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1. Introduction 

In  the theory of large r a n d o m  matrices, how to dominate  the n o r m  of a 
r a n d o m  matrix is a very impor tan t  problem. This is the reason why many  
authors  are interested in this problem. Fo r  interesting works, see G e m a n  
(1980), Jonsson (1983), Silverstein (1984) and Yin et al. (1984). In these papers, 
they consider the no rm of a sample covariance matrix, with different m o m e n t  
requirements.  The newest result of  Yin et al. requires only the existence of 4th 
moment .  

In this paper, we consider a different type of r a n d o m  matrices, namely  W k, 
i.e. a power of a square r a n d o m  matrix with iid entries. 

The first result in this paper  (Theorem 2.1) is 

lim < (1 + k)o -k, a.s. (n is the size of W), 
n - - + ~  

here a 2 is the variance of the entries of W. We assume only the existence of the 
4th momen t  of  the entries of  W. F r o m  this result it is easy to show that  the 

spectral radius of W/I/~ is not  greater than ~ with probabi l i ty  1. 
In proving the above result, a new kind of  graphs has to be discussed 

carefully, (w and the t runcat ion method  used in Yin et al. (1984) is also 
impor tan t  here. 

As applications of the above result, we have solved two open problems 
announced  in the paper  G e m a n - H w a n g  (1982). The solutions are in w 5, w 6 and 
w 
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work of the second author was done when he was at the Center for Multivariate Analysis 
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2. Limiting Behavior of Matrix Product Norm 

In Sects. 2-4, we will prove the following theorems. 

Theorem2.1. Let  {wij: i = 1 , 2  . . . . .  j=1 ,2 , . . . }  be lid random variables, and IV, be 
the n x n matrix (wij) i,j = 1,2 . . . .  , n. Suppose 

E w 1 1 = O  , E w 2 1 = a  2, E w ~ l  < oo. (2.1) 

Then, for  any positive integer k, we have 

( ~ n )  :c < ( k + l ) a  k a.s. (2.2) l imsup = 

Here IIA[[ denotes the operator norm of  the matrix A. 
Denote by 2i(A ), i=  1,2 . . . . .  n, the n eigenvalues o f  the n x n matrix A. We 

have 

Theorem 2.2. Under the same conditions as in Theorem 2.1, we have 

l imsup max 2 ~ ( ~ ]  _<a a.s. 
n~,eo l < i<n  \ V n l  

This result was earlier proved by Geman (see Geman 1984 or Hwang 1985) 
under stronger conditions that E w l l  =0,  Ewe1 = a  2 and E w ~  <__n p" for all n ~ 3  
and some fl > 0. 

Theorem 2.2 can be easily deduced from Theorem 2.1 as follows: For any 
integer k>_-1, by Theorem 2.1, 

l imsup max 2~(~n  ) = l imsup  max )~i [(~nn) k] 1/k 
n ~  l < i<n  n--+oo l <i<__n 

__<limsup < ( k +  1)l/k 0 - a.s. 
n---~ oo 

Letting k--* oo we get Theorem 2.2. 

3. Some Lemmas 

At first we state the following lemma which can be found in Yin et al. (1984). 

Truncation lemma. Let  r be a number in the interval [�89 {w~j.: i , j = l , 2  . . . .  } be 
a set o f  iid random variables with Ew11=0,  ElWll le / r<oe .  For each n, let W, 
denote the p x n  matrix whose (i,j)-entry is wlj, here p=p(n )  satisfies 
p / n ~  y~(O, oo), as n ~  oo. 

Then there exists a sequence o f  positive numbers 6 = 6, such that 
1 . 6 ~ O ,  a s n ~ o o ,  
2. P(W,+ fig,, i .o.)=0; here fig, is the p x n matrix, with the (i,j) entry 
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Wijn = Wij l(Iw~jt < 0n~}, 

and the convergence speed of  ~ to zero can be slower than any preassigned speed. 

In fact, the truncation lemma can easily follow from the fact that for any 
fixed t/> 0 

In order 
i l , i  2 . . . . .  i2k m 
lOWS : 

P ( U  ( ~  U I W ~ j I > ~ / n ~ ) ) < ~ P (  max max IW~;I>~t2 ~) 
n = 2  k i = 1  j = l  l=k 2 1 < n < 2 1 + 1  l<i,j<=n 

< ~ ,P (  max max IW~jl__>rl2 ~) 
l=k 27=<n < 2 ' +  1 l < i , j < 2  ~+~ 

~, P( max IWj_>_rl2 ~) 
l=k l ~ i , j < 2  ~+1 

<4 ~ 22'P(I Will>r/2 '~) 
l=k 

4 ~ 22/ ~ e(r/2m'__<lWl,l<r/2 (~+1)~) 
[=k m=l 

<8 ~ 22mp(~2"~<lW~l<t12('+~)~) 
m=k 

<8Yl- 2/" E IW~y/~ I[IVV;,I>tl 2k~]--,O, 

hence there exists a sequence of positive constant 6,, 6,$0 such that 

j = l  

to prove Theorem 2.1, we need some combinatorics. Let 
be a sequence, we define a multigraph F(k,m;i~ . . . .  ,izk,, ) as fol- 

1. The vertices of this graph are i~, i 2 . . . . .  i2~ m. Some of them may be equal. 
2. There are 2 k m  edges e~,ez,.. . ,ezk m. The ends of e~ are i a and i,+a 

(i2km+x=i~). Any two of these edges are different even when they have the 
same end sets. Sometimes we write i a i,+ 1 instead of e,. 

3. To each edge e a there corresponds a number dir(e~), called the direction 
of ea, such that 

J" + 1, if [ ( a -  1)/k] is even 
dir(e,) 

- 1, if I-(a- 1)/k] is odd. 

Two different edges e~= i a i,+ 1, %= ib ib+ 1 are said to be coincident, if either 
i . = i b ,  i a + l = i b + l  and dir(e,)=dir(eb), or i~=ib+l, i~+l=i b and dir(e~)= 
- dir (%). 

A chain is a subgraph with vertex set {ia, ia+ 1 . . . .  ,ib} ( l<__a<b<2mk+l )  
and edge set {e,, %+ t . . . .  , eb-1}" We will denote such a .chain by i, i~+ l""ib" 

In the graph F(k,m; i l , i  2 . . . .  ,i2km), we classify the edges as follows. 
1. An edge ia_ 1 i~ is called an innovation if i a is new, i.e. ia=t=i~ . . . .  , ia#i~_ 1. 

The set of all innovations will be denoted by I. 
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2. Let S be the set of all edges i a_ i ia which coincides with an innovation, 
and for any b < a, i b_ 1 ib does not coincide with that innovation. 

3. All other edges consist a set called T. 
If ia i~+ 1, ib ib+ 1 are two edges satisfying the following properties: 
(1) b<a; 
(2) i bib+ 1 is single up to ia, i.e. it does not coincide with any edge of the 

chain i 1 i2... i~. 
(3) Either ib=i a and dir(ibib+l)=dir(iai,+l), or ib+l=ia and dir(ibib+l)= 

-- dir(i~, i,+ 1), then we say that i, i~+ 1 is coincidable with i bib+ 1. 
An edge of S is called singular if it is coincidable with just one innovation. 
An edge of S is called regular if it is not singular, i.e. it is coincidable with 

more than one edge. 
The proofs of Lemma 3.1, 3.2, 3.3 below are similar to the proofs of Lemma 

3.1, 3.2, 3.3 in Yin et al. (1984). 

Lemma3.1. I f  in the chain i~i~+l...i b, i, ia+ 1 is single up to i b and i b has been 
visited by i 1 i2... ia then i~ ia+ 1"'" ib contains an edge of T. 

Lemma 3.2. Let t be the number of equivalence classes of T under the equiva- 
lence relation "coincidence". Then if i~ i,+ 1 is a regular edge of S, the number of 
edges with which i~i~+ 1 is coincidable is not greater than t+ 1. 

Lemma 3.3. The number of regular edges of S is not greater than twice the 
number of edges in T 

The chain 
L 1=i li2.. . ikik+l, 

L2 =ik+ l ik+ 2...i2k+ l, 

Lzm=i(am- 1)k+ 1 i(2m-1)k+Z...izmki~ 

are called segments. 

Lemma 3.4. Let l be the number of innovations. Then the number of different 

ways to appoint the 2kin edges to be of I, or S, or T, does not e x c e e d - "  -(2~m) 
(k+ 1)2kin 21+2~. \ K , ~ /  

Proof. Since the number of innovations are l, the numbers of S and T must be l 

t2km~ different ways to select 2km and 2k m -  21, respectively. So there are \ 2l ] 

- 2 1  edges fi'om the 2 k m edges which are appointed to be of T, and the others 
to be of I or of S. 

Now consider a segment L~. Note that every edge in the same segment has 
the same direction. Suppose that L~ contains #~ edges of T. Then L~ is split by 
these/~ T-edges into at most #~ + 1 subchains consisting of consecutive edges of 
I u S .  Let the lengths of these subchains be Vl,V2,...,G~+l, respectively (if 
there are less than #~+ 1 such chains, then some v~ at the rear part of this list 
are zero). Consider the ith subchain with v~ edges. It is evident that if some 
edge in this chain is of I, then the next one (if any) must be of I because of the 
same direction of them. So there are only v~ + 1 possible appointments for this 
chain, namely, I I I . . . I ,  S I I . . . t ,  SSI . . . I ,  SSS. . .SI ,  SSS.. .S.  So for the whole 
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/Zc+ 1 
segment Lc, there are at most [I (vi+l)<(k+l) uc+l ways to appoint the k 

i=1 
-/~c non-T edges to be of I or of S. Thus, for the whole graph, there are at 

2 m 
2m ~ pc+2 m 

most [ I ( k + l ) u ~  . . . .  ( k + l )  2km-2z+2m ways to appoint the 21 
c = l  

non-T edges to be of I or of S. 

4. Proof  of  Theorem 2.1 

Now we apply the truncation lemma for r=�89 and p(n)=n. We need only to 
prove 

limsup,~o~ ( ~ ) ~  <(k+l )Gk  a.s. (4.1) 

Define #u,=Wu,-Ewu, and define W,--(wu,), i , j = l , 2  . . . . .  n. We shall 
prove that for any k > 1 

limsup ( ~ n )  ~ < ( k +  1) ~ ,,-,~ 

If (4.2) holds for any k => 1, since 

l=0  ~ - -  

and 

a.s. (4.2) 

~ ]  1 

1,1, ) =Vn-lEWllnl "->0, 
. . . v l  

VV,_VV, =lEWll,I  1,1,. . . ,1 

1,1 . . . . .  1 

by (4.2) we obtain 

limsup ( ~ ) k  ( ~ ) k  

< limsup ~ " IEwlln[(k-l)~r k-l-1 
n~oO /=0 

(4.3) 

from which and by induction we can deduce (4.1). Hence to prove Theorem 
2.1, we need only to prove (4.2). 
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For  saving notat ions,  we can assume that  W, is an n x n matr ix  with iid 
r a n d o m  entries w~j, such that  

Ewl l=O,  [w~l<61fn,  Ew21<=l and E w ~  <d. (4.4) 

Here,  wi thout  any loss, we suppose  a =  1, and instead of 25 we write & 
Under  the condi t ion (4.4), it is easy to see that  

< f ( b l / n )  ~-2, for 1>2, 
Elwi~l=(d(S]/~),-3 ' for 1>3. 

(4.5) 
It  is enough to show that  for any n u m b e r  z > (t + k) 

(;t ,46, 
n ~ l  

But since 

----<tr{(~nn)k[ (W"]k]r)'''~nn,] J "  

Fo r  any sequence m=m(n) of posit ive integers, 

P(]l(W./1/n)klJ>z) < ~ P(tr(Wf(W.k)T)m>--_zZmn "k) 
n = l  n = l  

<= ~ z-2~n-mkEtr(Wf(Wk)T)  ~. 
n = l  

And we need only to show that  for some posit ive integers m = m(n), 

z -  2mn-mk E tr(Wf(w~)T)~ < O0. (4.7) 
n = l  

We have  

~ .  = E t r  (w.~(w.b~)m = y~ E(w, 1,2 % , 3 "  w,~,t<+ 1) 

�9 ( W i k  + 2 it< + I W i t <  + 3 i k  + 2 "" " W i 2 k  + 1 i2t< ) � 9  

�9 (Wi(2~-t)k+2i<2m 1)k+l"''Wi2mk+li2~t<)" 

Here,  il, i 2 . . . .  ,i2m k run over  {1,2, . . . ,n}  and i2 ,~g+l=i l .  For  each 
it, i 2 . . . .  , i2m k we can define a g raph  F(k, m) as in Sect. 3. 

--(2km](k + 1) 2km-2'+2m different ways to By L e m m a  3.4, there are at mos t  \ 21 / 

appoin t  the 2kin edges to be of  I or of  S or of  T. 
Let  t denote  the n u m b e r  of noncoincident  T-edges. Because our  graphs  do 

not  have  single t h roughou t  edges, we have l < m k  and 1 <<_t<_2km-2l if l<=mk 
_ _ 1  
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Next we bound the number of different ways to appoint each edge in a 
canonical graph with given positions of the l innovations, l S-edges and 2kin 
-21  T-edges and with t different T-edges. Since each edge is an element of the 

left-upper 2kmx2km submatrix of W, so there are at m o s t "  "((2ktm)2 ) tZkm-- 2l 

different ways to appoint the t different T-edges into their 2km-2l  different 
positions. 

Each innovation in a canonical graph is uniquely determined by the edges 
before it, and so is each singular S edge. By Lemma 3.2 and 3.3, there are at 
most ( t + l )  4k"-4~ different ways to appoint the regular edges of S to their 
positions. Here we should note that whether an S-edge is singular or regular is 
determined by all the edges before it. 

From the above arguments and (4.8), we get 

"~ 2 1)2km_2l + n l + l  tZkm_2 l IE . I<  (k+ Zm F, 
l= =1 t = l  

x (t + l )  ~ " -  ~' m~(~ VT)  ~ ' -  = ' - '  

~k (2km] + l)2k"-z'+;' :km-:' <n k'+z ~ (k Z (2kin) 3' 
- z=~  \ 2 I  ! t=l 

�9 ( t +  1) 6 k ' - 6 '  ~ 2 ~ " - 2 ' ( ~ 1 / ~ ) - ~ .  

0 

Here ~ A t = 1, eonveniented for saving notations. 

By the elementary inequality 

d(t+l)b<a-1 --l~gaga for ( 0 < a < l , b > 0 )  

we get 
mk 2km / 6km~l/6 \ 6km-6t 

tE,l <nk,+, ~= ~ ( 21 ) (k + l)2k~- 2,+ 2~(2km) ~k,,-,. 

If we select m = re(n)= A(n)log n such that 
1. A(n)-*ov. 
2. A(n) 61/6--*0 then 

6km~ 1/6 
--,0, (n--, ~). 

log (2kin)3 

Thus we obtain for large n 

mk /2km\ 1)2m 
IE"l<nkm+2~ ~ 2I ) ((k+l)2~)~m-z(k+ 

1=1 
< nk,,+ 2 (1 + (k + 1) c3t/2)2km(k q- l) 2'n. 
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Since z>(1 +k) and 6--*0, we have 

z -2"  n -k'~ lEvi < C Y, (n2/m(1 +(k-t- 1)31/2)2k(k + 1)/z) m 
n = l  n = l  

< C  ~ ~/m< oo 
n = l  

where 0<~/<1 is a constant. Here the last series converges because 
m/log n ~ oo. The proof is finished. 

Remark. In the proof of Geman (1984), he used the fact that the spectral radius 
of a matrix does not exceed its Euclidean norm. The crutial step in his proof, 
equivalent to the inequality below (4.6), is to estimate 

( W~ 2~ (tr ! W. W')". 

In the computation, there is a little difference between the method given by 
Geman and that in this paper. 

5. Two Problems of Geman-Hwang 

In Geman-Hwang (1982), they suggested the following system of linear equa- 
tions with unknown n x 1 vector X, 

x n =  l n + ~ n  W.X~ (5.1) 

where W~ is an n • n matrix whose (i, j)-entry is wij and W= {wij: i, j =  1, 2, ...} 
is an infinite matrix of iid random variables, and 1, is the n x 1 vector 
(1, 1 . . . .  ,1) r. 

If Xn=(X,I  . . . . .  X,~) T, then for any integer r e> l ,  Geman and Hwang 
proved that as n ~ 0% 

O-2 
Ira) weakly, (5.2) (Xn~, Xn2, ..., X,m)T-* N (lm, l_o- 2 

under the conditions 
1. E W l l = 0 ,  0 < E w 2 1 = o - 2 < 1 ;  
2. E IW~II<n ~" for any integer n > 1; ~ is a positive constant. 
Geman and Hwang pointed out that the computer simulations support (5.2) 

even in the case of uniform distribution on [ -  1, 1], where o-a _ t 
We will prove that (5.2) is true even when o-2< 1 and E Iw~ll < oo. 

Theorem 5.1. Let X ,  be the solution 4" (5.1) whenever (i  1 W,) is n o n -  

singular, otherwise define X,=0 .  Then (5.2) holds when E wll  =0, E w21 = a2 < 1 
and EIw41[ < oo. 
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Geman and Hwang (1982) suggested a system of differential equations 

1 2.(t)=~x~ WnX~ X.(0)=l.  (5.3) 

They proved that for any integer r e> l ,  real T>0 ,  X,I(-) . . . .  ,X,m(" ) (the first 
m components of the vector X,,(-), the solution of (5.3)) tend to m iid Gaussian 
processes weakly, as n ~ ,  on [0, T]. Each of these m processes has mean/~(t) 
= e ~t and covariance function 

co 

C(t, s)=e  ~('+s) ~ (ts)k 
k= 1 (k !)2" 

They supposed among others the following moment requirement 

E[wzll"<n'" for all n>2,  and some fi>0. 

In the same paper, they conjectured that the analogous theorem should 
hold for the equation 

w. 
X , , ( t ) = ~ X , ( t ) + ~  X,( t)+ 1,, X,(0)= 1,. (5.4) 

V n 

We will prove 

Theorem 5.2. Suppose Ewes=O, Ew21=l,  and Ew41< ~ .  Let X,(t) be the 
solution of 

1 
)(,(t) = , X , ( t )  + ~ n  W,X,( t )+f i l , ,  X,(0)= 1,. (5.5) 

Then for any integer re>l,  real T>0 ,  X,,l(t), ..., X,,,(t) tend to m iid Gaussian 
processes weakly on [0, T] as n ~ ~ .  The mean of these processes is 

t 

#(t)=e~t+fi  ~ e ~s ds=e~t+ fi- (e ~t- 1), (5.6) 
0 O~ 

the covariance function is 

k=l ~ tke~'+fi 
)( s ) 

yuke~du ske~+fiyuke '"du . (5.7) 
0 0 

Remark. When fi=0, Theorem 5.2 reduces to an extension of Geman-Hwang 
theorem. When p = 1, Theorem 5.2 includes a proof of Geman-Hwang's conjec- 
ture. 

6. Proof  of  Theorem 5.1 

By the Truncation lemma; we can assume that the entries of W n are bounded 

by I/if6, here 6 = 3 , ~ 0  arbitrarily slow. We suppose 5 is defined as in the 
proof of Theorem 2.1. 
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Write Y = X , - 1 , ,  A =  W,/1/n. (5.1) is equivalent to 

( I . - A )  Y=A1. .  

k - 1  

Multiply both sides by y '  A ~, we get 
i = 0  

k 
Z def  ( .  Ai , = J , - A  k) Y= ~ 1,. (6.1) 

i = 1  

We need the following lemma. 

Lemma 6.1. Suppose 
1. {w~j; i , j=l ,2  . . . .  } are lid random variables" and W, is the matrix 

(wifi 1 <i, j<n);  
2. E w l l = O  , Ew21=a 2, Ew4i <oo. Then if ~(i,k,n) denotes the i-th com- 

ponent of the vector \1/~ ] 1,, for any distinct ordered pairs (il, ki), ..., (i,,, k,,), 
as n--~ oo, 

( ( ~ ( i l ,  ]s n )  . . . .  , oC(im, kin, n)) r ~ , Nm(O , Am) , 

where A m = diag (a zk~, .... crZkm). 

The proof of Lemma 6.1 is almost the same as the proof in the Appendix of 
Geman-Hwang (1982). In fact, if we truncate all the entries of W, according to 
the truncation lemma and then centralize them, without loss of generality we 
can assume that 

2 -< Ewll=O, EWlt---~o "2, IWll l<~] /~  and Ew~i<d<oo.  

Checking the proof of the Appendix, we find that in the expansion of 
m 

E I~esJ(ij, kj, n) the main terms remain the same except the factor 
j=l 

a~lk,+...+~mkm is exchanged by (Ew~l) (s~k~+''+s'km)/a which tends to 
as~k~+...+~,,km. On the other hand, if vl, ..., v t are given integers satisfying vl 
+ . . . + v t = s l k l + . . . + s , , k , , ,  Vx>2,...,vt>__2 and at least one of them is strict, 
then 

I- 
' ) and the total number of those terms with the factor [ I  E ~ wll ~' i=~ ~ n n  is O(ng. 

Hence the sum of all those terms tends to zero by the fact that 6--.0. 

Therefore, we get the same limits of E f i  e~J(i~, k m, n) as that gotten in the 
j=l 

Appendix of Geman and Hwang. This implies Lemma 6.1. 
By truncation lemma and Lemma 6.1, it is not difficult to see that 

(k ) ( I , , O ) Z , ~ N , ~  0 , 2 ( 7 2 i l m ,  as n---+oo. (6.2) 
i = 1  
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Here  I m is the m x m identify matr ix  and (Im 0) is of order  m x n. Also, if (Z,) i is 
k 

the ith componen t  of Z,,  E(Z,)21 ~ ~ a zi as n ~ oe. Here  the reader  has to note  
i = l  

that  we have t runcated the entries of W n at 1/~6. 
In order  to prove Theo rem 5.1, we notice that  

X , = I , +  Y= 1 .+Zn+A k Y 

Then, if t=(t  1 . . . .  , tin) T, i=]/ - -1 ,  

1 o~ 

+ EeiC(x"~189 } 

+ e x p l - - � 8 9  j=l j=l 

= a  1 + a  2 + a  3 �9 

As n --* 0% a 2 ~ 0, by (6.2). 
Now we estimate al .  We have for any e > 0  

a~ <E le "'(z~~ II _-< 2P(II(I~O)A k YH >e)  + r 

Here  qS(e)= sup [ e C ~ - l [ - , 0  as e~O.  
llxll _-<~ 

We consider only those k, for which (1 +k) 1/k a< 1. 
Let A=A,,k={Co~f2: [[Ak[[<llk}, where (l+k)l/kcr<11<l, I1 is fixed. Evi- 

dently P(A)~  1 as n--* oo by Theo rem 2.1. Thus 

P(I[(I,.O) A k YI] >=e) <=P(II(I,.O) Ak VII >__e, IIAktl <~?k) + P(llAkll >=rt u) 

1 
<e~ E [[(ImO) A k Yl[ 2 l z + P([lAkll >~1 g) 

m El lAky l l z l z+l_P(A)  ' <--~% 

since the components  of A k y  1 A have the same distribution. 
We have 

A k y = A k ( I - A  k) y + A k A  g y = A g Z , + A k ( A  k Y), 
s o  

and 
llAk YII ~ IlAkll IIZ.]I + IIAkll HAkyI[, 

[[Akll 17 k 
[[AkyI[ l Z ~ l S l ~ k l  I [[z.[I 1A~ 1 ~  IIZ.[4 1~. 

By (6.3) and (6.4), 

( tlk ~2g[lZ, l l2+l_P(A)" P(II(ImO) Ak yII > O < e ~  n \l_~lk ] 

(6.3) 

(6.4) 



566 Z.D. Bai and Y.Q. Yin 

Let  n ~ ~ ,  we get 

l i~ P(ll(i,.O)A~Yi[>O<= ~ \l-~kl( tlk ~2 ~k ~r 2j. 
n ~  j = l  

So 

EeWamo)(x.- 1.) t 00 } lira - e x p  - ~ t ' t  ~, a 2j 
n~oD (. j = l  

.~- < m ( y]k ~ 2 k 
< l i m a l + a a = ~  \ l _ _ t ] k ]  ~ O'2J-}-q~(e) 

+ --�89 ~ t7 2 j  - -exp --�89 2 a 2 j  " 

I j = l  j= l  91 

Lett ing k ~  ~ ,  and then e ~ 0 ,  we see that  the left hand  side tends to zero. 

7. Proof of Theorem 5.2 

It is easy to verify that  

1 (~n)k e~Sds) (7.1) 
k=O 0 

is the solut ion to (5.5). 
Theo rem 5.2 is a consequence of the following lemma. 

Lemma 7.1. Let {wif i, j = l ,  2 . . . .  } be a family of lid random variables with 
Ew11=0 ,  Ew21= l and Ew41< ~ ,  and W,=(wij, l <i<n,  1 <i<n). 

Let {gk('), k = 0 ,  1 . . . .  } be a sequence of continuous functions satisfying 

rk sup [gk(t)l< ~ ,  (7.2) 
k=O ~" O<t <T 

where r > 2, T > 0 are positive constants. 
Then for any integer m > 1, as n ~ ov the stochastic process 

k=O �9 \ I / n ]  l"gk(t)' te[O, T] ,  

tends to an m-dimensional Gaussian process with iid components, each with mean 

go(t) and covariancefunction c(t, s )=  gk(t) gk(S). 
k=l  

Proof. Let  

z . ( t )= (z .~ ( t )  . . . . .  z . . ( t ) )T= ~., ~ 1.g~(t). 
k = l  V n  

We prove that  the sequence {(Z,I( .  ) . . . . .  Z,m(')), n = l ,  2, ...} of stochastic 
processes is tight in cm[o, T]. It is easy to see that  we need only to show that 
{Zni(.), n = 1 , 2  . . . .  } is tight in C[0, T] ,  l<i<_m. 
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II w.ll } 
Let A,= coef2: ~ - n  (o)<=r . By Theorem 2.1, P(A,)~I .  Let 

pk(6)= sup ]gk(t)--gk(S)l, 
I t - s l < ~  

t, ss[O, T] 

e(i, k, n)= 1, i= the ith component of (IV"] k 1,. 
\v J 

We have 

hence 

sup [/.i(t)-/,,~(s)]__< ]e(i,/r n)l k! ' 
t t - s I < ~  k = l  

t, se[O, TI 

lim lim P( sup IZ, i ( t ) -Z , i ( s ) l>e  ) 
0 ~ 0  n ~  I t - s [ <  g 

t, s ~ T  

6--+0 n ~ m  k = l  

<lira lim [1E  ~ l~.lc~(i, k, n,[ @~6) +(1-P(A,))]  
~ 0  n--* oo k = l  

=lira l i m - 1 ~  __P~) E lA, lc~(i,k,n)l. 
3 ~ 0  n -+~ ~ k = l  

It is easy to see that e(i ,k ,n)  lz . ,  . . . .  e(n,k ,n)  lz . ,  i=1 ,2 , . . . , n ,  have an 
identical distribution. Therefore 

So, 

E l z, lc~(i, k, n)l < E 1/: lz, tc~(i, k, n)t 2 
1 W. k 2 1/2 

r I/V 2 k q  1/2 

lim lira P( sup iZ . i ( t )_Z . i ( s ) l>e)<l im _1 ~ pk(6) 
~ O n - ~  It-sl<~ o-*o e k=: ~ - .  rk=O' 

t, s~ T 

Thus, the tightness of the family {Z,i(.); n= 1, 2, ...} of stochastic processes 
is established. 

Finally we show that for any positive integer l and t: . . . .  ,h~[0, T], as 
n ----~ oO 

m l 1 ~ 2,j2~q c(tj, tq) . Eexp i~ ,  2~iZ.~(tj) ~exp  --~,=2 2=1 q=l 
L v = I j  

Here i = ~ - l  and {2~fl are real numbers. 
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Let 

eP,~(t) = ~ 1, k! 
k=p+ 1 

= ~ o~(v, k,n) g~(t) 
k = p + l  k !  ' 

v = l ,  ..., n. 

Let gk= sup gk( t ) .  The for any e>O, 
t-E[O, T] 

lim lira P(]eP.(tj)]>e)<lim lim -1 ~ gk El~.lct(v, k, n)] 
p~oo  n~oo p ~ c o  n~oe  ~ k = p + l  ~ "  

1 ~ r k 
< -  lira k.r gk-- O. (7.3) 

p--*co k=p+ l 

On the other hand, by (7.2) 

k=P+l 1 gk(tq ) <  ( ~+ gk]2 lira ~ (k!) 2 gk(tj) ~ --0. (7.4) 

We have 

i v J 2vj k o~(v, k, n) - E exp - v = l  j=l~ q=l 2~j 2,q c(tj, tq) 

a(v,k,n) - E e x p  i 2  2~j~a(v,k ,n)  exp i v t i~VJk I v = l  j = l  k = l  j =  = 

+ Eexp i__~ 1 2 2 ~ j E  a(v,k,n) - exp  - ~  

+ exp --~ 2~J~-.T ) f - -  P - 2 )o~j2~,c(tj, tq) 
v = l  k ~ l  j v = l  j = l  q = l  

----a 1 + a  2 -k-a 3 . 

By (7.3) lim lira a 1 =0. By Lemma 6.1, lirn az=0. And 
p~oo  n-+oo n~oo 

a3= exp - ~  )%qk~ 1 ~. 
v = l  j = l  q = l  = 

-exp  -- ~ 2~j2~q ~ g(tj)g(tq) 
v = l  j = l  q = l  k = l  

} = -- Z Z 2~2~q g(tj) g(tq) 
v = l  j = l  q = l  k = p + l  

x exp ~ Y' I)~jll2~q[ --,0, as p--,oe, 
v = l  j = l  q = l  k 1 

by (7.4). We finish the proof. 
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Remark. Throughout  this paper, we have assumed W n comes from a fixed 
infinite random matrix. If we give up this assumption, and keep the others, 
then conclusions in Theorem 2.1 and 2.2 are still true in the sense in probabili- 
ty, and those of other theorems remain the same. If  we strengthen the con- 
dition as to EIw1116< o% then Theorem 2.1 and 2.2 are also true. 
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