>0. The following straight forward result will be repeatedly used.

Lemma 1.1, Let 1>0, Yl and fes with supp f < [t, oo). Then
Y, a(f) 2y =<, a*(f) 2> =0, (L.5)

0

G, a(f)a* ()=, @ [ laf 1%,
‘ (1.6)

W, a* () a(f) Q> =, @) | 1671

Proof. Applying the CAR’s (1.1) and (1.2) we have

Vieh a(f)R=0,®a§(B)2=[I®a5(p/)]Q
a(f)a*(f) @=[as(@/) @I +0®a§(B/)](ad(xf) 2, @)
=[llof 1?1 —a§(af) @ag(Bf)] 2

so, for ¥ =[] at(/H® [] ak(g’) with suppf*, g/ <[0,¢] and h, k with support
in [z, o0), =1 j=1
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[1®a,(k] P2 =(— 17 P(Q, ®ao(k) 20) =0,
[ao(W@ITPQ=(—-1)"¥(ay(h) Q,®Q2,)=0,
[ao(h)@ag(k)] PQ=(—1)"""¥(ao(h) Q, ®a,(k) ) =0.

Hence,

(P, alf) 2> =T ®ay(B])] ¥, 25 =0,
(¥Q, alf) a*(f) 2> = <m [l 9>

and the lemma follows by the totality of the vectors ¥Q in I, and the CAR
(1.1). O

Let A, ={RnA":QePD(R)} and A, (1)={RnAN;:P(R)=AHQ} where n de-
notes affiliation (for not necessarily closed operators) and 2(-) denotes the
domain of an operator. We extend ¢ to ,(t) as follows: for Re# (1), 6(R) is
the element of A, (7) satisfying

c(R)Q=0®IRQ
- since §®0 leaves I invariant, this is well defined. We define the following
classes of processes:
A ={X:R" >N X()eN()V1},
F={Xeof;I{t,} with 051, <t,<...<t,— 00 and
X(O)=X, |0, X, for telt,, 1,..,)}

t
;”fzz{Xe,Sf; t— X (t) Q is Lebesgue measurable and | | X (s) 2> ds<oo V t>0}
0

and I? the set #? with processes, that agree on  almost every-where,
identified. We call the elements of & adapted and elements of & simple. There
are the following one to one correspondences:

oA —={x:R*>T; x(t)el, Y}, denoted 4.
Pe{xeli (R*;T); x(t)el, for almost all ¢}, denoted I2

given by
x(O)=X®)Q2; for ReA], X(¥)RQ=Rx(1). (1.7
The prototype processes are
A}‘(t)‘ :a*(fX[O,:])lAft’Q; Af(t): :a(fX[O,I])IJVt'.Q: fELzloc(]R+) (1.8)

and when f is the constant function equal to one, are called the creation and

annihilation processes respectively and written A* A. Since these processes

take bounded values, we use the same notation for the unrestricted operators.
For each t =0, the time-t conditional expectation IE, is defined by

E;:A,—>4t) EIX]JRQ=RPXQ for Ret;

where F, is the orthogonal projection onto the subspace I, - this extends the
conditional expectations given in [3, 5] to deal with unbounded operators. An
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adapted process X is then called a martingale if it satisfies the martingale
identity
E[X(t)]=X(s) Vs<t

and we denote the set of martingales by /.
We next define stochastic integrals of simple processes. For Fe¥
=Y F ¥, ... (slightly abusing notation),

jdA*F:= Z a*(X[tl-,ti“))Fi+a*(X[zi(t),z)) Fi(t) (1.9)

0 i<i(t)

where i(t)=max i,
i<t

By Lemma 1.1 we have
0 i)

* FQ * FQ —J ti+1
e M U TED 2V R @2 sy as i
ti

from which we obtain the isometric relations
1

[da*FQ

0

JFdA, [FdA* and [dAF are defined in the same way and satisfy

2

=[IF(s) Q*{a(s)}* ds (1.10)

fdAF:fa(F) dA: j‘FdA*:j‘dA*a(F), (1.11)
0 0 0 0]

2 T
=[IF(s) QI {B(s)}* ds. (1.12)

(¢]

t
[FdAQ
0

We next show that I*-processes may be approximated by simple processes
permitting an extension of the stochastic integral (1.9) to L*-processes.

Lemma 1.2. Let Xel?. Then there is a sequence X™, n=1,2,... of simple
processes such that, for all t>0

j'H(X(S)—X(”)(S))Q|[2d5—>0 as n—o (1.13)
0

and we shall write X™ — X when (1.13) is satisfied.

Proof. Let x be the element of [ corresponding to X (1.7) and, for each neIN*,
UM = X710, 3m- On ([0, 2"];T) let S* be the shift

. 0 <
(S”f)(x)—{f(x—Z"‘) ng_k

and Q¥ the orthogonal projection onto the subspace I*([0,2"], #F; ') where
ZF is the o-algebra generated by the sub-intervals {[i27% (i+1)27%):
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0<i<2"**—1}. Now S and QF are contractions which converge strongly to
the identity as k— oo, so that, considering u® as an element of ([0, 2"]; T),
there is a number k(n) such that

(I — QL™ Sk u™| . <1/2n.
Writing v™ for Q%™ Sk® 4™ Tetting wWe*([0, 2"], #F™; I') be A Q-valued and
satisfy
0™ —w| . <1/2n

and x™ be w™ considered as an element of {2, we have:

: %

(j (X (s) — X ™(s)) Q]2 ds) <Ju™ —w®|,,  assoon as 2">¢
(0]
<l/n

and X™e ¥, completing the proof. [J

Corollary 1.3. Let XeI?, then there are adapted processes Y,Z, U and V such
that if X™ > X, then

t T
[dA*XPQ-Y(HQ; [XPdA0-Z(H)e,
4] 0

S"X(")dA*QaU(t)Q; ;dAX”"Q—»V(t)Q Vi>0
moreover ’ ’
IY@QI*=[I1X(s) 1> {a(s)}*ds;  1Z@®)QIP= [ 1X(s) QII*{B(s)}> ds.(1.14)
0 0
Proof. This follows from (1.11), (1.12) and (1.13). [

Definition. For Xel?, [dA*X, [XdA, [XdA* and [dAX are the adapted
0 (4] o] 4]

processes Y, Z, U and V respectively of Corollary 1.3, and | Xds is the adapted
0
process corresponding to the collection of strong-sense integrals

t t t
{jX(s)st: t>0}. We write {dA* X for {dA* Xy, . etc.
0 ¥ 0

Note. The integrals are linear and satisfy (1.11) for FeI? in view of the identity
[(@(F™)—a(F)) Q2| = |(F™ —F) |, and (1.10), (1.12) in view of (1.14).

Lemma 14. For XeI?, [dA* X, { XdAe.ll whereas | X ds¢.# unless X =0.
0 0 0

Proof For X =Fy, ,, FeN,,s<t and ¢elI,

<¢>, IESj"XdAQ> ={F*R$, a0y 5,0n0)
=0 by (1.5
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then, by linearity and taking strong limits on Q, this holds for X el?, ie.

t S N
mJdeA]szdA,(n [ XdAed
o 0 0

a similar argument shows that [ dA* Xe# also.
0

On the other hand,

jX(s)dse//a]Es[jX(r)dr]zo Vs<t

o]

= <¢:}X(7}d7’9>=0 Yyel, s<t

:>j<‘//>X(V)Q> dr=0 Vyel, s<t

=Y, X (1) 2)=0 Vel s<t
=X Qe(\[OL={0}

s<t

=X=0. [

Lastly, a point of notation. A sentence or equation which contains terms of
the form A% AP should be read as two sentences or equations - one in which
all the ’s are deleted and each b is replace by *, and one in which all the b’s
are deleted and each f is replaced by *.

§2. Fermion It6 Formulae

In this section we establish a Fermion Ité6 formula [cf. 1]. Wick ordered
products of processes of the form (1.8) which are normally ordered with respect
to the state wy are martingales [5] and we show that these have a stochastic
integral representation.

Lemma 2.1. Let r <t and write A} for A% where f=y,, ., then

A*(0) A, (1) =§ dA* A (s) +§ A*(s)dA + y {(B(s))2 dsI, (2.1a)
A(t) Ar*(t)zjdAA;“(s)+jt"A,(s) dA* +jf{oc(s)}2 dsI (2.1b)
(Af(zy:)}dAuf(sHj"Af(s)dA#:o, 2.1¢)

Af(z)(z—r)=§“dA#(s—r)+j‘Af(s)ds. (2.1d)



314 J.M. Lindsay

Proof. For each neIN™, let A™* be the simple process defined by

z‘_ -
AMH(5)=a¥s)  where s, == [St*r 2"]+r
—r

[-] denoting the integral part, then Af(s)—A™¥(s)=a*(x, ), so that
t

[1A¥s)—AM¥s) > ds<27"(t—1r)* >0 as n—oo. (2.2)

r

Writing af for a*(y,, .. ), i=0,1,...,2"—1 we have

2n.-1
jdA*A(")(s)— Z aF a(¥,. o) = Y af a;
0=j<ig2n-1
and fA‘")* dA= >, afay, so that

Ogi<js2n—1

jdA*A"‘) s)+jA(”)* (s)dA=Y a¥a,=AF (1) A,(1)— Za* (2.3)
i¥j
But
a*(f)a(@) Q=[a§ () @I+ 0®ao(Bf)1(Q,®a§(B2) Q20)=[ f> 5 +af ® BT
and
1 2 27-1
;0 ax[si,si+1)®ﬁx[sia5i+l) - .20 llax[si,slwl)“z “ﬁxlsuswl)“z

<27%t—r)2->0 as n—ow
so from (2.2) and (2.3)

(; dA*Ar(SHEA;“(s) dA) = (A;“(t) A, (1) —i{ﬁ(s)}z dsI) Q

and (2.1a) follows.
(2.1b, ¢) may be deduced from the identities

AFW A+ A () AX () =(t —1); j dAM A% (s)= j" A¥2(s)d A%

— the latter following from (1.11). (2.1d) is proved in a similar way to
(2.1a). [0

Next we prove the Fermion It6 formula for simple integrands.

Proposition 2.2. Let F, Ge & and t >0, then the following product relations hold:
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M(z) N(z) (MN)(®)

jdA*F deA }dA*FN—l— f MGdA+ ff o(FG) B* ds, (2.4a)

0 0 0 0 0

(})FdA fdA*G fdA* a(M)G + f Fo(N)dA+ 5") 2*FGds, (2.4b)
0 0 o]

iFdA“ f GdA* i{MGJrFa(N)} d A, (24¢)
¢}

jdAﬁF }Gds jdA#FNJrf MGads. (2.4d)

0 ¢ 0 ¢

Proof. Without loss of generality we assume common intervals of constancy for
F and G, and let ¢ lie in the interval [r, u), then in (2.4¢),

M@ N(@)=[M )+ F () A,O]IN () +G() A,0)].

Thus
M@ON@)—MFE)N@)=M(r)G(r) A4,(t)+ F(r) A,(t) N(r)
and since
j" MGdA =§ (M) —M@E)]GEdA+M(r) G(r) A1)
= } F(r)a(G(r) A,(s)d A+M(r) G(r) A,(2)
while '

; dAa(F)szdAa(F(r))[N(s) —N@#]+A4,0)cFF)N({)
:jdAU(F(r)) G(r) A, (5)+F(r) A, (t) N(r)
=F({) a(G(r)) j[ dAA,(5)+F(r) A, () N().

(24c¢) follows from (2.1¢) by summing over the intervals up to ». In (2.4a) we

have
M@)N({@E)—M(r) N(r)

=MF) G(r) A, () + AF@) F(r) N(r)+ AF (1) F(r) G(r) 4,(1)
now

fMGdA:}[M(s) —M@#)] Gr)dA+M@) G(r) A, (1)

=ij,*(s) F(r)G(r)dA+ M) G(r) A, ()

—o(F() G() [ () dA+M() G A, (1)
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while

jdA*FNzidA*F(r)[N(s)—N(r)]+A;k(t)F(r)N(r)
j‘ dA* F(r) G(r) A,(s)+ A¥(8) F(r) N ()
=a(F(r G(r)fdA*A (s)+ A*() F(r) N()

and (2.4a) follows from (2.1a) by summation. (2.4d) is deduced from (2.1d) in a
similar way and (2.4b) from (2.1b). O

Proposition 2.3. Let m, neN, fi gie[>(R*) (i=1,...,m, j=1, ..., n) be simple (i.e.
sums of elementary functions: Ly;, AeC, I sub-interval of R™) and let A¥, A
denote the processes A%:, A,; respectively, then

M(t)==ﬁ A:“(t)=idA*F; N():= f[ Aj(t)=§GdA (2.5a, b)

and
t t t
M(t)N(t)zjdA*FN+§MGdA+jo(FG)ﬁ2ds (2.5¢)
0 O 0
where

P=$ oA 6= 3 1T 4,

i$k jFl

and the ordering is respected, i.e. with subscript increasing in the former and
decreasing in the latter case.

Proof. For f=Ay;, I=[u,v)<[0, 1)
gdA*f=ia*(xz)=a*(f)=a*(fx[o,t))=A}“(t)

hence, by linearity (2 5a) is true for m=1. Suppose now that it is true for m

=1,...,p and F= Z( 1yt f¥ [T AF. Then, letting N™={dA*F™ where
iFk

FMes, N=1,2,. and F™ S F,

p+1

t
[1 470 2=A10 [ da*FQ
i=1
= lim jdA*f jdA*F(N)Q
N—ow ¢

= lim jdA* {fYN® _ g% FO0} 0

N-ow ¢

|

Oty oe'-aw

{f PH A* A* Z ( )k—e—lkaA;k}Q
dA*pil(_l)k+1fknA?<Q

k=1 i*k
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so that (2.5a) follows by induction. (2.5b) is proved similarly, or may be
established by taking adjoints and ensuring that F®* — F* in the approximat-
ing sequence. (2.5¢) holds for n=0 or m=0, so assume as induction hypothesis
that it holds for all n and for m=0, 1, ..., p. Writing

)4 1 1 t t
[T4:®[]A4;)={dA*F+{GdA+ [ Hds
i= j=n 0 0 0
and letting NW={dA*FM+[{GMdA+[{HMds where F®™, G®,
H® L F, G, H we have
p+1

HA (E)HA t)= lim jdA*f NN Q

N-ow ¢

= lim {jdA* (f* N — g% F™) +5A* G<N>dA+§

N—w
+f1a(GW) ﬁz)ds}Q
p+1 t n . lp+1
k n—
{jdA*Z( kal;[kAi*H g Z —1y'g HA:‘I;IIAjdA
i J=n I= 7

t p+1 n

+j'ﬁ22 Z( 1k+p+lfk ll’;[A*niA ds}

k=1 I=1

and (2.5¢) follows by induction on p. [

m 1
If P=: Ha*(f H a(g’): denotes the normal ordering of []a*(f*)[]a(g))
Jj=n i=1 Jj=n
with respect to the state g, as defined in [5], then the time-t conditional
1

expectation of P is: H A¥(t) [ T A,(t): hence processes of the form

i=1 j=n

M: t—: HA*(Z ﬂA (1) (2.6)
=1 j=n
are martingales and we have

Corollary 2.4. Let f% g’ be as in the previous proposition and M defined by (2.6).
Then there are I*-processes X and Y such that

t 11
M@)={dA*X +[YdA V>0.
0 0

Proof. M (1) is a polynomial in the 4f’s and A4/s. Wick ordering each product,
applying the proposition and using the linearity of the integrals, the result
follows from Lemma 14. []



318 J.M. Lindsay
§3. Martingale Representation

We are now in a position to establish the key lemma for the proof of the main
resulf.

Lemma 3.1. Let t>0. Then

t t
E:ca@{j dA*FQ: FeL2}®{j GdAQ: GeLZ}.
0 0

T t
Proof. The mutual orthogonality of the vectors Q, [dA*FQ, | GAAQ follows
0 Q

from (1.5) and the CAR’s (1.2) when F, Ge% and for F, GeI?, it follows by

taking limits. The density of the direct sum is a consequence of Corollary 2.4

and the totality in I} of the set of vectors of the form :[JAF¥()[[A;(0): Q. It
t

remains to show that these subspaces are closed. Let < { FPdAQ:n=1,2, ...
0

be a Cauchy sequence with F™eI? Define fel? by f(s)=limf™(s) where {f™}
is a point-wise (almost everywhere) convergent subsequence of {y, ,F®Q},
and F the corresponding I?-process, then

2

t t
(deA—jF‘")dA)Q
0 0

= I(F—F®)Q|* p*ds
0

<||f=f™*>0 as n-ow

t t

so that {j FdAQ: FeLZ} is closed. Similarly {j dA*FQ:FeLZ} is closed and
0 0

the result follows. []

Theorem 3.2. Me.# =31 JeC, F, Gel? such that for all >0

t t
M(t)=AI+ [ dA*F + | GdA.
0 0
Proof. Let t>0, then M(t) QeI so by Lemma 3.1
t t
M(@®)=AQ+[dA*FQ+ [ GdAQ
¢} 0

for some F, GeI? and AeC. Now AJ=M(0) and, by the orthogonality of the
vectors and the isometric relations (1.14), F and G are uniquely determined on
[0, £], hence the vectors {M(t)Q:t>0} together determine F and G uniquely
onRT. O

We next consider the representation of martingales which consist of close-
able operators. Sufficient conditions for this are Qe% (M (1)*) for each ¢ [3]. The
question is, do the stochastic derivatives then consist of closeable operators
also? A positive answer to this is the content of the next theorem. First we
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introduce some notation. Let X denote the domain of the Tomita-Takesaki
operator [11] §=S,, where S;: Q—>N, TQ—-T*Q, considered as a Hilbert
space with the graph norm:

x = (x]|? + S x| %)2.

We denote the set of processes Xe.of for which X (¢) Qe2(S) for each ¢,
(equivalently, QeP(X(1)*)Vt,) by o/, and let X' be the process defined by
X')Q=SX®Q (e X')=X*(1)|, , and write #;, I[4 for the sets
{(Xed: X e}, {Xel?: X'eI?} respectively. We then have the following ex-
tension of Lemma 1.2,

Lemma 3.3. Let Xel?. Then there is a sequence X™e n=1,2, ... such that

XWX and X™T-XT (3.1)
Moreover,

. : .-
[dA*Xesly, and (jdA#X)sz*dAb. (3.2)
0 Q 0

Proof. (3.1) is proved in the same way as Lemma 1.2 except that I' should be
replaced by the Hilbert space X throughout. Let X® satisfy (3.1), then for all
T |4

t>0, {dA*XQ=1im [dA*X"™Q and
o

n—o Q

j * t t
(5 dA‘*X("’) Q= [ XD A Q[ X dAPQ
0 0 0

t T t
so that [ dA*XQe(S) and S (5 dA#XQ) —[XdA°Q, ie. (32) is satisfied. []
0 0 0
Theorem 3.4. Me#,=13! 1eC and F, Gel5, such that
t T
M(t)=A+[dA*F+[GdA
0 [¢]
I3 t
M'())=7T+[dA*G' + [ F1dA. (3.3)
G 4]

Proof. Denoting the subspaces ;X of 2 by Z, (t>0) we have, for each >0,
the orthogonal decomposition

t t
= (E.Q@{j dA*FQ: FeLZE}(—B{j GdAQ: GeLZE}
4] 0

which is proved in a similar way to Lemma 3.1 using the above lemma. The
proof is completed in the same way as Theorem 3.2, with (3.3) following from

(32). O
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