
Probab. Th. Rel. Fields 75, 149-157 (1987)  'obabUity 
Theory Related Fields 

�9 Springer-Verlag 1987 

A Generalization of Chernoff Inequality 
Via Stochastic Analysis* 

Chii-Ruey Hwang and Shuenn-Jyi Sheu 

Institute of Mathematics, Academia Sinica, Nankang, Taipei, Taiwan 

Summary. Let # be a probabili ty measure on R a with density c(exp( 
-2U(x) ) ,  where u~CZ(Ra), IFU(x)12-AU(x)~oo and U(x)~oo as ]xl~oe.  
By using stochastic analysis and theorems in Schr6dinger operators we 
have the following result: there exists a constant c > 0  such that 

Var, f <cEu]Vf[ 2 (1) 

for any f~Ll(#) with a well-defined distributional gradient Vf Under our 
condition, the operator  -�89 V in L2(#) has discrete spectrum 0 
= 2 1 < 2  z = . . .  =2, .<2, .+1 < . . .  with corresponding eigenfunctions {q~,} 
which form a C.O.N.S. (complete or thonormal  system). If the R.H.S. of (1) 

is finite then equality holds iff f =  ~, biO i for some bl, ..., bm~R. Moreover,  
i = 1  

the constant c can be taken as (222) -1. 
When U is a quadratic form, (1) is the Chernoff inequality (Chernoff 

1981; Chen 1982). The approach here can be generalized to infinite dimen- 
sional Gaussian measures , or the case with # being a probabili ty measure 
in a bounded domain of R d or some discrete cases. 

1. Introduction 

Chernoff [4] proved that for a standard normal  r.v. X the following inequality 
holds 

Var g (X) < E [(g'(X)) 23 

for all absolutely continuous g with finite EgZ(X). And the equality holds iff 
g(x)=ax+b for some constants a, b. The proof  involves expanding g(x) in 
Hermite polynomials. 

* This research was partially supported by the National Science Council of the Republic of 
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Chen [3] used Schwartz inequality and martingale property to generalize 
Chernoff's result to multivariate normal case without the finite variance as- 
sumption. 

A lemma in Geman and Hwang 1984 [6] proved a similar inequality 

Var g(X) < M v E ] Vg(X)[ 2 

for X with the Gibbs density c exp ( -2U(x ) )  in a hypercube. 
Caeoullos [2] studied the upper and lower bounds for normal, exponential, 

Poisson and binomial distributions. Due to the "boundary"  condition in the 
last three distributions, extra terms are needed for the upper bounds. In the 
discrete case difference operator is used instead of the gradient. 

Although the approach discussed in this article can be generalized to 
suitable discrete cases as well as continuous case in bounded domain, still we 
only consider the following set-up. 

Motivated by the fact that the normal density is the stationary solution for 
the forward equation of Ornstein-Uhlenbeck process (also is the density of the 
invariant measure), the Gibbs probability measure # in R d can be consider as 
stationary measure of the diffusion process x(-): 

dx(t) = - VV(x(t)) dt + dw(t), 

where w(.) is a d-dimensional Brownian motion. This gives the connection of 
our problem to stochastic calculus. # is given by 

d~=P(X) ~ c e x p ( -  U(x)) (1.1) 2 

with c a norming factor. In this paper, we will assume 

(A) geC2(Rd), ] V g ( x ) 1 2 - A g ( x ) ~ o o  and g(x)--,oo as Ix[--*oo. 

For  a locally dx-integrable real valued function f, let Vf denote its distri- 
butional gradient. Let L =�89 - VU. V and L* the adjoint of L. Clearly L ' p = 0 ,  
i.e. p( ')  is a stationary solution for the Brownian motion with drift -VU.  (L is 
closely related to the Schr6dinger operator �89189 The fol- 
lowing are our main results. 

Theorem 1. I f  (A) holds, then there exists a constant c such that 

Varu f < c EulV f l  2 (1.2) 

for any #-integrable f for which Vf  exists. In fact, - L  has discrete spectrum 0 
=21 < 2 2 < 2 3  < ... in L2(#) and c can be taken as (222) -1. Moreover the equality 

holds iff f can be written as ~ a, ~,, where O, is normalized eigenfunction of 
n - - 1  

- L  corresponding to "~n and m is the number such that 22= ... =2,,4=2m+ 1. Note 
that 01 is a constant function. 

In particular, when g(x)=�88 2, we obtain the following result due to 
Chernoff [4] and Chen [3]. 
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Corollary 2. Let X 1, ..., X d be i.i.d. N(O, 1). Then 

Var f (X1 , . . . ,  Xd) < E[ Vf (Xl , . . . ,  Xa)l 2, 

the equality holds iff f ( x ) = b  I x 1 + ... +bdxd+a for some bl, ..., be, aaR. 

In Sect. 2 we shall relate inequality (2) to the operator L and establish (2) 
for "nice" function by a Hilbert space argument. 

In Sect. 3, certain properties of the process generated by L are used to show 
that (2) holds for general f. 

The following notations will also be used: C"(R ~) (resp. C~176 of 
real valued functions on R ~ with continuous derivatives up to the m-th (resp. 
any) order. 

C~(R e) = {f~ C~(Rd); f has compact support}. 

Vf, A f  mean the gradient and Laplacian o f f  respectively. 

LZ={h: gd--+gd; ]hleeL2(~t)}. 

Remarks. (i) Assumption (A) guarantees that - L  has nonnegative discrete 
spectrum and there is no explosion for the Brownian motion with drift - VU. 

(ii) We may consider the infinite dimensional Ornstein-Uhlenbeck operator 
L defined on LZ(PW), where (W(~, B(W[~), Pw) is the r-dimensional Wiener space 
(see Ikeda and Watanabe [7], Chap. V, w 7 for the notations). Then we have a 
similar inequality 

~f2 dpw < ~ (Dr, D f  >H dP~, 
1 

if yfdPW=O and f is in the domain of L. The equality holds i f f f =  Sc~(s).dw(s), 
1 1 0 

where e(s)=(~l(s), ..., %(s)), j'l~(s)12ds< 0o and ~c~(s).dw(s)is Ito's stochastic 
integral, o o 

(iii) If (A) is not true, in general we don't have the inequality (2). 
(iv) Borovkov and Utev 1983 1-14] obtained some very interesting results 

by studying the quantity 
Var g({) 

R e -  sup gEHI(r E(g'(~)) 2' 

where Hl({)={glg:  R ~ R ,  g is absolutely continuous, Dg({)>0, Eg2({)<oe} 
and ~ is a r.v. For examples: Rr  iff { is normal. If Rr and 
E(g'({)) 2 < oo then g~L2(~). 

2. Preliminary Results 

In the rest of the paper, for brevity, we shall omit the constant c in (1). We first 
show a relation which is important in our analysis. 

Let f~C~(Rd). Integration by parts gives 

S lvfl  2 e-2Vdx = Sf .  ( - 2 L f )  e-2Vdx 

=_ ( f ,  - 2 L  f ) ,  (2.1) 
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where 
L f = � 8 9  VU. Vf 

( , ) is the inner p roduc t  in L2(#). 

Ope ra to r  L has the following propert ies.  

Lemma 2.1. - L  is essentially self-adjoint 1, nonnegative definite on C~(Ra). And 
for feD(L)= the domain of L in L2(#), we have I VfleL2(#), moreover (2.1) holds. 

Proof. Let us consider  the Schr6dinger  ope ra to r  L defined on L 2(dx) 2 by 

Lg=�89  (2.2) 
where V=�89189 AU. 

The ope ra to r  L relates to L as shown by the following d iagram:  

L~(#), --, L~(dx) 

f , ~ f e  - ~  

L f  , , (L f ) .  e- v 

Since L is essentially self-adjoint  on 

(2.3) 

C~(R e) by our  condi t ion on V (see [103, 
VO1. II, Thm.  X29), so is L. This means  that  for feD(L), there are f ,  eC~(R d) so 
tha t  

f - - - , f  in L2(#). 
l ~ f o - . L f  

Then it is easy to see that  (2.1) holds and  IVfleg2(#). 
The following result is a weaker  version of T h e o r e m  1. 

Theorem 2.2. - L  has discrete spectrum 0=21  < 22 <23  =<... ~ oe in L 2(#). The 
corresponding normalized eigenfunctions {r form a C.O.N.S. Moreover, for 
feD(L), and in particular for f e  C~(Rd), we have 

Sf2 e-2V dx<=cSIVf[2 e-2V dx (2.4) 
if 

S f e- ZV dx=O. (2.5) 

The constant c can be taken w be (222) -1. Equality holds in (2.4) iff for some 
a 2, ..., ameN 

f =  ~ al r 
i = 2  

where m is the integer such that 2 2 = 2 3 =  ... =2m<2m+ 1. 

1 [10], vol. I 
2 Although L (or L) is only densely defined on IY(dx) (or L2(/~)), for convenience we shall abuse 
the expression 
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Proof. - L  is self-adjoint and nonnegative definite in L2(dx). By assumption 
(A), V(x)--,oo as txl---,oo, and Theorem XlII.67 on p. 249 in Reed and Simon 
[10] shows that - L  has nondegenerate ground state and discrete spectrum 
and the eigenfunctions span L2(dx). From the diagram (2.3), the same holds for 
- L  in L2(#). Let 0 = 2 1 < 2 2 < 2 3 < . . .  denote all the eigenvalues, counting the 
multiplicity, and {~b,} the corresponding normalized eigenfunctions which form 
a C.O.N.S. in L2(/~). Note that ~bl is a constant function. 

For feD(L), we have the expansion 

f = ~ a. ~b.. 
n = l  

Assuming (2.5) we have a 1 =0. (2.1) gives 

5 IVfl 2 e-2Vdx = 2 ( f ,  - L  f )  

:21n~=2an~n'n~=22nan(on ) 

=2 ~ 2, a 2 
n = 2  

==-222 ~ a. 2 
n = 2  

=222 ~ f2 e- 2V dx. 

This proves (2.4). The last assertion follows immediately. 

3. Proofs of the Main Results 

Compare Theorem 1 with Theorem 2.2, it remains to show that a function f 
satisfying feLl(#), IVfleg2(~) can be approximated by functions in D(L). We 
state this as a proposition. 

Proposition 3.1. Let f ~Ll(#) and lVfl~g2(#). Then fEL2(/~). Furthermore, if 

f = ~ a . O . ,  
n = l  

then 

Vf = ~ a. Vc~. in L 2. 
n = l  

We also need some simple properties of {~b.}. 

Lemma 3.2. 
I [7(9n" g~bke-2Vdx=22k(Sn, k , 

where 
1 if n=k, 

6"'k= 0 i f n + k .  
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Proof By the argument as in the proof of Lemma 2.1, we have 

= 22k ~ C~,. 4)k e-  2V dx 

=22k 6,, k. 

We now prove Theorem 1 and Corollary 2 by applying Proposition 3.1. 

Proof of Theorem 1. We only need to show that f~Ll(#), VfeL2(1~) and 
S f e- 2U dx = 0 imply 

~f2 e-ZV dx<=c ~ [~f12 e-ZC dx. 

By Proposition 3.1, feL2(#) and 

if f =  ~ a,~b,. 
n = 2  

V f =  ~ a ,  VO, 
n = 2  

S [ V f lZ e-  2V d x =  Z a, ak S V(a . V~bk e-  aV dx 

=2 ~ 2, a 2 
n = 2  

>222 ~, a~ 
n = 2  

= 2 2 2 y f 2 e - 2 V d x .  

This completes the proof of the theorem. 

Proof of Corollary 2. Take U(x)=�88 2. By Theorem 1, it remains to show that 
22=23= ... =2e+1=�89 and {P2(x)=c2x~, ..., Oe+l(X)=Ce+lXd. In fact, the gener- 
alized Hermite polynomials Hp ...... pa(x) form a complete set of eigenfunctions 
for - L =  1 1 -TA +sx .  F, where/4; ...... pd(x) are defined by the relation 

ea'X--}lal2 = 2 a[ ~''' aPdHd m, .... pd(X)/Pl T" "" Pa ! 

a = (a n .. . .  , ad)eR d. 

Moreover, 

Therefore 

L(Hp ...... pd)- Pl +""  +Pal 
2 Hpl ..... pa" 

22 =. . .  =2d+1 =�89 

~bi+ i ( x )=C i  + l Xi, 

We now prove Proposition 3.1 in two steps. 

Lemma 3.3. Assume f eLl(t ~) and lVfl ~g2(#). Then 

l <_i<_d. 

f =  ~ b , O , + g  
n = 2  
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with 
geL1(#), L g = 0 ,  Vg6L2(#), 

b ,=2~2  S V f  . VO, e-ZV dx. 

Lemma 3.4. I f  g~Ll(#), IVgI~L2(#) and L g = 0 ,  then g is a constant. 

Proof  of  Lemma 3.3. { V O , / ] / ~ , }  is an orthonormal family in L 2. Let 

c ,=  ~ V f  . V~) f f ] / ~ ,  e -  ZV dx. 
Then 

Z Ic.I 2--< J" IUI 2e-avdX< oQ. 
Let 

f0= ~ b.~o 
n=2 

with 
1 

b n -  2 ] / ~  2 cn. 

It is easy to see by Lemma 3.2 that ~ b n Vq~, converges in L 2. Therefore 

V f o = 2 b ,  VO, 
is in L~ and 

V(f  - fo) " V~)n e -  ZU dx=O.  

Now for ~b ~ C~ (Rd), since V~b = ~ a, V~b, 

V(f  - f o ) "  V~ e -  2V d x = O  

= ~ ( f - f o ) "  ( - 2L  (~) e -  2 v dx. 

This implies that g = f - f o  satisfies the properties stated in Lemma 3.3. Notice 
that L g=O in distributional sense as well as in classical sense by regularity 
results for the solution of elliptic equation. (See [13 3, part II, Chap. 1.) 

Proof of  Lemma 3.4. Recall that # is the probability in R d with density 

p ( x ) = c e  -2v(x). 

We consider the diffusion with drift - V U  and the corresponding stochastic 
differential equation 

dx(t) = - VU(x(t)) dt +dw(t) ,  

where w(t) is a d-dimensional Brownian motion. Since 

L e v(x) = ~ A e v(x) - VU(x).  Ve vCx) 

=�89 u(~) -I vtz(~)l :) eV(~) 

= - V ( x )  e v ( x ) ,  

by assumption (A), there exists c > 0 such that 

LeV(~)<ceV(X), x ~ R  ~. 
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Then, by a theorem on p. 191 of Varadhan [12], there is no explosion. Let {Px} 
denote the family of Markov processes on f2= C{[0, oe), R a} indexed by the 
starting point x with the generator L, then # is the invariant measure of {P~} 
([12], p. 243). 

Let g satisfy the condition of the lemma, g6C2(R d) (see [13], part II, 
Chap. 1, w 1.3). Ito's formula gives 

g(x(t))-g(x(O)) = i Vg(x(s)). dw(s). (3.1) 
0 

Since 

i ~ Vg(x(s))l 2 Eu E~ I Vg(x(s))l ~ as = E ~. ~ E ~. E I x ( 0 ) ]  
0 0 

t 

= ~ E P" El Vg(x(s))l~] 
0 

= t  E.ElVgl2] < oo, 

where P~ is the probability distribution of x(.) with initial distribution #, there 
exists M c R  a with #(M)= 1 such that whenever x ~ M  

t 

ExylVg(x(s))[2ds<ov Vt>0.  (3.2) 
0 

Now fix xeM,  (3.1), (3.2) imply g(x(.)) is a square integrable martingale and 

E~ [g(x (s))] = g(x). 
Then 

Ex[lg(x(s))[]>[g(x)[ Vx~M.  (3.3) 

Integrate both sides of (3.3) with respect to #: 

Eu[lgl] =EuE~[lg(x(t))l] >Eu [Igl]. 

We must have 

ExElg(x(t))l]=lg(x)l, V x ~ m ,  Vt>0.  (3.4) 

Let hr(x)=lg(x)l/xr for r>0 .  By a theorem on p. 251 of [12], 

]g(x)l = Ex [[g(x(t))l] 

>ExEhr(x(t))]--4Euh , as t~oo .  

Hence [g(x)[ >E,[[g[].  Proceed as the proof of (3.4), and we have 

tg(x)[ =EuEIgl], Vx~M.  (3.5) 

Then (3.5) holds for all x in R e by the continuity of g(-), therefore, g is a 
constant. 

Addendum. After this paper was typed, the authors learned that Chen [15] had made some 
interesting generalization in another direction to a related inequality involving both the upper and 
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lower bounds for infinitely divisible distributions in R d. In view of Theorem 2 in [141, it is clear 
that an extra term has to be added to the R.H.S. of (2) in this case. 
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