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1. Introduction and Summary 

Suppose x t . . . .  , x ,  are n independent  identically distributed observat ions on a 
r a n d o m  variable X which has one of  two possible distributions P or Q. 
Assume that  a simple hypothesis  P is to be tested against a simple alternative 
Q. 

If  for a given number  fl, 0 < fi < 1, which does not  depend on n, a test ~o = 
~0 (xt . . . . .  x,) has the guaranteed power  fl, E e (p > fl, then 

lim inf [E p q~]Z/" > exp ( - K (Q, P)), (1.1) 
n--* oo 

where K(Q,P)=EQlog(dQ/dP) is the information number  (see Chernoff  1956 
or  Bahadur  1971). The equali ty sign in (1.1) is at tained by the most  powerful 
l ikelihood ratio test of  P versus Q. 

Suppose now that  the distributions P and Q are not  known  exactly but 
only up to a finite-valued nuisance parameter  a, e =  1, ..., I. Fo r  instance, there 
are l measurement  types and for each fixed (but unknown  to the statistician) 
type a the measurements  have one of  two alternative distributions P~ or Q~. 
Ano the r  example is the t ransmission of  a message in one of  l possible lan- 
guages which use the same alphabet. Assume that  the message in unknown  
language is sent n times over a noisy channel and the choice has to be made 
between two possible messages or  rather  between two probabi l i ty  distributions 
which correspond to them. Thus, one has the hypothesis  P~ to be tested against 
Q~ for each value of  c~. 

We call a test q~a, such that E~ ~o a >/3 for all e, to be adaptive if for any 

lira [E~ ~oa] 1/, = exp ( - K(Q~, P~)) = exp ( - K~). 
. - - *  oo 

(1.2) 

In other  terms an adapt ive test is asymptot ical ly  opt imal  for any value of 
the nuisance parameter  in the following sense: within the class of  tests which 
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have the guaranteed power it asymptotically minimizes the probability of the 
first kind error. 

The existence of adaptive tests has been investigated by the author (Rukhin 
1982). A necessary condition and a sufficient condition for the existence of such 
test were obtained. In this paper in Sect. 3, we show (Theorem 5) that an 
adaptive test exists if and only if the information numbers for members of one 
family do not exceed the information numbers for distributions in any two 
different families. In other terms an adaptive test exists if and only if the 
testing problem for any value of the nuisance parameter is "at  least as dif- 
ficult" as the testing problems for distributions corresponding to different 
values of this parameter. This condition is deduced from a study of tests of a 
hypothesis ~ w~P~ against an alternative ~ u~ Q~ for some positive weights u~ 
and w~ which is performed in Sect. 2. In Sect. 4 we give an example which 
illustrates the main result in the case of an exponential family. 

Notice that the existence of adaptive test is related to the structure of finite 
hypothesis {01, ..., 01} and {t/1 . . . .  , rh} for which there exists a test cp o such that 
for all k = 1 . . . .  , l E,k (Po > fi and 

l i ra  [Eok Cpo] 1/n = max exp { - K (P,~,, P0~)} = exp { - K (P,~, P0k)}. 
n ~ c o  I N i N l  

In other words (P0, which is a test of composite hypothesis {01, ..., 01} versus 
{t h . . . .  , t/l}, is asymptotically as good as the most powerful test of a simple 
hypothesis O k against ~k for any k. It is easy to see that ~o o is an adaptive test 
in the testing problem of O~ versus t/~. In this setting for any k 

K (P~, Pok)= min  K (P~,, Po,), 

so that according to Theorem 5 such test cp0 always exists. 
These notions of optimality have "non-local" character, i.e., exponential 

convergence to zero of the significance level is examined. Somewhat different 
but related concepts for composite hypotheses have been considered by Ba- 
hadur (1960), Brown (1971), Hoeffding (1965) and Tusnady (1977). 

2. Asymptotic Behavior of Tests for Mixtures 

We start with the following result which is proved with the help of a multi- 
variate version of Chernoffs Theorem (Groeneboom et al. 1979). 

Lemma. Let  cn, n = l ,  2 . . . .  be a sequence o f  positive numbers such that 
n -1 logc n converges to a f inite limit L. Assume that Pl, qi, i=1,  . . . ,  l are strictly 
positive measurable functions, w i=exp(nb i ) / [  ~ exp (nbk)], where b i are real con- 

k 

stants, u i are positive probabilities, i=  1 . . . .  , l, which do not depend on n, and for  
all positive probabilites v~, i=  1, . . . ,  l, 

Pr {~ vl [log (Pk(X)/qi(X)) -- bi] > L} > 0 
i 
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Jor all k = 1 . . . .  , I. Then 

n - ~ c o  1 

= lim Pr u k pk(Xj)>C, W k G(X)  
n--coO 1 

= max inf e x p { - ~ s i ( b ~ + L - m a x b k ) } E l - [ [ p k ( X ) / q i ( X ) ]  s~. 
l<-k<--I s l  . . . . .  s I>O i i 

The proof of this lemma is essentially contained in Rukhin (1982) (with 
functions q~ being replaced by q~ eC'). 

We introduce now the following notation. Let fk, k - - l ,  ..., l, denote the 
density of Qk and gk denote the density of Pk- We assume throughout the paper 
that these densities (with respect to some a-finite measure) exist and are strictly 
positive. Also let 

G(b~ . . . .  , b~, L) = max inf exp { - ~ sj(b~ + L)} Ee~ ~ [fk(X)/gi(X)] ~'. 
l < - k < l  s l  . . . .  , s l > O  i i 

n 

Now let (p be the most powerful test of the simple hypothesis ~ w k lq gk(xj) 
n k 1 

against the simple alternative ~ Uk 1~ fk(Xj). 
k 1 

Theorem 1. For fixed positive probabilities u k, k = 1 . . . .  , l and positive probabili- 
ties w i of the form wi= exp (nbi)/[ ~ exp (nbg)] assume that the test (Pl has a f ixed 

k 

power fl, 0< /3<1 ,  and um>max[fl ,  1 - f l ]  where m is defined by (2.1). Then for 
any c~, c~=l, ..., l 

lim [E~ x/. b qh] =P~( 1 . . . .  ,b l,L), 
n ~ o o  

where 
L = min [K(Q k, P~)- b,] = min [K(Q,,, P~)- b,]. (2.1) 

k , i  i 

Proof It is well known that for some constants c, and 
the form 

n n 

1, 2u Hj;(xj)>c.Ew I-I 
k 1 k 1 

n 

~ 0 1 ~ "  7 n ,  ZUkI-[ fk(x i )=C.  Z W k f i  ( 2 . 2 )  

1 k 1 

n 

O, E U k H f k ( X j ) < C n 2 W k f i  
1 k 1 

It follows that 

�9 1 i 1 

< f l < Z  UkQk u, f~(x j )>e.~wi  I~ g,(xj) . (2.3) 
k i 1 

7., 0 < 7 .  <1 test ~1 has 

gk(x~, 

gk(xj), 

gk(x~). 
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Also notice that for any fixed m 

and 

\ i  1 i 1 

(ma [ ~, )] [ 0 )])  ~ Q m  X LI k L ( X j  > c . / m a x  W i gi(xj 
1 i 

>= max Qm u k fk(xj)>c, lw i &(x~) , i=l , . . . , l  
1 

Q~ ., I]  Y,(~,)>--c. Y. w, lq g~%) 
\ i  1 i i 

n n 

(1 max [.  m a x  

<~Qm(lUkfifk(xa)>c"max[w'fig*(xJ)])t , 1 

<ImkaxQ,,, u k fk(x;)>c,,t-lw~ gi(x/) , i=l  . . . .  , l .  
1 

Since Um>fl, formula (2.3) implies that 

lim sup max Qm (Uk f l  fk(xj)>c, lwi f i  gi(xj), i= l, ..., l) < l, 
n-~ m 1 1 

(2.4) 

and because of the inequality u m > 1 -  fi one has 

l imin fmaxQm(uk( - I fk (x j )>c ,~ l - lwi ( lg i (x j ) , i=l  . . . .  , / ) > 0 .  
n ~ ~ 1 7 6  i i 

For a fixed k let gf =log [J~(xj)/gi(xj)], i= 1 . . . . .  l, j=  1, 2, . . . ,  

y,=n-l(logc,,+logl--log~e"b') ,  v,,=n-l(logc,,--logl--log~enbi). 

Since n - t  ~ YS 
has j= 1 

if for all i = 1 . . . .  , l 

Also 

if for some i 

converges in Q,,-probability to E~ log[fk(x)/gi(X)]=elk, one 

b i + lim infy, <eik. 
n ~ o o  

l iminfQ,,  n -1 y } > b i + v , , i = l  . . . .  ,1 = 0  
n ~ o o  

bi+ lim sup v.>elk. 
n--+ co 

(2.5) 

limsup~.(, l ~ ' ~ b , + , ~  i=l .... ,)--1 
n--*wo 1 
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It follows now from (2.4) and (2.5) that  for any k there exists i such that  

bi + lira in fn -  a log c, > % + max b~, 
n ~ o o  

and there exists k such that  for all i 

b~ + lim s u p n -  1 logc .  __< elk § maxb v 
n ~ o o  

Therefore 

max min [eik -- bi] + maxbi < lim in fn -  1 log c. __< lim s u p n -  1 logc .  

< max rain [elk -- bi] + max b i 
k i i 

We have proved that  the sequence n -1  logcn converges and 

L = lira n -  1 log cn = max rain [elk -- bil + max b i = rain [K(Qm, Pi) - bl] + max b i 
n ~  oo k i i i i 

= min [K(Qk,  Pi) - bi] + max b i. 
k , i  i 

For  all positive probabilit ies q~ and any k 

so that  

and for any k 

L < ~ q , (K  (Q k, P~)-b,),  
i 

E~ ~ qi(log [ f ~ (X ) / g , (X ) ]  - b , ) >  L 
i 

Qk(Z q,(log [ L ( x ) / g , ( x ) ]  - b,) > L) > o. 
i 

Since all measures Pk and Qk are assumed to be mutual ly  absolutely con- 
t inuous, 

P~(~ q,(log [ fk(X) /g~(X)]  - b~) > L) > O, 
i 

and our  lemma is applicable. 
This l emma entails 

lim 
n ~ o O  1 )]1in 

= lim max f k ( x j ) > c ,  wl gk(xj), i=  1, . . . ,  l 
n- ' , 'oo l ~ k < l  1 

=p~(b 1 . . . .  , b~, L), 

and Theorem 1 is proven. 

Corol lary 1. I f  (o is a test such that E~ q~ > fl Jbr all k = 1, . . . ,  l, then for  all real 
b 1 . . . . .  b z and L def ined by (2.1) 

max {e b~ lim inf [E~ e q~]l/,} > max {e bk pk(bl  . . . . .  bz, L)}. 
k n ~  k 
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n n 

Indeed 4o as a test o f  ~, w k YI gk(x~) versus ~ u k l~I fk(xj) has power fl and 
k 1 k 1 

therefore cannot have a significance level smaller than that o f  4ol. 

Theorem 2. For all real numbers b 1 . . . . .  b~ there exists a test 4o2 such that 
E~ 4o 2 > fl for  all k = l ,  ..., I and 

lim [E~ 4o2] l/n= p~(bl . . . . .  b z, L) (2.6) 
n ~ o o  

where L is deJTned by (2.1). 

Proof  For  any e, l < a < l ,  define the constant  c,(a) so that  for a test 4o(~) of 
form (2.2) 

As in the proof  of Theo rem 1 we see that  

lim n -  1 log c,(e) = max min [E~ log ( fk(X)/gi(X))  -- bi] 
n + m  k i 

= m i n  [K(Q~, P~)-b~.  
i 

N o w  let the test 4o2 of the form (2.2) be determined by c, = rain c,(cQ. Then 
ct 

lim n -  1 log c, = L 
n--+ oo 

and for all 

EQ~ 4o 2 ~ fl, 

The conclusion of Theorem 2 follows now from lemma. 

Corollary 2, For any ~ and all real b,  . . . .  , b~ 

p=(b 1, -.., bl, L) > exp { - K=}. (2.7) 

This corollary follows directly f rom (1.1) and (2.6). 

3, Conditions for the Existence of Adaptive Tests 

We prove in this section our  main results. 

Theorem 3. I f  an adaptive test exists then Jot all real bl,  . . . ,  b z 

max exp (b=-  K~)>__ max [exp (b~)p~(bl, . . . ,  b l, L)]. 
ct ~t 

I f  for  some b 1 . . . .  , b~ 

e x p ( -  K~)> p~(b 1 . . . .  , b l, L) 

for ~ = 1 . . . .  , l, then an adaptive test exists. 

(3.1) 

(3.2) 
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Proof  Assume that  ~o a is an adaptive test. Then because of  Corol lary  1 one has 

max {e bk lim [E~ ~oa] 1/,} = max {exp (b k - Kk) } 
k n ~  k 

> max [exp (bk) pk(bl . . . . .  b l, L)], 
k 

so that  (3.1) is proven. 
If  (3.2) is met for some b 1 . . . .  , b~ then the test cp2 of  Theorem 2 is adaptive. 

Indeed (3.2) and (2.7) imply that  for any 

lira [E v (P2] 1/, = exp ( - Ks) 
n--+ a3 

and 
~o2_->~. 

Corollary 3. I f  for some fl, ,/f~ = g~ then an adaptive test does not exist. 

Indeed put  b I . . . . .  b~=0. Then 

L = min K(Qk, P~) = K(Qp, P~) = 0 
k, i 

and 
1 

p,(b I . . . . .  be, L)--  max inf EP I~ (fk(X)/gi(X)) s' 
l <=k<=l s l ,  ...,sz>=O i = 1  

l 
si > inf Ef  l~ (g,(X)/&(X))  = 1, 

s l ,  . . . , s t > O  i = 1  

l 

since all partial derivatives of the convex function E~ [ I  (g~(X)/gi(X)) ~' at the 
origin are nonnegat ive:  ~ 1 

Eflog(g.~(X)/g~(X))>O, i = 1  . . . . .  I. 

Thus 
P~(bl, . . . ,  bl, L) = 1, 

and (3.1) cannot  hold. 

Theorem 4. An adaptive test exists if and only if  for any :t = 1, . . . ,  1 

p~(K~ . . . . .  K~, L0) = exp ( -  K~), (3.3) 
where 

L o = min [K(Q k, P~)- K~]. (3.4) 
k , i  

Proof  If  an adaptive test exists then 

1 = max exp (K~ - Ks) > max exp (K~) pa(K 1 , . . . ,  K z, Lo). 

But because of  (2.7) for any 

exp (K~) p~(K~ . . . .  , K,,  Lo)> 1. 

Therefore (3.3) holds. 
If  condi t ion (3.3) is met then test (P2 of  Theorem 2 is adaptive. 
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Theorem 5. An adaptive test exists if and only if L o = 0  , i.e.,for all i ~ k  

K(Qk, P~) >_- K~ = K(0~,  P~). (3.5) 

Proof. Assume first that L o =0.  Then 

p~(K 1 . . . . .  K t, 0) < max inf e -SK- E P [fk(X)/g~(X)] ~ < exp ( - K~). 
k s>O 

But because of (2.7) 

p~(K 1 . . . . .  Kz, 0)> exp ( -K ~)  

so that (3.3) is met and an adaptive test exists. 
Because of Theorem 5.1 of Groeneboom et al. (1979) we have 

p~(K 1 . . . .  , K z, Lo)= max exp { -  inf K(Q, P~)}, 
1 <-k<-I Oe~k 

where 
~k = (Q: E (2 log (fk( X)/g,( X)) >= Kf + L o, i= 1, ..., 1). 

The definition of L 0 implies that Qke~k for all k. Therefore 

p~(K1, ..., K~, Lo)> max exp { --g(Qk, P=)}. (3.6) 
l<-_k<=l 

Now if an adaptive test exists then (3.3) holds and for any i=1  . . . .  , l (3.6) 
implies that 

e x p ( - K i ) >  max exp { - K ( Q  k, Pi)} 
1 <k<~l 

o r  

K~ <= min K(Q k, P/), 
k 

which is equivalent to (3.5). 
Thus an adaptive test exists if and only if the discrimination K(Q~, P3 

between members of one family does not exceed the discrimination K(Qk, P~), 
k =~ i, between members of two different families. 

It is easy to see that if condition (3.5) is met then the test with critical 
region of the form 

max ~i logf~(xj)>max n K ~ + ~ l o g g ~ ( x )  - n m a x K ~  

is adaptive. This is a modified maximum likelihood ratio test with weights of 
the values of the nuisance parameter cr proportional to exp (nK~). 

Notice that the traditional maximum likelihood ratio test with critical 
region of the form 

(ma  ~11 f~( ma ~1 )} x og x)_> c, x ogg~(xj 

does not have to be adaptive. Moreover it can fail to be adaptive even when 
adaptive tests exist. 
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4.  E x a m p l e  

Let distributions Pk and Qk be members  of  an exponential  family over Eu- 
clidean space, i.e., the densities fk and gk have the form 

fk(X) = exp {~, x -- X(~k) }, 

gk(x) = exp {t/~ x -- X(t/k)}, k = l  . . . .  ,I. 

An easy calculation shows that  

K(Q~, P3 = X(,h)- X(G) + (G- ~)' VX(G), 

where V X  denotes the vector of  partial derivatives of  the function X. In 
part icular  

K~ = X(,l~) - X ( G )  + ( G -  ~) '  VX(G) .  

Thus an adaptive test exists if and only if 

X ( G ) - X ( ~ )  + ( ~ - G ) '  V X ( ~ )  = m i n  [ X ( G ) - - X ( ~ k ) + ( ~ k - - G ) '  VX(~,)] (4.1) 
k 

for all ~ = 1 . . . .  , I. 
Fo r  instance, if fk and gk are mult ivariate normal  densities with means O k 

and #k respectively and c o m m o n  covariance matrix 22, then 

X(~) = ~' 2; d,/2. 
Condi t ion  (4.1) means that  

min [ ( ~ k  - -  l~ i f  Z ( ~ k  - -  tli) - -  ( ~ i -  tli) t 22(~k - -  Y/i)] = 0 ,  
k, i 

where ~k = Z -  a Ok, qk =2;-  1 #k" Thus an adapt ive test exists if and only if for 
any i 

(0~ - #~)' 2 ; -  ~ (0~ - # , )  = min (0 k - #~) '  E -  ~ (Ok - -  #~). 
k 

As another  specification of  (4.1) let us consider the case when fk and gk 
are univariate normal  densities with parameters  Ok, G and #k, Zk respectively. 
Then ~k = ( a [  2, Okay2), 11k=(V[2, pkZ~ 2) and for ~ =(v,z),  v > 0  

.Y(~) = [-Z 2 U -  1 - -  ( l o g  0 3 / 2 .  

An easy calculation shows that (4.1) means that for all ~ = 1, ..., 1 

2 - 2  2 --2 O~G ) / 2 -  [(#~ % _ log(G/G ) _ 0_2(0-~- 2 _ "c~- 2 ) / 2  + 02(0-~ - 2 + "c2 2) _ O ~ f l ~ / z ~ ]  

= rain [(#~ 22 2 _ 2 - e O k a k )/2 - log(ak/'G)-- a~(a~ -- z ;  2)/2 
k 

2 - -2  2 2 +G(G +~2 )-GG/z~]. 
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