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Summary. We establish a connection between admissible simultaneous esti- 
mation and recurrence of reversible Markov chains on ~P+. Specifically, to 
each generalized Bayes estimator of the mean of a vector of p independent 
Poisson variables for a weighted quadratic loss, we associate a variational 
problem and a reversible birth and death chain on Zv+. The variational 
problem is closely related to the Dirichlet principle for reversible chains 
studied recently by Griffeath, Liggett and Lyons. Under side conditions, 
admissibility of the estimator is equivalent to zero infimal energy in the 
variational problem and to recurrence of the Markov chain. This yields 
analytic and probabilistic criteria for inadmissibility which are applied to 
establish a broad class of results and previous conjectures. 

w 1. Introduction 

Consider the idealized statistical problem of estimating unknown means )v i of 
each of p Poisson populations based on a single observation X~, i = l  . . . .  ,p 
taken independently from each population. This paper develops a connection 
between this problem and the recurrence properties of certain reversible Mar- 
kov chains defined on the sample space ZP+ of the observations {Xi} and 
applies analytic and probabilistic methods to discuss optimality of statistical 
estimators. 

Our formulation of the statistics problem is decision theoretic: an estimator 
p 

d(x)=(dl(x ) .... ,dp(x)) incurs a loss L l(d(x),)t)= ~ ~l(di(x)-,~i)2 if 2 =  
i=1 

(2~, . . . ,2p)>0 is the (unknown) value of the parameters and x=(x~,.. . ,xp). 
The estimator d(x) is evaluated by studying its risk function R(2, d) 
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= E x L  l(d(X),,~), where the expectation is taken assuming independent Pois- 
son (2i) distributions for each Xi. A (weak) optimality property of an estimator 
is that there not exist another estimator d'(x) with R(2, d')<R(2, d) for all 2>  0 
and strict inequality for at least some 2: such estimators d are termed ad- 
missible. In principle, one would not use an inadmissible estimator, since a 
uniformly better rule exists. The aim of this work is to provide probabilistic 
descriptions of the class of admissible estimators and explicit criteria for 
determining (in)admissibility in the Poisson problem. 

C. Stein's (1956b) celebrated discovery that sample averages are inad- 
missible for estimating p > 3  normal means under quadratic loss established 
admissibility as a significant qualitative concept. Subsequently James and Stein 
(1960), Efron and Morris (1973) and others showed that very substantial 
savings in risk over sample averages were attainable by "shrinkage" estimators 
having intuitive interpretations. The situation is the same for simultaneous 
estimation of parameters of independent distributions with (infinite) discrete 
sample spaces: the typical and simplest example being the Poisson problem 
introduced above. Thus Peng (1975) and Clevenson and Zidek (1975) showed 
that the simplest (and maximum likelihood estimator) d(x)=(x  I . . . .  ,xp) was 
inadmissible in dimensions p > 3  and p > 2  for losses L o (discussed later) and 
L_I  respectively. Much recent frequentist work in developing improved esti- 
mators and measuring the resultant savings in risk for the Poisson and other 
discrete problems is surveyed by Ghosh et al. (1983). Morris (1983) catalogues 
some significant practical applications of shrinkage methods, including a num- 
ber based on discrete data. Berger (1985) gives a comprehensive survey of 
shrinkage theory from both frequentist and Bayesian perspectives. 

The program of the paper is as follows: estimators that are Bayes relative 
to a finite prior distribution on ;t are typically admissible. The converse is 
almost true: admissible rules can be described in terms of generalized Bayes 
rules - rules obtained from a possibly infinite prior measure on 2. Roughly 
put, the search for admissible rules may thus be confined to the class of 
generalized Bayes procedures. A reversible Markov chain {Xt} on Z~ is then 
associated with each generalized Bayes procedure, d e, say. The main step is to 
recast the question of admissibility of d e as a variational problem familar in 
the probabilistic potential theory associated with the chain {Xt}. Finally one 
shows that admissibility of d~ is equivalent to recurrence of {Xt}. 

This program was formulated and executed in the multivariate normal 
estimation problem by Brown (1971, 1973), building in part on some heuristic 
ideas of Stein (1965). His most striking example is the association of Brownian 
motion with the maximum likelihood estimator d(x )=x  and the identification 
of Stein's inadmissibility phenomenon with the transience of Brownian motion 
in p > 3  dimensions. These remarkable results were complemented by Brown 
(1979a), Srinivasan (i981) and Johnstone and Lalley (1984). 

That such a theory could be developed for estimation of a single Poisson 
mean was detailed in Johnstone (1984, referred to as I). The one-dimensional 
case has the virtue of technical simplicity. However, several essential features 
arise only in the multivariate setting that forms the focus of this work. These 
include (i) Stein's phenomenon: the inadmissibility of natural estimators in 
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combined problems, (ii) the dearer roles of probabilistic elements such as 
reversibility and potential theory, including general tests for recurrence and 
transience, (iii) the shift in analytic methods from those of ordinary differential 
equations to those of elliptic partial d.e.'s, notably maximum principles and 
(simple) apriori estimates. At the level of statement and discussion of results, 
this paper may be read independently of I. For details in proofs, we occasion- 
ally refer to I to avoid duplication and to indicate which one dimensional 
arguments do (and do not) generalize. 

Outline of Results. We begin with the reduction to generalized Bayes esti- 
mators. That admissible estimators of the natural parameter of an exponential 
family in tR p must be generalized Bayes goes back to Sacks (1963), Brown 
(1971) and Berger and Srinivasan (1978). The corresponding result for esti- 
mation of the parameters of independent power series distributions such as the 
Poisson on Z~ is less clear cut (Brown and Farrell, 1983 a). In order to avoid 
complications inherent in their general theory, we consider only estimators 
satisfying 

di (x)=O~x,=O.  (1.1) 

This assumption covers most estimators of practical interest. Section 5.7 
discusses some interesting cases in which (1.1) fails. To state the complete class 

P P 

theorem, we employ multi-index notation: Set Z~=~I2~ ', x!=I-[xi!  , and 
p 1 1 

A = ~ 2 ;  so that the joint Poisson density may be written as P~(X=x)=p~(x) 
1 

=e-aZX/x !. If P(d2) is a measure on IRP+ = [0, oo)P, define transforms 

px=je-"~.~t"(d2.), ~=p~/x!=~. p~(x) e(d~.). 

n x is the marginal density of the prior P. Let ei =(0 . . . .  ,1, 0 . . . .  ,0). 

1.1. Proposition. (Brown, Farrell). Suppose that d(x) is admissible and satisfies 
(1.1). Then there exists a prior P(d2) on [0, oo) v such tha~ d(x) is generalized 
Bayes for P: px < co for xEZP+ , and 

di(x)=px/P . . . .  /f xi>0. 

To characterize admissible rules, therefore, we need only investigate esti- 
mators having the above quotient representation. A direct proof of this result 
is outlined in Sect. 2. 

We turn now to the association of a variational problem with a generalized 
Bayes estimator. Stein (1955) and LeCam (1955) have shown for general statis- 
tical decision problems that a rule d(x) is admissible if and only if it can be 
approximated arbitrarily closely (in the sense of Bayes regret) by rules which 
are Bayes with respect to a proper (i.e. finite) prior distribution. This result 
(described in Sect. 2) connects an abstract minimization problem with each 
estimator d(x). In Sect. 2, we exploit the quadratic loss structure, the exponen- 
tial family form of the Poisson densities and the quotient representation above 
to derive from the Stein-LeCam result a much more concrete minimization 
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problem familiar in potential theory. Specifically, let d e be the generalized 
Bayes estimator whose admissibility is in question. With dp associate coef- 
ficients al, x =dp, i(x ) ~(x), for x such that x i>0  and i=  1 . . . .  , p. Here g(x)=rc~ is, 
as before, the marginal density of the prior P. Let ~ - -{u :  ZP+--+IR: u o = l ,  Ux--*O 
as Ixl~oe} be the class of feasible solutions, and write Diu x for the backward 
difference u(x ) -u (x -ez ) .  Here and throughout, it is convenient to define Ix] 

p 
=~]xz] for points x~7lp. For simplicity assume also that 

i 

supp P = [0, oo)P. (1.2) 

(Remark 3.7 comments on relaxation of this condition.) The first main result is 
a necessary condition for admissibility. 

1.2. Theorem. I f  dp(x) satisfies (1.1) and (1.2) and is admissible, then 

i n f ~  ~ (Diux)2ai,~=O. (1.3) 
ue  'ill i x : x i >  l 

As discussed in I and references listed there, the double sum in (1.3) has a 
"physical" interpretation as the power dissipated by a system of voltages u x at 
sites x~ZP+, when neighboring sites are connected by resistors parallel to the 
coordinate axes with conductances a~,~ for the resistor connecting x and x - %  
For this reason, we shall, with slight abuse of terminology, call (1.3) an energy 
condition. 

The major part of this work is devoted to establishing the converse and 
applications of this theorem under suitable side conditions. Consider first an 
important special case. The simplest results hold for those estimators dp(x) 
= ~ ( ~ x i ) x  which are generalized Bayes for "simplex symmetric" priors of the 
form P(d2)=M(dA)dO1...dO p, where A=~,21 and Oi=)vi/A. These priors are 
the analogues for the Poisson problem of spherically symmetric priors in the 
normal case: M is uniform on each fixed multiple of the unit simplex. For L_ 1 
the analogy is surprisingly strong, in view of the lack of any natural large 
group leaving the sets {2 > 0 : ~ 2  i =A} invariant. The resulting theory turns out 
to be essentially one dimensional, and Sect. 4 applies the univariate characteri- 
zation of admissibility derived in I to obtain sharp results in this simplest of 
multivariate contexts. Of course, the maximum likelihood estimator, and those 
considered by Clevenson and Zidek are included in this setting. 

The converse to Theorem 1.2 in the general case is proved in Sect. 5 under 
the following assumption. Subject to the earlier caveat concerning (1.1), this 
condition holds, to my knowledge, for all estimators proposed for this problem. 
The significance of its components and their analogy with the Ganssian case is 
discussed in the heuristics part of Sect. 5. Here we note only that the counter- 
example in w 7 of I shows that some form of growth condition on d~ (or de,~) is 
needed. However, assumption (1.2), that s u p p P = [ 0 ,  oe)p, is not required for 
the converse. 

Assumption A. Suppose de, i(x) is Lipschitz and that there exist increasing 
Lipschitz functions di: Z + ~IR + satisfying di(xi) <= x i + Mx~/~ such that 
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a) ]d,o i(x)-di(xi)lNM(x~ v 1) ~/2, 

b) de, i(x)/di(1)>=~>O if xi= 1. 

1.3. Theorem. Under (1.1) and assumption A, if the zero energy condition (1.3) 
holds, then d e is admissible. 

Methods of difference equations and probabilistic potential theory enable 
(1.3) to be translated into more perspicuous and/or checkable conditions. We 
shall, therefore, discuss these before turning to the applications of the main 
results. The first step is to set up the Euler-Lagrange difference equation 
belonging to (1.3). 

Regard 2g% as a lattice with sites connected by bonds parallel to the 
coordinate axes. Denote by 8x the collection of the neighbors of x which lie in 
~7~_. Define connection coefficients for x, y e Z~_ by 

�9 a i , x +  < if y = x + e  i [ aio,_ ~ if y = x - e i e Z v +  
%,y= for other y4=x (1.4) 

c~,~ if y=x.  
z~ -x  

Assumption (I.1) implies for all xeZP+, yeSx  that %,y is strictly positive. Note 
that %,y is symmetric: %y=%x. Let I]u]l 2 stand for the double sum in (1.3); it 
clearly also has the more symmetric form 

2 ]Lul[ 2 = ~ %y(u, -u~,) 2, (1.5) 
x , y  

where the sum need only be taken over those yeSx. 
Now suppose that infLlu][ a is attained by some function u. If v is an 

:u 
arbitrary function such that u+ev~~ for small ~, then on letting e--+0 and 
using symmetry of %,y, it follows that ~ vx Lu~ = 0, where 

x 

Lux= ~ %,y(uy-ux). (1.6) 
ye~x 

Thus u satisfies the Euler-Lagrange equation Lu=O on ZP+\{0). 
As is well known, a (continuous time parameter) Markov process 

{X~;t>0, P~} is associated with the difference operator L. The process X~ has 
state space Zv+ (the sample space in the estimation problem), and may jump 
from the point x only to one of its neighbors y~Ox, these transitions occurring 
at rates %,y. It may therefore be thought of as a multidimensional birth and 
death process. Thus, for h,L0, x + 0  and ye2gP+, Px(Xh=y)=cq~,yh+o(h ). Thus 
{X~} is as close to being a diffusion (such as occurs in the Gaussian estimation 
problem) as the state space permits. Since e~,y>0 for all yeOx, the process is 
irreducible. The transition rates are symmetric in x and y, so the process is 
time reversible. Should the rates be such that an explosion occurs ([Xtl--+oe in 
finite time), then the process is banished to a coffin state thereafter. The 
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existence of a right continuous, strong Markov process with these properties 
follows from Markov chain theory (cf. for example, Freedman, 1971, especially 
w167 6.5 and 7.4). It follows also for x~V+\{0}  that L agrees with the 
infinitesimal generator of {X~} when applied to functions belonging to the 
domain of the latter. 

An alternative and perhaps conceptually more direct approach is to ob- 
serve that the bilinear form associated with (1.5) is a regular Dirichlet form in 
the sense of Fukushima (1980). For this one takes as domain the set of all 
square summable (for counting measure on ;gv+) functions u for which also 
][ur] 2 is finite. The general potential theory of Fukushima could then be applied 
to construct a symmetric Hunt process {Xt} having the properties described 
above. This is outlined for the Gaussian case in Johnstone and Lalley (1984). 

The plan now is to recast the energy condition (1.3) in terms of the Euler 
Lagrange equation and the recurrence of X t. Let the hitting probability func- 
tion f f ,=PX(3t>0:Xt=0) .  The process {X~} is recurrent if f fx=l  and tran- 
sient otherwise. Standard arguments show that if {Xr is transient, then fix < 1 
for all x and l iminfffx=lim inf ~7~=0. Given Theorems 1.2 and 1.3, the 

~ o  x:lxl_>_r 
next result provides the promised alternate characterizations of admissibility. 

1.4. Theorem. 
rain I[ujl 2 ;  II/~ll 2, (1.7) 

ou 

and the minimum is attained iff geq[. Consequently, the following are equivalent: 
(i) min IlulI2=0, 

(ii) {X~,P~} is recurrent, 
(iii) 3here is no bounded solution to the exterior boundary value problem: 

Lu=O on ZP+\{0}; u 0 = l ;  l iminfu,--0.  (~) 
ixl-~oo 

In the transient case, Yt is a solution to ~. 

Results of this genre are known in probabilistic potential theory (e.g. 
Griffeath-Liggett, 1982; Fukushima, 1980) and differential equations (in the 
continuous case). In view of the technical simplicity of the discrete setting, and 
relative completeness of the results, a self-contained proof is given in Sect. 3. 

Let us turn now to some statistical applications of Theorems 1.2 through 
1.4. Although some generality is lost, comparison tests provide very simple 
methods of checking admissibility since they are based on easily computed 
functions of the candidate rule d(x). To illustrate, suppose di(x)>tlx i for some 
positive r /and that 

~ d i ( x ) > z - ( p - 1 ) + ( 5  for large z = ~ x  i, (1.8) 
i 

for some c5>0: then d is inadmissible (Corollary 6.3). Conversely, if d is 
generalized Bayes, satisfies condition A and 

~ d i ( x + e i ) < z + l  for large z, (1.9) 
i 
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then d is admissible. These results are proved together with sharper compari- 
son tests in Sect. 6, either directly from Theorems 1.2 and 1.3, or via 1.4 and 
the Nash-Williams and Royden-Lyons tests for recurrence and transience re- 
spectively (cf. Griffeath-Liggett, 1982; Lyons, 1983). 

Here is an example of the use of comparison tests. Brown (1979) gives 
detailed heuristics to arrive at his conjectures that generalized Bayes estimators 
of the form d(x)=x + @(x), where 

bx 
r = + o ((y, (1.1o) 

are inadmissible if b > l - p  and admissible for b < l - p  (cf. his 2.3.9, p. 984). 
Perturbations of the form (1.10) correspond to generalized priors of the form 
P(dA),,~(~2i)bdA as ~ 2 i ~ o o .  The conjectures follow immediately from (1.8) 
and (1.9) above (assuming only that the specific estimator d(x) in question has, 
for small x, values compatible with (1.1) (or 5.27 and Assumption A). 

Section 6 also discuss the connection of our results with the semi-tail upper 
bounds for inadmissibility of Hwang (1982) - another simple method for check- 
ing inadmissibility. It is further easy to read off an admissibility classification 
of linear estimates of the form d(x)=Mx+7 for M non-singular. Indeed for 
admissibility M must be diagonal, with diagonal entries lying in (0, 1), and the 
sum of the 7i corresponding to the J unit eigenvalues must be bounded by 
1 - J .  

The two closing comments of the introduction to I extend to the multipa- 
rameter case considered here. Thus the results of Sects. 2 and 3 will likely 
extend to more general power series distributions, including negative binomial 
and logarithmic. Secondly, to recover the difference operator occurring in the 
unbiased-risk-estimate approach to inadmissiblity (cf. for example Ghosh et al., 
1983), we need to take the Euler Lagrange equation of the 'original' minimi- 
zation problem (second line of (2.3) below) rather than the simpler, linearized 
version that appears in the energy condition (1.3). 

Only partial results on the extension of the theory to other loss functions 
such as L o are currently available (cf. Remarks 2.4, 4.4). The full force of 
Brown and Farrell's stepwise Bayes complete class theorem is needed: even 
natural admissible estimators (such as the MLE for p = 2) correspond to several 
recurrent processes on disjoint subsets of 2gP+. In the case of simplex symmetric 
estimators, the reduction to a one-dimensional problem is less clean than for 
L_I .  It seems that the recurrence and variational theory is most natural for 
L_ 1 because the component problems are equally balanced as ,i varies in lRr+ " 
each component x~ of the MLE has constant risk in 2~. 

w 2. The Variational Condition for Admissibility 

We begin with the Stein-Le Cam characterization of admissibility. Fix 
).0~(0, oo)P, and let ~ be the set of finite measures (2, supported on a finite set 
in (0, oo) p with (2({2o})>1. Let R(d,)~)=E~LI(d(X),2 ) denote the risk func- 
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tion of an estimator d and write B(d, Q)=yR(d, 2)Q(d2). It is easy to check that 
the estimator attaining B(Q)=infB(d,Q) (the Bayes estimator) is given by 

d 

dQ, i(x)=qx/q~_~i, where q~=~e-a2~Q(d2). Then d(x) is admissible if and only if 

inf B (d, Q) - B (Q) = 0. (2.1) 
Qc.~ 

Now the (standard) calculation given at I (2.2) shows that for any prior Q(d2) 
with B (d, Q) < 0% 

P 

B(d, Q)-B(Q)= ~ ~, [d~(x)-do,,(x)]2qx_e]X!. (2.2) 
i =  1 x > O  

The previous two displays and the availability of quotient representations for 
(generalized) Bayes estimators are basic to this study. An elementary proof of 
the characterization (2.1) is given by Brown and Farrell (1985c). Given (2,2) 
however, the sufficiency half is sufficiently simple that it will be useful to give a 
proof here. Indeed, suppose B(d, Q,)-B(Q,)--*O and that R(2, d')<R()~,d) for all 
2. Then 

~ [di(x) _ d,i(x) ] 2 q~,)_ ei/X ! < 2 {B(d, Q,) - B(Q,) + B(d', Q,) - B  (Q,)} 
i x 

< 4 {B(d, Q,) -B(Q,)} ~0.  

Since Q,({20})>l, a(')>_~ =e-A~ we have di(x)=d'i(x ) and hence that d is 
admissible. 

It is clear from this argument that the Q, need not be discrete: any 
sequence such that infQ,(N)>0,  where N is a neighborhood of 2 o, will suffice. 

11 

In w we use Q,(d2)=uZ,(2)P(d2), with u~ZA 1. 

2.1. Remark. Let ~o = {d: x~=O~d~(x)=-O}. To prove admissibility of rules in 
D0; it is convenient to modify (2.1) slightly, First note that if d(x) is admissible 
in ~o,  then it is unconditionally admissible. This is proved by showing that 
lira R(2, d)< oo for all 2 iff di(x) vanishes on {x: xi=0}, which in turn follows 
) . i ~ 0  

by examining the terms in the Laurent series expansion of R(2, d) about 0. 
Now to prove admissibility in ~o,  it is enough to establish (2.1) with 

B(d e, (2) replaced by B~o(9), the infimum of B(d, O) over rules in ~0.  But this 
infimum is attained by d e, where de,~(x)=de,i(x)I{x~>O}. Thus the i ~h sum 
over x in (2.2) can be restricted to the set on which x~ > 0. 

2.2. Remark. Let d (~) be admissible for 2 ~ and d (a) be Bayes for a proper prior 
H on )(2) in independent problems (which may each involve more than one 
coordinate). It is a general consequence of (2.1) that d=(d  (~, d (e}) is admissible 
for 2=(2 (1), 2 (2)) if the loss functions are added. Indeed, if (2~ ~> is a sequence of 
priors provided by (2.1) from the admissibility of d (1~, then Q =Q~l)x H suffice 
to show admissibility of d. 

Proof of Proposition 1,1. Since d is admissible, it is a pointwise limit of Bayes 
procedures with respect to proper priors O,. This may be seen from (2.1) and 
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(2.2) using the condition q(x")>e-A~ o as before. Defining ~,(d2) 
=e-AdQ,(2)/ye-adQ,(2), one obtains a probability measure r such that 

x __q. x y2 ~,(d2) y2 ~(d2) for all x~Z~.  That  the latter integral is positive and finite 
for all x > 0  follows from (1.1). Defining P(d2)=ea~(d2) and using 
den, i(x)--.di(x ) for all x, we conclude that di(x)=p~/p . . . .  whenever xi>O. Fur- 
thermore, if x~>0, it is easy to check that E[L(d~, 2~)lxl is minimized by the 
choice de, i(x) = Px/G-~ = di(x), so that d i(x) is generalized Bayes on {x: x i > 0}. 

Proof of Theorem 1.2. Let A i denote the ith sum in (2,2). On T/={x62gP+' xi>0},  
d~(x)=G/p . . . .  with both numerator and denominator finite and positive. We 
now proceed with the analogue of I. (3.1)-(3.4) but ignore the sets TiC. Below, 
u2=G/p~. 

- r ,  ~ q . . . .  x!  -~(u~-ur, . . . .  )2(l+u~/u . . . .  )2a~,~ 

> 2 (D, u~)2 al, x. (2.3) 
Ti 

2 It follows that the infimum of I]uH 2 over q,l~={u'u~=qx/p x for some prior 
(2e~} is zero. As in I 3, the condition Q([20 ,2o+1] )>1  for (2 in ~ allows us 
to replace the infimum over q/~ by an infimum over q_/~ c~ {u: u 0 > 1}. 

The proof is completed by showing that q[~c{u: lira u~=0}. We state 
I:,1~oo 

first an appropriate form of the Birnbaum-Stein theorem for exponential fa- 
milies (Birnbaum, 1955; Stein, 1956a). If S(dO) is a measure on IR p, let K(S) 
denote the convex hull of its support. Suppose S and R are measures on IR p 
and that there exists a point w~[IntK(R)]\K(S). Let U~= 
{y:y.w>=sup{y.O:OsK(S)}}. Then there exist constants B, e > 0  depending 
on w, such that for yE U~, 

Se~ <Be_~fr l 
[eO.rR(dO)= 

In the Poisson case, suppP=(0 ,  oe)P and ( 2 ~  has compact support, so we may 
apply the result to S and R defined by putting 0i--log2~(i= 1, ..., k) and 

S(dO)=e-A(2(d2) R(dO)=e AP(d2). (2.4) 

Now choose w=cd with c~=sup{[10lb: O~K(S)} and 1=(1, 1,. . . ,  1). Since 
suppP=(0 ,  oo)P, we can assume (by increasing ~ if necessary) that 
wE[intK(R)]\K(S). If y > 0 ,  then y.w=e~yi>~Hy]L>y.O for all O~K(S), 
where here Hyrl denotes Euclidean distance. Hence ;g% c U~ and so there exist 
constants e and B positive such that for all y > 0, 

2 5e~ 
u r SeO.YR(do)=Be-~lyl--+O 

as  Lyl--' 0o. [] 

2.3. Remark. If P(d2)=M(dA)dO 1 .... ,dO k (where Oi=2i/A), as is the case in 
Sect. 4, then we need only assume that M has unbounded support. Indeed, if S 
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has compact support, then there will always exist an c~ sufficiently large that 
~le[int  K (R )]\ K (S). 

2.4. Remark. Under squared error loss L 0 there is no convenient analog of 
Proposition 1.1, which for L_ t simplifies the analysis by ensuring that a 
potentially admissible d~(x) has a representation Px/P . . . .  whenever it is non- 
zero. The full force of the stepwise (generalized) Bayes representation of Brown 
and Farrell (1985 a) is needed. For  simplicity, consider estimates satisfying (1.1) 
and suppose also that p = 2. If d is admissible, then it follows from Brown and 
Farrell's Theorem 4.1 that there exists finite measures wto, Wo~ and wii  
supported on IR+ x {0}, {0} x IR+ and Nz+ respectively (here IR+ = [0, oo)) for 
which 

di(x)={~(~,,,+e]p~(~,,x if x , > 0  
if x i = 0, 

where p~,x=~[-[2~'(x~-t)w~(d2); c~ takes the values (1,0), (0, 1) or (1, 1) and c~(x) 
i 

=(I(x  t >0), I(x 2 >0)). 
The analogue of (2.2) breaks naturally into a sum over three regions Szo, 

S01 and S ~ ,  where S={x~TF+:c~(x)=~}. After going through the analogue of 
(2.3), the sum over region S~ may be bounded below by 

Y E (2.5) 
i : ~ i > 0  X~S~ 

x i > l  

2 cq,~=p~(~),jp~(~) . . . . .  (x-e~)I has a difl'erent struc- where u~ = q~(x),~/P~(~), ~, and - 2 
ture from that of the cti, ~ occurring for L ~. Thus, the sums over Sto,Sol,St~ 
are one, one and two dimensional respectively, and each can be made arbitrari- 
ly small if dp is admissible. To anticipate the discussion of Sect. 3, in addition 
to the two dimensional birth and death process on S~t that is naturally 
associated with the coefficients ~,~, there are two further one dimensional 
processes on the mutually disjoint state spaces S~o and Sol. Admissibility then 
entails recurrence of all three processes. 

w 3. Difference Equations and Recurrence 

This section begins with the proof of the probabilistic and analytic characteri- 
zations of the admissibility condition (1.3). Examples follow which illuminate 
the hypotheses of Theorem 1.4 and apply it to the MLE and priors with 
bounded support. Conditions for null and positive recurrence and their statis- 
tical interpretation are discussed. Finally we describe modifications needed to 
allow for supp P ~ (0, oo)P, and some probabilistic facts for later use. 

Proof of Theorem 1.4. (iii) ~ (ii). This follows from the Strong Markov property 
by a standard argument. Suppose that {Xt} is transient: then g 0 = l  and 
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liminfff~=0. If o=inf{t>O:Xt~=Xo} is the first jump time of a path, then 

for x4=0, 

~ = E ~ ( x P  = E ~ , ,~ , /~  ~,,, 
yeSx yeax 

which is equivalent to Lg~ =0. 

Maximum principle for L. A function u on :Ev+ cannot attain a strict local 
maximum (or minimum) on S={x:  Lug=0}. Indeed, if u attains a local maxi- 
mum at xeS, then u~>uy for yeOx, and 

. ~ , , ( u ~ - u , ) = 0 ,  
yE~x 

so that uy=u~ for all yeOx (since all %,y>0 for ye~x). 

Remark. Simple examples show that the maximum principle as stated here does 
not hold for non self-adjoint 'elliptic' difference operators. 

Approximating Problems. Let B, be an increasing sequence of finite subsets of 
;g~+ with 2~P+ = ~ B~. Let 

x, y~Bn 

and Ilull~=(u,u)n be the corresponding seminorm. Write Onx=$xc~B n for the 
neighbors in Bn of x, and set ~B,={x:  0nx*0x)u{0}.  Let ql~ be the class of 
functions on B~ that agree with a function ~b defined on ~Bn. Finally, let 
a,=inf{t>=0: Xte~B~}. 

Proposition (Dirichlet principle). Let dp be a function defined on OB,. The 
function u~ = E ~ ~)(Xo,) is the unique solution to 

Lu=O on B,\~Bn, u=c~ on ~B,. (~) 

Further, u 4' is the unique function in ~,~ which minimizes IIull 2. 

Proof. It follows as before from the Strong Markov property that u r satisfies 
(~,), and uniqueness is clear from the maximum principle. A calculation using 
symmetry of %,y shows that 

B~, \ OBn OBnc~Bn 

where L t~) is defined by (1.6), but with the sum taken over yeO~x. Now write 
ue~'~ in the form u=u~+~, ,  so that ~,=0 on ~B,. Since Lu~=O on B~\~B,, 

Ilull ~ = (u*, ~ L  + 2 <u~, ~)~ + <0, e L  = II u~ll ~ + II 0ll~. 

Hence l[ull 2 is uniquely minimized on ~ by setting ~ = 0 .  [] 

Let u(")(x)=W(X,=O) be the unique solution of (~,) corresponding to 
~b=a{o }. By the maximum principle, {u (")} form an increasing sequence on /~P+ 
with limit ~ = W { 3 t > 0 '  Xt=0}. Clearly ~o=1 and L ~ = 0  for all xeZP+. 
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(ii) ~(iii). Let w be a bounded solution to (#) of Theorem 1.4. Choose ~ > 0  
sufficiently small that # = e w + l - c ~  satisfies 0_<w_<2. By the maximum prin- 
ciple, u(')_<#_<2-u (") on B n. Letting n~oo,  we find that # - 1  and hence w - 1 .  

(i) r (ii). This is an immediate consequence of (1.7), to whose proof we now 
turn. In what follows, B ,={x :  ~xi<n }. 

Proof of (1.7). 1 ~ Let m=mimu Ilull 2. We show first that IIffiI 2__<m. Let {k,} c q /  
be a minimizing sequence: ]]knl[2~m as n~oo.  Since k, eq/, there exists an 
integer m, for which Ik,(x)[ < 1/n for [x[ =m,.  Let v, be the solution to (~m.) for 
boundary data ~b = k, on 0BIn. On OBm. ~Bm. , 

Iv, -u(m")[ = Ik, -c5~0~1 < 1/n, 

and the maximum principle implies that this inequality is valid on all B,. It 
follows that {v,} converges pointwise to ~. We conclude from this and the 
Dirichlet principle that for any fixed integer p: 

II~ll~=lim rlv, ll~ <l im Ilv, lr2.<lim Hk, ll m,,-2 <l im Ilk, Ha=re. 
n n n n 

On letting pToo, we find that ]r~ll:_<m. 

2 ~ We show that Ilu(~ll2-~m, and then that II~ll=--m. It follows from the 
Dirichlet principle that 

Thus the sequence []u(")ir z decreases to a limit rh>m. Fix two integers n>p and 
set k=(u(')+u(P))/2. Using the facts that ,~~ (")=0 for Ixl>n_ and u(~V)=0 for Ixl >p  
together with the Cauchy-Schwartz inequality and the Dirichlet principle, 

II u ("~ II 2 _= < II k Ir.~ = �88 II u ("~ 11,,2 + �88 II u(")[I ~ - ~ \ o ,  ~-~/"("), u(")). 
<�89 II u(P)ll ~ +�89 Ilu (~) I1~ II u(")ll~. 

Letting n-~ oo, Ilu<'~ll~--,ll~ll~, and then letting p ~ m ,  we get 

r~__<�89 +�89  II ~rl z)~/2. 

Combine with previous results to get m~ff~< I[gll2 ~.m, from which our claim 
and hence (1.7) are obvious. This completes the proof of (1.7). 

Finally, suppose that the minimum in (1.7) is attained in ~ by some 
function w. Since w~q/, lira w~=0, and so it follows from the maximum 

principle that 0 < w < l  for all x~T/,P+, and then, as above, that w>~. Con- 
sequently lira ~ = 0 ,  and hence g ~ .  This completes the proof of Theorem 

1.4. [] 

3.1. Example. (i) (L.D. Brown) This example shows that ~ need not lie in 0g. 
Let p=2 ,  and define transition rates for X~=(X~, X 2) by a2,~---1, al,~=x~, (for 
x~ > 1) and a a, ~ =�89 + U~) - ~ (for x z = 1). On {x 'x  a > 1}, the transition rates of 
X I depend only on x~, so that X~ is transient, and hence X, itself is transient. 
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We show however that lim ~0,x2>1/2. Let a l = i n f { t > 0 : X t = 0  or (1, x2) for 
Jr ~ CO 

some Xz>0 }. Since X 2 moves up or down with equal probabilities, 
P(~ The function vx=�89  satisfies Lv~=O for 
x=(0,  x2) with x2>0,  so v(Xt^~, ) is a bounded p(O, x2~ martingale. From the 
optional sampling theorem, 

v0, x2 = p(o, x2)(X~l = 0) __< p(o, x2) {3 t __> 0: X~ = 0} = Uo, ~2, 

from which the claim follows. 
(ii) If og is extended to include functions (such as ~) with lim infu~ = 0, then 

the theorem is no longer valid. To see this, let p = 2  and P=P~ x P  2, where P~ is 
a proper prior on IR~, and P2 yields an inadmissible estimator. The jumps in 
each component of X =(X (*~ XI 2~) occur independently of the position of the 
other component, and according to the probabilities induced by each Pi. Hence 
X t is transient since X} 2~ is. Now let {v(')(x~)} be a sequence of functions on 
~+ with V(o")= 1, v ~ = 0  and energy decreasing to zero in the g-problem. Then 
it is easy to check, using the finiteness of P~, that the energy of the functions on 
Z2+ defined by 

u~) = {1 if x2>0  

v(")(xl) if x 2 = 0  
decreases to zero. 

As a first application of Theorem (1.4), we derive a result of Clevenson and 
Zidek (1975). New results are given in Sects. 4 and 6. 

3.2. Corollary. d(x) = x is inadmissible for L_ t if p > 2. 

Proof The estimator d(x )=x  is generalized Bayes for the prior P(d2)=d)~, 
yielding a~,~=x~ for x such that x~>0. Put z = ~ x ~ ;  it is easy to check that 

p - 1  i 

u~= H i+z  (3.1) 
i = l  

satisfies Lu~=O if xeTI[\{0},  and hence is a solution to (~). It follows that 
{X,} is transient and (from Theorems 1.2 and 1.4) that d(x) must be in- 
admissible. (The form of the solution was noticed by L.D. Brown.) [] 

Remarks. The hitting probability Ux is also given by (3.1). This follows from the 
observation that 

k(~) H ( i + z ) - l - H ( i + n )  -1 

(where the products range over i=  1 . . . .  , p - 1 )  is the unique solution to (~,) for 
B = { ~ x i < n  } and 4=6{o~. 

The second application shows that priors with bounded support lead to 
recurrent birth and death processes. 

3.3. Corollary. I f  supp P is bounded and (1.1) holds, then {Xt} is recurrent. 

Proof Suppose that suppP c {2:2 < M} for some M. Henced e i(x) = E(2 i x - ei) < M 
for all i and x>0 .  Since p0<oo, C=P{121<M}<o% and using Stirling's 



2 4 4  I. J o h n s t o n e  

formula, 

Px < 17 ( M e  t x` 
x! = C  \x~v 1! o 

Consequently ai ,~<Ml[ l (M1/x~v  1) ~'. Define u(")eq/ by 1 for Ixl<n, and 1/Ixl 
for Ix[ > n. Clearly i 

I[u(")ll2<M2 ~ [-[[M1/(xiv 1)]x'~O, 
Ixt _->n i 

as n~oe ,  since the summand lies in L~(7Z~). Hence inflluJl2=0. [] 

3.4. Remark. The above assumptions imply finiteness of the integrated risk of 
de, and hence its admissibility. Thus the corollary also follows from Theorems 
(1.2) and (1.4) combined. 

In the Gaussian case, the distinction between positive and null recurrence 
has an important statistical interpretation: namely the distinction between 
priors of finite and infinite total mass (the so-called 'proper' and 'improper' 
priors respectively). This was noted by Brown (1971), and the (apparently non- 
trivial) proof given in Johnstone and Lalley (1985), where the phenomenon was 
applied to discuss ' immunity '  (in the sense of Gutmann 1982, 1983) of General- 
ized Bayes estimators to the Stein effect. There is a corresponding interpre- 
tation of the positive/null recurrence dichotomy in the Poisson situation, but 
its details depend on the specific choice of loss function. This was discussed for 
the one dimensional case in I, Sect, 4, which notes also that to recover exactly 
the proper/improper prior case; one needs the loss function 2 -2 (d -~ )  2. The 
results, examples and proofs given in I generalize to the multivariate situation: 
we will be content to simply state the results. Let {Yn} be the embedded 
discrete-time chain associated with {Xt}: it clearly has transition probabilities 

Px, y=~x,y/~x ~x= Y~ c%,~. 
y4-x 

3.5. Lemma. Suppose that {Y,} is recurrent. It is positive recurrent iff 
x ~  +=~p t~< oo; in which case the invariant probability measure is proportional to 

We now give a (nearly) sharp condition on the prior ~(d2) for positive 
recurrence. 

3.6. Lemma. I f  S )~i d~(2) < oo for i = 1,..., p, then ~ #~ < oo. Conversely, if 

h i d~(2)= oo for some i= 1,... ,  p, and for that i either 
a~ 

dp,~(k+e~)<Mde, i(k) for all keZP+ 
o r  

inf de, ~(k + e~)/(k~ + 1) > 0 
k 
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then 
~ # x =  oo. 

3.7. Priors with s u p p P . ~ ( 0 , ~ )  p can arise in situations where there is prior 
information on the ordering of the means: for example 21 >22__> ... >2  k (Cohen 
and Sackrowitz (1970) discuss this problem in the Gaussian case). Theorems 1.2 
and 1.4 will remain valid if ql is redefined as 

{ux: uo= 1,1im sup u~ =0}, 
r {]x]=r, xsN(P)} 

where N(P) is an appropriate neighbourhood of the support of P with the 
properties 

(i) sup qx/px-+O if Q has compact support in (0, oc) v, 
Ix[ = r, xEN(P) 

(ii) if {X,} is the process corresponding to P, then for each large r 

PX{~t:Xt=O or Xt~N(P)c~{lxL>r}}=I. 

Given (i) and (ii), the only substantial change needed in the proofs is the 
analogue of Brown's Lemma 4.2.2. 

In important special cases, such as suppP={~.:  2 1 > 2 2 > . . .  >2k} , we may 
set N(P)=suppP. In general, however N(P) cannot be taken as a neigh- 
borhood of the convex hull of suppP as in the Gaussian case" if P(d2) 
=I{2e lR2  : 22 22 /x 21222 <=1} d), then limq(r,r)/p(r,r) need not be zero. We 

r ~ o o  

will not go further into the existence and description of N(P) in the general 
case, except to remark that the transformation (2.4) and the Birnbaum-Stein 
theorem can be used to established (i) for any g-neighborhood of supp P and 
for certain cones in ZP+. 

3.8. While explicit formulae for ~ are not available in general even for prob- 
lems in which p=p1  x p2 (but cf. Sect. 4), some useful bounds are possible. If 
- - i  uxi are the hitting probabilities of zero for the marginal problems induced by 

/ - - 1  = 2  Pz, then "-u u This is a probabilistic version of the statement "an esti- x = x 1 x 2 "  

mator in a product problem is inadmissible if any component is". It follows 
from the maximum principle and the observation that L~ 1 ~2 <0  on the bound- 
ary of ZP+, and is zero elsewhere. Alternatively it may be seen probabilistically 
from independence of the co-ordinate processes. 

3.9. We give a sufficient condition for recurrence of the image of a recurrent 
Markov chain under a transformation of the state space. This will be used in 
the proof of Theorem 1.3. Let G be a graph with (symmetric) transition rates 
~,y between neighboring vertices x~y .  If g: G--+G is a "graph respecting" 
function: x ~ y  implies g x = g y  or gx~gy ,  then g induces new transition rates 
(g~)~,y=c~(gx, gy), which are interpreted as zero if gx=gy.  Let ~//be a class of 
real valued functions on G, and for ueag, set (gu)(x)= u(gx). 

3.10. Lemma. Suppose that gql cog and that for some integer M, 

sup [{(x, x')~G x G: x~x ' ,  gx =y, gx' =y'}] <M.  
y ~ y '  
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Then 

inf ~ ( g e ) ~ , ~ , [ u ( x ' ) - u ( x ) ] 2 < M i n f  ~ a~,~,[u(x ' ) -u(x)]  2. 
~ x ,  X '  ~ll x ,  x '  

The proof is immediate. For the later application, let X =2gp + with the usual 
lattice structure and, given functions ai(x): ~ c~{xi>= 1}~IR +, define rates ax, y 
as at (1.4) and g// as in w Suppose that g x = ( g l x  1 . . . .  ,gpXp), where 
g i : Z + ~  + are increasing functions with steps of unit height and length 
bounded above by M. Let b i ( x )=a  i ( g ~ x l , . . . , g l x i v l  . . . .  ,gpXp). Since 
bi(x ) [Di(gu)(x)] 2 < c~(gx, g(x - ei) ) [D i(gu)(x)-]2, it follows from the proof of the 
Lemma that if gdg c~//, then 

inf~  y' b~(:~)[D~u(x)~<Minf~ ~ a~(x)[D~u(x)~ 2. (3.2) 
~ i x : x i >= l wig i x : x i >= l 

w 4. Admissibility Results for Symmetric Cases 

This section is devoted to estimators de(x)= q~(z)x, z = ~ x i ,  which are general- 
ized Bayes for "simplex symmetric" priors of the form P(d2)=M(d2)dO 1 ...dOp, 
where A = ~ 2 i ,  Oi=21/A. We show the equivalence of this admissibility prob- 
lem to that of the one-dimensional Poisson case studied in I and derive the 
consequences for the Clevenson-Zidek estimator amongst others. 

Assume for simplicity that m ~ = S e - A W M ( d A ) e ( O ,  oo) for z>0.  Clevenson 
and Zidek show (1975, Theorem 2.2) that for x > 0  and z = ~ x  i 

de(x ) = (mjm~_ 1)(x/(z + p - 1)), ~p(x) = m j ( z  + p - 1)! (4.1) 

We write dM(Z ) for mJm=_ 1 and set dM(0)=0. Note that d e satisfies (1.1). 

4.1. Theorem. d e is admissible for  2 if and only if d M is admissible for A in the 
one-dimensional problem with loss function ( d - A ) 2 / A .  

4.2. Corollary. Let flz 2 z! .  I f  de(x ) is =m~/m~_ 1 admissible, then 1/fl~ = oo. The 
converse holds if d M satisfies for z > 1 1 

dM(Z ) --Z ~ C 1 Z 1/2 
(4.2) 

d~f(z + 1) --dM(Z ) < C 2. 

Proofs. 1 ~ The risk function of d ( x ) = q ~ ( z ) x / ( z + p - 1 )  under L_ 1 is given by 

r( R ( d , 2 ) = ~ E  L \ z + p -  z + p - 1  

=EA z+p- -1  A z + p - 1  ' 

since 5 f ( X i l Z = z  ) is binomial with parameters z and 21/A. We now show that 
admissibility of d(x) is equivalent to that of ~(z) for the loss function L(d, A, z) 
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= [z / ( z+p-1) ] (d -A)2 /A .  First, if ~b' is strictly better than 4~, it is obvious that 
R(d',)O-R(d, 2)<O, with strict inequality for some )~. Conversely, for any finite 

P 

prior N(dA) charging a neighborhood in IR 1 of A =  1, let Q(dA)=N(dA)I-IIdO i. 
Writing do(x ) =dN(z ) x/(z + p -  1), it is easy to check that 1 

1 
B(d, Q)-B(dQ, Q)= (p _ 1)! ~ [/~(~' A)- /~(d N, A)] N(dA), (4.3) 

where /~ is the risk function corresponding to /~. Thus, from the Stein-LeCam 
characterization, admissibility of ~b implies that the right side of (4.3) can be 
made arbitrarily small, which in turn implies admissibility of d. 

2 ~ By the usual argument of I. w 2.2, the integral on the right side of (4.3) is 
equal to 

fib(z) --dN(z)) a n~- i z . (4.4) 
z>__~ z! z + p - 1  

The factor z / ( z + p - 1 )  is bounded between 1/1) and 1, and can thus be ignored 
in admissibility considerations. Thus we reduce to the one-dimensional con- 
ditional problem ~o discussed in I w and it follows from I, Lemma 2.1 that q~ 
is admissible in ~o iff it is admissible in the original (unconditional) problem. 
This establishes the Theorem, and the Corollary may now be read off from 
Theorems 1.1 to 1.3 of I. [] 

None of the above argument depends on the p-dimensional theory of the 
two preceeding sections. It is instructive therefore to give an alternative deriva- 
tion of the necessity of Corollary 4.2 by specializing Theorems 1.3 and 1.4 to 
the 'simplex symmetric' case. This will be applied in Sect. 6 to give explicit 
tests for admissibility. Let qJ and Iluil be as defined in w and " f = [ u ~ g :  u(x) 
=v(~xi )  for some v: 7Z+--,N]. Now if u ( x ) = v ( z ) ~ ;  then a computation shows 

that 1 
I] ull z =iN - 1)! ~ (Dvz)2 bz, (4.5) 

where bz=m2/m~_~(z -1) ! ( z+p-1)~ f i~  as z - ~ ,  and one uses the fact that 

z + P - l t  in with We show that minlluH 2 there are p -  1 ] points x ~P+ ~ x i = z .  now ~u 

minlkul] 2. Let B , = [ x ~ Z P : ~ x i < n ] ,  and ~"~ = u x = P  {]Xtt hits 0 before n}. Not- 

ing that for u~'U,, Lu(x)=z!  L v j ( z + p - 1 ) ! ,  where Lv~=D+(bzD v~), it follows 
as in I w 4 that 

u~ ("~ -- 1/b~ 1/b~, xEB,,  
z + l  

so that u (" )~ .  As in 2 ~ of the proof of Theorem 1.4, Ilu(")ll2"~min Ilu[I 2, and 
since ~K ~ ~ ,  this suffices to show equality of the two minima. 

Suppose now that de(x ) is admissible. If supp P is unbounded, divergence of 
~l /b~ follows from 1 ~ Theorem 1.2, Remark 2.3 and Lemma 1.3.1. If suppP 
and hence suppM is bounded then the argument of Lemma 1.3.2 applies to 
M(dA) and m~. 
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The following comparison test provides an easily checked criterion for (in-) 
admissibility in many applications. 

4.3. Corollary. Let P be a planar symmetric prior. 
(i) I f  for some 6>0,  d e ( x ) . l > z - ( p - 1 ) + g )  for large z, then d F is in- 

admissible; 
(ii) I f  (4.2) holds and de(x ). 1 < z - ( p - 1 )  for large z, then dp is admissible. 

Proof. Theorem 4.1 allows an appeal to Corollary 5.2 of I, which in fact gives 
the stronger result that dM(z)>z+e/logz for c~>1 and large z implies in- 
admissibility, and dg(z)<=z+c(logz for e < l ,  z large implies admissibility, 
under (4.2). [] 

Examples. 1. M(dA)=AP-~dA,  m z : ( z + p - 1 ) ! ,  and de(x)=x - the "usual" 
estimator. Clearly, d is admissible iff p =  1 (Clevenson and Zidek, 1975). 

ao 

2. M(dA) = ~ (1 +At) - r  -p e x p ( - t -  ~)dtdA. These priors were used by Cle- 

o ( f l + p - 1 )  
veson and Zidek who showed that de(x)= 1 z + f l + p - 1  x is admissible for 

f i> l .  Clearly, dp is admissible iff fl>__0. Brown and Hwang (1982) used their 
unified admissibility method to establish the admissibility half, and Hwang 
(1982) treated the case fl < 0 via difference inequalities. 

o0 

3. M ( d A ) = A  p-1 ~g(t)te-~AdtdA. Priors of this form were studied by 
0 

Ghosh and Parsian (1981), who showed that they included the Clevenson- 
Zidek family. If g(t)= Ct ' -~ (1  +t)  . . . . .  , then Ghosh and Parsian show admissi- 

for dp(x)= (1 m + p  ) bility z + m + n + p - 1.  x for m > 0. It is obvious from Corollary 
k 

4.3 that d e is admissible iff m > -1 .  

4.4. Remark. What happens for planar symmetric priors under squared error 
P 

loss Lo? Suppose P(d2)=M(dA)I~dOi/O~, so that px=ye-AAZM(d2)[O~-ldO 
i = i  

= mz(x - 1)!/(z - 1)!. This definition is chosen so that under Lo, de, i(x) = p~+ e]Px 
=(m~+ ~/m~)(xl/z ). In particular, the MLE d(x)=x arises from M ( d A ) = A -  ~ dA. 
It turns out that the p-dimensional admissibility problem for d e under L o is not 
isomorphic to the 1-dimensional question for dM(Z)=m~+ ~/m~. In this case, the 
analogue of (4.3) and (4.4) is found to be 

2 n z  
B(de, Q)-B(do,  Q)= ~, ( m~+ l nz+ l ~ 7(z), 

z>O \ m z  nz - .  

where for large z 

Cpz(logz) p-a <7(z)=  ~, ( ~ x { ) / H ( x  j v 1)< C~z(logz) v-a, (4.6) 
Ixl=~ j 

and Ix[ = ~ x i  (see Appendix A.3 for proof). 
Only a sufficient condition seems to be available: dp is admissible if d M 

satisfies (4.2) and 
1/(bz log p-1 z)= co, (4.7) 
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where/~ = mZ/m~_ l ( z -  1)!. As an example, for the MLE/)~ = z -  1, which yields 
admissibility for p = 1 and 2 (Peng, 1975). The proof that (4.7) entails admissi- 
bility is obtained by modifying the argument of I w 5, working with the density 
function pz(z)=p;.(log z) p- t (not a probability density!). The proof of the Poin- 
car6 inequalities of I Lemma 5.1 is no longer valid: instead a one dimensional 
argument on the lines of the present w 5 is needed. (The (log z) p-~ factor, being 
slowly varying, causes no problems.) 

I do not know if finiteness of (4.7) is necessary for admissibility. This would 
be true if finiteness were equivalent to a zero infimal energy condition for the 
terms (2.5) in the setting of Remark 2.4. However, the elliptic difference 
operators associated with (2.5) are no longer one-dimensional on ~/~ (compare 
the discussion around (4.5) above). 

w 5. The General Admissibility Theorem 

In this section we prove Theorem 1.3. As the argument is long and technical, it 
is split over subsections 5.1 through 5.6 and is prefaced by a discussion of the 
plan of the proof. Subsections 5.1 and 5.2 contain material on Poincar6 
inequalities and tail behavior of Poisson densities that may be of independent 
interest. w provides bounds on the growth of marginal densities and Bayes 
estimators that flow from assumption A. The proof proper of Theorem 1.3 is 
spread over w Finally w 5.7 addresses estimator d~(x) which may violate 
(1.1) by being positive on {x: xi=0}, for later use in Sect. 6. 

First, some general comments on the nature of Assumption A. Essentially, 
the generalized Bayes rule dp(x) is required to be approximable by a 'product 
rule' d*(x)= (d 1 (x 1),..., dp(xp)), each of whose components di(xi) is a function of 
the ith observation x~ alone and satisfies the conditions of the corresponding 
univariate result (Theorem 1.2 in I.). Conditions a) and b) refer to approxima- 
tion of dr, i(x~) by di(x~) at the boundaries for x~ at ~ and 0 respectively. 
Brown's (1971) condition in the normal case that 6F(y)-y be bounded is 
analogous to assumption a), for the special choice di(y~)=yi. The analogy may 

be seen through the (variance stabilizing) transformation y~=l/x~, 0~=1/~ ~, cSi(y) 

=lfdi(x) used by Brown (1979b). The boundary at 0 does not occur in the 
Gaussian setting so condition b) has no counterpart there. 

We shall now describe, with some deliberate lack of precision, the thrust of 
the argument that follows. In partial contrast with Brown's (1971) method, the 
approach is almost entirely analytic, rather than probabilistic. The heuristics 
described in Brown (1971, w and I, w do still provide useful guidance. 
Regrettably, the argument is complicated by two things: the lack of invariance 
properties of the Poisson family - necessitating separate estimates for ) ~ 0 ,  
moderate 2 and 2 ~  0% and the discreteness of the sample space. 

The aim of the proof is to bound the difference in integrated risks B(de, Q) 
-B~o(Q ) in terms of the energy condition (1.3) or (1.5). The prior measure P is 
fixed throughout. The function u in the energy norm corresponds to Q as 
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follows: (x) equals u(x) smoothed by a uniform distribution having 

position dependent bandwidth r(x). The choice of dQ/dP=u 2 in the normal 
case is motivated by Brown (1971, p. 861), while the technical value of smooth- 
ing here is explained below. 

The difference in integrated risks B(de, Q)-B~o(Q) is an L 2 distance be- 
tween the Bayes estimates d e and dQ (cf. 5.13). The first step in relating this to 
the (discrete) Sobolev norm of u of (1.3) is to express (de, i(x ) -de,~(x)) 2 in terms 
of a (weighted) posterior variance of g(2) (cf. 5.14). By triangle inequality 
methods and integrating now over x also this can be estimated by a (weighted) 
L 2 norm 

S ~o~(x, 4)M(dx, d2) 

of the oscillation c%(x, 4)= g(x)-g(2)(cf.  (5.16)). 
The task is then to convert the oscillation bounds to bounds on the 

derivatives (and then differences) of u. For  this we use Poincar6 inequalities of 
the form 

(v(x) - v(0)) ~ dx__< c ~ I Vv(x)l ~ dx (5.1) 
B1 Bt 

where v is C ~, ~=v,Is~  , IB~ is the indicator function of the unit ball B~ in IRP 
and * denotes convolution. This inequality is demonstrably false for p > 2 if ~ is 
replaced by v on the left side (but is valid if v is a solution of an elliptic 
differential equation - see Johnstone and Shahshahani (1983)). 

To apply (5.1), we return to the L 2 norm of o)~(x, 2). The aim is to fix 2 and 
2 express the average (over x) of c% as a mixture of (centered and scaled) 

integrals of the form of the left side of (5.1) with 0 and B~ replaced by 2 and 
B~(2)={u: lu -21<r}  respectively. To achieve this, it is convenient to replace 
M(dx, d2) by an upper bound 2f4(dx, d2) for which the conditional density of x 
given 2 is strictly unimodal about 2 (cf. 5.18). Applying (5.1) to each element of 
the mixture (Corollary 5.2) yields a bound of the form 

j [~(x) - ~(2)3 2 ~ (ax 12) __< c ~ ~ a x [D, u (x)] ~ a,(x, 2). 
i 

(5.2) 

From this point the line of argument is conceptually fairly clear, but 
technically cumbersome and non-trivial, due to the lack of invariance. Suppose 
that we were to average over the M-marginal measure of 2, namely P(d2). All 
would be essentially finished if ~ai(x, 2)P(d2 ) could be bounded by the in- 
tensities ai(x ) appearing in the energy expression (1.3). 

To attempt this, the first step is to derive a simpler bound for the output 
a;(x, 2) of the integration by parts procedure of Corollary 5.2 (cf. 5.6). Now 
M(dx]2) involves the Poisson density px(x) and certain multiples by rational 
functions of x and 2 (cf. 5.16), so ai(x, 2) involves integrals, L say, of (weighted) 
tails of the Poisson distribution (in both directions away from each mean 2i, 
i=  1 . . . . .  p) (cf. 5.19)). After some algebraic reduction (Appendix 2), it develops 
that these integrals of weighted Poisson tails may be assumed to be (products 
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of) the forms 
s - ~  , 

o r  Ip~(s)t 
t 

ds 

considered in Corollary 5.7. Corollary 5.7 follows directly from Lemma 5.6, 
which says that, because of the exponential tails of the Poisson density, the 

polynomial factor 1(s-2)/1/2[ b can be ignored, at the expense of shifting the 
argument of p~(') a fixed number of standard deviations towards the mode 2 
of pz(-). Corollary 5.7 is then applied in Appendix 2 to bound the integrals L 
as in (5.19). 

The upshot of all this is that a~(x, 2) can be bounded by 8~(x,)0 which 
consists essentially of rational functions of ~ and cl~(2) multiplied by a 

smoothed version of p~(x) with bandwidth 2c ' ] /x  (cf. 5.20). The penultimate 
step is to show that ~ ( x ,  )OdP(2) is bounded by not (alas) a~(x), but at least by 

ai(g(x)) , where gi(xi)-xieO(l/~O. Since ~p).(x)dP(,~)=Tc,~, this part (cf. sub- 
section 5.6) requires comparisons of marginal densities n~+, over ranges of 

order c ' l /x .  These are accomplished with the aid of Lemma 5.8 and 5.9 which 
bound the growth rate of such marginal densities and Bayes rules. The various 
provisions of Assumption A are used to convert the rational functions of )o 
into functions of x when necessary, and thence to obtain the desired bounds 
(for example (5.21) and ft.). Finally, the transition from ai(g(x)) to ai(x ) in the 
energy norms (cf. 5.25) is handled by Lemma 3.10, a simple general condition 
for recurrence of the image of a recurrent Markov chain under a transfor- 
mation of the state space. 

We restrict attention throughout to rules having everywhere finite risk 
function. 

5.1. Inequalities of Poincar~ Type 

For this statistical application, it is useful to have inequalities of Poincar6 type 
for functions which vanish at a specified interior point. To accomplish this one 
can smooth the function with an appropriate kernel. The Gaussian situation is 
simplest, in part because kernels of fixed width suffice, and the approach offers 
material simplifications of Brown's (1971) original proof (Johnstone, 1983 b). To 
develop these ideas in the Poisson setting, kernels which are indicators of 
boxes having variable widths are needed. Let 

Ia(x)=I{x~lR~: lxil<ai f~ all i} / [ I  

5.1. Proposition. Let r~:IR--.IR+, i = l , . . . , p  be monotone functions such that 
I~'(x)l<fl<l. For a piecewise C 1 function u: IRP--+IR, define g(x)=u *1,.(~)(x). 
Then 

[~t(x)--u(O)~adx'<Cp, p(2ri(O) l-p) ~' IDu(x)[2dx, (5.3) 
[o, 11 i [o, l]~ 
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where [0, 1]~=[0, 1] +r([O, 1]) is the Hausdorff  sum of [0, 1] c lR v and its image 
under r = (q . . . .  , rp). 

Proof. First note that if g is a piecewise C a function vanishing at 0, then 

IDg(x)l 2 
ge(x)dx<--Cp 5 ~ dx. (5.4) 

[o, l ]  [o, 11 

Write ~(x)= ~ u(x +sr~)ds, employ (5,4) and the bound Ir[(x)l < 1 to get 
[-i,11 

j [~(x)-~(0)] 2dx<2~ J ds 5 dx[u(x+Srx)-U(Sro)] 2 
[0, 11 [-- 1, 11 [0, 11 

dy ' 1Du(x + y)[ 2 
5 dx 5 7 U  

[0, l] [ - - r x ,  rx] 

dt 
<cp  ~ dzlDu(x)l z f. ;lri(zi_t31z_tlp_ 1. 

[0, 11~ [ti[ < r i ( z i - t i )  

It remains to bound the inner integral, denoted m(z). Since /3<1, one can 
define + t -+ t~-(zl)--- by the equations t -+ =r~(z~+t~) At this point we assume, for 

z i  g l  - -  ' 

sake of definiteness only, that each ri is decreasing. It follows that 

t? (z,) ds (5.5) 
ti (z, ) iz_st;l _l. 

Notice from the bound on r'(z) that t~/ t  + <(1 +/3)/(1-/3)=7, say. Let z ~ be the 
closest point in [ z - t ; - , z + t y ]  to 0. If Iz~ for some i, then 
m(z)<=(2y)Pril-v(O). In the contrary case, replace z by 0 in the integral in (5.5) 
to obtain the bound 

l/re_<,, g (r'(0) t"-' 
' �9 \ t  2 / rg-~(0)' 

where /7' means that the smallest term in the product is omitted. It is then 
easy to check that r~(O) /r (z - t~)<(1- /3) -~ ,  and this completes the proof. [] 

Proposition 5.1 will be applied to integrals with respect to unimodal densi- 
ty fnnctions by using partial integration. 

5.2. Corollary. Suppose that Qi:IR+--+N+ is increasing on [0,2), decreasing on 
(2, oo) and zero off ~.~+. Set Q(y)=HiOi(yi) .  Fix  2elR;+ and for se lR p, let A ,  be 
the section at s of  A={(s,x)elRP+ x F ,  P+ �9 s i<x i<21  or )~i<xi<si ,  i = l , . . . , p } .  
Suppose u, rz and ~ are as in Proposition 5.1. Then 

j [~(~)  - ~(;03 ~ O (~) dx 

< Cl,,e ~ ,~dx  [D, u(x)] 2 ~ dQ(s)(s , -2 , )  2 ~ sj--2j p - 1  (5.6) 
B~ j rj(L~) 

where B x is the section at x of  B={(s,x)~IRV+ x ~  p" x~As+r(As)}  (Cp, I~ does not 
depend on )~, u o1" Q). 
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Proof Write (5.6) as an integral on A and apply Proposition 5.1 on the sections 
A~ (after making the appropriate changes of variable). Then use Fubini's 
theorem. 

5.3. Remark. If all ri(x)=(xv 1) 1/2 for x>O, then straighforward calculations 
shows that on setting s(x)= 1 /2+(x+  1/4) 1/2, we have if 2>  1, 

Bxc  

[x+  1 -s(x), oo) 
[o, oo) 
[0, x + s(x)] 

if x>)o+Z ~/2 
if }x_ )~} <=)y2 

if 0<__x~2-)~ ~/2 

and if 2 < 1, 

[x + l - s ( x ) ,  oo) if x > 2  

[ x - l ,  oo) if 2 + 1 _ < x < 2  
Bx ~ 

[0, oo) if 2 - 1 < x < 2 + 1  

[-0, x + l ]  if - 1  <_x<Z-1 .  

(Here x, t, )L are scalars, and B x c l R  p in Corollary 5.2 is a product of sets of the 
above type.) 

5.4. Remark. Suppose, as occurs in w that u(x)=u(Ixll, ..., ]xpl) is defined by 
reflection from the positive orthant. Since B~BI~I ,  it follows that the integral 
on x on the right side of (5.6) can be restricted to IRP+. 

5.2. Tails of Poisson Densities 

The results of this subsection express the exponential decline of the tails of the 
Poisson density. The Poisson density has no invariance properties, so the cases 
of large (2> 1) and small (2< 1) means are treated separately. Otherwise, the 
bounds are uniform with respect to ,~. Throughout, the density function is 
extended to x~N + via the formula pz(x)=e-)'2X/F(x+ 1). For the rest of Sect. 

5, we abbreviate (x v 1) 1/2 by I /x .  (However, 21/2 is still the usual square root of 
;~.) 

5.5. Proposition. Given an integer k>0,  and c e N  +, there exist M=Mc,  k and 
c' > c + k/2 such that 

(i) /f)~> 1; 16l<cl /x  and x+6>O~ then 

x - 2 ~  
p;~ (x + 6)< M {p). ( x - c '  1/~) + pa(x + c'l/x)}, (5.7) 

and 

(ii) if 2 < l ; lal__<cl/x and x + 6 > l ,  then 

((x - Z)k/s Px (x + 6) < Mpx (x - c' t/x). (5.8) 

(Here I (k)=I{k>0},  and/ f  k=0,  c' may be set equal to c.) 
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Convention. If x - c ' ] f ~ < 0 ,  then it is replaced by 0 in the formulas above. 

Remark. To motivate (5.7), consider a Gaussian analogue obtained as follows. 

Replace ] / x  by ]/2 in the arguments of pa(-). Approximate the Poisson (2) 

density by N(2,1/2), and then standardize to zero mean and unit variance. 
Then an analogue of (5.7) is the claim that if 151 < c, then there exists c' > c such 
that 

Ixlk (a(x + O) < M ~,k[ r  --c') + (o(x + c')], 

where ~b is the standard Gaussian density. 

Proof of  Proposition 5.5. The argument involves consideration of several cases 
and is outlined in Appendix 1. The ingredients are strict unimodality (log- 
concavity) of x~px(x)  and the bounds on Poisson probability ratios given in 
Proposition 1.7.1. 

We need also a more specific bound on the tails of the derivative p'~(x) 
away from the mean 2. 

5.6. Lemma. Suppose 2 > 1. Given constants b > O, c > b v 1 ; / f  [y[ > 2cJL 1/2, then 

[y/,~l/Nlb jp'~()c + y)[ ==_ Mb, c [p~()~ + y -- C sgn (y) 21/2)1. 

5.7. Corollary. Suppose 2> 1, c> 2b v 2. There exists M=Mb,  ~ such that: 

I f  t>_2+c2 ~/2, ~ S--2 b , _ ~ ~ p~(s)ds<=Mp~(t-c21/2/2). 

I f  O<_tN)~--c), 1/2, i )~--s b , o ~ Pa(s)ds<Mp*(t+c2*/2/2)" 

Proof (of the lemma). Write s for y/)F/2, then 

where 

sb d 1 "2 
ds p'z(2q-s)c / ) sbp;,(24-s,~ 1/2) h(s) 

d p2(,~+(s-T-c)), I/2) h(s-T-c)' 
(5.9) 

oo 
hx(s ) = ~(2 +s21/2 + 1) - l o g  2 = ~ (e - t a - (1  + t) -(z+*a*/2§ 1)) dr. 

0 t 

Here we have used integral representations of ~9(z)=d log F(z) and log2 given 

in Lebedev (1972, w 1.3). It follows that h(s) is log-concave and that s-+h(s)/ 
h ( s -c )  is decreasing for s>c. Thus, for s>2c,  h(s)/h(s-c)<=h~(2c)/ha(c), which 
may be bounded for 2e[1, oo) using asymptotic expansions for ~ (Abramowitz 
and Stegun, 1955, p. 259). A similar argument applies for s < - 2 c .  The first 
term on the right side of (5.9) may be bounded using Proposition 1.7.1 and the 
techniques of Proposition 5.5. [] 
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5.3. Growth of Marginal Densities and Bayes Rules 

The next result is used to show that the marginal density 7r(x) of P(d2) grows 

by a bounded fraction over distances of order l / x  (i.e. one standard deviation 
if 2=x).  Lemma 5.9 has a similar objective, but explicitly includes a growth 
term for dr(x ) . 

5.8. Lemma. I f  d e is generalized Bayes for P(d) 0 and satisfies 

dp, i(x ) < x i + M (x i v 1) 1/2 

then there exists a constant C such that 

(5.10) 

7z(x+aeyTz(x)<Cexp(Ma/(xj+l) 1/2) a,x~lRP+. 

Notational Conventions. For yell, P+, F(y)=HF(yi), 7z(y)=pjF(y+l), di(y)= 
P,/P,-e,, 1 =(1 .. . .  ,1). 

Proof Suppose that y~E~-, and 0 < c  < 1. We first show that re(y+ ce~)/z~(y) and 
n(y)/zc(y-ce 0 are bounded. By H61der's inequality, for y >  1, 

~z(y) <C F(y+ l - c e O  (dP'l(y+(1-c) eO) c C' ( dv l(y+el)~C< 
7z(y-cel) = C ( y + l )  \- ~ + i - - ~  < \ ' y ~  / = C " ,  

since a~de, l(y+aeO is increasing. A similar argument applies for rc(y+cel) / 
~(y). 

It remains to prove the result for x~Z~,  a~2g +. Using (5.10), we have 

rc(x +ael)/rc(x)= ~[ dP, a(x +iel) 
i=1 xr+i  

<(1 +M/(x 1 + 1)l/2)a<exp(Ma/(xl + 1)1/2). [] 

5.9. Lemma. Let d be generalized Bayes for P(d2), Lipschitz and satisfy (5.10). If  
0 <__ a < b < x i are such that b/(x i - b  + 1)1/2 < M o and (b -a)/(x i - b  + 1) 1/2 > 5, then 

(d(x)- x) 2 zt(x -aei) 
x iv 1 zc(x-bei) < C(M~ M, 5). (5.11) 

Proof It suffices to prove this in the one-dimensional case (p= 1) for x >  1. 

Introduce ~.(x)=l//x{d(x)/x-1}<M in virtue of (5.10). Since dp is Lipschitz 
c~(x+l)-c~(x)<M1/1/x, where MI=MI(M ) and hence the left side of (5.11) is 
bounded by 

x-o ( ~ ( y )  
y = x - - b +  1 

__-< a2(X) exp {[7(x)-t 
bMl_ ] b - a  "( 

( x - b + l ) l / g J ( x - b + l )  1/2j<C(M~ [] 
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5.10. Remark.  The posterior risk of d e satisfies some useful identities (proved 
by direct calculation exactly as in (I.2.1))" 

E[(]L i -dp, i(x))2/2i x ] =  D + d e ,(x), 

E [(2 i -- de, i(x)) 21 x - ei] = de, i('x) D + de, i(x). 
(5.12) 

5.4. 

We now begin the proof that d e is admissible in 9 o (this suffices for Theorem 
1.3, by Remark 2.1). Let uE~' and extend u to be defined on IRe+ by linear 
interpolation and then to N p by reflection in the co-ordinate axes. Let r(x) 
= 1 ~ - ( = ( x v  1)1/2), and define a smoothed version g of u by g (x )=(u ,  ~r(~))(x), 

p 

where l~ denotes the uniform probability density on 1-[ [-r~,ri]. Finally let 
Q(d2) = ~2 (2) P(d2). ,=1 

In view of Remark (2.1), we write (2.2) in the form 

B(de,  Q ) - B ~ ( Q ) = ~ "  ~ [de.e(x )-d0.,i(x)]2q . . . .  / x ! ,  (5.13) 
i x ~ T i  

where as before T~={x~ZP+: xi>0}. The argument initially parallels that of 1 ~ 
of I w 5, so we give here only an outline of this part. The first task is to express 
d o - d P  in terms of the prior density ~, with result 

[de, i(x) - d(2 ' i(x)] 2 q . . . .  

<4[~(2i-de ,  i (x ) )22;- l [ f i (2) -  E(fi(2) ] x --ei)]2e-A)~xdP(/t.). (5.14) 

To express the right side in terms of oscillations of ~, we employ the bound 

F.(2)--E(~(2)l_x--ei)<2(g(2)--Ft(x))2 + 2E[(O(2)--~(x))Z[_x--e~l.  (5.15) 

It is convenient for the Poincar6 inequalities to allow x to range continuously 
in T~. As a result, replace the sums on x~T~ in (5.15) by integrals on 
{x~NP+: x~> 1}, which is denoted S~. Thus, in (5.15), x~S i  and _x is shorthand 
for [xl. The "surplus" conditional expectation on the right side of (5.15) is 
removed via the following identity, which flows from (5.12) and Fubini's 
theorem: 

E E(~(2)- 0(x)) 2 l_x -e~] ~dP()O()~ i -dp,~(x))2)q - ~pz(_x) 

X. 
= dp,,(Z) D~ + dp,,(x) ~ (~(2) - ~(x)) 2 ~-[ p ;~ )  de(2), 

_xi 

where the coefficient in front of the integral is uniformly bounded for xeS~, in 
view of Assumption A. Combining now the pieces, we finally obtain the 
following analog of I (5.4) as a bound for (5.13): 

2 _~ v 1 1 ; 
+ j" dx [~(2)-  ~(x)] 2 I T +  2 ~ / ]  p~(x)j. (5.16) 

Si 
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5.5. 

Fix i=  1. We now apply the Poincar6 inequality of Corollary 5.2 to bound 

1(1)= ~ dx[ft(x)-~(2)]Zpx(x), and 
$1 (5.17) 

while for 2 < l, 

f , , (_x- ; j~+_x 
Qj(X)  ~ l ~ p ~ x )  5 

{ p~ (1,~), 6p;.~) 

pA_x) if (x - 2 )  2 > G ,  

if (x -2 )2  < c)o. 
(5.18) 

Q '  , (p~(x), ( ~ + 2 ) p ; , G - 1 )  if x > 2 ,  
jtx) = ] p ~ ) ,  4p~(0) if x < 2, 

except that in both cases, we set Qj(x)=0 whenever x~lTjS 1 (FIj is projection 
on the jth coordinate axis). Note that in (5.18), c > 2  is chosen to ensure the 
desired unimodality. Setting Q(x)=HjQ, j(xj), it follows that I(1), and 1 (2) now 
are both bounded by expressions of the form 

[~(x) - ~(;,)] 2 Q (x) dx, 

and hence are primed for application of Corollary 5.2. 
Let ~)(2)=(2vl)  1/z for each j. The goal now is to obtain bounds for 

quantities on the right side of (5.6) in Corollary 5.2. The claim is that 

L(~)(x)= ~x ~ bdQ j(s) 

<=C[p~'k)(X--Cl]/x)+p~(x+cl]/X)], x, 2EIR +. (5.19) 

for some constant c 1 > 1. Here p~'k)(z)=pz(z v I ( j = k =  1)) and the superscript k 
refers to I (k). Note: Throughout  Sect. 5, we make the convention that a 
negative argument z causes p~.(z) to be replaced by p~(0). 

The proof of (5.19) necessarily splits into cases dictated by the various 
forms of B~ given at Remark 5.3. These are sketched in Appendix 2. For 2 >  1, 
the basic technique is to express Qj(s) in terms of a polynomial in ( s - )0 /L ~/2 
multiplied by p'~(s) and then apply Proposition 5.5. For  2 < 1, the Poisson tails 
decrease "super-exponentially", so that the desired bounds may be obtained 
directly, in combination with Lemma I.A.1. 

in terms of integrals Of IDul 2. 
To discuss these simultaneously, it is convenient to introduce the unimodal 

functions Qj: IR+~IR+ as follows. The first column applies for all j in 1 (1) and 
for j > 2 in 1(2) and the second column for j = 1 in i(2). For  2 > 1, 
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5.6. 

From (5.19), Corollary 5.2 and Remark 5.4, it follows that the i=1  term in 
(5.16) is bounded by 

C~dP(2) ~ ~+ o 

"[- )~1 1(~1 - -d l  ()~l))2ff.~( X ~- o'c' ~ x ) ,  (5.20) 

where a ranges over { -  1, 1} v, and pxj(z)-=p~(z v 1{i= 1}) for z~]R+. Since d 1 is 

Lipschitz, (21 -d1(21)) 2 __<m[(21 -Xl)  2 +(dl(xa) -Xa)2]. It follows from Proposi- 
tion 5.5 and the definition of Pz~ that by increasing c, (5.20) may be bounded 
by 

(5.21) C[,dx2[Oju(x)]2 1-~ x i v  1 J 
J 

For definiteness we consider j=p. The inner integral equals 

Z{%(x+Capi/X)+(xv+l+cavi/~)~(x+ev+cai/x)}. (5.22) 

Repeated application of Lemma 5.8 over successive co-ordinate directions 

bounds (5.22) by M~(x-cl//x)+M(x;+~-cl/xv)~(x+ %-cI/x). Insert this 
into (5.21) and appeal to Lemma 5.9 to obtain the bound (after increasing c) 

C~dk[Dpu(xl]2{zr(x-ci/x)+(x,+l-cl/~)Tc(x+ev-ci/x)}. (5.23) 

It is now convenient to discretize (5.23): at the expense of increasing C (by 
Lemma 5.8), replace each term xi-c(xiv 1) 1/2 (when positive) by the smaller 
integer {[xJ + [ - c ( [ x j ]  v 1)a/2]} v0,  although we will not show this explicitly 
in the notation. For assumption A(b), it follows that zr(x)+(xp+l)~z(x+ev) 
<M?tp(x), where Ctp(X)=ap(x', Xp V 1). This bounds (5.23) by 

C ~ dx [D v u(x)] 2 8v(x _ c I/x). (5.24) 

Since u is a linear interpolation of a lattice function, Dvu(x ) is a convex 
combination of forward differences D~u([x]+'c(p)) where the entries of z(v ) 

p--1 
= ~ riel each range in {0,1}. Here D;u(x)=u(x+%)-u(x), while D2u(x) 

1 
=u(x)-u(x-%). Since bp(x)=dv(x-c'I/x ) is constant on lattice squares we 
may estimate (5.24) by 

~; ~ [D 2 u(x + z(v))]2 b v(x)= C ~ (D; u(x)) 2 ~ b p(x - z(p) -%), 
Cx "C(p) x~Tp "C(p) 

<C ~ (O;u(x))2bp(x-1), 
~cErp 

by Lemma 5.8 and Assumption A, where 1 =(1, ..., 1) and bp(x) is extended to 
bp(x v 0) if x~ <0  for any i. 
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Repeating the argument from (5.22) onwards for each i--1, . . . ,p,  we find 
that (5.21) is dominated by 

c 2  2 (5.25) 
i x~T i  

where g (x) = (g 1 (X 1) . . . .  , gp (xv)) and g t (x) = {x - 1 + [- - c' ((x - 1) v 1) 1/2] } v 0. 
In conclusion, we apply Lemma 3.10 and (3.2) to g(x) to conclude that 

(5.25) can be made arbitrarily small under the recurrence hypothesis. It follows 
that d v is admissible. E] 

5.7. Boundary-positive Estimators 

We discuss briefly the modifications needed when assumption (1.1) fails by 
virtue of di(x ) being positive for some x with x~=0. Such estimators can arise 
as Bayes estimates for certain conjugate priors, or for priors the convex hull of 
whose support does not intersect {)~: )~i=0}. The results will be applied to the 
admissibility classification of linear estimators in the next section. For  sim- 
plicity we write H~--{x: x~ = 0} and consider only rules satisfying 

di(x)=~O on H ~ i n f d i ( x ) > O .  (5.26) 
Hi 

For definiteness, renumber the coordinates so that dl(0 ) . . . .  = d j ( 0 ) > 0  
= d j+ 1 (0) =.. .  = dp(O). Replace (1.1) by 

di(x ) =0  ~ x~ =0. (5.27) 

Theorem 1.2 remains valid if a~,~ is defined as in the following paragraph. If in 
Assumption A, condition b) is enforced 0nly for i>_ J, then Theorem 1.3 
remains valid also. 

In outline, the proofs are modified as follows. Consider first the effect on 
the quotient representation of Proposition 1.1. In the proof of Proposition 1.1, 
we may take ~1,(d2) as the probability measure proportional to e -~2 i  - I dQ~(2) 
and deduce weak convergence to a p.m. ~1(d2) as before. Defining now wl(d2) 
=earl(d2) and pl,~=~e-A)~X21wl(d2), one obtains the representation d~(x) 
=pt ,Jpz  . . . . . .  for all x in ZP+. For  other i<=J, one can proceed analogously to 
obtain wi(d2) and p~,~, furthermore, the family {wz: i<=J} is compatible in the 
sense of Brown and Farrell (1985a): for xeZ;+ ~+~' x+~j , 2 wi(d)t)=2 w~(d2). For 
i>J,  we may use the representation dg(x)=p~,Jpl . . . . .  whenever dz(x)>0 (i.e. if 
x~Hi). The coefficients a~,~ are now defined using Pi,~- 

Theorem 1.2 is proved as before. For  the analog of Theorem 1.3, we 
suppose that d satisfies (5.26) and has quotient representations for measures w~, 
i<=J as described above. The main change in the proof is forced by the need in 
(5.13) to sum over all x~Z;+ rather than T/for i<J:  ~o is modified accordingly 
and throughout the proof, dP(2) is replaced by 2iwi(d2 ) in the i TM inner sum. 
The argument then proceeds as before with the addition of appropriate bounds 
based on (5.22) to handle the extra sums over H~. 
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w 6. Applications 

This section provides some simpler sufficient conditions for (in)admissibility 
and discusses applications of the main results. Lemma 6.1 is a particular form 
of the Nash-Williams test for recurrence, (Griffeath-Liggett 1982, Lyons 1983) 
which is appropriate for estimators with approximate simplicial symmetry. 

This is then combined with the main theorems 1.2 and 1.3 to derive simple 
comparison tests for (in)admissibility (Proposition 6.2, Corollary 6.3). Corollary 
6.3 is used to settle a number of conjectures and to give an admissibility 
classification for linear estimators. We go on to discuss the use of the Royden- 
Lyons transience test in deriving some of the results, and mention a connection 
with unpublished work of Charles Stein. 

In the Nash-Williams terminology, the next lemma lumps together all sites 

in the set An= x: xi=n , n~Z+. In what follows, z = [ x l = ~ x  i. 
i = i  1 

6.1. Lemma. Let ~(z)= ~ ~ ai(x), and assume conditions A. 
lxl=z i 

I f  ~ 1/a(z)= 0% then dp is admissible. (6.1) 

]1 
Proof Let um(x)=c m ~ 1/a(z+l),  where c,,= 1/a(z) . Now 

Ixl 

~, ~ ai(x)[Diu,,(x)]Z=cm --+0 
i X : X i > = l  

as m~oo,  and u , , ~ ,  so minl]ull2:0 and d e is admissible by Theorem 1.3. [] 
0u 

Of course, if P(d2) is exactly simplex symmetric, the condition (6.1) reduces 
to that of Corollary 4.2, but is then less general because of the conditions A 
needed for Theorem 1.3. We now apply Lemma 6.1 to derive a comparison test 
analogous to Corollary 4.3 which applies in situations of approximate sim- 
plicial symmetry and also in certain quite asymmetric cases (see the discussion 
of linear estimators below). For an arbitrary function 

e:2~+--+lR +, let E(z)=e(z+l)~Ie(s)/s for z>0.  
S =  I 

6.2. Proposition. ( i ) I f  there exists r/>0 and a function e(z)>0 such that 

di(x)>=rlX i and ~i di(x)>=z e(z)z �9 ~pp~l '  with ~'z 1/E(z)< oo, then d is inadmissible. 

(ii) I f  d is generalized Bayes, assumptions A hold and ~di(x+ei)<e(z+l) ,  
with ~ liE(z)= 0% then d is admissible, i 

z 
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Proof. (i) For each x, n(x)/n(x-ei) >e(z)/z + p -  1 for some i. Thus n(x)> c o g(z) 

and ai(x)>CorlXig(z), where g(z)=H~ ~(s) s + p -~-~-" Thus 

y' y' a~(x') [D, u(x)] 2 >__ c ~ ~ g(z) 2~ [D~ u (x)] 2. (6.2) 
i x i x 

As argued in w the infimum of the right side of (6.2) over ~ equals the 
infimum over f of 

c L 
~=1 \ k - 1  z=l 

The result now follows from Theorems 1.2 and 1.1,3. 
(ii) To apply Lemma 6.1, note from the monotonicity of d e that 

a(z)= Z Za~(x) = Z n(x)~d,(x)<=e(z+l) Z n(x). 
ixl=z i I x l - z  i Ixl=z 

Use the lattice structure of the positive orthant to find 

Z ~(x)~dp,,(x+ei)= Z Zn(x+e~)(x,+l) =z 2 n(x). 
I x l = z -  1 i I x l - z -  1 i I x l = z  

Iteration together with the hypothesis yields 8(z)<n(0)E(z), which suffices. [] 

Remark. A variant of the argument for (i) applies in case d(x) satisfies 

~ - l e O ( 1 / z )  as z~ov,  (6.3) 

which obviates the need to study the product E(z). If x and x' are points with 
~x~=~x' i=z ,  then there exists a path from x to x' of length at most pz steps 
lying wholly within {x : z - l<<_~x i<z+l  }. If (6.3) holds, it is easy to check 
that [ai(x)/xi]/[ai(x')/x)] is uniformly bounded. Now if c(z) is any selection of 
the multifunction z~{ai(x)/xi; x s.t. ~x~=z, i=1  . . . .  ,p}, then by arguing as 
after (6.2), we conclude that d(x) is inadmissible if 

1/(z~e(z)) < oo. (6.4) 
$ 

6.3. Corollary. 1) I f  d~(x)>77x i for some t />0  and ~ d ~ ( x ) > z - ( p - 1 ) + 6 ,  for 
large z and some 3 > O, then d(x) is inadmissible, i 

2) I f  Idi(x)/xi- lleO(1/z ) and ~ di(x + ei)> z + l + 6 for large z, then d(x) is 
inadmissible. 

3) I f  d is generalized Bayes, assumptions A hold and ~d i (x+e i )<z+ 1 for 
large z, then d is admissible. 

Proof The proof of 3) of the Corollary is immediate from Proposition 6.2. To 
prove 1), note that for large z and some 6'~(0, 6), ~(z)/z>(l+6'/z), and hence 
that E(z)>CzHf(l+6'/w).  Consequently, for some 5>0, E(z)>Cz l+~ for z 
large, and this yields 1). The same argument, in conjunction with (6.4) estab- 
lishes (2). [] 
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6.4. Remarks. 1) All the conjectures of Brown (1979) relating to the simulta- 
neous estimation of Poisson means for the present loss function may be easily 
verified using the Corollary. 

2) Hwang (1982) calls an estimator 6 ~ a Semi Tail Upper Bound (STUB) 
on the class of admissible estimators in direction 1=(1, . . . ,  1) for the loss 
function L 1 if every estimator satisfying 

i i 

for all large x is inadmissible. He shows that estimators of the form considered 
by Clevenson and Zidek (1975): 6eCZ(x)= [ 1 - ~ / ( p - 1  +z)] + x, are such STUB's 
for ~ < p - 1 .  Since ~6CZ(x+e~)=z+ 1 +6 where 6 = p - 1 - # ,  statements 1) and 

2) of Corollary 6.3 essentially say that 6 yz are STUB's. Hwang also conjectures 
(w that the STUB's approach a "dividing line" between admissibility and 
inadmissibility. This conjecture is established for the 6 cz STUB's by 3) of the 
Corollary. 

Linear Estimators. We shall apply the preceding results to identify admissible 
linear estimators of the form d(x)=Mx+7 under L 1. As Brown and Farrell 
(1985 b) have given an exhaustive discussion, we shall for simplicity restrict 
attention to M nonsingular and 7 > -1 ,  the latter condition being imposed by 
our restrictions (1.1) and (5.26). 

As is seen in w 2, admissible estimators are necessarily pointwise limits of 
Bayes estimators. In view of the representation of Proposition 1.1, admissible 
estimators must therefore satisfy 

di(x+ei+ej)dj(x+ej)=dj(x+ei+ej)di(x+ei) gi, j; x~Z +. 

For linear estimators this forces M2'=DM, where D is a diagonal matrix with 
entries d~ = ~ mj~. So if M is non-singular, it must be diagonal. 

J 
We therefore need only consider estimators of the form di(x)=ci(x+ai), 

with ci>0. If any cq<0, then di(x) is replaced by df-(x)=ddx)vO. These 
estimators are then (generalized) Bayes with respect to the conjugate priors 
P(d2)=l-[2~C~e-X'(1-~)md)~i. Assume that the indices have been permuted so 

i 
that c~>c2>...>cp>O. If there exists a subset I of indices such that the 
estimate formed from the components d~(x~), ieI is inadmissible in the II[- 
dimensional problem, then d is inadmissible in the original problem (Remark 
3.6). It follows then from Corollary 1.5.2 that d is inadmissible if c z > l .  
Conversely, Remark 2.2 permits us to ignore components with q < l ,  since 
these are proper Bayes rules in the component problems. Now suppose that 
c 1 = . . .  = c a = 1 and that cq > ~2 ~ ' ' "  ~ ~J" If C~a > 0, then inadmissiblity again fol- 
lows from 1.5.2. More generally Corollary 6.3 forces inadmissibility whenever 

J 

o:i>l-J. Conversely, admissibility of d(x) follows from Corollary 6.3 if 
i = l  

J 

~ _ < l - J .  
i - -1  
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In this case one can also use the Nash-Williams criterion for recurrence of 
a reversible Markov chain (see for example Lyons (1983)) if cz < 1, c 2 < 1; by 
taking Ak= {x: x~ =k} in Lyon's setup. 

Connections to Tests of Recurrence/Transience. 1. It was mentioned earlier in 
this section that the admissibility test (6.1) could be viewed as a consequence of 
the Nash-Williams test for recurrence. A test (in fact a characterization) of 
transience for reversible Markov chains is given by Lyons (1983) in terms of 
flows. We show here that this leads to the inadmissiblity test of Corollary 4.2 
in the simplex symmetric case, and more generally to a converse of Lemma 6.1. 

Adopting Lyons' model, regard the lattice points of ZP+ as being connected 
by tubes parallel to the coordinate axes, of length one and cross sectional area 
ai(x ) for the pipe from x to x - e ,  A flow on ZP+ (emanating from 0) is a 
sequence {uxy, x, yEZV+} such that uxy= u~y, ~ u 0 y + 0 ,  ~ u ~ y = 0  if x~=0 and 

Y Y 

u~y = 0 if x and y are not neighbors in ZP+. Having in mind the interpretation 
of U~y as a volume rate of flow, define the (kinetic) energy of the flow by 

2 ~u~,y/~x,y, where c~,y is defined from e~(x) as in Sect. 3. The Royden-Lyons 
X, y 

test states that the (discrete time) chain X,  associated with axy is transient if 
(and only if) there exists a flow of finite energy. 

Define a flow in the following concrete way. Suppose that 1 unit of fluid is 
introduced per second at 0. In each second, all fluid at a node x is re- 
distributed amongst nodes x + % i=  1 . . . .  , p in proportion to the cross-sectional 
areas C~,~+e. Thus if v(x) denotes the volume of fluid passing through x per 
second, then v satisfies 

i ./ 
(6.5) 

The volume of fluid passing from x to x + e i each second is 

J 

and it is immediate from (6.5) that u~y defines a flow on 2g%. Note that since 
the c% are known and v0= l ,  (6.5) can be solved recursively and uxy and its 
energy explicitly evaluated. This approach is perhaps conceptually simpler than 
that of solving the boundary value problem ~ of Theorem 1.4. 

Suppose temporarily that aj(x) is derived from a simplex symmetric prior. 
Then from (4.1) ai(x)=c(z)x i, where c(z)=b(z)(z-1)!/(z+p-1)! and b(z) is 
defined below (4.5), and (6.5) simplifies to 

v(x)=~, z+p-lX~ v(x-e3, xeZ~+ -{0}, 

which is clearly solved by v(x)=(p-1)!/(z+l)...(z+p-1). The corresponding 

/ [  (z+P]],andhasenergy flow has Ux, x+ei=(Xi-[-1) ( z + l )  \ p - l / ]  
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2 ~ U 2 

z - - u ~ ' = z Z  Z ~. a~(x)~ .... ~-2(,p-1)[Z1/b ~. 
x,y  O;xy = 1 [xl=z z 

Thus, Lyons' test yields the same criterion for transience as did Theorem 4.1. 
The flow u~y constructed above does not depend on the particular simplex 

symmetric coefficients a~(x) used in its derivation. It might therefore be used 
for more general ai(x): indeed it leads to an alternate proof of (1) of Corollary 
6.3. The energy may be written as 

~ lalve ~i x~ /[z2 (Z+P-ltai(x)] p-1 / 

which is bounded by c~z -p ave 1/~(x), since d~(x)>~x i. Now d(x).l>=z- 

(p-l-c~)impliesthat~(x)>=~l[1-(~-)]>cz-(P-~-~')forsome6's(O,(~), 

which entails finiteness of the energy. 
2. In unpublished notes from 1964, C. Stein used an abstract form of his 

necessary and sufficient condition for admissiblity (1955) to derive a characteri- 
zation of recurrence for irreducible Markov chains on countable state spaces 
which in the reversible case reduces quite directly to the Griffeath-Liggett 
characterization. Thus our recurrence/transience tests for admissibility in a 
concrete statistical problem can be viewed as consequences of Stein's abstract 
characterization of admissibility. 

Appendix A.1 

Proof of Proposition 5.5. Suppose first that 2 < 1, and k__> 1. Writing L for the 
left side of (5.7), (5.8), it is clear that L<Mp.z(O ) if x + 6 < k + l .  If x + f > k + l ,  
then 

k - - 1  x x 
L < ~  1~ x+6_~ 2k-lpx(x+6-k)<M~px(x-c'I/x). 

Similar reasoning applies if k = 0. 

Suppose now that 2 > 1  and fix c'. The n u m b e r s  X--C]/~,X,X-}-C(XV1) U2 
partition IR + into four (possibly degenerate) intervals, and we consider these in 
turn. 

If x-cl/x<2<x, simple algebra shows that (x-2)/lf2<c2/2+(c 2 
+c4/4) 1/2, and that 2<_x+c ~ - = 2 + M c r  Note from Proposition 1.7.1 
that 

so that 

x - 2 \ k  +~)__M~ k P~ (2)~ p~ (2 +rn~ ~,]~) p~(x+c']/x). ~ - )  pz(x _ ' p~(2+m~,~,]/~) ~ , <M~,~, 
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If x < 2 < x + c ] / x  v 1, and x >  1, then the a rgument  runs parallel to the 
previous paragraph.  If  x__< 1, then 

l P~(X+a)<=C~p~(~+c') " 

since 2<x+c ' l / / xv  1 < 2 + c ' .  

If 2 < x - c ] / ~ ,  consider first the case in which x<2c']/x.  Then X<=4C '2 and 

it is easy to check directly that  L<M~,~,k,~,(x-c'}/x). If  x>Zc']/x,  introduce 

z=[x-2]/]/2, and note that  for some e > 0  

L/p;,(x-c']/x)= x - - 2 k  x_ ](~'-c)I/~<_e~(,_c)C, zk / z \-(c'-c)l/~ 
x _ 1 + - -  . 

Taking logari thms and  appropr ia te  derivatives shows that  for z > c, 2 > 1, 

<k logz - (c ' - c ) ] /1  + z  log(1 + z)<=M~,c, k. 

Finally, assume x + c ] / ~  v i < 2. For  x > 1 we have 

, ,- Ix-~ . l  ~ [1 '- (A.1) 

N o w  if 1 < x _< 2/2 and c ' - c  > k/2, this is bounded  by 

M~,.. i-~ -k2k/2 \21 ix~kl2 \2(x-I(c'-c'r 
_ (~'_ ~) V~-+ k _ 

< M c, c, xl/a Z 2 <= M c, c,,k 

while if 2 / 2 < x < 2 ,  and z=(x-2) / l f2 ,  (A.1) is bounded  by 

Mc lz[k (1 _ izl/l~)(c-c)w ~ Mc izlk e -~lz I __< Mc ' < k- 

Ifx<__l, r  Pz(X+ c) ~/1 \ 2 ] <Mc, c,k, i f c ' - c>k /2 .  

Appendix A.2 

Proof of(5.19). 

i) 2 > 1 ,  x > 2 + 2 1 / 2 .  
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Here B~ = [t~, ~).  Suppose first that t x > 2 + c 1/2, so that 

Lj(x)<S ~ (-Qi(s))ds, 
x V ~ l  

where for seN+\2g  +, (~j(s) is defined from (5.19) by replacing x by s, and using 
for pz(s) the form e-X2~/F(s+l). Differentiation shows that-for s>2+c21/2, 

Q'I(s)>;t-l[(s-2)Z+s] ~sPz(S), so that for all i it suffices to bound ex- 
pressions of the form 

~~ s-2b d c - 

c ~  ~ -  c 
(Corollary 5.7). From Remark 5.3, t x -~ l /2>x+l- (x+l ) l /2 -~ l /x>x  

-c']//x. Thus if x-c' l /~>2, then Lj(x)<Mpa(x-c'lfx), while if 2 - c ' l / ~ < x  

-c'l/~<2, then Lj(x)<__Mpa(Z)<Mp(~J)(x-c'l/x), where we have used Propo- 
sition 5.5. 

Suppose now that x > 2 + l / ~ ,  but t~<2+c ] /~ .  If O<t~=x+l-(x+�88 ~/2, 
then tx>2-clf2. In this case, from Definition (5.18) 

Lj(x) <~+!~ ~ -(~'(s)] ds + 6cbpz(#) 

<M[P;o(2+2I/~)+Px(2']<MP~{)(x-c]//x', 

since 2 < x < 2 + 3 c I f ~ .  

ii) 3~__>1, X~.~--~ 1/2. 

Here Bx = [0, t~] ~ T. Su_ppose first that t~__< 2 - c ~ and x > 2/8. Then as 
before, by extending Qj to Qj defined for real s, and differentiating, we find 

' : l ~ - s l  b - ,  Lj(~) <= ! ~ Qj(s) as, 

which is in turn bounded by terms of the form 

0 H  lds 

c 
Since x>2/8, tx+~]/)~<-_x+�89188 so that ( c )  Pz t~+sk/'t <Px(X+C"l/x). The proof in the case tx>2-c]/x is similar to 

the corresponding part of (i) and so is omitted. 
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If t~<2-clf2 and 0 < x < 2 / 8 ,  a different argument is used, for then t~=x 
+�89188 and Lj(x)<2b/ZQj(t~), which in turn is bounded 

by terms of the form ffpz(x + 2]/Tvv 1). Now if c > 2 

<_xp/X\(~-z)W ' /  c \(~-z)r Mx a M'. 

Finally, if x=0 ,  fl0=[0, 1], and it is easy to check that Lj(x)<=Mpp(Co) for 
some positive constant c o . 

iii) 2>  1, )~-21/2<x<=2+21/2. 

Here B~--Z+, but a bound for Lj(x)in terms of p,(x+c"l/7)+pa(x-c"]/7) 
is easily obtained by combining the methods of steps (i) and (ii). 

iv) 2 < l , j = l .  

In what follows t~=x+�89188 ~/z, and S denotes the closed convex hull 
of the support of the measure defined by Q~. From the definition of Q~, it is 
clear that 

L(~ 2) (x) < 4pz(0 ) 121 b {0~B x c~ S) + 4p~ (0)12 - 21 b {2~Bx} 

+ ~, ls-2[b(s+l)p~(s-2). 
S>txV3 

If t x<b+3 ,  then the above is trivially bounded by Mbpz(O ). If t x>b+3 ,  it is 

bounded (using I.A.1) by MbP~(tx--4-b)<=Mpx(x-c]/x) for appropriate c. 
A similar argument is used for L(~)(x), except that if r l = l ,  so that 

S=  [1, oo), then for t~<b+3, a bound by Mbpz(1) is possible. 
The situation for i>  2 is entirely similar to that of L(~)(x). 

Appendix A.3 

Proof of (4.6). First, 

Yp(z)<=PTv-l(z)+P ~ xv/Hf-lxi 
Ixl=~ 

minx/>-- 1 

~ p'~ v_ l (Z) q-p Z ( ~  1/x )P-  t ~ C p z logP-  l z. 

For the converse, 

 v(z)=p x;n -l(xjv 1) 
Ixl=z 

>__z 
0 < xi < z/p 
l <i<v-1 

1/IIf-l(xivl)>z(logz/p)P-l>c'vzlogP-lz. [] 
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