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Summary. We establish a connection between admissible simultaneous esti-
mation and recurrence of reversible Markov chains on ZZ% . Specifically, to
each generalized Bayes estimator of the mean of a vector of p independent
Poisson variables for a weighted quadratic loss, we associate a variational
problem and a reversible birth and death chain on Z% . The variational
problem is closely related to the Dirichlet principle for reversible chains
studied recently by Griffeath, Liggett and Lyons. Under side conditions,
admissibility of the estimator is equivalent to zero infimal energy in the
variational problem and to recurrence of the Markov chain. This yields
analytic and probabilistic criteria for inadmissibility which are applied to
establish a broad class of results and previous conjectures.

§ 1. Introduction

Consider the idealized statistical problem of estimating unknown means /; of
each of p Poisson populations based on a single observation X, i=1,...,p
taken independently from each population. This paper develops a connection
between this problem and the recurrence properties of certain reversible Mar-
kov chains defined on the sample space Z” of the observations {X;} and
applies analytic and probabilistic methods to discuss optimality of statistical
estimators.

Our formulation of the statistics problem is decision theoretic: an estimator

14
d(x)=(d;(x),...,d,(x)) incurs a loss L_ (d(x),A)= Y A7'(d,(x)—4)* if i=
i=1
(A1, -5 4,)>0 is the (unknown) value of the parameters and x=(x;,...,x,).
The estimator d(x) is evaluated by studying its risk function R(l,d)
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=E,L ,(d(X), 1), where the expectation is taken assuming independent Pois-
son (4;) distributions for each X,. A (weak) optimality property of an estimator
is that there not exist another estimator d'(x) with R(4, d)<R(/,d) for all 2>0
and strict inequality for at least some A: such estimators d are termed ad-
missible. In principle, one would not use an inadmissible estimator, since a
uniformly better rule exists. The aim of this work is to provide probabilistic
descriptions of the class of admissible estimators and explicit criteria for
determining (in)admissibility in the Poisson problem.

C. Stein’s (1956b) celebrated discovery that sample averages are inad-
missible for estimating p=3 normal means under quadratic loss established
admissibility as a significant qualitative concept. Subsequently James and Stein
(1960), Efron and Morris (1973) and others showed that very substantial
savings in risk over sample averages were attainable by “shrinkage” estimators
having intuitive interpretations. The situation is the same for simultaneous
estimation of parameters of independent distributions with (infinite) discrete
sample spaces: the typical and simplest example being the Poisson problem
introduced above. Thus Peng (1975) and Clevenson and Zidek (1975) showed
that the simplest (and maximum likelihood estimator) d(x)=(x,,...,X,) was
inadmissible in dimensions p=3 and p>=2 for losses L, (discussed later) and
L_, respectively. Much recent frequentist work in developing improved esti-
mators and measuring the resultant savings in risk for the Poisson and other
discrete problems is surveyed by Ghosh et al. (1983). Morris (1983) catalogues
some significant practical applications of shrinkage methods, including a num-
ber based on discrete data. Berger (1985) gives a comprehensive survey of
shrinkage theory from both frequentist and Bayesian perspectives.

The program of the paper is as follows: estimators that are Bayes relative
to a finite prior distribution on A are typically admissible. The converse is
almost true: admissible rules can be described in terms of generalized Bayes
rules - rules obtained from a possibly infinite prior measure on A. Roughly
put, the search for admissible rules may thus be confined to the class of
generalized Bayes procedures. A reversible Markov chain {X,} on Z, is then
associated with each generalized Bayes procedure, dp, say. The main step is to
recast the question of admissibility of d, as a variational problem familar in
the probabilistic potential theory associated with the chain {X,}. Finally one
shows that admissibility of d, is equivalent to recurrence of {X}.

This program was formulated and executed in the multivariate normal
estimation problem by Brown (1971, 1973), building in part on some heuristic
ideas of Stein (1965). His most striking example is the association of Brownian
motion with the maximum likelihood estimator d(x)=x and the identification
of Stein’s inadmissibility phenomenon with the transience of Brownian motion
in p=3 dimensions. These remarkable results were complemented by Brown
(1979a), Srinivasan (1981) and Johnstone and Lalley (1984).

That such a theory could be developed for estimation of a single Poisson
mean was detailed in Johnstone (1984, referred to as I). The one-dimensional
case has the virtue of technical simplicity. However, several essential features
arise only in the multivariate setting that forms the focus of this work. These
include (i) Stein’s phenomenon: the inadmissibility of natural estimators in
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combined problems, (i) the clearer roles of probabilistic elements such as
reversibility and potential theory, including general tests for recurrence and
transience, (iil) the shift in analytic methods from those of ordinary differential
equations to those of elliptic partial d.e’s, notably maximum principles and
(simple) apriori estimates. At the level of statement and discussion of results,
this paper may be read independently of I. For details in proofs, we occasion-
ally refer to I to avoid duplication and to indicate which one dimensional
arguments do (and do not) generalize.

Outline of Resnlts. We begin with the reduction to generalized Bayes esti-
mators. That admissible estimators of the natural parameter of an exponential
family in IR? must be generalized Bayes goes back to Sacks (1963), Brown
(1971) and Berger and Srinivasan (1978). The corresponding result for esti-
mation of the parameters of independent power series distributions such as the
Poisson on Z%, is less clear cut (Brown and Farrell, 1983 a). In order to avoid
complications inherent in their general theory, we consider only estimators
satisfying

d(x)=0<x,=0. (L.

This assumption covers most estimators of practical interest. Section 5.7
discusses some interesting cases in which (1.1) fails. To state the complete class

b p
theorem, we employ multi-index notation: Set 2*=[]4¥, x!=[]x,!, and
P 1 1
A=3%"]; so that the joint Poisson density may be written as P(X =x)=p,(x)
1

=e~4)*/x!. If P(d}) is a measure on RE =[0, o0)”, define transforms
po=fe " AP, m =p/x!={p,(x) P(dA).

7, is the marginal density of the prior P. Let ¢,=(0, ..., 1,0, ..., 0).

L.1. Proposition. (Brown, Farrell). Suppose that d(x) is admissible and satisfies
(1.1). Then there exists a prior P(d) on [0, ) such that d(x) is generalized
Bayes for P: p, <o for xeZ? , and

di(X)=p /Py .. ¥ x;>0.

To characterize admissible rules, therefore, we need only investigate esti-
mators having the above quotient representation. A direct proof of this result
is outlined in Sect. 2.

We turn now to the association of a variational problem with a generalized
Bayes estimator. Stein (1955) and LeCam (1955) have shown for general statis-
tical decision problems that a rule d(x) is admissible if and only if it can be
approximated arbitrarily closely (in the sense of Bayes regret) by rules which
are Bayes with respect to a proper (ie. finite) prior distribution. This result
(described in Sect. 2) connects an abstract minimization problem with each
estimator d(x). In Sect. 2, we exploit the quadratic loss structure, the exponen-
tial family form of the Poisson densities and the quotient representation above
to derive from the Stein-LeCam result a much more concrete minimization
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problem familiar in potential theory. Specifically, let d, be the generalized
Bayes estimator whose admissibility is in question. With d, associate coef-
ficients ¢; , =dp ;(x) n(x), for x such that x;>0 and i=1, ..., p. Here n(x)=mn, is,
as before, the marginal density of the prior P. Let # ={u: Z% -R:u,=1, u,—0
as |x|-— o0} be the class of feasible solutions, and write D;u, for the backward
difference u(x)—u(x —e¢;). Here and throughout, it is convenient to define |x]

14
=Z|xi] for points xeZ?. For simplicity assume also that

1

supp P =[0, c0)*. (1.2)

(Remark 3.7 comments on relaxation of this condition.) The first main result is
a necessary condition for admissibility.

1.2. Theorem. If dp(x) satisfies (1.1) and (1.2) and is admissible, then

infyY Y (Du)’a,=0. (1.3)

we® | x:x;21

As discussed in [ and references listed there, the double sum in (1.3) has a
“physical” interpretation as the power dissipated by a system of voltages u, at
sites xeZ” , when neighboring sites are connected by resistors parallel to the
coordinate axes with conductances g; , for the resistor connecting x and x —e;.
For this reason, we shall, with slight abuse of terminology, call (1.3) an energy
condition.

The major part of this work is devoted to establishing the converse and
applications of this theorem under suitable side conditions. Consider first an
important special case. The simplest results hold for those estimators dp(x)
=&(} x;)x which are generalized Bayes for “simplex symmetric” priors of the
form P(dA)=M(dA)d0,...d6,, where A=} 1, and 6,=2,/A. These priors are
the analogues for the Poisson problem of spherically symmetric priors in the
normal case: M is uniform on each fixed multiple of the unit simplex. For L_,
the analogy is surprisingly strong, in view of the lack of any natural large
group leaving the sets {4=0:) J,=A} invariant. The resulting theory turns out
to be essentially one dimensional, and Sect. 4 applies the univariate characteri-
zation of admissibility derived in I to obtain sharp results in this simplest of
multivariate contexts. Of course, the maximum likelihood estimator, and those
considered by Clevenson and Zidek are included in this setting.

The converse to Theorem 1.2 in the general case is proved in Sect. 5 under
the following assumption. Subject to the earlier caveat concerning (1.1), this
condition holds, to my knowledge, for all estimators proposed for this problem.
The significance of its components and their analogy with the Gaussian case is
discussed in the heuristics part of Sect. 5. Here we note only that the counter-
example in §7 of I shows that some form of growth condition on d; (or d; ;) is
needed. However, assumption (1.2), that supp P=[0, c)?, i3 not required for
the converse.

Assumption A. Suppose dp (x) is Lipschitz and that there exist increasing
Lipschitz functions d,: Z* —R ™ satisfying d;(x;) < x,+Mx;/? such that
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a) |dp ;(x) —dy(x)| = M(x; v 1)'/%,
b) dp (x)/d,(1)Ze>0 if x,=1.

1.3. Theorem. Under (1.1) and assumption A, if the zero energy condition (1.3)
holds, then d, is admissible.

Methods of difference equations and probabilistic potential theory enable
(1.3) to be translated into more perspicuous and/or checkable conditions. We
shall, therefore, discuss these before turning to the applications of the main
results. The first step is to set up the Euler-Lagrange difference equation
belonging to (1.3).

Regard Z” as a lattice with sites connected by bonds parallel to the
coordinate axes. Denote by éx the collection of the neighbors of x which lie in
Z*.. Define connection coefficients for x, ye Z%, by

Gixve if y=x+e
a; if y=x—e,eZ?,
%%y=10 for other y+x (L.4)
-y a,, if y=x
z¥x

Assumption (1.1) implies for all xeZ? , yedx that o is strictly positive. Note
that o, , is symmetric: o, =u, . Let |ul|? stand for the double sum in (1.3); it
clearly also has the more symmetric form

2jul?= 3 oy (u, —u,), (1.5)

where the sum need only be taken over those yedx.
Now suppose that inf|u}|? is attained by some function u. If v is an
U

arbitrary function such that u+eve® for small ¢ then on letting ¢e—0 and
using symmetry of o, it follows that ) v, Lu, =0, where

X,y

Lu,= Y a, (u,—u) (1.6)

yebx

Thus u satisfies the Euler-Lagrange equation Lu=0 on Z% \ {0).

As is well known, a (continuous time parameter) Markov process
{X,;t=0, P*} is associated with the difference operator L. The process X, has
state space Z*, (the sample space in the estimation problem), and may jump
from the point x only to one of its neighbors yedx, these transitions occurring
at rates o, ,. It may therefore be thought of as a multidimensional birth and
death process. Thus, for h|0, x+0 and yeZ?,, P*(X,=y)=a, h+o(h). Thus
{X,} is as close to being a diffusion (such as occurs in the Gaussian estimation
problem) as the state space permits. Since o, ,>0 for all yedx, the process is
irreducible. The transition rates are symmetric in x and y, so the process is
time reversible. Should the rates be such that an explosion occurs ([ X |— o0 in
finite time), then the process is banished to a coffin state thereafter. The
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existence of a right continuous, strong Markov process with these properties
follows from Markov chain theory (cf. for example, Freedman, 1971, especially
§§6.4, 6.5 and 7.4). It follows also for xeZ/\{0} that L agrees with the
infinitesimal generator of {X,} when applied to functions belonging to the
domain of the latter.

An alternative and perhaps conceptually more direct approach is to ob-
serve that the bilinear form associated with (1.5) is a regular Dirichlet form in
the sense of Fukushima (1980). For this one takes as domain the set of all
square summable (for counting measure on Z%) functions u for which also
|u]|? is finite. The general potential theory of Fukushima could then be applied
to construct a symmetric Hunt process {X,} having the properties described
above. This is outlined for the Gaussian case in Johnstone and Lalley (1984).

The plan now is to recast the energy condition (1.3) in terms of the Euler
Lagrange equation and the recurrence of X,. Let the hitting probability func-
tion @, =P*(31=0:X,=0). The process {X,} is recurrent if # =1 and tran-
sient otherwise. Standard arguments show that if {X,} is transient, then @, <1
for all x and liminfiZ, =lim inf #,=0. Given Theorems 1.2 and 1.3, the

r—roo xix|Zr

next result provides the promised alternate characterizations of admissibility.

1.4. Theorem.
min |uf = || %, (L.7)
3

and the minimum is attained iff Ge@U. Consequently, the following are equivalent:
(i) min [jul*=0,
2

(1) {X,, P~} is recurrent,
(iii) There is no bounded solution to the exterior boundary value problem:

Lu=0 on Z2\{0}; u,=1; liminfu,=0. (P)

[x]— o0
In the transient case, i is a solution to 2.

Results of this genre are known in probabilistic potential theory (e.g.
Griffeath-Liggett, 1982; Fukushima, 1980) and differential equations (in the
continuous case). In view of the technical simplicity of the discrete setting, and
relative completeness of the results, a self-contained proof is given in Sect. 3.

Let us turn now to some statistical applications of Theorems 1.2 through
1.4. Although some generality is lost, comparison tests provide very simple
methods of checking admissibility since they are based on easily computed
functions of the candidate rule d(x). To illustrate, suppose d,(x)=#x, for some
positive n and that

Yd(x)zz—(p—1)+6 forlarge z=) x;, (1.8)

for some &6>0: then d is inadmissible (Corollary 6.3). Conversely, if d is
generalized Bayes, satisfies condition 4 and

Sd(x+e)<z+1 for large z, (1.9)
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then d is admissible. These results are proved together with sharper compari-
son tests in Sect. 6, either directly from Theorems 1.2 and 1.3, or via 1.4 and
the Nash-Williams and Royden-Lyons tests for recurrence and transience re-
spectively (cf. Griffeath-Liggett, 1982; Lyons, 1983).

Here is an example of the use of comparison tests. Brown (1979) gives
detailed heuristics to arrive at his conjectures that generalized Bayes estimators
of the form d{x)=x -+ ¢(x), where

_bx

o(x) %) +O((Lx)™'?) (1.10)

are inadmissible if b>1-—p and admissible for b<1—p (cf. his 2.3.9, p. 984).
Perturbations of the form (1.10) correspond to generalized priors of the form
Pd))~(3,2)d) as Y A,—oo. The conjectures follow immediately from (1.8)
and (1.9) above (assuming only that the specific estimator d(x) in question has,
for small x, values compatible with (1.1) (or 5.27 and Assumption A).

Section 6 also discuss the connection of our results with the semi-tail upper
bounds for inadmissibility of Hwang (1982) — another simple method for check-
ing inadmissibility. It is further easy to read off an admissibility classification
of linear estimates of the form d(x)=Mx-+7y for M non-singular. Indeed for
admissibility M must be diagonal, with diagonal entries lying in (0, 1), and the
sum of the y, corresponding to the J unit eigenvalues must be bounded by
1-J.

The two closing comments of the introduction to I extend to the multipa-
rameter case considered here. Thus the results of Sects. 2 and 3 will likely
extend to more general power series distributions, including negative binomial
and logarithmic. Secondly, to recover the difference operator occurring in the
unbiased-risk-estimate approach to inadmissiblity (cf. for example Ghosh et al,,
1983), we need to take the Euler Lagrange equation of the ‘original’ minimi-
zation problem (second line of (2.3) below) rather than the simpler, linearized
version that appears in the energy condition (1.3).

Only partial results on the extension of the theory to other loss functions
such as L, are currently available (cf. Remarks 2.4, 4.4). The full force of
Brown and Farrell’s stepwise Bayes complete class theorem is needed: even
natural admissible estimators (such as the MLE for p=2) correspond to several
recurrent processes on disjoint subsets of Z% . In the case of simplex symmetric
estimators, the reduction to a one-dimensional problem is less clean than for
L_,. It seems that the recurrence and variational theory is most natural for
L_, because the component problems are equally balanced as 4 varies in R” :
each component x; of the MLE has constant risk in 2,.

§ 2. The Variational Condition for Admissibility
We begin with the Stein-Le Cam characterization of admissibility. Fix

%0€(0, o), and let 2 be the set of finite measures Q, supported on a finite set
in (0, c0)? with Q({A,})=1. Let R(d, ))=E,L_,(d(X), ) denote the risk func-
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tion of an estimator d and write B(d, Q)= j R(d, 2) Q(dA). It is easy to check that

the estimator attaining B(Q)=infB(d, Q) (the Bayes estimator) is given by
d

dg {(X)=4./d,_,,, where g, =[e " 2*Q(dA). Then d(x) is admissible if and only if

inf B(d, Q) — B(Q) =0. .1)

Qec2

Now the (standard) calculation given at I (2.2) shows that for any prior Q(d/)
with B(d, Q)< oo,

B(d,Q)-B(Q

i M»a

Z (%) —dg ()17, /x ). 2.2)

i

The previous two displays and the availability of quotient representations for
(generalized) Bayes estimators are basic to this study. An elementary proof of
the characterization (2.1) is given by Brown and Farrell (1985¢). Given (2.2)
however, the sufficiency half is sufficiently simple that it will be useful to give a
proof here. Indeed, suppose B(d, Q) —B(Q,)—0 and that R(4,d")<R(4,4d) for all
2. Then

Y. Y ldi(x) ~di(017qfL . /x! £2{B(, Q,)~ B(Q,)+ B(d. 0,) ~ B(Q,)}
C <4{B(,Q,) —B(Q,)}~0.

Since Q, ({421, g¥=e "%, we have d;(x)=d;(x) and hence that d is
admissible.

It is clear from this argument that the @, need not be discrete: any
sequence such that infQ (N)>0, where N is a neighborhood of 4,, will suffice.

In §5, we use O, (dA)=u2(A) P(d2), with 12 /1.

2.1. Remark. Let 9,=1{d: x,=0=-d,(x)=0}. To prove admissibility of rules in
2,, it is convenient to modify (2.1) slightly. First note that if d(x) is admissible
in 9,, then it is unconditionally admissible. This is proved by showing that
lim R(A,d)< oo for all A iff d,(x) vanishes on {x: x;=0}, which in turn follows
2i—0
by examining the terms in the Laurent series expansion of R(4, d) about 0.
Now to prove admissibility in @, it is enough to establish (2.1) with
B(dy, Q) replaced by B, (Q), the infimum of B(d, Q) over rules in &,. But this
infimum is attained by dQ, where dQ i(x)=dg (x)I{x;>0}. Thus the i* sum
over X in (2.2) can be restricted to the set on which x;>0.

2.2. Remark. Let d* be admissible for 1 and d® be Bayes for a proper prior
H on A® in independent problems (which may each involve more than one
coordinate). It is a general consequence of (2.1) that d=(d"), d'?) is admissible
for 4=(A"), ) if the loss functions are added. Indeed, if Q' is a sequence of
priors provided by (2.1) from the admissibility of d%, then 0, =0 x H suffice
to show admissibility of d.

Proof of Proposition 1.1. Since d is admissible, it is a pointwise limit of Bayes
procedures with respect to proper priors @,. This may be seen from (2.1) and
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(2.2) using the condition ¢"=e )% as before. Defining ¢ (d)
=e‘AdQn(/l)/§e‘AdQn(X), one obtains a probability measure £(d2) such that
[ A&, (dA)—[ A7 E(dA) for all xeZ” . That the latter integral is positive and finite
for all x=0 follows from (1.1). Defining P(d1)=e*¢(dl) and using
dp, (x)—d,(x) for all x, we conclude that d;(x)=p,/p,_,, whenever x;>0. Fur-
thermore, if x,>0, it is easy to check that E[L(d;, A,)|x] is minimized by the
choice dp ;(x)=p,/p, _, =d,(x), so that d,(x) is generalized Bayes on {x: x,>0}.

Proof of Theorem 1.2. Let 4, denote the i™ sum in (2.2). On T,={xeZ? : x,>0},

d;(x)=p,/P._,, with both numerator and denominator finite and positive. We
now proceed with the analogue of I. (3.1)-(3.4) but ignore the sets TS. Below,

ur=q,/p,.

P 4 )2 Qe

N =Yl = P ),
T; X—e; X—e;

x! 7

22 (Diu)ay . (2.3)

It follows that the infimum of {jul|® over #,={u:u2=q /p, for some prior
Qe2} is zero. Asin I 3, the condition Q([4y, Ao+ 11)=1 for Q in 2 allows us
to replace the infimum over %, by an infimum over %, {u:u,=1}.

The proof is completed by showing that %,c {u: lim u_=0}. We state

Ix]—co
first an appropriate form of the Birnbaum-Stein theorem for exponential fa-
milies (Birnbaum, 1955; Stein, 1956a). If S(d6) is a measure on R?, let K(S)
denote the convex hull of its support. Suppose S and R are measures on IR?
and that there exists a point we[IntK(R)]\K(S). Let U, =
{y:y-w=sup{y-0:0eK(S)}}. Then there exist constants B, ¢>0 depending
on w, such that for yeU,,

[e"rS(do)

2T T < Be— i
[ R@ED)="°

In the Poisson case, supp P =(0, )’ and Qe2 has compact support, so we may
apply the result to S and R defined by putting §;=log 4,(i=1, ..., k) and

Sdf)=e~1Q(d)) R(dO)=e “P(d]). (2.4)

Now choose w=ol with a=sup{|0}:6eK(S)} and 1=(1,1,...,1). Since
suppP=(0,cc)?, we can assume (by increasing o if necessary) that
welint K(R)NK(S). If y=0, then y'w=oc2yi;ocﬂyﬁ =y-60 for all 0eK(S),
where here [y|| denotes Euclidean distance. Hence Z? < U, and so there exist
constants ¢ and B positive such that for all y=0,

,  [e7S(do)

=4 " 7 > Be—ihl
Y =Ter@e =" 0

as |y|—o0. [

2.3. Remark. If P(dA)=M(dA)db,,...,d6, (where 0,=2,/A), as is the case in
Sect. 4, then we need only assume that M has unbounded support. Indeed, if §
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has compact support, then there will always exist an o« sufficiently large that
olelint K(R)J\K (S).

24. Remark. Under squared error loss L, there is no convenient analog of
Proposition 1.1, which for L_, simplifies the analysis by ensuring that a
potentially admissible d;(x) has a representation p,/p,_, Wwhenever it is non-
zero. The full force of the stepwise (generalized) Bayes representation of Brown
and Farrell (1985 a) is needed. For simplicity, consider estimates satisfying (1.1)
and suppose also that p=2. If 4 is admissible, then it follows from Brown and
Farrell’s Theorem 4.1 that there exists finite measures w,,, wy, and w,,
supported on R, x {0}, {0} xR, and R? respectively (here R, =[0, c0)) for
which

d.(x):{pa(x),erei/pu(x),x %f x;>0

! 0 if x;=0,

where p, .= [[]A#"~Pw,(d); o takes the values (1,0), (0,1) or (1,1) and a(x)

=(I(x,>0), I(x,>0)).

The analogue of (2.2) breaks naturally into a sum over three regions S,,,
S,, and S, ,, where S,={xeZ? : a(x)=a}. After going through the analogue of
(2.3), the sum over region S, may be bounded below by

LY D), 2.5)
iioi>0 ;ciefoi

where uZ =, /Do, x> AN & = P2 o/ Puy, x—o,(X —€)! has a different struc-
ture from that of the a; , occurring for L_,. Thus, the sums over §,4,5¢;,5¢;
are one, one and two dimensional respectively, and each can be made arbitrari-
ly small if d, is admissible. To anticipate the discussion of Sect. 3, in addition
to the two dimensional birth and death process on S,; that is naturally
associated with the coefficients & ,, there are two further one dimensional
processes on the mutually disjoint state spaces S, and §,,. Admissibility then
entails recurrence of all three processes.

§ 3. Difference Equations and Recurrence

This section begins with the proof of the probabilistic and analytic characteri-
zations of the admissibility condition (1.3). Examples follow which illuminate
the hypotheses of Theorem 1.4 and apply it to the MLE and priors with
bounded support. Conditions for null and positive recurrence and their statis-
tical interpretation are discussed. Finally we describe modifications needed to
allow for supp P& (0, o0)?, and some probabilistic facts for later use.

Proof of Theorem 1.4. (iii) = (ii). This follows from the Strong Markov property
by a standard argument. Suppose that {X,} is transient: then #;=1 and
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liminfi, =0. If o=inf{t>0: X,+X,} is the first jump time of a path, then
|x}= o

for x=+0,
U=EuX)=Y o, 0/ .,

yebx yebx
which is equivalent to Lii, =0.

Maximum principle for L. A function u on Z? cannot attain a strict local
maximum {or minimum} on S={x: Lu, =0}. Indeed, if u attains a local maxi-
mum at x€S, then u, 2u, for yedx, and

Y o (u, —u)=0,

yeldx
so that u,=u, for all yedx (since all a, ,>0 for yedx).

Remark. Simple examples show that the maximum principle as stated here does
not hold for non self-adjoint ‘elliptic’ difference operators.

Approximating Problems. Let B, be an increasing sequence of finite subsets of
Z*, with Z%, = JB,. Let

<M, v>n= Z (xx,y(uy—ux)(vy_vx)a
x, yeBy,
and |ul|?=<u,u), be the corresponding seminorm. Write d,x=0xnB, for the
neighbors in B, of x, and set dB,={x:3,x+3dx)u{0}. Let %? be the class of
functions on B, that agree with a function ¢ defined on ¢B,. Finally, let
o,=inf{r=0: X,e0B,}.

Proposition (Dirichlet principle). Let ¢ be a function defined on 0B,. The
Junction ul=E*$(X, ) is the unique solution to

Lu=0 on B\O#B,, u=¢ on JB,. (2)

n
Further, u® is the unique function in U2 which minimizes ||u 2.

Proof. 1t follows as before from the Strong Markov property that u® satisfies
(#), and uniqueness is clear from the maximum principle. A calculation using
symmetry of «, , shows that

~lu, vy, = Y v Lu 4+ Y v, [Mu,

B,,~ 0B, éB,,nBy,

where L™ is defined by (1.6), but with the sum taken over yed,x. Now write
ue? in the form u=u® +y, so that Y =0 on éB,. Since Lu®*=0 on B,\9B,,

Null® = <u?, u, +2u?, ), + b, 0, = | 2+ 1Y) 2

Hence {u]|? is uniquely minimized on #¢ by setting y=0. []

Let u™(x)=P*(X «,=0) be the unique solution of (#) corresponding to
¢ =06,0;- By the maximum principle, {#™} form an increasing sequence on Z?
with limit &, =P*{3tr20: X,=0}. Clearly @i,=1 and Lii, =0 for all xeZ?,.
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(i) = (iii). Let w be a bounded solution to (%) of Theorem L.4. Choose «>0
sufficiently small that w=oaw+ 1 —« satisfies 0Sw=<2. By the maximum prin-
ciple, u™” £Ww<2—u™ on B,. Letting n— oo, we find that w=1 and hence w=1.

(i) = (i1). This is an immediate consequence of (1.7), to whose proof we now
turn. In what follows, B, ={x: Y x;<n}.

Proof of (1.7). 1°. Let m=min,, |ul®. We show first that [|@]|* <m. Let {k,} c%
be a minimizing sequence: |k,|*—m as n—oo. Since k,e%, there exists an
integer m,, for which |k, (x)|<1/n for |x{=m,. Let v, be the solution to (%,) for
boundary data ¢=k, on dB, . On dB, nB, ,

v, ~u"™ =k, —d| S 1/n,

and the maximum principle implies that this inequality is valid on all B,. It
follows that {v,} converges pointwise to #. We conclude from this and the
Dirichlet principle that for any fixed integer p:

2

|| 2=1im v, |2 <lim |[v, /I3, <lim |k, | 5 <lim [k,]|*=m.
n h R n

On letting p1oo, we find that [i]|*> <m.

2°. We show that |u®™|?—m, and then that |&]|>=m. It follows from the
Dirichlet principle that
a2 = )2, Z fut VL, =l V)
Thus the sequence ||u™||? decreases to a limit /fzm. Fix two integers n>p and
set k=(u"4u®)/2. Using the facts that u™ =0 for |x|Zn and u®? =0 for |x|=p
together with the Cauchy-Schwartz inequality and the Dirichlet principle,

U2 < =4 |24+ [P 2+ 4 <, ),

<3245 16 ).

Letting n— oo, [|u®™| 2—||#] 7, and then letting p— oo, we get
<3+ 5] ).
Combine with previous results to get m<m<||#) 2 <m, from which our claim
and hence (1.7) are obvious. This completes the proof of (1.7).
Finally, suppose that the minimum in (1.7) is attained in % by some
function w. Since we#, lim w_=0, and so it follows from the maximum

x| o0

principle that 0S<w<1 for all xeZ?, and then, as above, that wzu. Con-

sequently lim #,=0, and hence @ie%. This completes the proof of Theorem
ix]— o0

14 0O

3.1. Example. (i) (.D. Brown) This example shows that # need not lie in %.

Let p=2, and define transition rates for X,=(X}, X?) by a, =1, a, ,=x}, (for

x,>1) and a; ,=3(1+2")"" (for x, =1). On {x:x,>1]}, the transition rates of
X! depend only on x;, so that X is transient, and hence X, itself is transient.
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We show however that lim @, ,,=1/2. Let ¢, =inf{t=0: X,=0 or (1,x,) for

some x,=0}. Since X? moves up or down with equal probabilities,
PO*)(g, <o0)=1. The function v,=31(142"**)I{x, =0} satisfies Lv,=0 for
x=(0,x,) with x,>0, so v(X,,_) is a bounded P**» martingale. From the
optional sampling theorem,

tAGY

Vo5, = PO(X, =0)S PO (3120: X, =0} =i,,,

from which the claim follows.
(i) If % is extended to include functions (such as @) with liminfu_=0, then

x|~ o0
the theorem is no longer valid. To see this, let p=2 and P=Pll><lP2, where P, is
a proper prior on R%, and P, yields an inadmissible estimator. The jumps in
each component of X, =(X", X®) occur independently of the position of the
other component, and according to the probabilities induced by each P. Hence
X, is transient since X® is. Now let {"™(x,)} be a sequence of functions on
Z, with v§’=1, v® =0 and energy decreasing to zero in the P,-problem. Then

it is easy to check, using the finiteness of P, that the energy of the functions on
Z° defined by .

o _ 1 if x,>0

o "(xy) if x,=0
decreases to zero.

As a first application of Theorem (1.4), we derive a result of Clevenson and
Zidek (1975). New results are given in Sects. 4 and 6.

3.2. Corollary. d(x)=x is inadmissible for L_, if p= 2.

Proof. The estimator d(x)=x is generalized Bayes for the prior P(dA)=d4,
yielding a, ,=x; for x such that x;>0. Put z=) x;; it is easy to check that

w11 (3.1)

satisfies Lu, =0 if xeZ” \{0}, and hence is a solution to (£). It follows that
{X,} is transient and (from Theorems 1.2 and 1.4) that d(x) must be in-
admissible. (The form of the solution was noticed by L.D. Brown.} []

Remarks. The hitting probability i, is also given by (3.1). This follows from the

observation that
[TG+2)~*=T[G+m~*
[T =11G+m"
(where the products range over i=1,...,p—1) is the unique solution to (£) for
B={)x,<n} and ¢ =4,
The second application shows that priors with bounded support lead to
recurrent birth and death processes.

3.3. Corollary. If supp P is bounded and (1.1) holds, then {X,} is recurrent.

Proof.SupposethatsuppP = {4:|4| £ M}forsome M.Henced, (x)=E(l|x —e)< M
for all i and x=0. Since py<ow, C=P{A{<M} <o, and using Stirling’s

) —
kP =
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formula,

Me )""
x; v/’

p_X<cﬂ(

x!7 N

i,x=

Consequently a;, , <M, [[(M,/x;v 1)*. Define u”e% by 1 for |x|<n, and 1/|x]
for |x|>n. Clearly '

1

W2=M, Y [IIM/Ax v DT-0,

|xjzn i

as n— oo, since the summand lies in L,(Z%). Hence inf ||u|*?=0. O
u

3.4. Remark. The above assumptions imply finiteness of the integrated risk of
dp, and hence its admissibility. Thus the corollary also follows from Theorems
(1.2) and (1.4) combined.

In the Gaussian case, the distinction between positive and null recurrence
has an important statistical interpretation: namely the distinction between
priors of finite and infinite total mass (the so-called ‘proper’ and ‘improper’
priors respectively). This was noted by Brown (1971), and the (apparently non-
trivial) proof given in Johnstone and Lalley (1985), where the phenomenon was
applied to discuss ‘immunity’ (in the sense of Gutmann 1982, 1983) of General-
ized Bayes estimators to the Stein effect. There is a corresponding interpre-
tation of the positive/null recurrence dichotomy in the Poisson situation, but
its details depend on the specific choice of loss function. This was discussed for
the one dimensional case in I, Sect. 4, which notes also that to recover exactly
the proper/improper prior case, one needs the loss function A~%(d—1)% The
results, examples and proofs given in I generalize to the multivariate situation:
we will be content to simply state the results. Let {Y,} be the embedded
discrete-time chain associated with {X,}: it clearly has transition probabilities

px,y:ocx,y/lux U= Z O‘x,y'
y¥x
3.5. Lemma. Suppose that {Y} is recurrent. It is positive recurrent iff

Y. p,<oo; in which case the invariant probability measure is proportional to
er;

{Hx}xelg .

We now give a (nearly) sharp condition on the prior n(dA) for positive
recurrence.

3.6. Lemma. If | Z,dr(ly<oo for i=1,...,p, then Y p,<oo. Conversely, if
R? z
[ A dn(X)= o for some i=1, ..., p, and for that i either

RP

dp (k+e)<Mdy, (k) forall keZ?
or
infdp ;(k+e)/(k;+1)>0
k
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then
Dt = 0.

3.7. Priors with supp P& (0, 00) can arise in situations where there is prior
information on the ordering of the means: for example 1,21,2=...2 1, (Cohen
and Sackrowitz (1970) discuss this problem in the Gaussian case). Theorems 1.2
and 1.4 will remain valid if % is redefined as

{u,cuy=11m  sup u =0},
v {lx|=r,xeN(P)}
where N(P) is an appropriate neighbourhood of the support of P with the
properties
(1 sup gq,/p,—0if Q has compact support in (0, o0)?,

|x|=r, xeN(P)
(i) if {X,} is the process corresponding to P, then for each large r

P{3c:X, =0 or X,eNP)n{xlzr}}=1.

Given (i) and (ii), the only substantial change needed in the proofs is the
analogue of Brown’s Lemma 4.2.2.

In important special cases, such as suppP={1:4,21,=...27,}, we may
set N(Py=suppP. In general, however N(P) cannot be taken as a neigh-
borhood of the convex hull of suppP as in the Gaussian case: if P(dd)
=I{AeR2:A24,A L, 25<1}d2, then lim q(r,7)/p(r,r) need not be zero. We

¥ o

will not go further into the existence and description of N(P) in the general
case, except to remark that the transformation (2.4) and the Birnbaum-Stein
theorem can be used to established (i} for any §-neighborhood of supp P and
for certain cones in Z7,.

3.8. While explicit formulae for # are not available in general even for prob-
lems in which P=P"x P? (but cf. Sect. 4), some useful bounds are possible. If
it are the hitting probabilities of zero for the marginal problems induced by
P, then &, <#. 2. This is a probabilistic version of the statement “an esti-
mator in a product problem is inadmissible if any component is”. It follows
from the maximum principle and the observation that La' #* £0 on the bound-
ary of Z% , and is zero elsewhere. Alternatively it may be seen probabilistically
from independence of the co-ordinate processes.

3.9. We give a sufficient condition for recurrence of the image of a recurrent
Markov chain under a transformation of the state space. This will be used in
the proof of Theorem 1.3. Let G be a graph with (symmetric) transition rates
., between neighboring vertices x~y. If g:G—-G is a “graph respecting”
function: x~y implies gx=gy or gx~gy, then g induces new transition rates
(go),,,=a(gx, gy), which are interpreted as zero if gx=gy. Let # be a class of
real valued functions on G, and for ue, set (gu)(x)=u(gx).

3.10. Lemma. Suppose that g% <% and that for some integer M,

sup [{(x,x)eGx G: x~x,gx=y,gx'=y}| <M.
y~y
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Then

inf ) (ga), . [u(x)— M(X)]2<M1nf Z oy, o [u(x) —u(x)]%
U x,x
The proof is immediate. For the later application, let X =Z, with the usual

lattice structure and, given functions a,(x): Z,; n{x; =1} >R™, define rates o,
as at (14) and % as in §1. Suppose that gx=(g,x,,...,g,x,), where
g Zt—>Z* are increasing functions with steps of unit height and length
bounded above by M. Let bi(x)=a,(g,x,,....,gx;v1,...,g,x,). Since
b;(¥)[D;(gw)(x)]* < a(gx, g(x —e))[D; (gu)(x)]2 it follows from the proof of the
Lemma that if g% <%, then

1nfz Y b(X)[D, u(x)]2<M1an Y a,(X)[D;u(x)]> (3.2)

Poxix;=1 i xix;21

§ 4. Admissibility Results for Symmetric Cases

This section is devoted to estimators dp(x)=®(z)x, z=) x;, which are general-
ized Bayes for “simplex symmetric” priors of the form P(d})=M(dA)d0,...do,,
where A=) 4, 6,=2,/A4. We show the equivalence of this admissibility prob-
lem to that of the one-dimensional Poisson case studied in I and derive the
consequences for the Clevenson-Zidek estimator amongst others.

Assume for simplicity that m,=[e~* A M(dA)e(0, ) for z=0. Clevenson
and Zidek show (1975, Theorem 2.2) that for x=0 and z=Y x;

dp(x)=(m,fm,_)(x/z+p—1)), wp(x)=m)z+p—1)! (4.1)
We write d,,(z) for m_/m,_, and set d,,(0)=0. Note that d, satisfies (1.1).

4.1. Theorem. d, is admissible for A if and only if d,, is admissible for A in the
one-dimensional problem with loss function (d — A)*/A.

4.2. Corollary. Let B,=m?2/m,_,z!. If dp(x) is admissible, then Zl/ﬁ o0. The
converse holds if d,, satisfies for z=1

dy(z)—z<c, 22
dy(z + 1) —dy () Scy.

Proofs. 1°. The risk function of d(x)=®(z) x/(z+p—1) under L_, is given by

(4.2)

D(z)

R@@:;EHH__

—A)? -1
:EA[ z (D(z)—A) 4 p—1 A] ,
z4+p—1 A z+p—1

2 N5
1) Bdniz=n-2 22

z—i—/l]

since £ (X;|Z=7z) is binomial with parameters z and 4,/4. We now show that
admissibility of d(x) is equivalent to that of @(z) for the loss function L(d, 4, z)
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=[z/(z+p —1)](d — A)*/A. First, if &' is strictly better than @, it is obvious that
R(d', 1) —R(d, ) £0, with strict inequality for some A. Conversely, for any finite

prior N{dA) charging a neighborhood in R' of A=1, let Q(dA}=N( ciA)Hd@
Writing dy(x)=dy(2) x/(z+p —1), it is easy to check that

1
B(d,Q)—B(dy, Q)= o1 ——= [[R(®, )~ R{dy, TN (dA), (4.3)
where R is the risk function corresponding to L. Thus, from the Stein-LeCam
characterization, admissibility of @ implies that the right side of (4.3) can be
made arbitrarily small, which in turn implies admissibility of d.

2°. By the usual argument of I. §2.2, the integral on the right side of (4.3) is

equal to Z

L @E- @ (44)

The factor z/(z+p—1) is bounded between 1/p and 1, and can thus be ignored
in admissibility considerations. Thus we reduce to the one-dimensional con-
ditional problem &, discussed in I §2, and it follows from I, Lemma 2.1 that @
is admissible in £, iff it is admissible in the original {unconditional) problem.
This establishes the Theorem, and the Corollary may now be read off from
Theorems 1.1 to 1.3 of . O

None of the above argument depends on the p-dimensional theory of the
two preceeding sections. It is instructive therefore to give an alternative deriva-
tion of the necessity of Corollary 4.2 by specializing Theorems 1.3 and 1.4 to
the ‘simplex symmetric’ case. This will be applied in Sect. 6 to give explicit
tests for admissibility. Let % and |u] be as defined in §2, and ¥ =[ue¥: u(x)
=v(2xi) for some v: Z_, —IR]. Now if u(x)=v(z)e ¥, then a computation shows
that

Jul?=

(4.5)

where b =m?/m,_ (z—1)!(z+p—1)~p, as z—oo, and one uses the fact that
+p—1

z . . . .
there are ( ) points x in Z% with ) x,=z. We now show that min [ ul|?
2

=min |u|? Let B,=[xeZ? :Y x,<n], and u{’=P*{|X,| hits O before n}. Not-
7,

ing that for ue¥; Lu(x)=z! Lv_/(z+p —1)!, where Lv,=D* (b, D" v,), it follows
as in I §4 that

_1 n

W = [z l/bs] S 1b, xeB,
1 z+1
so that u™e?. As in 2° of the proof of Theorem 1.4, |u®™||>\.min |jul|?, and
since ¥~ <=4, this suffices to show equality of the two minima.
Suppose now that dp(x) is admissible. If supp P is unbounded, divergence of
Y 1/b, follows from 1°, Theorem 1.2, Remark 2.3 and Lemma I.3.1. If supp P

and hence supp M is bounded then the argument of Lemma 1.3.2 applies to
M(dA) and m,.
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The following comparison test provides an easily checked criterion for (in-)
admissibility in many applications.

4.3. Corollary. Let P be a planar symmetric prior.

() If for some 6>0, dp(x)-12z—(p—1)+0 for large z, then dp is in-
admissible;

(ii) If (4.2) holds and dp(x)- 1<z—(p—1) for large z, then d, is admissible.

Proof. Theorem 4.1 allows an appeal to Corollary 5.2 of I, which in fact gives
the stronger result that dy(z)=z+aflogz for «>1 and large z implies in-
admissibility, and dy(z)<z+a/logz for «=<1, z large implies admissibility,
under (4.2). O

Examples. 1. M{A)=A?"1dA, m =(z+p—1)!, and dp(x)=x - the “usual”
estimator. Clearly, d is admissible iff p=1 (Clevenson and Zidek, 1975).

o0

2. M@dA)={(1+At)"*t=Pexp(—t~"')dtdA. These priors were used by Cle-
4]
—1
veson and Zidek who showed that d,(x)= (1 ATt
z+fB+p-—1

p>1. Clearly, d, is admissible iff §=0. Brown and Hwang (1982) used their
unified admissibility method to establish the admissibility half, and Hwang
(1982) treated the case <0 via difference inequalities.

)x is admissible for

3. M(dA)=A"~" [ g(tr)te"**dtdA. Priors of this form were studied by
0

Ghosh and Parsian (1981), who showed that they included the Clevenson-
Zidek family. If g(1)= Ct™~ (1 +1)~™~", then Ghosh and Parsian show admissi-
. m-+p
lity for dp(x)= 1 ———————
bility for dp(x) ( e
4.3 that d, is admissible iff m= —1.

)x for m>0. It is obvious from Corollary

44. Remark. What happens for planar symmetric priors under squared error

P
loss L,? Suppose P(dA)=M(dA) []d0,/6;, so that p,=[e *A*M(d})[6*~'do
i=1

=m,(x—1)!/(z—1)!. This definition is chosen so that under L, dp ;(x)=p, .. /P,
=(m,, ;/m,)(x;/z). In particular, the MLE d(x)=x arises from M(dA)=A"1dA.
It turns out that the p-dimensional admissibility problem for d, under L, is not
isomorphic to the 1-dimensional question for dy(z)=m,, ,/m,. In this case, the
analogue of (4.3) and (4.4) is found to be

2
BUp0)-Blig 0= 3, (=t -2t} ey

where for large z

C,z(logz)’~" éy(z)=‘ fi Ex)/1x; v < Chz(logzp?, (4.6)
Xj=2 J
and |x|=) x; (see Appendix A.3 for proof).
Only a sufficient condition seems to be available: dp is admissible if d,,
satisfies (4.2) and .
Y 1/(b,log?f~* z)= 0, (4.7)
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where b, =m?/m__,(z—1)!. As an example, for the MLE b,=z—1, which yields
admissibility for p=1 and 2 (Peng, 1975). The proof that (4.7) entails admissi-
bility is obtained by modifying the argument of I §5, working with the density
function p,(z)=p,(logz)’ ~" (not a probability density!). The proof of the Poin-
caré inequalities of I Lemma 5.1 is no longer valid: instead a one dimensional
argument on the lines of the present § 5 is needed. (The (log z)P~* factor, being
slowly varying, causes no problems.)

I do not know if finiteness of (4.7) is necessary for admissibility. This would
be true if finiteness were equivalent to a zero infimal energy condition for the
terms (2.5) in the setting of Remark 2.4. However, the elliptic difference
operators associated with (2.5) are no longer one-dimensional on ¥~ (compare
the discussion around (4.5) above).

§5. The General Admissibility Theorem

In this section we prove Theorem 1.3. As the argument is long and technical, it
is split over subsections 5.1 through 5.6 and is prefaced by a discussion of the
plan of the proof. Subsections 5.1 and 5.2 contain material on Poincare
inequalities and tail behavior of Poisson densities that may be of independent
interest. §5.3 provides bounds on the growth of marginal densities and Bayes
estimators that flow from assumption A. The proof proper of Theorem 1.3 is
spread over §5.4-5.6. Finally §5.7 addresses estimator d,(x) which may violate
(1.1) by being positive on {x: x,=0}, for later use in Sect. 6.

First, some general comments on the nature of Assumption A. Essentially,
the generalized Bayes rule dp(x) is required to be approximable by a ‘product
rule’ d*(x)=(d, (x,), ..., d,(x,)), each of whose components d,(x;) is a function of
the i observation x; alone and satisfies the conditions of the corresponding
univariate result (Theorem 1.2 in 1). Conditions a) and b) refer to approxima-
tion of dp;(x;) by d;(x;) at the boundaries for x; at oo and O respectively.
Brown’s (1971) condition in the normal case that Jp(y)—y be bounded is
analogous to assumption a), for the special choice d,(y;)=y,. The analogy may

be seen through the (variance stabilizing) transformation yiz]/gi, 6i=]/15, 5;(»)

=]/3i(x) used by Brown (1979b). The boundary at O does not occur in the
Gaussian setting so condition b) has no counterpart there.

We shall now describe, with some deliberate lack of precision, the thrust of
the argument that follows. In partial contrast with Brown’s (1971) method, the
approach is almost entirely analytic, rather than probabilistic. The heuristics
described in Brown (1971, §1) and I, §5 do still provide useful guidance.
Regrettably, the argument is complicated by two things: the lack of invariance
properties of the Poisson family - necessitating separate estimates for A—0,
moderate /. and 21— o0, and the discreteness of the sample space.

The aim of the proof is to bound the difference in integrated risks B(d,, Q)
—By,(Q) in terms of the energy condition (1.3) or (1.5). The prior measure P is
fixed throughout. The function u in the energy norm corresponds to Q as
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q/d
follows: ]/;—IQ:(X) equals u(x) smoothed by a uniform distribution having

position dependent bandwidth r(x). The choice of dQ/dP=u? in the normal
case is motivated by Brown (1971, p. 861), while the technical value of smooth-
ing here is explained below.

The difference in integrated risks B(dp, Q) =B, (Q) is an I? distance be-
tween the Bayes estimates d, and d,, (cf. 5.13). The first step in relating this to
the (discrete) Sobolev norm of u of (1.3) is to express (dg,:(x) —dp ;(x))* in terms
of a (weighted) posterior variance of #(4) (cf. 5.14). By triangle inequality
methods and integrating now over x also this can be estimated by a (weighted)
I* norm

[w2(x, 2) M(dx,dJ)

of the oscillation w,(x, )=iu(x) —u(A)(cf. (5.16)).

The task is then to convert the oscillation bounds to bounds on the
derivatives (and then differences) of u. For this we use Poincaré inequalities of
the form

§ (@(x)—0(0)?dx < C | |Po(x)|*dx a.0
B By

where v is C', T=v=1Iy , I is the indicator function of the unit ball B, in R?
and * denotes convolution. This inequality is demonstrably false for p=2 if ¥ is
replaced by v on the left side (but is valid if v is a solution of an elliptic
differential equation - see Johnstone and Shahshahani (1983)).

To apply (5.1), we return to the L* norm of w,(x, A). The aim is to fix 1 and
express the average (over x) of w? as a mixture of (centered and scaled)
integrals of the form of the left side of (5.1) with 0 and B, replaced by A and
B, (A)={u:|u—J|<r} respectively. To achieve this, it is convenient to replace
M (dx,d}) by an upper bound M(dx,d4) for which the conditional density of x
given J is strictly unimodal about A (cf. 5.18). Applying (5.1) to each element of
the mixture (Corollary 5.2) yields a bound of the form

[Tia(0) —@(2)1* M (dx| Y C Y. [ax[D; u(x)]>ay(x, 7). (5.2)

From this point the line of argument is conceptually fairly clear, but
technically cumbersome and non-trivial, due to the lack of invariance. Suppose
that we were to average over the M-marginal measure of A, namely P(d1). All
would be essentially finished if {a,(x, 1) P(d1) could be bounded by the in-
tensities g;(x) appearing in the energy expression (1.3).

To attempt thus, the first step is to derive a simpler bound for the output
a,(x, 2) of the integration by parts procedure of Corollary 5.2 (cf. 5.6). Now
M(dx| 4) involves the Poisson density p,(x) and certain multiples by rational
functions of x and 4 (cf. 5.16), so a,(x, A) involves integrals, L say, of (weighted)
tails of the Poisson distribution (in both directions away from each mean A,
i=1,...,p) (cf. 5.19)). After some algebraic reduction (Appendix 2), it develops
that these integrals of weighted Poisson tails may be assumed to be (products
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of) the forms

@© tlg— b
Jor (3;31/—1 P (s)] ds

considered in Corollary 5.7. Corollary 5.7 follows directly from Lemma 5.6,
which says that, because of the exponential tails of the Poisson density, the

polynomial factor l(s—/l)/]/ll” can be ignored, at the expense of shifting the
argument of p(-) a fixed number of standard deviations towards the mode 4
of p,(*). Corollary 5.7 is then applied in Appendix 2 to bound the integrals L
as in (5.19).

The upshot of all this is that a,(x, )} can be bounded by d;(x, A) which
consists essentially of rational functions of 1 and 41 multiplied by a

smoothed version of p,(x) with bandwidth 2c’1/ x (cf. 5.20). The penultimate
step is to show that {d(x, A)dP(4) is bounded by not (alas) a,(x), but at least by
a{g(x)), where gi(xi)—xieO(V;i). Since fp,;(x)dP(/l)znx, this part (cf. sub-
section 5.6) requires comparisons of marginal densities = over ranges of

x+a
order ¢’ 1/ x. These are accomplished with the aid of Lemma 5.8 and 5.9 which
bound the growth rate of such marginal densities and Bayes rules. The various
provisions of Assumption A are used to convert the rational functions of 2
into functions of x when necessary, and thence to obtain the desired bounds
(for example (5.21) and ff). Finally, the transition from a;(g(x)) to a;(x) in the
energy norms {(cf. 5.25) is handled by Lemma 3.10, a simple general condition
for recurrence of the image of a recurrent Markov chain under a transfor-
mation of the state space.

We restrict attention throughout to rules having everywhere finite risk
function.

5.1. Inequalities of Poincaré Type

For this statistical application, it is useful to have inequalities of Poincaté type
for functions which vanish at a specified interior point. To accomplish this one
can smooth the function with an appropriate kernel. The Gaussian situation is
simplest, in part because kernels of fixed width suffice, and the approach offers
material simplifications of Brown’s (1971) original proof (Johnstone, 1983 b). To
develop these ideas in the Poisson setting, kernels which are indicators of
boxes having variable widths are needed. Let

P
I,(x)=I{xeR*: |x,|<q, for all i} /H a;.

i=1

5.1. Proposition. Ler r; R—>R,, i=1,...,p be monotone functions such that
IH(x)|<p<1. For a piecewise C' function u:IR?—IR, define u(x)=uxI,,(x).
Then

) [i(x) —u(0)]*dx = C, ;3 1(0)' ") | [Du(x)*dx, (5.3)

{0,1] [0, 11~
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where [0, 17, =[0, 1T+ #([0, 1]) is the Hausdorff sum of [0,1]<IR? and its image
under r=(ry,....7,).
Proof. First note that if g is a piecewise C' function vanishing at 0, then

[ g2mdx<c, | IDg(x)*

[0, 11 [0, 11 |x[p=*

dx. (5.4)

Write ii(x)= | u(x+sr)ds, employ (5.4) and the bound |r/(x)| <1 to get

[-1,1]

[ ) —u(0]12dx<2P [ ds | dx[u(x+sr)—u(sr)]?

[0, 11 [-1,1] [0,1]
dy " |Dulx+y)?
gcp j‘ dx y I (p_iy)[
0,11 [-rmea 705 [X]
<c, | dzbu@” | i
= z —-
p[O,llr |t:| Sri(zi—13) Hri(zi-ti)‘z—ﬂp !

It remains to bound the inner integral, denoted m(z). Since <1, one can
define £} (z;)=tZ by the equations ¢} =r(z,+1;). At this point we assume, for
sake of definiteness only, that each r, is decreasing. It follows that

ds
m(z - 5.5)
)= H[+(1)[ !1]]2_51 [p-t (
Notice from the bound on r'(z) that ¢ /t} <(1+p)/(1—f)=y, say. Let z% be the
closest point in [z—t,z+t;] to 0. If |z)[>r(0) for some i, then

m(z) £(2y)Fr! ~2(0). In the contrary case, replace z by 0 in the integral in (5.5)
to obtain the bound

CCE SUEFIOY c= 0)),, A

=0

where I’ means that the smallest term in the product is omitted. It is then
easy to check that r,(0)/r(z—t,)<(1—p)~", and this completes the proof. []

Proposition 5.1 will be applied to integrals with respect to unimodal densi-
ty functions by using partial integration.

5.2. Corollary. Suppose that Q;: R, >R _ is increasing on [0, A}, decreasing on
(A, 00) and zero off R, . Set Q(y)= Q( ). Fix AeR% and for selR?, let A be
the section at s of A={(s,x)eR% ><IR{’r: §,<x; <Ay or A, <x;<s;, i=1,. ,p}
Suppose u, r, and i are as in Proposition 5.1. Then

§ () —u(2)]* Q(x) dx

=C,p LIdx[Du()* ] dO() ii)zz.si.(;h.)

where B, is the section at x of B={(s, x)eRY, xR?: xe A +7(A))} (C, ;5 does not
depend on 2, u or Q).

p—1

(5.6)
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Proof. Write (5.6) as an integral on A and apply Proposition 5.1 on the sections
A, (after making the appropriate changes of variable). Then use Fubini’s
theorem.

5.3. Remark. If all r(x)=(xv1)"? for x=0, then straighforward calculations
shows that on setting s(x)=1/24(x+1/4)"/?, we have if 1=1,

[x+1—s(x),00) if x>i+A2
B.=1[0, ) i x— A <212
[0, x +s{(x)] if 0xsA—41Y?

and if 1<1,

[x+1-s(x),c0) if x>2

o)L if A+1<x<2

[

*~ 1[0, ) i i—l<x<i+l
[0, x+1] if —1<x<i—L.

(Here x,t, 4 are scalars, and B, <R? in Corollary 5.2 is a product of sets of the
above type.)

5.4. Remark. Suppose, as occurs in §5.4, that u(x)=u(jx,|,...,|x [) is defined by
reflection from the positive orthant. Since B, = B,,,, it follows that the integral
on x on the right side of (5.6) can be restricted to IR%..

5.2. Tuils of Poisson Densities

The results of this subsection express the exponential decline of the tails of the
Poisson density. The Poisson density has no invariance properties, so the cases
of large (A=1) and small (1<1) means are treated separately. Otherwise, the
bounds arc uniform with respect to A. Throughout, the density function is
extended to xeR* via the formula p,(x)=e=*A*/I'(x+1). For the rest of Sect.

5, we abbreviate (x v 1)"/? by 1/x. (However, A4/ is still the usual square root of

A)

5.5. Proposition. Given an integer k>0, and ceR”, there exist M=M_, and
¢ >c+k/2 such that

(i) if A=1;18|<c)/x and x+6=0, then

k

x—A

| PO EM {p,(x = Y/x)pyx Y/ ), (57)

and
(i) if A<1;18l<c)/x and x+621, then

((x = 2/41®) p,(x + 8) S Mp, (x —c'V/ x). (5.8)
(Here I{ky=I{k>0}, and if k=0, ¢’ may be set equal to c.)
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Convention. If x —c'}/x <0, then it is replaced by 0 in the formulas above.

Remark. To motivate (5.7), consider a Gaussian analogue obtained as follows.
Replace 1/x by ]//1 in the arguments of p,(+). Approximate the Poisson (1)

density by N(4, ]/Z), and then standardize to zero mean and unit variance.
Then an analogue of (5.7) is the claim that if || ¢, then there exists ¢'>c¢ such
that

X" @x+0) =M, [d(x—c)+d(x+c)],
where ¢ is the standard Gaussian density.

Proof of Proposition 5.5. The argument involves consideration of several cases
and is outlined in Appendix 1. The ingredients are strict unimodality (log-
concavity) of x—p,(x) and the bounds on Poisson probability ratios given in
Proposition 1.7.1.

We need also a more specific bound on the tails of the derivative p)(x)
away from the mean A.

5.6. Lemma. Suppose A= 1. Given constants b=0, c>bv 1; if [y| = 2cAY?, then

/A 2P, A+ Y S M, P, (2 +y —csgn(y) A1),
5.7. Corollary. Suppose A=1, c22bv 2. There exists M =M, . such that:

0

If t2a+cit? |

t

S";u b

—iz| i)l ds=Mp,(t —cA2)2).

)L_S

b
Sita py(8)dsEMp,(t+cAt?/2).

t
If 0st<l—ci'? |
0

Proof (of the lemma). Write s for y/A/2, then

d
b “ 1/2
S ds p}_U-"l‘S/l ) B pr)’(/’{-i—S/ll/z) h(S) (59)
Cp,(A+(FAY?) h(sFe) ‘

d - 1/2
Epl(lﬁ—(sq-c)/l )

where J
< 172 {’
ho(s) =W (A+s2 2+ 1) ~logh= [ (e~ — (1 +5)=@rst/+ “)T.
0

d ; .
Here we have used integral representations of tp(z)zd— log I'(z) and log/ given
V4

in Lebedev (1972, §1.3). It follows that h(s) is log-concave and that s—h(s)/
h(s —c) is decreasing for s>c. Thus, for s>2c, h(s)/h(s —c)=<h,(2¢c)/h,(c), which
may be bounded for ie[1, co) using asymptotic expansions for ¥ (Abramowitz
and Stegun, 1955, p. 259). A similar argument applies for s< —2c. The first
term on the right side of (5.9) may be bounded using Proposition 1.7.1 and the
techniques of Proposition 5.5. [
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5.3. Growth of Marginal Densities and Bayes Rules

The next result is used to show that the marginal density n(x) of P(d1) grows

by a bounded fraction over distances of order ]/ x (i.e. one standard deviation
if A=x). Lemma 5.9 has a similar objective, but explicitly includes a growth
term for dp(x).

5.8. Lemma. If d,, is generalized Bayes for P(d1) and satisfies
dp [(X)Sx;+M(x; v 1)1/? (5.10)
then there exists a constant C such that
n(x+ae)/n(x)= Cexp(Maf(x;+1)"*)  a,xeR?_.

Notational Conventions. For yeR%, I'(y)=III'(y), n(y)=p,/[(y+1), d;(y)=
Py/Pyep 1=(1, ..., 1).

Proof. Suppose that yeZ, and O0<c<1. We first show that n(y+ce,)/z(y) and
n(y)/n(y —ce,) are bounded. By Holder’s inequality, for y =1,

7(y) <CF(y+1~C€1) (dP,l(y+(1 —5)91)>CSC, (dp,1(Y+el)

n(y—ce,)” I'iy+1) yit+l-c yi+1 B

since a—dp ;(y+ae,) is increasing. A similar argument applies for n{y+ce,)/

n(y).
It remains to prove the result for xeZ,, acZ™*. Using (5.10), we have

£ dp (x+iey)
n(xchlel)/ar(x)—il:[1 1
S(A+M/(x, + DY <exp(Ma/(x, + 1)), O
5.9. Lemma. Let d be generalized Bayes for P(dA), Lipschitz and satisfy (5.10). If
0=a<bgx; are such that b/(x;—b+1)"* <M, and (b —a)/(x;—b+1)""*=¢, then
(d(x)—x)* n(x —ae;)
x;v1l w(x-—bey)

<C(My, M, o). (5.11)

Proof. It suffices to prove this in the one-dimensional case (p=1) for x=1.
Introduce rx(x):]/;{d(x)/x—l}§M in virtue of (5.10). Since d, is Lipschitz
oc(x—l—l)—a(x)ng/]/;, where M, =M, (M) and hence the left side of (5.11) is
bounded by

w?(x) xﬁa (1+%%>

y=x—-b+1

<a’(x) exp {[a(x) +

bM, ] b—a

<
(x —b+1)}2 (x_b+1)1/2}:C(M0,M,8)- O
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5.10. Remark. The posterior risk of d, satisfies some useful identities (proved
by direct calculation exactly as in (1.2.1)):

E[(4;— dP, i(x))z/li | x]=D; dP, i(x),

2 ) (5.12)
E{(A;—dp ;(x)) \x—ei]:dP,i(x) D dp ;(x).

54.

We now begin the proof that d, is admissible in 2, (this suffices for Theorem
1.3, by Remark 2.1). Let ue% and extend u to be defined on Rf, by linear
interpolation and then to IR? by reflection in the co-ordinate axes. Let r(x)

=1/x (=(xv 1)/, and define a smoothed version & of u by (x)=(u* L) (X

where 1, denotes the uniform probability density on H[ 1, 7,]. Finally let
Q(dAy=u*()P(d). =1
In view of Remark (2.1), we write (2.2) in the form
B(dp, Q) =By, (@)=Y, Y [dp:(x)~dg :(x)1%q,_./x!, (5.13)
i xeT;

where as before T,={xeZ?" : x;>0}. The argument initially parallels that of 1°
of I §5, so we give here only an outline of this part. The first task is to express
dy—dp in terms of the prior density &, with result

[dp, i(x) ‘“dQ, i(x)]qu—ei
<4[(2—dp, () A7 [A(4) —E(@(2) | x —e)]* e~ 2*dP()). (5.14)
To express the right side in terms of oscillations of #, we employ the bound
#(A) —E(@(2) | x —e) <2(a(4) —a(x))* + 2E[@(2) —a(x)* | x —e].  (5.15)

It is convenient for the Poincaré inequalities to allow x to range continuously
in T. As a result, replace the sums on xe€T; in (5.15) by integrals on
{xeR?”:x;,=1}, which is denoted S,. Thus, in (5.15), xeS; and x is shorthand
for [x]. The “surplus” conditional expectation on the right side of (5.15) is
removed via the following identity, which flows from (5.12) and Fubini’s
theorem:

E[@(2) —a(x)* | x —e] fdP() (A —dp,i(x)* A7 ' P, (x)

_d ,(_) X;

~REEE Dty () f(@(2) — (X))prz@)dl’(i),

where the coefficient in front of the integral is uniformly bounded for xeS§;, in
view of Assumption A. Combining now the pieces, we finally obtain the
following analog of I (5.4) as a bound for (5.13):

2, —d (2)?
My de(i){(—# J dx[a0) ~ (1P

i

+jdx[u D)= [(i %)’ +x)\/1]p,1(26)} (5.16)

i i
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5.5.

Fix i=1. We now apply the Poincaré inequality of Corollary 5.2 to bound

IM= [ dx[u(x)—#(2)]*p,(x), and
S

1 2 (5.17)
D= [ dx[ia(x) —a(2)]* [(1_‘2;1_);&
5 L

] p;(x)
in terms of integrals of |Duj?.

To discuss these simultaneously, it is convenient to introduce the unimodal
functions Q;: R | »IR , as follows. The first column applies for all j in IV and
for j=2 in I'¥’ and the second column for j=1 in I®. For A= 1,

pa(x), G+ p,(x) i (x—2)2=c4,
= ’ (5.18)
p;(4), 6p;(4) if (x—2)%<chi. :

while for 1 <1,

Qj(x):{p’l(’)‘c)’ x+2)p,(x—1) if x>2,

pa@)y 4p1(0) lf x<2>

except that in both cases, we set Q;(x)=0 whenever xell;S, (II; is projection
on the j® coordinate axis). Note that in (5.18), ¢>2 is chosen to ensure the
desired unimodality. Setting Q(x)=1I;Q;(x)), it follows that IV, and I now
are both bounded by expressions of the form

JL(x) —u(2)1*Q(x) dx,

and hence are primed for application of Corollary 5.2.
Let r(2)=(Av1)'* for each j. The goal now is to obtain bounds for
quantities on the right side of (5.6) in Corollary 5.2. The claim is that

@ s—A |
Lj)(X)—é[c (/lV 1)1/2 dQJ(S)
<CpYP(x—c, VX)+p,(x+e, VX)),  x AcR™. (5.19)

for some constant ¢, >1. Here p{**(z)=p,(z v I(j=k=1)) and the superscript k
refers to I®. Note: Throughout Sect. 5, we make the convention that a
negative argument z causes p,{z) to be replaced by p,(0).

The proof of (5.19) necessarily splits into cases dictated by the various
forms of B, given at Remark 5.3. These are sketched in Appendix 2. For 1>1,
the basic technique is to express Q)(s) in terms of a polynomial in (s —2)/A'/?
multiplied by p’(s) and then apply Proposition 5.5. For 1<1, the Poisson tails
decrease “super-exponentially”, so that the desired bounds may be obtained
directly, in combination with Lemma [.A.1.
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5.6.

From (5.19), Corollary 5.2 and Remark 5.4, it follows that the i=1 term in
(5.16) is bounded by

Cj"dP(l)ZRde[Dju(x)]z(ijvI)Zpl(x%—ac’]/;)

+ 27N, —d, (AP, (x +oc Y x), (5.20)

where ¢ ranges over { —1,1}?, and P, (z)=p,(z v I{i=1}) for zeR . Since d, is
Lipschitz, (1, —d,(A))* <M [(4, —x,)*+({d,(x,) —x,)*]. It follows from Proposi-
tion 5.5 and the definition of p; that by increasing c, (5.20) may be bounded

by
dexZ[Dju(x)]z{l (—d(;cl)—lx} (AP, —)—l)Zplx—l—ac]/x) (5.21)

For definiteness we consider j=p. The inner integral equals

Z{n x+co ]/x)+ (x,+14co ]/x n(x+e +co']/x)} (5.22)

Repeated application of Lemma 5.8 over successive co-ordinate directions
bounds (5.22) by Mn(x ~c]/x) +M(x, ,—cVx,)n(x+te, —c]/x). Insert this
into (5.21) and appeal to Lemma 5.9 to obtain the bound (after increasing c)

C{dx[D,u(x)]*{n(x —cy/x)+(x,+1—cy/x)n(x+e,—c)/x)}. (5.23)

It is now convenient to discretize (5.23): at the expense of increasing C (by
Lemma 5.8), replace each term x;—c(x;v 1)/ (when positive) by the smaller
integer {[x;]1-+[ —c([x;1v1)"*1} v 0, although we will not show this explicitly
in the notation. For assumption A(b), it follows that m(x)+(x,+1)n(x+e,)
<Ma,(x), where a,(x)=a,(x’, x, v 1). This bounds (5.23) by

Cfdx[D,u(x)]*a,(x—c)/x). (5.24)

Since u is a linear interpolation of a lattice function, D,u(x) is a convex

combination of forward differences D, u([x]+7,) where the entries of 7,
p—1

= Y 1;¢; each range in {0,1}. Here D u(x)=u(x+e,)—u(x), while D, u(x)
1
=u(x) —u(x —e,). Since bp(x)zdp(x—c']/x) is constant on lattice squares we
may estimate (5.24) by
C Z Y [D; ulx+1,)]1%b,(x)= CZ Dyu(x))* Y. b,(x =7, —e,),

xeZy T(p) ()

<C Z (D, u(x))* b,(x—1),

xeTp

by Lemma 5.8 and Assumption A, where 1=(1,..., 1) and b,(x) is extended to
b, (x v 0} if x; <0 for any i.
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Repeating the argument from (5.22) onwards for each i=1,...,p, we find
that (5.21) is dominated by

CY, Y (D7 ux)*a(g(x)), (5.25)
i xeT;
where g(x)=(g,(x,), ..., g,(x,) and g, (x)={x —1+[—c'(x —1) v H'*]} v 0.
In conclusion, we apply Lemma 3.10 and (3.2) to g(x) to conclude that
(5.25) can be made arbitrarily small under the recurrence hypothesis. It follows
that dp 1s admissible. [

5.7. Boundary-positive Estimators

We discuss briefly the modifications needed when assumption (1.1) fails by
virtue of d,(x) being positive for some x with x,=0. Such estimators can arise
as Bayes estimates for certain conjugate priors, or for priors the convex hull of
whose support does not intersect {4: 4;=0}. The results will be applied to the
admissibility classification of linear estimators in the next section. For sim-
plicity we write H;={x: x;=0} and consider only rules satisfying

d(x)£0 on H,=1infd;(x)>0. (5.26)
H;
For definiteness, renumber the coordinates so that d,(0)=...=d,(0)>0
=d;, 1(0)=...=dp(0). Replace (1.1) by
d,(x)=0=x,=0. (5.27)

Theorem 1.2 remains valid if g; , is defined as in the following paragraph. If in
Assumption A, condition b) is enforced only for i=J, then Theorem 1.3
remains valid also.

In outline, the proofs are modified as follows. Consider first the effect on
the quotient representation of Proposition 1.1. In the proof of Proposition 1.1,
we may take £, ,(d4) as the probability measure proportional to e™*4i71dQ, (7)
and deduce weak convergence to a p.m. &, (d4) as before. Defining now w, (d1)
=et¢,(d2) and Pix=/e""i*A,w,(d%), one obtains the representation d,(x)
=P1,%/P1,x-.., Tor all x in Z7% . For other i<J, one can proceed analogously to
obtain w,{dA} and p; ., furthermore, the family {w,: i<J} is compatible in the
sense of Brown and Farrell (1985 a): for xeZ%, AT Ew(dA)=A*+w,(d2). For
i>J, we may use the representation d,(x)=p, ,/p, ,_,, whenever d;(x)>0 (ie. if
x¢H,;). The coefficients a, , are now defined using p; ,.

Theorem 1.2 is proved as before. For the analog of Theorem 1.3, we
suppose that d satisfies (5.26) and has quotient representations for measures w;,,
i<J as described above. The main change in the proof is forced by the need in
(5.13) to sum over all xeZ?, rather than T, for i<J: 9, is modified accordingly
and throughout the proof, dP(4) is replaced by A, w;(d4) in the i inner sum.
The argument then proceeds as before with the addition of appropriate bounds
based on (5.22) to handle the extra sums over H,.
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§6. Applications

This section provides some simpler sufficient conditions for (in)admissibility
and discusses applications of the main results. Lemma 6.1 is a particular form
of the Nash-Williams test for recurrence, (Griffeath-Liggett 1982, Lyons 1983)
which is appropriate for estimators with approximate simplicial symmetry.

This is then combined with the main theorems 1.2 and 1.3 to derive simple
comparison tests for (in)admissibility (Proposition 6.2, Corollary 6.3). Corollary
6.3 is used to settle a number of comjectures and to give an admissibility
classification for linear estimators. We go on to discuss the use of the Royden-
Lyons transience test in deriving some of the results, and mention a connection
with unpublished work of Charles Stein.

In the Nash-Williams terminology, the next lemma Jumps together all sites

14 14
in the set An:{x: Y xizn}, neZ . In what follows, z=[x|=) x,.

i=1 1

6.1. Lemma. Let a(z)= ). Y a;(x), and assume conditions A.

Ix|=2z i

If Y 1/a(z)=oo0, then d, is admissible. (6.1)

m—1

Proof. Let u, (x)= Z 1/a(z+1), where ¢ —[Zl/a(z)]_l. Now

Y Y a(®[Du,(x)]*=c,—~0

i xixi=1
as m— o0, and u, €%, so min|u|?=0 and d, is admissible by Theorem 1.3. [J
@

Of course, if P(d/J) is exactly simplex symmetric, the condition (6.1) reduces
to that of Corollary 4.2, but is then less general because of the conditions A
needed for Theorem 1.3. We now apply Lemma 6.1 to derive a comparison test
analogous to Corollary 4.3 which applies in situations of approximate sim-
plicial symmetry and also in certain quite asymmetric cases {sec the discussion
of linear estimators below). For an arbitrary function

e Z —-R", let E(z)=¢(z+1) ]_[ (s)/s for z=0.

6.2. Proposition. (i) If there exists n>0 and a function g(z)>0 such that
d,(x)=nx, and Zdi(x)g j_(z)z o with Z 1/E(z)< oo, then d is inadmissible.
zTp

(i) If d is genemlzzed Bayes, assumptlons A hold and Zd (x+e)=Ze(z+1),
with Z 1/E(z)= o0, then d is admissible.
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Proof. (i) For each x, n(x)/n(x —e)=¢(z)/z+p—1 for some i. Thus n(x)=c,g(z)

and a,(x) = ¢, nx, g(z), where g(z)zﬂf—s—fl()i)_T. Thus
Y La () [Du(x)1*2 e Y gl % D;utx)]* (62)

As argued in §4, the infimum of the right side of (6.2) over % equals the
infimum over ¥~ of

® /z+k—1
cz( k—1

z=1

) 2(2)(Dv(2))? i (DL(Z))

The result now follows from Theorems 1.2 and 1.1.3.
(i) To apply Lemma 6.1, note from the monotonicity of d; that

az)= Y Za(x Y, n(x) Zd(x)<8(z+1) Y ().

jxj=2 Ix|=2 |x|=z

Use the lattice structure of the positive orthant to find

Y m)Xdeixte)= Y Yax+e)g+l=z Y n(x).

|x|=2z—-1 i |x|=z—1 i |x|=2

Iteration together with the hypothesis yields d(z) <n(0) E(z), which suffices. O

Remark. A variant of the argument for (i) applies in case d(x) satisfies

d;(x)
x,

i

1le0(1l/z) as z—oo0, (6.3)

which obviates the need to study the product E(z). If x and x’ are points with
Y. x; =Y x;=z, then there exists a path from x to x' of length at most pz steps
lying wholly within {x:z—-1<3Y x,<z+1}. If (6.3) holds, it is easy to check
that [a;(x)/x;]1/[a;(x")/x}] is uniformly bounded. Now if ¢(z) is any selection of
the multifunction z—{a;(x)/x;; x s.t. Y. x,=z, i=1,...,p}, then by arguing as
after (6.2), we conclude that d(x) is inadmissible if

21/ (2% c(2)) < 0. (6.4)

6.3. Corollary. 1) If di(x)2yx; for some n>0 and Y d(x)zz~(p—1)+3, for
large z and some §>0, then d(x) is inadmissible. t
2) If di(x)/x;—1|€0(1/2) and Y d,(x+e)=z+1+3 for large z, then d(x) is
inadmissible.
3) If d is generalized Bayes, assumptions A hold and Zd (x+e)<z+1 for
large z, then d is admissible.

Proof. The proof of 3) of the Corollary is immediate from Proposition 6.2. To
prove 1), note that for large z and some §'¢(0, ), &(z)/z=(1 +6'/z), and hence
that E(z)= CzII{(1+6'/w). Consequently, for some >0, E(z)=Cz'**® for z
large, and this yields 1). The same argument, in conjunction with (6.4) estab-
lishes (2). O
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6.4. Remarks. 1) All the conjectures of Brown (1979) relating to the simulta-
neous estimation of Poisson means for the present loss function may be easily
verified using the Corollary.

2) Hwang (1982) calls an estimator 6° a Semi Tail Upper Bound (STUB)
on the class of admissible estimators in direction 1=(1,...,1)} for the loss
function L_, if every estimator satisfying

Zdi(x"‘ei)zzég(x“'ei)

for all large x is inadmissible. He shows that estimators of the form considered
by Clevenson and Zidek (1975): 6§%(x)=[1—¢/(p—1+2)]* x, are such STUB’s
for £<p—1. Since Y 6*(x+e)=z+1+0 where 6=p—1—7, statements 1) and

2) of Corollary 6.3 essentially say that 65 are STUB’s. Hwang also conjectures
(§4) that the STUB’s approach a “dividing line” between admissibility and
inadmissibility. This conjecture is established for the 6 STUB’s by 3) of the
Corollary.

Linear Estimators. We shall apply the preceding results to identify admissible
linear estimators of the form d(x)=Mx+v under L_,. As Brown and Farrell
(1985b) have given an exhaustive discussion, we shall for simplicity restrict
attention to M nonsingular and y> —1, the latter condition being imposed by
our restrictions (1.1) and (5.26).

As is seen in §2, admissible estimators are necessarily pointwise limits of
Bayes estimators. In view of the representation of Proposition 1.1, admissible
estimators must therefore satisfy

di(x+e+e)d(x+e)=d(x+e+e)d(x+te) Vij; xeZ”.

For linear estimators this forces M?'=DM, where D is a diagonal matrix with
entries di=Zmﬁ. So if M is non-singular, it must be diagonal.

We therjefore need only consider estimators of the form d,(x)=c¢;(x+a,),
with ¢,>0. If any «,;<0, then d,(x} is replaced by d;'(x)=d;(x)v 0. These
estimators are then (generalized) Bayes with respect to the conjugate priors
Pda)=]]Apcie i =e0d}, Assume that the indices have been permuted so

that ¢, =c,=...2¢,>0. If there exists a subset I of indices such that the
estimate formed from the components d;(x;), i€l is inadmissible in the [I|-
dimensional problem, then d is inadmissible in the original problem (Remark
3.6). It follows then from Corollary 1.5.2 that d is inadmissible if c¢,>1.
Conversely, Remark 2.2 permits us to ignore components with ¢;<1, since
these are proper Bayes rules in the component problems. Now suppose that
c,=...=c;=1 and that o, 2o, =... 2 a,. If ,>0, then inadmissiblity again fol-
lows from 1.5.2. More generally Corollary 6.3 forces inadmissibility whenever

J
Y a;>1—J. Conversely, admissibility of d(x) follows from Corollary 6.3 if

i== 1
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In this case one can also use the Nash-Williams criterion for recurrence of
a reversible Markov chain (see for example Lyons (1983)) if ¢, =1, ¢, <1; by
taking 4, ={x:x, =k} in Lyon’s setup.

Connections to Tests of Recurrence/Transience. 1. It was mentioned earlier in
this section that the admissibility test (6.1) could be viewed as a consequence of
the Nash-Williams test for recurrence. A test (in fact a characterization) of
transience for reversible Markov chains is given by Lyons (1983) in terms of
flows. We show here that this leads to the inadmissiblity test of Corollary 4.2
in the simplex symmetric case, and more generally to a converse of Lemma 6.1.

Adopting Lyons’ model, regard the lattice points of Z% as being connected
by tubes parallel to the coordinate axes, of length one and cross sectional area
a,(x) for the pipe from x to x—e;. A flow on Z% (emanating from 0) is a
sequence {u,,, x,yeZ’} such that u,= —u., ) 1y, #0, Y u, =0 if x+0 and

¥y y
u,,=0if x and y are not neighbors in Z% . Having in mind the interpretation
of u,, as a volume rate of flow, define the (kinetic) energy of the flow by
Y uz jo, ,, where o, , is defined from o,(x) as in Sect. 3. The Royden-Lyons

X,y

X,
teyst states that the (discrete time) chain X, associated with «, is transient if
(and only if) there exists a flow of finite energy.

Define a flow in the following concrete way. Suppose that 1 unit of fluid is
introduced per second at 0. In each second, all fluid at a node x is re-
distributed amongst nodes x+e,, i=1,...,p in proportion to the cross-sectional
areas a, .. Lhus if v(x) denotes the volume of fluid passing through x per
second, then v satisfies

U(X) :Z(ax—~ei,x/zax—ei,x——ei+ej) U(X —ei)' (65)
i j
The volume of fluid passing from x to x +e; each second is
ux,x+ € :(ax,x+e¢)/z ch,x-#ej) Ux’
j

and it is immediate from (6.5) that u,, defines a flow on Z% . Note that since
the ., are known and v,=1, (6.5) can be solved recursively and u,, and its
energy explicitly evaluated. This approach is perhaps conceptually simpler than
that of solving the boundary value problem 2 of Theorem 1.4.

Suppose temporarily that a;(x) is derived from a simplex symmetric prior.
Then from (4.1) a,(x)=c(z)x;, where c(z)=b(2)(z—1)!/(z+p—1)! and b(z) is
defined below (4.5), and (6.5) simplifies to

X;
U(X)—:; Hpﬁv(x‘"ei)a XGZ’; —{0},
which is clearly solved by v(x)=(p —1)!/(z+1)...(z+p—1). The corresponding

flow has u, ., , =(x;+1) /[(z-{- 1) (Z+ll7)], and has energy
» i p__
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Yy _ - uazc,x—ei . 1\

=23 Zl: () =2(p 1).;1/bz.

Thus, Lyons’ test yields the same criterion for transience as did Theorem 4.1.
The flow u,, constructed above does not depend on the particular simplex

symmetric coefficients a;(x) used in its derivation. It might therefore be used

for more general g;(x): indeed it leads to an alternate proof of (1) of Corollary

6.3. The encrgy may be written as

Y ave inz/[zz (Z:izl>ai(x)},

z Ixl=z

which is bounded by cZz P ave 1/n(x), since d;(x)=nx;. Now d(x)-1=z—

|x]=2z
1—
(p—1—5) implics that 7(x)2 [| [1 - (p 0

r=1

which entails finiteness of the energy.

2. In unpublished notes from 1964, C. Stein used an abstract form of his
necessary and sufficient condition for admissiblity (1955) to derive a characteri-
zation of recurrence for irreducible Markov chains on countable state spaces
which in the reversible case reduces quite directly to the Griffeath-Liggett
characterization. Thus our recurrence/transience tests for admissibility in a
concrete statistical problem can be viewed as consequences of Stein’s abstract
characterization of admissibility.

; )]gcz‘(”‘l“”for some &' (0, 8),

Appendix A.1

Proof of Proposition 5.5. Suppose first that A< 1, and k=1. Writing L for the
left side of (5.7), (5.8), it is clear that L<Mp,(0) if x+0=<k+1. If x+J>k+1,
then

/\

=x+511x+6 2T+ 8-k M, p,(x—c'Y/x).
Similar reasoning applies if k=0.

Suppose now that A=1 and fix ¢. The numbers x—c]/x,x,x—i-c(xv 1)
partition R* into four (possibly degenerate) intervals, and we consider these in
turn.

If x—c})x<Ai<x, simple algebra shows that (x—2A)/)/A<c*2+(c2
+c*/4)2, and that A<x+c'Yx<A+M, )/ Note from Proposition 1.7.1

that
P (%) <@“ﬂﬁy”<mz
pGAmy 2~ \ A N

1/2

>

so that

l —
pl( ) —, pl(l—kmc,c'ﬂ)éMc,c'pl(x+cll/x)'

(f__i)kp (x+8)=M, ,— 2
* = Gtm V)

/i
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If x<A<x +c]/x v 1, and x>1, then the argument runs parallel to the
previous paragraph. If x<1, then

P4

7.+ )P;()+C)<c(1+c)“pﬂ(x+cl/ﬁ)
2,

—A
pilx+o)=c*
( Vo ) g
since A<x+c'Yxvi<itc.

If A=<x—cV/ x, consider first the case in which x§2c’]/ x. Then x<4c¢* and
it is easy to check directly that LEM_ . ;0 ,(x —C' ]/x). If x>2¢ ]/x, introduce
z=|x —/ll/]//l, and note that for some ¢>0

— — ¢ —c)Vx
R [

[Vl Y x—e/x Vi

Taking logarithms and appropriate derivatives shows that for z=¢, 221,

) @ ‘cnf

klogz—(c' —c)(A+21/7)"*log (1 +i>

ﬂ
sklogz—(c'—o)y1+zlog(l+2)=M, ..

Finally, assume x+c}/xv 1 <A For x>1 we have

X c' c'—ayvx
[ ( +T)] . (ALl)
lf Vx
Now if 1=<x<1/2 and ¢’ —c>k/2, this is bounded by

B k
)k/z (x )k/z (f)(c A
RV A

2
<M, x¥227"¢ C)V_+2<M

Lip,(x+c f)

M

,
cc

while if 2/2<x< 4, and z=(x —A)/}/4, (A.1) is bounded by

M|z (1 =2y D OVE< M |zl e <M,

Ifx=<1,

[x—2[¢ pycte)_[x =2 x—!—c’)C'—c -
/2 b+ /] ( M, o if ¢ —czk/2.

A

Appendix A.2
» Proof of (5.19).

) A=, x>A+AY2
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Here B, =[t,, o). Suppose first that ¢ >1+c¢ ]/ 4, 50 that

L;(x)

)i(s)) ds

tx

W

where for seR*\Z™, Q (s) 18 defined from (5.19) by replacing x by s, and using
for p,(s) the form e“l/ls/l’(s-f—l) Differentiation shows that for s>A-+ci'/?

0, ()= A" [(s—1)? +s][ pl(s)] so that for all i it suffices to bound ex-
pressions of the form

©ls—1

I

tx
(Corollary 5.7). From Remark 53, ¢, —% VAZx+i—(x+12 —% Vx=x

b d c ~
<_d—s PA(S)) dssM, .p, (tx D) -l/'l),

—c'1/§ Thus if x—c'}/x 24, then L;(x)<Mp,(x —c'}/x), while if A—¢'}/2<x
x <A, then L (x)SMp,(HZMp{(x—c V/x), where we have used Propo-
s1t10n 5.5.
Suppose now that x>1+}/4, but t,<A+c}) i If 0<t =x+i—(x+)"?
then £,>4—c}/4 In this case, from Definition (5.18)

Li(x)= j
l+CI/_

) (s)]ds+6¢"p,(4)

<M |p, +§1/1) 0,0 | SMpPx -1/,

since A<x<A+3c}/A
i) A=1, x<A-AY2,

Here B, =[0,1,1nT Suppose first that t, <1—c]/4 and x=4/8. Then as
before, by extending Q; to Q; defined for real s, and differentiating, we find

s) (s)yds,

I

|

0

which is in turn bounded by terms of the form
A—s$

Wb{d p;(s}ds_pl<t += )L)

Since x> /8, tx+§]/1§x+%+(x+%)1/2+c]/2x <x+c"YALA+¢"Y 2, so that
P, (tx+%]/1)§pl(x+c”1/;). The proof in the case tx>/1—c]/; is similar to

the corresponding part of (i) and so is omitted.
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If txgk—cﬂ and 0=x<4/8, a different argument is used, for then ¢, =x
+3+x+DYPZ2(x+1)< /2, and L(x)<A"?Q,(t,), which in turn is bounded
by terms of the form A¥p,(x+27/xv 1). Now if ¢>2

pPAH2VX) oy (x+c(1/'>?2><;‘2m
pix+c/x) e

x\€—-2)Vx—§ ¢ \e=2vx  MxF
<xf|= — — ’
=) (HV?) Sgeor =t

Finally,'if x=0, B,=[0,1], and it is easy to check that L;(x)<Mp,(c,) for
some positive constant c,.

i) A=1, A—212<x <A+ A1

Here B,=Z _, but a bound for L (x) in terms of pl(x+c”]/;)+pl(x—c“]/;)
is easily obtained by combining the methods of steps (i) and (ii).

iv) A<l j=1

In what follows t,=x+3—(x+4%)"?, and S denotes the closed convex hull
of the support of the measure defined by Q,. From the definition of Q, it is
clear that

LP(x)<4p,(0)|AP{0eB NS} +4p,(0)|2— 1" {2eB.}
+ Y Is—AP(s+1)p,(s—2).

SZtxv 3
If t,£b+3, then the above is trivially bounded by M, p,(0). If ¢, >b+3, it is
bounded (using L.A.1) by M, p,(t,—4—~b)<Mp,(x ~c]/x) for appropriate c.
A similar argument is used for LM(x), except that if r,=1, so that
S=[1, o0), then for t, £b+3, a bound by M, p,(1) is possible.
The situation for i=2 is entirely similar to that of L'P(x).

Appendix A.3
Proof of (4.6). First,

1A=y, (@) +p Y x/MPx,

|xl=z
minx; 2 1

z p—1
§pyp#1(z)+pz<21/x) SC,zlogl 'z
1
For the converse,

12 =p Y, x, /15 (x;v 1)

[x|=z

2z Z 1/Hf_1(xj\/1)22(10g2/p)"‘1gc;zlogf’—lz. O
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