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Summary. Let X 1 , . . . , X ,  be a sequence of continuously distributed inde- 
pendent random variables. The normalized ranks Rk, and sequential ranks 
S k, k = 1 .. . .  , n, are defined by 

R _1 k 
k"--n j=~ I { X j < X k } '  Sk=k  E I {X j<Xk}"  

The subject of the present paper is the asymptotic behavior, as n ~ o o ,  of 
the process 

1 
1/~k~,a(Sk) ,  0 _ < t < l ,  

1 

for aEL2(0, 1), Sadn=O. For  suitable a, the limiting law of that process is 
0 

expressed as solution of a stochastic equation under the hypothesis of 
identically distributed X~ . . . . .  X ,  as well as under a class of contiguous 
alternatives, which contains the occurrence of a change point in the series 
of measurements. 

1. Introduction 

Let X 1 . . . . .  X ,  be a sequence of continuously distributed random variables 
(r.v.). Consider the corresponding vectors of normalized ranks IR, 
=(R 1 . . . . .  ,R , , )  and normalized sequential ranks ~ , = ( $ 1 ,  . . . ,S,)  which are 
defined in the following way: 

Rk ---- I { X j < X k }  , I { X j < X k }  , k= 1, ..., n, 
- - n  j= I = 

where I{A} is an indicator of an event A. There is a one-to-one correspon- 
dence between the vector of sequential ranks ~;, and the vector of the "or- 
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dinary" ranks I (  n 

Sk =kl ~, i{Rjn<=Rk~}, k = l ,  . . . ,n ,  
j = l  

n 1 k 
~,lI{S,_k+j<--_S,_k}, k=O . . . .  , n - 1 .  n - k  Rn-k'n =Sn-k +n--~--k j= 

But at the same time the properties of the vectors I (  n and N, are very 
different. In particular, for any symmetrical function (p the r.v. q~(1R,) de- 
generates into a constant whereas (p(N,) remains a non-degenerate r.v. For 
instance, the empirical distribution function of the vector IR, is a deterministic 
function Fn,(t)= [nt]/n where Ix] is the integer part of x and, hence, it is of no 
use for the aims of statistics. At the same time the empirical distribution 
function Fsn of the vector N, is a random function which is quite useful for 
testing of the hypotheses about the distribution of the r.v.'s X 1 . . . .  , X,  (see, e.g., 
[1] and the Corollary 2 below). Furthermore the coordinates of the vector P,., 
are dependent r.v.'s, while the following statement holds for the sequential 
ranks (see, e.g., Theorem 1.1 in [2]). 

Lemma 1.1. I f  the r.v.'s X 1 . . . . .  X ,  are independent and identically continuously 
distributed then the r.v.'s St, ,.., S, are independent and 

= - ,  i=1  . . . .  ,k.  
n 

Note one more difference between IR, and ~ , :  if the sequence X'~ . . . .  , X', is 
a permutation of the sequence X1 . . . .  , X ,  then the vector IR, is a similar 
permutation of the vector whereas this does not hold for the vector ~;,. 
However in problems when according to any of the hypotheses to be tested the 
r.v.'s X1, ..., X,  are not identically distributed, e.g., in change point problems 
(see below), it does not seem natural to be interested in the permutations of the 
sequence X 1, ..., X,. 

In the present work we obtain limit theorems for processes formed by 
partial sums ~ a(Sk). Such partial sums play an important role when the 

k<nt  

hypothesis about independence and identical continuous distribution of the 
r.v.'s X1, ..., X,  is tested against various alternatives about different distribu- 
tion of these r.v.'s. According to Lemma 1.1 under the hypothesis the function- 
al limit theorem for these partial sums immediately follows from Donsker's 
theorem (see, e.g., [-3], Chap. 3, w - this is what makes the application of 
sequential ranks so attractive. However, when the alternatives hold the situa- 
tion is quite different. 

In particular, let according to the hypothesis (the alternative) the distribu- 
tion function (d.f.) of the r.v. X i be F(FI, ) and let 5r ~ ln(dFi,/dF)(Xi). 

i<n 

Suppose that the sequence of the direct products F1, x ... x F,,, n =  1, 2, ..., is 
contiguous with respect to the sequence F x ... x F. Introduce c~= algebras ~ x  
=a{Xa  . . . . .  X,} and ~ s = a { S ~ ,  ..., S,}. According to LeCam's  third lemma 
(see, e.g., [4], Chap. VI, w the limit distribution for ~ a(Sk) under the 

k ~ n t  
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alternatives will follow from the limit theorem for the pair ( ~ a(Sk), Yn) under 
the hypothesis, k ~ nt 

However  it is not so easy to obtain this limit theorem: the distribution of 
a(Sk) with respect to ~ x  is not so "simple" as it is with respect to ~ s ,  but 

k < n t  

the r.v. S ,  is not measurable with respect to ~ s .  At the same time the classical 
method to obtain the joint limit theorem for linear rank statistics ~cka(Rk, ) 
and s cannot be applied here: as it is well-known, the essence of this method 
is that the relation 

1 ~ Cka(Rkn ) -  1 ~ Gcp(Uk)=Op(1), n ~  

is established where Y Ck=O, Uk=F(Xk) and, hence, it is sufficient to prove the 

joint limit theorem for two sums of independent r.v.'s (1/1/~) ~ CkCP(F(Xk)) and 
k<=n 

~ ,  which is quite easy. In the case of sequential ranks such a way cannot be 
applied, as it is stated in 

Lemma  2.L Let U 1 .... , U~ be independent and uniformly distributed on [0, 1] 
r.v.'s and S 1 .... , S k be their sequential ranks. Then for any ts(O, 1] 

V~ k~nt a(Sk)- k<_,~Z cP(Uk)~=Op(1) 

for any functions a and (p such that 

1 1 1 

~a(u)du=yqffu)du=O, O<~a2(u)du<oc 
0 0 0 

and a is left continuous and has finite right-hand limits. 

Describe our alternatives more precisely: assume that all d.f. F~, i=  l . . . .  , n, 
n = 1, 2, ..., are absolutely continuous with respect to the d.f. F and 

(x) =1  2 ~-h"(t'u)']/n n <t<-,n u=F(x) dF 

where 
1 1  

hn(t,u)-h ,u dtdu~O, y yh2(t,u)dtdu<oo, 
O 0  O 0  

1 

yh(t,u)du=O for a.a. tE[0,  l ] .  (1) 
0 

In particular, for the so-called change point alternatives there exists t o~(0, 1) 
such that h(t, u)=I {t >= to} h(u) for some square integrable function h. 

Finally, consider the empirical process Yn which is based on the normalized 
sequential ranks: 

y.(s) = l f i  [Fs.(s) - s3 .  
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In [1] the convergence in distribution is formulated for y, under the hy- 
pothesis. Corollary 2 in Sect. 2 of the given paper establishes the convergence 
in distribution of y, under the alternatives. 

2. M a i n  Resu l t s  

1 

Let a be a square integrable function on [0, 1] such that Sa(u)du=O and 
1 l 0 
S aZ(u)du= 1. Denote b.( t)=-7 Z a(Si) and introduce the a-algebras 
0 V n i<nt 

Yx=a{X1  ..... Xk} and ~s=r 

k = l , . . . , n ,  = = 
The process {b.(0, ~s~ l} is a process with independent increments, but we 

have to consider the process {b.(t), ~ x  ~*r.tl}. Consider Doob's decomposition for 
this process 

b.=A.+M.  

1 
' a . ( t ) = ~  Z E[a(Sk)l~ (2) 

vn  k<nt 

1 
m.(t) = - 7  ~ (a(Sk)--E[a(Sk)[~ff-1]) 

vn k<_nt 

and introduce the field V. and the process C. by means of the relations: U k 
= F(Xk) and 

1 1 1 
V.(t,u)=O, 0_<t<- ,  V.(t,u)=-7 Z (I{UjNu}-u), -<_t<_l, 

n g n  j<=nt n 

where 
1 1 

w.(O--S v.(t, du)=  Z a(V ) 
0 Vn k <=nt 

a n d s u p p o s e w , ( ~ ) / ( [ n t ] - X ) = O f o r t ~ [ O , X / n ] . U n l e s s t h e o p p o s i t e i s  

stated, we assume the r.v.'s X 1 . . . .  ,X ,  to be independent and have a con- 
tinuous d.f. F, i.e. U1, ..., U, are independent and uniformly distributed. 

Obviously, the process {w,(t), ~x~l } is a square integrable martingale and, 
hence, the process C, has a "suitable" construction. According to Theorem 1, 
the process C, approximates the compensator A,. 

Theorem 1. Suppose that the derivative a' of the function a is bounded and 
continuous. Then for any e > 0 

sup tf~E[a(Sk)[~ff_~]+w, ( ~ - )  kn~_l =Ov(1), n~oo. 
ne<k~n ] 
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Consequently, 

sup IAn(t)-Cn(t)l=ov(1), n~oo. 
O-<t-< 1 

Remark. The statement of Theorem 1 holds for somewhat more general con- 
ditions: it is sufficient, for instance, to assume that a '=  q~ -0  where (p, 0 are 
increasing square integrable and continuous in the square mean. The proof for 
this case is given in Sect. 3. But such extension does not lead to the generaliza- 
tion of the basic Theorem 3. 

Define the process of the likelihood ratio L,: 

L.(t)=k~.~ ~ [ In d d ~  (X~) -E  In ~dFk~(xk) ] 

and the two-dimensional Gaussian process (w, L) where w is a standard Wie- 
ner process, L is a Gaussian process with mean 0 and correlation function 
QL(tl /~ t2) where 

t 1 

QL(t)=y I h2(z, u)dzdu 
O0 

(i.e. L is a process with independent increments) and the mutual correlation 
function of w and L is Q(t~/x t2) where 

t 1 

Q(t) = ~ ~ h(z, u) a(u)dz du. 
O0 

Let D e [0, 1] denote the direct product of the spaces D[0, 1]. 

Theorem 2. Under the conditions of Theorem 1 

sup [M~(t)-wn(t)l=ov(1), n~oQ. 
ogt__<l 

Now we pass to the joint limit theorem for the processes {b., L.} and the 
resulting limit theorem for b. under a sequence of alternatives. Let b(t)= 

t 

-S(w(z)/z)dz+w(t). Then {b,L} is a two-dimensional Gaussian process, b 
0 

being a standard Wiener process and the mutual correlation function of the 
processes b and L is 

Eb(q)L(t2)=R(q ' t2)= _~  - Q('r A t 2 )  dz+Q(q A t2). 
0 "E 

In particular, for the change point alternatives 

R(q,  t2):<h , a ) [ t  o (In tlAt2 t + --(t 2 --to) t2 
ln- 

~ o  / t 1 A t 2 J  I_ \ 

and 
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where 
1 

x + = x I { x > O }  and (h,a)=Sh(u)a(u)du. 
0 

Introduce a d.f. 2k(t)=[kt]/k. Let Clb[0,1 ] denote a class of functions on 
[0, 1] with a continuous and bounded derivative and let B[0, 1] be a com- 
pletion of the class Clb[O, 1] in the norm 

p(a)=l im S a2(z)d2k(t) + a2(~)dz ] . 
k = l  0 

It is evident that the right-(left-)continuous functions which have left (right) 
limits belong to B[0, 1] and that B[0, 1 ] c L 2 [ 0  , 1]. To explain the nature of 
the metric p we remind that 2 k is a d.f. of the (normalized) sequential rank S k 
and that the predictable square characteristic (see [61, Chap. 5, w of the 

difference of the two martingales b,i(t)=(1/]/n ) ~ aj(Sk) , j = l ,  2 (with respect 
to the flow {ffff}) is k-<,t 

1 

( b , l - b , 2 ) t : ~ k ~ , t ! [ a t ( z ) - - a 2 ( z ) l E d 2 k ( Z ) .  

Theorem 3. I f  the function a~B[O, 11 then {b, ,L ,}  ~-K~{b,L} in D2[0, 11 with 
n--~ oO. 

Corollary 1. I f  the function a EB[O, 1] then under the alternatives (1) b, ~ > b 
+ R ( . ,  1) in D[0, 11 with n-~oe. 

Let 
t s 

mr, s)= S u)d du. 
0 0 

Corollary 2. Under alternatives (1) 

yn-----~ V+C 

in D[0, 11 with n~oe ,  where v is a Brownian bridge and the function c is 

-i c(s)= H(z'S) dz+H(1,s) .  
0 "C 

In particular, for change point alternatives 

c(s) = - i h(u) du t o in t o . 
0 

3. Proof of Theorems and Corollaries 

Similar to Sect. 2 we assume everywhere that the r.v.'s X1, ..., X,  are inde- 
pendent and that the d.f. of X k is F, i.e. the r.v. Uk=F(Xk) are uniformly 
distributed on [0, 1] and U 1 . . . .  , U, are independent. To prove Theorem 1 the 
following lemma is used. 
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Lemma 1.3. For n~oo 

sup IV.(t, u)l=Op(1), 
O < ~ , u < l  

Pro@ Since 

1 

sup ~ V~Z(t, u)du=Op(1). 
0 -<t-<l 0 

1 

sup ~V2(t,u)du < sup IV~(~,u)? 
0 -<t-<l 0 O<-t, u<-I 

it is sufficient to prove the first relation. But it is well-known ([51) that 
V.- ~ > V in D[0, 112 where V is the so called Kiefer field, i.e. the Gaussian field 
with the mean 0 and the covariance function (t I/x tz)(S 1 ix s 2 -  sl s2). Therefore 

sup IV.(t,u)[ , sup IV(t,u)l=Ov(1 ) 
O < t , u <  l O < t , u <  l 

which implies the first relation of the lemma. 

Proof of Theorem 1. The sequential rank S k can be written as 

Sk = / ~ k - 1  (Uk)-t-~ [1 --;k-l(Uk)l �9 (3)  

Hence, 

]fn~E[a,Sk)l~ff_ll=lfn ia (Fk_ l(u)+ ~ [1-- /~_ l (u , ] )du  
0 

L 

: l /nia'(u)[Fk_l(u)-uldu+ ~ - ~a'(g)[1-Pk_t(u)]du 
0 0 

1 

+]/n ~ [a'(g) -a'(u)] [Fk_, (u) -u ]  du, (4) 
0 

1 
where g lies between u and Pk- l (u)+ k [ 1 - F  k_ l(u)]. But the first summand in 

the right-hand side can be written as -w.(k-1/n)n/(k-1)  where, note w.(t) 
1 

=~ a(u)V.(t, du). Let us show that the two remaining summands are small. We 
o 

have (see the Remark after Theorem 1) 

and 
a'(~) - a'(u) = (p 07) -q0 (u ) -  tp (17) + ~b (u) 

1 1 
O-<lg-u[< - sup IV,(t,u)l+--=A,. 

- -  ~ ] / / n g  O < t , u <  l FIB 

Since q) is increasing 

Irp(u- A.) -cp(u)l < sup ko(ff)-cp(u)l < ~o(u + A.)-q)(u). 
ne<_k<n 

Lemma 1.3 and the continuity of q~ in the square mean imply that 

1 
[(p(u-A.)-(p(u)]2 du=ov(1), n--*oo 

0 

(5) 
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and the same relation holds for 9 (u + A,) - ~0 (u). Consequently, 

1 

sup [q~(g)-q~(u)]2 du=op(1), n~oo .  
0 nc<-k<-n 

A similar relation is true for O(a)-O(u). Hence, 

1 

sup [a'(ff)-a'(u)]E du=op(1), n--*oo. 
0 ne.<-k<-n 

(6) 

Consequently, uniformly with respect to k>ne ,  n--,oo the third summand 
in the right-hand side of (4) is %(1) and by virtue of (6) and the finiteness of 

1 1 

the integral ~(a'(u))2du we get ~(a'(g))2du=O(1). The latter relation implies 
0 0 

that the second summand in the right-hand side of (4) is also or(1 ) uniformly 
with respect to k__> n~, n ~  oo. This proves the first assertion of the theorem. 

In order to prove the second assertion note that 

sup [A,(t)--C,(t)[< sup [A,(t)l+ sup [C,(t)l+[A,(e)[-I-JC,(e)l 
O < t < l  0__<t<~ O<t_<~ 

+ sup [A . ( t ) -A . ( e ) -  C,(t)+ C,(e)[. 
a<t<=l 

It follows from the first assertion of the theorem that for any ~>0 the last 
summand in the right-hand side of this inequality is %(1) with n ~  oe. Now for 
all n > l  and for e ~ 0  

IC,,(O[< sup IC.(OI < [ n ~ ] - i  
O<-t<-e 1In 

since E [w.(z)[ < l / ~  and, consequently, the expectation of the right-hand side of 
this inequality is small for small e. Besides 

[A,(e)l < sup [A,(t)] < sup Ib.(t)l + sup IM.(t)l =or( l )  
O<:t~e O<-t<-e O<_t<_e 

as it can be easily seen from the fact that the processes {M.(t), j x ~ and [nt]) 
{b,(t), ~ s  ~r,q} are martingales. These estimates lead to the second assertion of the 
theorem. Theorem 1 is proved. 

Proof of Theorem 2. Using equality (3) write the expansion for a(Sk): 

a (Sk) = a (Uk) + a'(Uk) [F k_l (Uk) -- Uk] + Yk 

where we have for the remainder 7k 

1 
IYkl <~  sup la'(u)l + [a'(Uk)-a'(G)l" ISk-- Vkl. 

O_<u_<l 

Therefore 

1 ~,~tl , 1 , - , 

]Yk] < sup la (u)[  + l f n A .  max la (Uk)--a (Uk) [=or( l ) ,  
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since it follows from inequality (5) that max IS k -  Uk[ =Op(1/1/n ) and relation 
n~<_k<_n 

(6) implies max [a'(Uk)--a'(Uk)[=01,(1 ). 
ne<=k<=n 

Further it immediately follows from the proof of Theorem 1 that 

1 

E [a(Sk) l ~ x  11 = S a'(u) [ ~ _ l  (u) -- u] d u + 6 k 
0 

with max [6kl = %(1/1/~ ). So finally we have 
n e < k  

where 

1 [nt] 
M , ( t ) - M , ( e ) - - - ~  k= E.~Z + 1 (a(Sk)-E[a(Sk)l~x-1]) 

=w.(O-w.(O +m.(O+/Ut) 

1 [m] 

m"(0----~ k = L.Z~I + 1 (dk-g[dk]~X-1]) '  

d k = a'(Ck) [P~_ 1 (Uk) -- Uk], 

sup I~.(01 =oA1). 
e<-t < - 1 

It can be easily seen that the martingale m, converges in probability to 0. 
Indeed, 

1 ~ E [d k I ~k-  1 ] ( r a n ) i =  ~ 2 oz ' x  

k= In e] + 1 

1 

<S(a'(u))2du max sup Ifk_l(u)-uL=o(1 ), n--*oe 
0 ne<-k<n O-~u-<l 

by virtue of Glivenko's theorem, and from Kolmogorov's inequality we get 

So 

sup Im,(t)l=o~(1). 
O < t ~ l  

sup IM.(t) - M . ( O  - w . ( t )  + w.(Oj = oao(1), 
s_<t_<l 

g/---~ OO, 

and besides it can be easily seen that 

and 

fM,(e)l< sup IM,(0l=oe(1), e--+0, 
0<t__<E 

IWh(01~ sup I%(t)l=Op(1), ~---~0. 
O < t < e  

This completes the proof of Theorem 2. 

Proof of Theorem 3. Consider the process C,+w. .  Assume first that the 
function a satisfies the conditions of Theorem 1. Theorems 1 and 2 imply that 
sup lb , ( t ) -C,( t ) -w,( t ) l=op(1)  with n~oe .  Hence it is sufficient to prove the 

0=<t=<l 
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convergence of the processes {C.+w., L.}. But by means of the theorem of 
continuous mappings (see [3] 

{b, L} where {b==, L,} ~ 

b:(t)=I{t>=e} [-  i 
and 

8 

Chap. 1, w it can be easily proved that 

t i  

1 w(z)dz+w(t)]. 

At the same time with n ~  oo and when e~0,  

sup [b~(t)-C~(t)-%(t)l=oe(1 ) and sup tb~(t)-b(t)[=Op(1). 
O_<t_<l O_<t_<l 

So we can apply Theorem 4.2, Chap. 1 in [3] and show that 

{C,+w~,L,}--~{b,L} and, hence, {b,,L=}~{b,L} 
if a~Clb[O, 1 ]. Suppose now that the function 8~B[0 ,1]  is such that 
1 1 

SS(z)dz=O, S82(z)dz=l. Consider the corresponding process /Jn. Let a m be 
0 0 

a sequence of functions from Clb[0, 1] converging to ~ in the metric p and 
consider the corresponding processes b~. By virtue of the just proved result 
{b~,Ln} ~ >{b m, L} for every m. Consider the difference {bn, L~}-{b~,L=} 
= {b, - b~, 0} which with respect to the flow {ffk s} is a martingale. Consequently, 
(b,,, b~) l~p (& %) with n ~  ~ .  Hence, using Kolmogorov's inequality we have 

lira lim P{ sup - m Ibm(t) - b ,  (t)[ >e} =0.  
m-~c~ n ~ o  0=<t_-<l 

Applying Theorem 4.2, Chap. 1 from [3] once more, we complete the proof of 
Theorem 3. 

Proof of Corollary 1 immediately follows from Le Cain's third lemma (see, 
e.g., [4], Chap. VI, w 1). 

Proof of Corollary2. For any fixed set t~ . . . . .  tm~[0 , 1] consider the linear 
combination 

c~;Y,(tJ)=~n k~ 1 ~ ~j(l{Sk <=tj}--tj). 
j = l  j = l  

It follows from Corollary 1 that 

ajy.(tj)~ ~ o:j[v(tj)§ 
j = l  i = l  

It means that the finite-dimensional distributions of the process Yn converge to 
the finite-dimensional distributions of the process v+c. Besides under the 
alternatives (1) the family of probability measures of the processes y,, n 
=1, 2, ..., is tight since this family is tight under the hypothesis (see [1]). 
Corollary 2 is proved. 
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Proof  of  Lemma 2.1. Suppose the opposite, i.e. suppose one can find for the 

funct ion a, satisfying the condi t ions  of the lemma,  a funct ion (p from L 2 [0, 1] 

such that  b , ( t ) -g , ( t )=ov (1  ) for n ~ o o  where g , ( t ) = ( 1 / l / n  ) ~ (p(Uk). But ac- 
k ~=nt 

cording to Theorem 3 {b , ,L ,}  ~ ( b , L } .  Since the processes b and  L have 
con t inuous  trajectories (bn(t),Ln(t)} ~ ~(b(t),L(t)} where the correla t ion be- 
tween b(t) and  L(t) under  the change point  al ternatives is (h,a)to(ln(t/to)) +. 
Then  by virtue of our  assumpt ion  we must  have {gn(t),Ln(t)} ~ ~ {b(t),L(t)}. 
But it is evident that  the correlat ion between the r.v.'s gn(t) and  L,(t) is 
Eg~(t)L~(t)-~(h,q~)(t-to) +. Consequent ly ,  for any  ~ some t o can be found such 

that  (h, a) to(ln(t/to)) + = (h, ~ ) ( t - t o )  + and  this contradicts  our  assumption.  Lem- 
m a  2.1 is proved. 

Note added in proof 

After we submitted our paper for publication we found in Z. Wahrscheinlichkeitstheor. Verw. 
Geb. 70, 395-410 (1985) the paper by F. Lombard and D. Mason "Limit theorems for generalized 
sequential rank statistics". Though with different goals and different general approach and also 
different mathematical equipment this paper uses relation (3) above and therefore has distinct 
similarity with the present paper. We find it necessary to admit it here. 
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