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Summary. We study the central limit theorem (CLT) and the law of large 
numbers (LLN) for empirical processes indexed by a (countable) class of 
sets cg. The main result, of purely measure-theoretical nature, relates different 
ways to measure the "size" of cg. It relies on a new rearrangement inequality 
that has been inspired by techniques used in the local theory of Banach 
spaces. As an application, we give sharp necessary conditions for the CLT, 
that are in some sense the best possible. We also obtain a way to compute 
the rate of convergence in the LLN. 

1. Introduction 

Consider a complete probability space (f2, Z, P). If the space is a model for 
a real world phenomenon, one often has no knowledge of P. The best that 
one can do is to get independent samples (x 1 . . . . .  x,), and consider the empirical 

measure Qn= -1 ~" 6x,. Of special interest is thus the problem of recovering the 
l'l i <= n 

law of P from the random laws Qn. A natural way to compare Q, and P is 
to study the uniform convergence of Q, to P over a class of measurable sets 
cg. If Q , - P  converges uniformly to zero over cg, we say that cg is a Glivenko- 
Cantelli class. The classical Glivenko-Cantelli theorem states that for any prob- 
ability P on IR, the class of intervals ] -  o% t] is a Glivenko-Cantelli class. 
If nl/2(Q,-P) converges in law over cg to a Gaussian process, we say that 
~f is a Donsker  class. The classical Kolmogorov-Smirnov theorem states that 
for any probability P on N, the class of intervals ] - oe, t] is a Donsker class. 
Donsker  classes have been extensively studied by R.M. Dudely. In their recent 
paper [6], E. Gin~ and J. Zinn have made clever use of Gaussian processes 
techniques and have achieved remarkable progress. The present paper will intro- 
duce new techniques. Some originate in the measure theoretical work of [8] 
and its application to the new description of Glivenko-Cantelli classes given 
in [10]. The main tool (Theorem 11) is a rearrangement inequality that has 
been inspired by some techniques used in the local theory of Banach spaces 
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[1, 5]. This quantitative result will allow us to give a complete description of 
Donsker classes and to compute the rate of convergence of Q , -  P to zero over 
any Glivenko-Cantelli class. 

Finite classes are Donsker classes; and a subclass of a Donsker class is 
Donsker. The property of being a Donsker class is thus a smallness property. 
So the first issue is what sensible description of smallness one should use. Let 
us say that cg shatters a set {xl . . . .  , x,} if each subset of {x~ . . . .  , x,} is the 
trace of an element of cg. Say that ~r shatters (xl, ..., x,) if the points xl . . . . .  x, 
are distinct; and if cg shatters {xl . . . . .  x,}. A widely used approach to measure 
the size of cg is to study the trace of ~ on a random sample {xl, ..., x,}. One 
can consider the cardinal T, of the cardinal A, of the trace of cg on {xi, ..., x,} 
as in [6]. (Also entropy conditions have been considered, but we shall not 
use them.) One then evaluates the most common values of T, and A,. The 
definition of these quantities T,, A, is not simple. It is, however, easier to find 
which sequences (xt . . . . .  x,) are shattered by cg. Let V, be the set of these 
sequences. Let r,=(P"(V,)) ~/". We will show the surprising fact that the speed 
of convergence of the sequence (r,) to zero almost completely determines the 
properties of cg for the empirical measure. Our main result (Theorem 2) relates 
the sequence (r,) and the behavior of A, and T,; it is of purely measure-theoretical 
nature. The description of Donsker classes will follow by combining this result 
with the results of Gin6 and Zinn. 

2. Notations and Results 

We denote by (~2', X', P') the space (ffi,  I N, P~). The generic point of f2' will 
be denoted by x=(xl ,  x2 . . . .  ). Denote by X =  l~ the Banach space of uniformly 
bounded sequences indexed by cg. We say that cg is pregaussian if there is 
a centered Radon  gaussian measure # on X such that for each A, B in cg, 
we have 

e] (t) e~ (t) d # (t) = P (A c~ B) - P (A) P (B), 

where e] is the coordinate function of index A on X. Consider the map 0:f2 ~ X 

1 ZO(x,) given by O(t)= (la(t)-P(A))A~ v. We say that cd is a Donsker class if ~/~ i__<, 

converges in law to #. This means that for each bounded norm-continuous 
function g on X, we have 

~im ~ g E O(xi dP'(x)= I gd#. 
i < n  t X 

(This elegant definition, due to J. Hoffmann-Jorgensen, avoids the difficulty of 
defining the law of 0). Only essentially standard arguments are needed to see 
that this is equivalent to the usual definition of Donsker Classes. They are 
carried out, e.g., in [2]. 
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A Donsker class is in particular pregaussian. It was considered until recently 
a difficult problem to recognise if a class of sets is pregaussian. However, the 
recent results of the author on Gaussian processes [13] show that this is equiva- 
lent to the following simple condition, on the metric space (cg, d), where d(A, B) 
= P ( A A B ) :  there exists a probability measure m on (q~, d) such that 

lim sup f (--ln(m{B~Cg; P(AAB)<=t})) 1/2 t -1/2 dt=O. 
e ~ 0  A E c g  0 + 

It is also equivalent to the existence of a sequence (f,),>z of LZ(P) such that 
lim(lnn)l/zlbf, ll2=O, and that for each A in cg we can write (in LZ(P))IA 

n 

= ~ e,(A)f, ,  where ~ Ic~,(A)I < I. We shall not use these results here. 

The study of empirical measures runs into tedious measurability problems. 
It is often possible to dispense of any measurability condition [10, 11]. This, 
however, requires extra work. We wish here to avoid measurability problems. 
We shall often assume cg countable; (weaker assumptions, as in [6], could also 
be used). When no extra work is required, we shall only assume the following 
very general condition. 

Definition 1. We say that cg satisfies condition (M) if for each integers k, l, 
the set 

U Ak x ( ~ ? \ A ) l = { ( x l ,  . . . ,  Xk+~): 3A~Cg, V i<k ,  x~A, Vk<i<__k+l, xiCA}, 
A~Cs 

is measurable. 
Condition (M) implies that V, is measurable for each n. For  x in f2', let 

A,(x) be the cardinal of the trace of (g on {xl, ..., x,}. Let T,(x) be the largest 
integer k such that ~ shatters a subset of {xt, ..., x,} of cardinal k. Condition 
(M) implies that T, and A, are measurable. 

The sequence (r,) might decrease in an irregular way. To avoid technical 
difficulties, we shall compare r, with an auxilliary function q~. This function 
~b is non-increasing continuous in [1, oo [ with 0 < ~b __< 1. We shall always assume 
it satisfies the following condition 

3 c > 0  V t > l  4)(t)<c~b(2t). (,) 

This condition is satisfied for example if ~b (t)= t-~, e > 0. The most important 
case is c~(t)=l/t. We denote by a, the root of the equation t/4)(t)=n (so if 
(~(t) = 1/t, a, = nl/2). 

Our main result is the following. 

Theorem 2. Let cg be a class of  sets that satisfies condition (M). Then the following 
conditions are equivalent: 

(I) lim r,/c~ (n) = O. 
n 
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(II) VT>O, limP'({T,(x)>=Ta,})=O. 
n 

(III) V 7>0,  lim P'({lnA.(x)>ya.})=O. 
n 

The equivalence of (II) and (III) is surprising. Indeed the class F of subsets 
of {xl . . . .  , x.} of cardinal < T.(x) does not shatter a subset of {xl . . . .  , x.} of 

cardinal >T~(x). However, cardF= ~ (n). For T,(x) significantly smaller 
i<Tn(x)  i 

than n, In (card F) is of the order T~(x) In (n/T,(x)), that is much bigger than T~ (x). 
So it seems that in condition (III), one should not be able to do better than 

lim P' ({In A, (x) > 7 a, In (n/an)}) = O. 
n 

The elimination of the extra logarithm requires a careful global analysis. 
Theorem 2 will be established in Sect. 4. It relies on a symmetrisation (=  rear- 

rangement) procedure (in the sense of Steiner) that may be of independent inter- 
est, and that is described in Sect. 3. The application of Theorem 2 to Donsker 
classes yields the following: 

Theorem 3. A countable class of measurable sets is a Donsker class if and only 
if it is pregaussian and satisfies the conditions of Theorem 2 for r = 1/t. 

We shall give in Sect. 7 an example showing that the conditions of Theorem 2 
for r  1It do not imply in general that ~ is pregaussian. However, ~ is 
pregaussian whenever the series S2-im~/2 converges, where mi is the smallest 
integer m for which r,~<2 -zi. A typical case is rm=O(1/m(lnm) ~) for a > 2 .  

Theorem 3 will be proved in Sect. 5. We shall also give a "local" version 
of this result. 

In the case that (a,) increases significantly faster that n 1/2, Theorem 2 can 
be used to compute the rate of convergence of Q , - P  over ~'. Consider the 
condition 

3 b > 0 ,  Vk, ~a2~2-z/2<bazk2 k/2. (**) 
l<k  

In Sect. 6, we shall prove the following: 

Theorem 4. Let c~ be a class of sets that satisfies condition (M), and assume 
that (a,) satisfies condition (**). Then the conditions of Theorem 2 are equivalent 
to 

V7>0,  l imP' (~sup 1 ~ IA(Xl)--P(A)>Ta,/n})=O. 
\ l A e C ~  n i<n 

3. Symmetrisation Results 

We start by proving a known extension of Sauer's lemma. This result was shown 
to me by V. Milman. It is due to N. Alon. The proof of our crucial symmetrisa- 
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tion result will use an adaptation of this elegant idea. (See also [-1] for other 
applications). 

We consider a finite set I, and F c  {0, 1} I. 

Proposition 5. The set of subsets of I shattered by F has cardinal at least card F. 

The idea is to find a simple operation (called symmetrisation) that will make 
the set F more regular, while at the same time not decreasing the number 
of sets shattered by F. One then applies this operation until the set F is so 
regular that the result is obvious. In the case where F is hereditary (that is 
BeF whenever B c A ,  for some AsF), F shatters each set it contains, so the 
result is obvious. The idea of the symmetrisation is to transform F in a set 
whose elements contain as few points as possible. 

Given i in I, we define T/(F)={Ti(H); HsF},  where for H in F, Ti(H ) is 
defined in the following way: 

If i(~H, then T~(H)=H. 
If isFI, and H\{i}  aF, Ti(H ) = H. 
If isH, and H\{i}e)F, T~(H)--H\{i}. 

Lemma 6. (i) Card Ti(F)-- Card F. 
(ii) I f  Ti(F ) shatters A, F shatters A. 

Proof. (i) We show that T/ is one to one on F. Suppose Ti(H1)= T/(H2) for 
H1, Hz in F. Then obviously Hx\{i} =Hz\{ i} .  If isT~(H1), isH1, H~, so H 1 
--Ha.  If i(~Ti(H1) , and Ht=t=Hz, we can assume ieHx, i(~Hz. But since H 2 
= H I \ { / }  EF, then T/(H1)=H1, so i t  Ti(H0, a contradiction. 

(ii) Suppose T~(F) shatters A. If iq~A, Ti(F ) and F have the same trace on 
A. If isA, for B c A \ { i } ,  there is HsT~(F) with H c ~ A = B ~  {i}. Since HET~(F), 
we have H =  Ti(G) for some G~F. Since ieH, both G and G\{i} belong to 
F, so F shatters A. Q.E.D. 

We now prove Proposition 5. Let w(F)= ~ cardH.  Let F' such that F'  
HEF 

is obtained from F by application of some transformations T~, and such that 
w(F') is minimal. Then for each H in F', i in H, we have H\{i} sF', for otherwise 
w(Ti(F')) < w(F'). This means that F'  is hereditary. Lemma 6 shows that card F' 
=- card F, and that F shatters more sets than F'. The proposition is proved.. 

We suppose now I =  {1, ..., N}. Denote by [-I]  q the set of the subsets of 
I of cardinal q. Let l<n, m<=N. Let G~[-I]". Let G(l,m)={Ae[I]"; 3HeG, 
card (A c~ H ) >  l}. We are interested in finding lower bounds for card G (1, m) when 
card G is given. To this end we will compare G with a set with simpler structure. 

Definition 7. A set G c [-I]" is called left hereditary if whenever i, < . . .  < i, and 
{il . . . . .  i,} s G, then {jr . . . . .  Jn} s G whenever jq < iq for each 1 < q < n. 

Proposition 8. Let G c [-I~". Then there is a left hereditary set G' with card G' 
= card G and card G' (l, m)< card G (l, m) whenever l__< n, m < N. 

The natural idea is to try to move the sets of G toward the left of I. For  
i<j, H ~ I ,  let S~s(H)=(H\{j})u{i }. We consider the symmetrisation T~s(G ) 
--{Tis(H); HeG}, where T~s(H ) is defined in the following way: 
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If i~H orjCH, then Tij(H)=H. 
If iCH, jel l ,  Sij(H)eG, then Tij(H)=H. 
If i 6 H, j ~ H, S~j (H) r G, then T~j (H) = Sij (H). 

We note that Tij(G) ~ [i]n. The following lemma contains the basic facts. 

Lemma 9. (i) Card Tij(G) = Card G. 
(ii) Card Tij(G)(l, m)< card G(l, m). 

Proof (i) Suppose Tij(H1)=Tij(H2) for H a, H 2 in G. If either i6Tij(Ha) or 
jETi~(Ha), then HI=H2=Tij(HO. Suppose now i6Tij(H1) and j6Tij(H1), but 
H 1 ~eH 2. Let U =  Tij(H 0. Since Hx, H2e{U, Sji(U)}, we can suppose Ha=U, 
H 2 = Sji(U), so U = Sij(H2)@ G. This shows that T/j(H2)= H2 ~= U = T~j(H0, a con- 
tradiction. 

(ii) Let K =  Ti~(G)(l, m). The idea is to associate to each set A in K\G(I, m) 
a set B in G(l, m)\K, the correspondence being one to one. 

Step I. Let A in K\G(I, m). We show that leA, j6A. Since AeK, there is H 
in Tij(G) with card H = m and card (A c~ H) > l. Let H = Ti~(H'), where H ' e  G. Since 
A6G(I,m), we have H$G. This shows that i~H', j6H' and H=Sij(H'), H' 
=Sji(H). Since A6G(I, m), we have card(A c~H')<l. We have Ac~(H'\{i})~ A ~ 
(H\{i}) so this forces i~A. Also, since j~H', j6H, H ~  {i,j} =H'~  {i,j}, we have 
j6A (otherwise, card (A ~ H) = card (A c~ H')). 

Step 2. Let B=(A\{i})w{j}=Sjf(A). We note that the correspondence A ~ B  
is one-to-one. We show that BeG(l, m)\K. First, card(Bc~H')=card(Ac~H), 
so BeG(l, m). Suppose, if possible, that B~K. Then there is L in T~j(G) such 
that card(Lc~B)>l. Let EeG with L=Tij(E ). Suppose first that L+E. This 
can happen only if i6E, j~E, L = S~j(E). In that case 

card ( A n  E) = card ((A c~ E)\{i, j}) = card ((B n L)\{i, j}) = card (B c~ L) => l 

and this is impossible since Ar m). So we have L=E. Since card(Ac~L) 
< card (B ~ L), we must have ir j~L. Since L =  T~j(L), this can happen only 
if Sij(L)~G. But we have 

card(AnSij(L))=card(B~L)~l 

and this contradicts AeG(l, m). We have shown that B6K. This concludes the 
proof  of the lemma. 

We now prove Proposition 8. For  Gc[I]", let w(G)= ~ ~ i. Note that 
H e G  i~H 

for i<j, w(Tij(G))<=w(G). Let G'e[I]" be a set obtained from G by successive 
applications of some operations Ti~ for i<j, and for which w(G') is minimal. 
Then Lemma 9 shows that card G ' = c a r d  G and card G'(l, m)<card  G(1, m) for 
l<m, n<=N. Let H =  {il, ..., i,}EG' with il < ... < i,. Let 1 <_<_q<n and iq_ 1 <i<iq. 
Let j=iq. Then Sii(H)eG', for otherwise w(Tij(G'))<w(G'). This means that 
{i 1 . . . . .  iq_ 1, i, iq+ 1, ..., in} ~ G'. From this follows that G' is left hereditary. Prop- 
osition 8 is proved. 
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Let us say that a subset G of f2" is symmetric if it is invariant by permutation 
of the coordinates. For  a symmetric subset G of f2", and l < m, n let 

G(I, m)= {(zl . . . .  , z.,)~O'; 3(xl,  ..., x,)~G, 

card {xl, ..., x,} c~ {zt, .-., Zm} > 1}. 

Definition 10. A symmetric subset G of ]0, 1[ n is left hereditary if whenever 
(xl . . . .  , x,)~G and for 1 <iNn,  0 < y ~ < x i ,  then (Yt, ..., y,)eG. 

It is easy to see that a left hereditary subset of [0, 1]" has the same measure 
as its interior. If G is left hereditary, then G(l, m) is also left hereditary; so 
G(1, m) is measurable; but in general the measurability of G does not imply 
the measurability of G(1, m). 

Our basic measure theoretic result is a continuous version of Proposition 
8. We denote by P ,  the inner measure associated to P". 

We denote by 2 Lebesgue's measure on ] 0, 1[. 

Theorem 11. Let G c (2" be a symmetric measurable set. Then there is a left heredi- 
tary set ~ c ] 0 , 1 [ "  such that 2"(G)=Pn(G) and for l<=m,n, 2"(G(l,m)) 
__< P.g(G(I, m)). 

Proof It is tedious routine to deduce this result from Proposition 8. The first 
Step of the proof  is a discretisation procedure (that will allow the use of Proposi- 
tion 8), the second step is a compactness argument. 

Step I. For  k>0 ,  we construct a left hereditary set Gkc[O , 1] n, with •n(Gk) 
< P " ( G ) + 2  -k+2 and 

)Y(Gk(l, m)) <_<_P, (G(l, m))+2 -k+2 

for m < 2 k. 
Let d be a finite subalgebra of 2 such that there exists a d "  measurable 

set V with P " ( G A V ) < 2  -2k. Let K be the union of those atoms U of d "  for 
which 

P"(G c~ U)>=(1-- 2-k) P~(U). 

We note that K is symmetrical  If U is an atom of d "  that is contained in 
V \ K ,  then P"(U c~ G) < (1 - 2-k) P"(U), so P"(U\G)> 2-k P"(U). Summation over 
these atoms U gives 2 - k W ( V \ K ) < P " ( V \ G ) < _ 2  -2k, so P " ( V \ K ) < 2  -k, so 
P"(G\K)<2  -k+ l, so P"(G)<W(K)+ 2 -k+ ~. 

For  a subset I={ i l ,  ..., iz} of {1, ..., n} (resp. {1, ..., m}) let Q, denote the 
corresponding projection of O" (resp. ~2 m) on (2 I. The set K(l, m) is ~,m measur- 
able. Fix an atom W of ~r such that W=K(1, m). So there is I={ 1 ,  ..., n} 
and J ~  {1, ..., m} with card I = card J = l, and an atom U of ~r contained in 
K with Qj(W)= Q,(U). It follows that 

W\G(1, m) ~ {(Yl, ---, y,n)~ W; Q.r(y)(~Q,(G ~ u)}. 
Since 

we get 
p.l (Qz (G c~ U)) => (1 - 2-  k) pt (Qz (U)) 

(pro), (W\G(I ,  m)) <= 2 -k P"(W) 
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SO 
P"(W)< P~'(Wm G(l, m))+2 -k Pro(W). 

Summation over W c  K (1, m) gives P"  (K (1, m)) < / : ,  (G (/, m)) + 2-  k. It is clear now 
that there exists N such that if N denotes the algebra of ]0, 1[ generated by 
the partition of ]0,1E in N equal intervals, there exists a symmetric 
M'-measurable set L of ]0, 1[" such that P'(G)<=2"(L)+2 -k+l and 2"(L(/, m)) 
< P,  ( G(I, m))+2 -k+l whenever l < n, m, and m < 2 k. 

We now let J =  {1, ..., N}, and denote by 11, ..., 1N the subintervals of [0, lJ 
that are atoms of N. We denote 

We have 

X =  {{ia . . . .  , i . )  e [ J ] ' ;  1-I Iik cL). 
k<n 

L c  { l-[ ]ik; {il, "", i .}eX} ~ { F[ Ii~; 3 k, l<n, ik=il} 
k<=n k<=n 

M n(t'l-- 1) N n - 1  
so 2 " ( L ) < -  c a r d X +  

2 N" 
n! 

We can assume N large enough that n(n -  1) <2_k, SO we have N- ~ card X 
2N - 

P"(G)-2-k+ 2. We now use Proposition 8 to find a left hereditary set Yc [J]" 
with card Y = c a r d X  and card(Y(l,m))<=card(X(1, m)) whenever l<=n,m. We 
define Gk as the union of the atoms l-[ lip of ~"  for which there exists Jl < " -  

p<.n 

< j , < N  such that {Jl, . . . , j , } eY  and ip<=jp for each p<=n. It is clear that G k 
is left hereditary. We have 

2" (Gk)>~ ,  card Y> P"(G)- 2 -k+ 2. 

If an atom 
P<m 

we have {il, ..., ira} e Y(l, m). It follows that 

)~"(G~(l, rn))< ~ card Y(l, m)-~ 
re (m- -  1) 

2N 

m ! m (m - 1) 
< card X(/, m)+ - -  
= N"  2N 

re(m- 1) 
2m(L(l, m)) 

2N 

re (m-  1) ~_2_k+ 1. <<_ e .  ( G(t, m)) -~ 
2N 

IJ Ii, of ~ "  belongs to Gk(l, m), then if ia . . . .  ,im are distinct, 

Since we can assume N large enough that m(m-1) /2N<2 -k, the first step is 
complete. 
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Step 2. By extracting a subsequence, we can assume that 1Gk converges weakly 
in L 2 to some function f 

For  x=(xi)e]0,  1[", denote S~ the set of y--(yi) in ]0, 1[" such that x~<y~ 
for i<n .  Consider the set G of those x for which ~ fd2">O. Then ~ is open 

Sx 

and left hereditary. If xeG, then for k large enough we have SxC~Gk4:(a, and, 
since Gk is left hereditary, we have XeGk. This shows that 
G(l, m)c l im inf G~(I, m), so we have 

k 

and 

2 m (G (l, m)) < lim inf 2 m (G k (l, m)) < F ,  (G (l, m)) 
k 

2" (G) < lira inf 2" (Gk) < P" (G). 
k 

On the other hand, it is clear that ~ f d 2 " = 0 .  Since 0 < f < l ,  ~fd2" 
1o, l [ - \ ~  

= lira 2"(Gk) = W(G), we have 2"(G) => P"(G) and A"(G) = W(G). The proof is com- 
k 

plete. 

4. Compatible Sequences of Sets 

For each n consider a measurable subset V, of fP. 

Definition 12. We say that the sequence (V,) is compatible if each set V~ is 
measurable, invariant by permutation of the coordinates, and if for m < n the 
projection of V, on ~2" is contained in Vm. 

Compatible sequences of sets where considered by D. Fremlin in an unpub- 
lished paper, for purposes somewhat similar to those of this work. If (g is a 
class of sets that satisfies condition (M), and V, is the set of n-tuples shattered 
by <g, then the sequence (V,) is compatible. 

If (V.) is a compatible sequence of sets, let 

~ll  = {1{ . . . . . . . .  }; ( .~.,  . - . ,  X . ) ~  VII} 

and ~ =  u ~ , .  Then a n-tuple (Yl ,  " " ,  Yn) is shattered by ~ if and only if it 
belongs to V,. This remark shows that the sequences (V,) that arise as (V~) 
being the set of n-tuples shattered by a class cg are exactly the compatible 
sequences. 

Proposition 13. I f  (V,) is a compatible sequence of  sets, then the sequence r, 
= (P"(V,)) 1/" is non-increasing. 

Proof This proof was shown to me by J. Bourgain. It is enough to show that 
P"(V,) > P"+ 1 (V,+ 1) n/"+ 1. For  simplicity we shall assume n = 2. The general case 
uses the same method. Let f =  lv2, g =  lv3. The compatibility condition implies 
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g(xl,  x2, x3 )< f ( xx ,  x2) f (x2 ,  x 3 ) f ( x l ,  x3). It is hence enough to show that for 
f l ,  f2, f3 in L 2 (02), all positive, we have 

g = ~fl (x2, x3) f2 (xl, x3) 73 (xl, x2) de(x1) dP(x2) dP(x3) <= I]  II fill 2. 
i<=3 

Cauchy-Schwartz's inequality for the variables xl,  x3, x2 in that order gives 

E < if~ (x2, x 3 ) q f 2 ( x l ,  x3) dP(xl)) ~/2 (j'f~ (xt, x2) dP(x1)) 1/2 dP(22) dP(x3) 

< If falP2 ~ (~f2(x2, Xx)dP(x3))x/2(~fg(x~, x2)dP(xx)) ~/2 dP(x2) 

--< Ilflll2 I[fell/I[f31lz. 

The proof is complete. 
For x in O', denote by T~(x) the largest integer k such that there is ix <iz 

<. . .  < i k _< n for which (xil, ..., xik)e Vk. Our first objective is the following. 

Theorem 14. For a compatible sequence of  sets, the following are equivalent 

(I) lira r,/~) (n) = 0. 
n ~ o o  

(II) V7>0,  lim e'({r~(x)>=Ta.})=O. 
n--+ oo 

We recall the following inequality proved in [6], 4-7" (nl<<_(e~nl'~ whenever 
\ m / -  \ m / 

m ~_n. 

Proof that (I)=>(II). We show that if for some m, k we have 

rm< 2-  2~(2c) -k 4)(m)/e 

then whenever n satisfies 2 -k a,__<m__<2 -k+l a, we have 

P'({ T.(x)_> 2 -k+'  a.}) =< 2-"-. 
We have 

n ., enrm " 2 -  O(m))". 

We note that from condition (*), 

() (m)/m < ~ (2 - k a,)/2- k a, < (2 c) k ~) (a,)/a,. 

Moreover, ~)(a,)/a, = 1/n, so we get 

p ' ( {T . (x )>m})<(2-  2~)m= 2-m2k < 2-" . .  

The proof is complete. 
Since condition (*) implies that q~ (t)=> a t -~ for some ~, fl > 0, we have that 

lira a. = Go. It is then obvious that (II) follows from (I). 
n 
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Proof that (II)=>(I). The  difficulty here is tha t  even if r,,/4)(m ) is not  small  
P'({T.(x)>Ta,}) can  be small  when  7a .  is of  the order  of  m. Let  6 > 0 .  Let  
d = c a, where  a = ~ i2- i .  W e  fix k o > 0 such tha t  for m > 2 k~ we have  

i>O 

P'({Tm(x)> ~ - d  a,.})< l/2. (t) 

We now let p large enough  tha t  for k >_ p/2- l, we have  

/ gq~(l)~Zk~ > 2--2k+2ko" 
\ d  c ~ + 1] (2) 

We  p rove  tha t  for n > p we have  r,/c)(n)< e. 
Suppose,  if possible,  tha t  r ,  > e ~b (n) for some n > p. Let  k be the largest  integer 

with 2 k < n, so n < 2 k + 1. We  get 

r2~>r.>e(a(n)>8~{2k+l)> ~ q~ (2k). (3) 
C 

We have, using condi t ion  (*): 

~p(2k)2k=~)(2k) 2k~ ~I (~(2k) 2i~ ~I c-(k-i)  2i(O(2i) 21" 
ko~i<k ko<=i<k 

We have  

SO 

I t  follows tha t  

F r o m  (3) we get 

Us ing  (2) we get 

- ( k - i )  2i> 2 k ~ - i 2  - i = - 2 k a  
ko<--_i<k i>_O 

H C-(k-i)21>=d-2'~" 
ko<i<k 

(~clk)) 2k~ qb (2k) z~> I-[ d-2~ (~ (2i12~" 
ko<_i<k 

P2~(V:~) >[e~b(1)~E~~ ] ko__<Q.<k(c--de ~b(2i)) 2~. 

W e  now use T h e o r e m  11 to find a left hered i ta ry  set Y c ] 0 ,  1[ 2k such tha t  
22 k (y) = p2k (V2 k) and 2"  (Y (1, m)) < 2 m (V2 ~ (l, m)) whenever  1 < m, n. W e  first p rove  
that  there exists ko<i<k and  Y = ( Y I , - - . ,  yzk) in Y such tha t  y 2 ~ < . . . < y  I and  
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e 
y 2 i > 8 ~  d q~(2~). Otherwise for each y in Y,, one can find for k o < i < k  disjoint 

sets A~ of {1, ..., 2k}, with card A~=2 ~, such that for 1 in A~ we have y~ < 8 - ~  r 

It follows that 

1 ~; 2 i 

2 i + 1 2 i , \ 
Since \ 2i ] < 2 +* = 4 2', we get 

This contradicts (4), and proves the claim. The crucial point now is that since 
Y is left hereditary, for each z = (z~, ..., Zm) such that 

card {z 1 . . . .  ,z,,}c~ 0,2~cdq~(2i) > 2  i 

we have zeY(2  ~, m). Letting b = ~ d  q~(2i), we have (using the Remark 4-7 of 

[5]) that for each m, 

2 m ( b e r n i e '  1- )Y(Y(2i ,  r n ) ) < = j < 2 , ( j ) b ' ( 1 - b ) ' - J < = 2 i ~  ] ( i - b )  m. 

Take m the integer part of 2 i + 5lb. We can assume k 0 large enough that m b > 2 i + 4. 
Note that ( 1 - b ) ' < e  -"b so ( 1 -  b)'n =<(e- 16) 2'. Since b <  1/2, we get 

2re(Y(2 i, m))_> 1 --2i(26 e -  15)2~>= 1 - -2 i e -9 '2 '>  1/2. 

So we also have 
m i P~ (V2~(2, m))> 1/2. 

For  xe  V2k(2 i, m), we have Tin(x) > 2 i. Since 

m<=2i+5/b<=2 i+6 cd/(ec~(2i))~2 i+6 c d / ( g . O ( 2  i + 6  cd/,~)) 

and since we have a,,,/ (o ( a,,) < m, we have am~2 i+6 cd/e, so 2 ~ 2  -6 a,,/cd. This 
violates condition (1) and finishes the proof. 

Theorem 14 implies that in Theorem 2, (I) and (II) are equivalent. If cg 
shatters a set of cardinal m, its trace on this set has cardinal 2"; so it is obvious 
that (III) implies (II). We shall now prove the converse. For  further use, we 
state a more precise result. 



Donsker Classes of Sets 181 

Proposi t ion 15. Let 7 > 0 .  Then there is e > 0  such that i f  

r , ,=(P"(V~))l /"<e~(n) for n > m  

then there is a sequence (u,) going to zero, that depends on ? and m but not 
on the probability space, such that 

P" ({ln A, (x) > y a,}) < u,. 

Proof  F o r  x in f2', denote  by Rq,(x) the set of  subsets of  {xl,  . . . ,  x,} of  cardinal  
by cg. It  follows f rom Propos i t ion  5 tha t  A,(x)  q tha t  are shat tered 

_-< ~ ca rd  Ri,(x). Let  
i<__n 

q i~<...<iq ~ 

where  the s u m m a t i o n  is t aken  over  all choices 1 < i t  < ... <iq<n.  We note  tha t  
for a measurab le  set A ~ (2q, we have  

Pq (A)=  ~ #,, q (x)(A) d P' (x). (6) 

,>_ L e t / b e  large enough  tha t  7 > 2 - t l n  (e 2 c ~/1~ 2). Let  ~ = (2 c)-z/2 e. Let  m _ m. Since 
~(t)>=~t -~ for some ~, f i>0 ,  there is no>_m ' such tha t  nm'<e 2 - ~  for n > n o .  
We fix n => no. F o r  m' < q _< n, let 

G = {m,q (x) (v~) __< (z ~ ~ (q))q. 

I t  follows f rom (6) tha t  P ' (Bq)__>I-2  -q. Let  B =  ~ Bq, s o  P ' ( B ) > I - 2  -m'. 
m'<q<n 

We show tha t  for x in B, we have  A d x ) < d  a". F o r  i<m' ,  we have  

card  R~,(x) < (7) < # < n"' ~ e z-'a•' (7) 

F o r  i>m' ,  since x~Bq, w e  have  

card  R~ (x)=< ( ~ ) # , ,  i(x)(V~)<(2eenc~(i)/i) ~. (8) 

Let  t be the roo t  of the equa t ion  2 e e n (a (t)/t = 1. We have  (since 2 e e = (2 c)-z) 

n c> (G)/a, = 1 = (2 c)-l  n (~ (t)/t < n (~ (2 z 0/21 t 

so 2tt<=a,, and t < 2 - t a , , .  I t  follows f rom condi t ion  ( .)  that  for i<=t we have  
0 (i) < c I + lo,~,/0 0 (t). Moreover ,  

SO 

1 + log2 (t/i) <= (1 + In (t/i))/ln 2 < t/i In 2, 

(~) (i))i ~ ct/ln 2 (~ (t)i. (9) 
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We note that for i>t, we have card R~,(x)< 1, so card R~,(x)=0. It follows from 
(7), (8), (9), that 

card R~(x)<=m'ee-'a"+ ~ ct/l"2(2eenc/)(t)/i)i. 
i n n  m'<i<=t 

Now (2een O(t)/i)i< e 2~"0(~ = e t/e, so 

card R~(x) < m' e 2- '"  + ( t -  m') c t/l" 2 die 
i<n  

=< m' e 2-'"" + (t-- m')(C 1/ln 2 e)2-,a, 

< t(cl/~. 2 e)2-'a. < (cl/ln 2 e2)2-ta n ~_~ era.. 

The proof  is compIete. 

5. Donsker Classes 

The main aim of this section is the proof  of Theorem 3. 

Proposition 16. I f  c6 satisfies condition (M) and is a Donsker class, then the condi- 
tions of Theorem 2 hold. 

Proof The proof is a adaptation of the argument of [6], Remark 6.5. Suppose 
that cg is a Donsker  class and satisfies condition (M). Let e > 0. Then Dudley's 
equicontinuity criterion [4] shows that there is 6 > 0 such that 

lim sup P'*({x; Sup[ ~ f(xi)l > e  hi/2}) < ~  (10) 
n ~ o o  f E Z  i < n  

where Z =  {1 A - -  1B; A, Be~,  P(AAB)~6} .  
We know also that cg is precompact in measure, so there exists N, and 

for j__< N there exists (At) in cg such that 

VBeCd, 3j<=N, P(Aj~B)<6.  

Let (Y, -=, Q) be another probability space, and el be an independent Bernoulli 
sequence on X. An obvious adaptation of the argument of [6], Lemma 2-7, 
a), to the non-measurable case shows that for t > 0, 

(P ' |  Q)* ({(x, y); Sup ] ~ ei(y) f(xi) l > 2 t}) 
f ~ Z  i<n  

< 2  MaxP '*({x;  Sup r~f(xi)[>=t}). 
k < n  f e Z  i < n  

It follows that for n large enough, 

(P'| ({(x, y); Sup l ~  el(Y)f(xi)[ > 2 e  h i / 2 } ) <  2e. 
f e Z  i<n  

(11) 
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Suppose now that T,(x)>12~n ~/2, that is, there is a subset I of {xt, . . . ,x ,} 
of cardinal >12en ~/2 that is shattered by of. Then there is j < N  such that 
the trace over I of c#'={BeCg, P ( A j ~ B ) < 6 }  has a cardinal >=2~"~dr/N For 
n large enough, we have 

2 c a r d l / N  ~- __ ~ (card I / 
i <<4~ni/2 \ 1 ] 

It follows from Sauer's lemma (Proposition 5) that there is a subset J of 
I with card J > 4 e n  1/z that is shattered by cg,. One then sees easily that for 
each y, 

Sup [ ~ ei(y) (1A - ls) (xi)[ _-> 2e n 1/2. 
Beg' i<n 

It follows that (11) implies that 

P'({ T,(x) > lZe n1/2}) < 2e 

for n large enough. This concludes the proof. 
The rest of Theorem 3 is a consequence of [-6], Theorem 5.1. Given AeCg 

and 6>0,  denote T,(A, 6, x) the largest integer k such that there is a subset 
of {xl . . . .  ,x,} of cardinal k that is shattered by the class Cg(A,~)={B~C~; 
P(A/kB) < 3}. Denote by V,(A, 6) the set of n-tuples (x l , . . . ,  x,) that are shattered 
by the class Cg(A, 6). The following result has been inspired by [6], Theorem 
4-8. It provides weaker sufficient conditions for Theorem 3. 

Proposition 17. Let cg be a countable class of  measurable sets. Assume that cg 
is pregaussian. Then cg is a donsker class under either of the following conditions: 

(a) lim lim sup n(P'( U V~(A, z/n)))" = 0 
"c--* 0 n ~ o 0  A E ~  

(b) V?>O, lim l imsupP'({supT~(x,A,  zn-1/2)>ynl/2})=O: 

Proof The crucial point is the following. Denote by N(6) the cardinal of a 
smallest subfamily F o of cg such that for each B in cg, there is A in F~ with 
P ( A A B )  < 3. Then if c# is pregaussian lira 6 In N(6) = 0 (Sudakov's minoration, 

6 - ~ 0  

[6], 2-26). We first prove that (b) is sufficient. 
Fix 7 > 0. Let e > 0, and let z > 0 be such that 

lim sup P'({Sup T,(x, A, z n-  1/2) > 7 nl/2}) < e. 

It is enough to show that for n large enough one has 

Sup T, (x, A, z n-1/2)~ 7 nl/2 ~ Tn (X) ~ 3 7 n 1~2. 
A ~  
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We fix n large enough that zn-~/21nN('cn-~/2)<7zln2, so lnN(rn -1/2) 
<=Tn~/21n2. So, there is a set Fc~g, of cardinal < 2  ~"'~, such that for each 
B in cg, there is A in F with P(AAB)<=zn -~/2. Suppose now that T,(x)>3?n ~/2. 
Then there is a subset T of {xl, ..., x,} such that card 1>  37 n l/z and the trace 
of cg on I has cardinal 2 ~"'dt. It follows that there is A in F such that the 
trace on I of Cg(A, z n-  1/2) has cardinal > 2 cardI-~n'/2 => 2 2 cardI/3. NOW for n large 
enough Sauer's lemma implies that Cg(A, zn -~/2) shatters a set of cardinal 
>card  I/3. This completes the proof that (b) is sufficient. To prove that (a) 
is sufficient, one shows, as in the proof of theorem 14, I=>II, that (a)=~(b). 

It is of interest to note the following necessary conditions, that are formally 
much stronger than the conditions of Proposition 17. 

Proposition 18. Let cg be a countable Donsker class. Then the following holds: 

(a) 3z>0 ,  Ve>0, limP'({3A, Bec~,P(AAB)<=zen -1/2, ~ iA~B(Xi) 
n-."O i<=n 

>__--8 nil2})= 0, 
(b) lim lira sup nP"(~{(A~B)"; A, B~Cg, P(AAB)<=7/n})II"=O. 

~' "-~" 0 n ~  

Proof. (a) is proved in [6], Remark 4-5. 
(b) Suppose, if possible, that 

lira lim sup n P"(u  {(A/X,B)"; A, B~Cg, P(A AB) < Is~n}) 1In ~ o~ > O. 
~ 0  m ~ o o  

Then for each 7 > 0, 

lira sup n P"(V~(?)) 1/" > c~ 
t l ~ o o  

where 
V~(y) = w {(AAB)"; A, BeCk, P(AAB)<7/n }. 

The sequence (V,(7)), is compatible. Inspection of the proof of Theorem 14 shows 
that there is e, depending of c~ but not of 7, such that for each ? > 0, 

lira sup P'({T,(x, 7) >8 nl/2}) >0.  
n 

where T,(x, 7) is the largest integer k such that there exists i 1 < . . .  <ik<=n with 
(xi~, ..., x J s  Vk(7). Let m be the smallest integer > e n 1/2. If T~(x, 7)>e nl/2, then 
T,(x, 7)>m, so there exists A,B in ~f with P(A/kB)<y/m~7/en 1/2 and 

1AZx~(X~) > e n 1/2. For 7 = z e 2, this violates (a) and concludes the proof. 
i n n  

6. Glivenko-Cantelli Classes 

The author has recently given a characterisation of Glivenko-Cantelli classes 
of functions, that seems more precise than any other known characterisation 
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[10]. This approach of [10] is purely qualitative, and the arguments are purely 
measure theoretic. The use of the quantitative arguments of Sect. 3 will allow 
very precise estimates of the rate of convergence for classes of sets. Let 49, a, 
be as in Sect. 4. 

Let (g be a class of sets. We shall always assume that cg satisfies condition 
(M). The arguments of Proposition 16 show that 

Proposition 19. Suppose that for each ~ >0,  

l imP'*(4Sup 1 ~ 1A(Xi)_p(A ) >Ta./@)=O. 
n \ k A e C ~  i<=n 

Then for each 7 > 0 

lim P'({T.(x)>7 a.})=0.  
n---~ ~3 

In particular, the conditions of Theorem 2 hold. 

Lemma 20. I f  condition (**) holds, lim a2~ 2-k/2= o0. 
k ~ o o  

Proof Otherwise, condition (**) shows that the series ~ azz2 -l/2 is summable 
l 

so lira a2k2 -k/2 =0,  and this contradicts (**). 
k ~ o o  

To complete the proof  of Theorem 4 we show that under condition (**), 
the converse of Proposition 19 holds. 

Step 1. Let 7>0.  Let e be as in Proposition 15. Let m be large enough that 
r, < e 49 (n)/2 for n => m, and that 2 -  " + 1 < 7.  

Let n > m, and for m < q < n, let 

B~= {x~ ' ;  m,~(x)(v~)__< (~ 49(q))~}. 

As seen in the proof  of Proposition 15, we have P'(Bq)>I--2 -q. Let A. 
= U Bq, so P ' ( A . ) > I - -  7. For  x in A., and m<q<n,  we have #.,q(x)(Vq) 

m < q < n  

<(e49(q)) q. Let v.(x)= 1 ~ 6x~. Since Vq consists of q-tuples of points that are 
gl i<n  

all distincts, we have 

v~.(x)(V~)< ~.,q(x)(Vq)<=(~4)(q)) ~ 

whenever x is in A, and m<q<n.  For  q>=n, we have v,q(x)(Vq)=0. We now 
apply Proposition 15 to the probability v,(x). There is kl that depends on 7 
and m, but not on n or x, such that whenever l__> 2eL we get 

v" (x) ({y e f2'; In A l (y) > 7 a~}) < 1/2, (12) 
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where v',(x) is the power of v,(x) on t2'. We can also assume that  kt is large 
enough that  ~ 2 e x p ( - T a v ) < y .  

l > k l  

For  each 3 > 0 ,  denote N,,~(3) the largest p such that there are elements 
C 1 .... ,Cp of if  such that v,(x)(CiACj)>6 for i<j<p. Fix 6, let p=N,,,~(6), 
and let C a, ..., Cp elements of if  with v,(x)(Ci/~C))> 6 for i<j < p. 

Let s be an integer with p ( p -  1)(1 - 3 ) ~ <  1. Then 

v',(x) ({y~t2', Vi<j<=p, 3k<=s, ykeCiACj}) 

>1 P(P-l~)(1-b)S>l/2. 
2 

If  s>2 kl, it follows from (12) that lnp<=7a,, since if {y~ . . . . .  Ys} meets each 
set C~ACj, the trace of if  on {Ya . . . . .  Ys} has cardinal >p .  In other words, 
we have shown that for s > 2 k~, we have 

N,,x(6)2(1 - -3)s< 1 ~N, ,~(6)  < exp ~ as, 
o r  

N,,x(6) > exp ~ as~N,,~(3)2(1-6)s> 1. 

Since 1 - 6 __< exp - 6, we get 

N,, x(6) > exp 7 as=~N,, ~(6) > exp ~ s/2. 

If  s is the largest such that  N,,x(3)>exp~,as, we get expbs/2<N,,~(3) 
< exp 7 as + 1, so 6 < 2 7 as + 1/s. 

So we have shown that for s>2 kl, we have 

6>27 as+l/S~N.,x(f)<exp 7 as. 

Since as easily seen, 2as > a2s > as+ 1, we have for s > 2 kl that  

6 > 4 7 as/s=~N . x(6) < exp 7 as. 

Step 3. Let b as in condition (**), so ~ a2z2-l/Z<ba2k2 -k/2. Recall that (ei)i__<, 
l<k  

is an independent sequence of Bernoulli r andom variables defined on the space 
(Y,, - ,  Q). Fixing n and x~P, we estimate by a chaining argument  the Q probabili-  
ty that 

Sup ] ~  ei lc(xi)] > 8 7 a,(2 + b). 
C ~  i<=n 

Let k be the largest integer with 2k<n. For  k a <l<k,  let b t=22-Z~a2 ,, and 
let F~ be a subset of if  of c a r d < e x p T a 2 ,  such that for each C in if, there 
is B in Fz with v,(x)(BAC)<@ 
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The heart of the matter is that the process C - ,  ~ e i  lc(xi) is subgaussian 
i<. 

for the distance d(A, B)= (n v.(x)(AAB)) 1/2, and that 

6/t/2 (log card  ff/)l/2 =_< 27 ~ 2 -1/2 a2, <= 27 baek 2 -k/2. 
ka<=l<=k l<=k 

The bound we need could be deduced from a suitable version of Dudley's 
metric entropy bound for the supremum of a Gaussian process, but unfortunately 
the version we need does not seem to appear in the literature. It can also 
be deduced from the usual version of Dudley's metric entropy bound and the 
known concentration properties of the supremum of a Gaussian process, as 
follows from Borell's inequality or weaker principles as in [13]. It is, however, 
just as short in that case to give the complete argument. 

For C in cg there is B in F k with 

v.(x) (B~,C) < 47 a2~/2 a <_ 87 a./n 

that is card {iNn, xi~BAC} <87a,. So we have 

Sup l~  ei lc(xi) l < 87 a, + Sup + ~ ei lc (x0l- 
C ~ '  CeFk i<n 

For k~<l<k denote G~ the family of functions l c - 1 ~ ,  for C in F~, where B 
depends of C and is an element of Ft-1 such that v.(x)(C/xB)<6~_~ <2~1. We 
note that 

card Gl < card Fl < exp 7 a2,, 

while for f in Gl, we have that If[ takes only the values 0 and 1, and v. (x) ( f ) <  6z. 
We have 

Supl ~ e, tc(x01_< ~ Supt ~ e,f(xi)l+ Sup t ~  e~ lc(x~)l. 
CeFk i ~ n  kl<i<=k f e O t  i nn  C~F~: 1 i<_n 

It follows that 

where 

Q({Supl~ silc(xi)l>87a,(2+b)}) <-- Z cz~ 
C~Fk i~=n kl <=l<=k 

ekl = Q({ Sup f ~  ei lc(xi)l > 87 a,,}) 
C~Fk 1 i n n  

and, for k l<l<k  

cq = Q({Sup I ~ eif(xi)l ~ 87 a, 2 (k- 0/2 a2,/a2~}). 
f~Gz i n n  

Since a2~<_a, and n__<2 k+l, we have 

cq < card Gz Sup Q ({I ~ ei f(xi)t > 4 7 a2, n 1/2 2-z/2 + 1/2 }). 
f ~Gz i <=n 
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We note now that 1~ eif(x3[ has the same distribution as [y'  ei lfl (xi)[. We 
i<n i<n 

note that there are at most n2a-tTa2~ indexes i for which Ifl(x~)=l.  Using 
the standard subgaussian inequality 

we get that 

Moreover 

Q({I ~ e,] > t}) < 2 exp - tZ/2r,  
i<r  

3272a~,n2_t\ 
_ - - - - -  ---1<2exp( cq_<2exp 7a21 2nya2~2a_l]= -Ta2z). 

ekl < card F~x Sup Q ({r ~ ei lc(xi)l > 8 7 a,}) 
CeFk t i<~n 

Since kl is independent of n and x, we can find n~>m such that for n>n~ 
we have 3272 a2/n >= 27 a2kl. 

So, for n>nl,  we have C~kl <2exp( - -y  a2k ). It follows that 

cq~ ~ 2 e x p ( - T a v ) < 7 .  
kl <_l<k l>=kl 

Step 4. We have shown that for n>=n~ and x e A ,  where P'(A,)> 1 - %  we have 

Q({Sup I ~ e~ ic(x,)[ _-> 8 7 a,(2 + b)})_< 7- 
Ce~ i<n 

We note that condition (M) implies that for each t the function 

x--* Q({Sup[ ~ ei lc(x~)l =>t}) 
CeCg i<=n 

is U-measurable. It follows that for n > n I 

(P' |  ({Sup I ~ ei le(xDI ~ 8y a,(2+b)}) < 27. 
Ce~ i<_n 

One finishes the proof with [6], Lemma 2 7, b. 
Using Theorem 4 for ~b(t)= t (so a , =  n) we see that a class of sets cg that 

satisfies condition (M) is a Glivenko-Cantelli class of sets if and only if lim r. = 0. 
n---~ oo 

The following beautiful lemma and its proof are due to D. Fremlin. 

Lemma 21. Let (V,) be a compatible sequence of sets, and a = lira r,. Then there 
n 

is a measurable set A with P(A)= a and P"(V, \A")=0 for each n. 
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Proof We note first that if for each k, (v.k). is a compatible sequence of sets 
with v.k+ 1 c V. k for each k, P'(v.k)>a ", then W.-- ~ V. k is a compatible sequence 

k 

of sets with P" (W.)> a n for each n. One can hence assume that V. has the property 
that for each compatible sequence W. with VV.cV., P"(W.)>a", one has 
P" (V. \W.)=0  for each n. For  x in f2, let 

= {yea";  (x, y)e v.+ 1}. 

Since the sequence (V.) is compatible, we have V.,~c V., and the sequence (V.,~). 
is compatible for each x. Let 

a(x)=inf P"(V~,~)~/'=lim Pn(Vn, x) 1In 
n 

so a(x)<a. Let A = { x ;  a(x)=a}. We prove that P(A)>a. Otherwise, there is 
a'<a such that if A ' = { x ;  a(x)>a'}, we have P(A')<a. Let P(A')<al<a,  and 

a' ~ a 2  ~ a .  
For  n large enough, if 

B = { x ~ Q ;  P"(V.,x)<=a~} 

we have P(~2\B)< a 1. It follows that 

P '+I(V~+I)= jP"(V.,~)dP(x)<= ~ + ~ <=a'2+a~P'(V.). 
B ~\B 

Let a 3 such that a2, aa<a3<a. For n large enough, a"z+alr~<=a3P'(V.), so 
P"+I(V.+O<a3P'(V~ ). This shows that limsup(P'(V~))l/'<a3<a, a contradic- 
tion. 

We note that for x in A, we have P"(V.,~)>a" for each n, so for each n, 
P"(V.\V.,x) = 0 by minimality of V.. This shows (by induction) that for almost 
all each (x l, ..., Xk) in A k, 

P"(V, \ {yEQ"; (Xl, . . . ,  xk, 0 

and the compatibility property of (V~) implies P"(Ak\Vk)=0 for each k. The 
proof  is complete. 

As a consequence, we get a new (and very different) proof  of one of the 
results of [-10]. 

Theorem 22. I f  a class cg of sets satisfies condition (M) and is not a Glivenko- 
CanteUi class, there is a set A with P(A)> 0 such that for all such k, and almost 
each (xl, ..., Xk) in A k, the class cr shatters {xl . . . . .  xk}. 

It should be noted that the proof  of the above theorem used only the easy 
implication (I)=~(II) of Theorem 2. The approach used here can be adapted 
to characterise, under measureability, Glivenko-Cantelli classes of functions, but 
considerable work would still be required to reach the generality of [10]. 
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7. An Example 

We let ~2 = N, ~ = 2 ~. We let cg be the class of finite sets. We let p, = P({n}). 
It is known [3, 4] that cg is a Donsker  class if and only if ~pln/2< o0.  We 
now evaluate r,. There is no loss of generality to assume that (p,) is non increas- 
ing. We will show that nr,--*O if and only if n2p,~O. This in particular give 
examples that the conditions of Theorem 2 for qS(t)= lit do not imply that 

is pregaussian. However, let m~ be the smallest m for which r~<2  -2i. If 
2-im]/Z< oo, then cr is pregaussian. This remark follows from the proof  of 

Theorem 2, I s  II and the method of [5], Theorem 2.23. (In fact, cg then satisfies 
the so-called entropy condition.) A typical case where this relation is satisfied 
is when rm < 1/m(lnm) ~ for c~>2. 

Let us go back to our example. We first note that 

SO 

P"(V,)>=n! I-[ Pi >n! P~, 
i < n  

r,>(n!)l/"p,, nr,>n(n!)l/"p,.  

Since (n!)l/"~n/e, we see that nr ,~O implies n2pn---~O. To show the converse, 
we use a dazzling trick due to J. Zinn, who kindly let us reproduce it here. 
We note that 

SO 

v . =  {(x, . . . .  , x0; I-I (x, A.)_>_.!} 
i n n  

P(V,) < (n !)- 2 E( H (x i/x n) 2) = (n!)- 2 E ((x 1/x n)2) ". 
i < n  

We have 
r,<(n!)-2/"E((xl /x n)Z)" 

=<(n!)-2/" ( Z  i2pi +n2 ZPi) .  
i < n  i > n  

Since (n !)- 2/, < a n-  2 for some a > 0, we get 

Since p, = O(1/n2), ~, Pi = o(1/n), and Kronecker 's lemma shows that lim n r, = 0. 
i > n  n ~  

Using similar ideas, if q~(n) satisfies condition (*) one can how that 
lira r./q5 (n) = 0 if and only if lira n p./(a (n) = 0 and lira ( ~. pl)/(a (n) = O. 

n n n i>=n 

A c k n o w l e d g e m e n t s .  The author  thanks E. Gin6 and J. Zinn for many  conversations about their 
work, and for asking the questions that  led to this work. 
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