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Summary.  If for a process ({,)2~= _ oo the conditional distribution of ~, given 
the past does not depend on n for e.g. n >0 ,  then the process may be called 
a chain with infinite connections. Under  a well-known continuity condition 
on this conditional distribution the process is shown to be distributed as 
an instantaneous function of a countable state Markov  chain. Also under 
a certain weaker continuity condition uniqueness of the distributions of the 
stationary chains is obtained. 

1. Introduction and Results 

Let I be a finite or countable set. A non-negative function g on I x IF] I 

is called a g-function if "=< - 1 

~ , g ( i o l i _ ) = l  for i _ e I _ : =  I]  I. 
i o ~ l  n <= - -  1 

With a g-function one associa tes / -va lued  processes as follows. Let us say that 
if for a process (4,) 

P(~, = io I (~k)k<,) = g(io [ (~k)k<,) a.s. (1.1) 

for n > 0  (or for all n) then it develops according to g for these n. Suppose 
that the distribution of (~k)k<O is known. Then by (1.1) for n = 0 ,  1, ... one deter- 
mines successively the distribution of (~k)k<_, and then by Kolmogorov ' s  exten- 
sion theorem one finds the unique distribution of the entire sequence (~k). These 
processes were introduced by Doeblin and Fortet  [43 under the name chain 
with infinite connections. The distributions of the stat ionary processes of this 
form were called g-measures by Keane [9]. 

We measure the continuity of g using r,, n_>_ 0, defined by requiring 

g( io] i - )  
e -r" = i n f  . 

g~Jo [J-) 
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where the infimum is taken over all i. and j .  such that io=Jo . . . .  , i_ , - - - j_ , .  
We will assume that g is bounded from below by a positive constant, so then 
r 1 > r 2 > . . .  are finite. 

The following result discusses uniqueness of g-measures. 

Theorem 1.1. I f  g satisfies 

exp ( - r ~  - . . . - r . )  = ~ (1.2) 
.>_-1 

then there is a unique shift invariant g-measure ~. Under this measure the shift 
is a Bernoulli shift and moreover 

P(4 ,  = io, . . . ,  ~,+k = ik 14- = i_) ~ P(~o = io, . . . ,  ~k = ik) 

as n ~ oO uniformly in i_.  Here  4, is any process developing according to g for  
n > 0 and (~,) has the aforementioned g-measure as distribution. 

This answers a question in Ledrappier  [11] which considers the traditional 
condition 

Z r.< 00, (1.3) 
n > l  

that was discussed already by Doeblin and Fortet  [-4]. Our proof  uses also 
coupling. Let us mention that under (1.3) the coupling contact can be made 
" las t ing" while this may  perhaps not always be true under the weaker condition 
(1.2). 

In a chain with infinite connections the distribution of 4, given the past 
may  depend on the entire past (~k)k<,, which is an infinite sequence. Below 
we succeed in "simplifying" the description of this process at the cost of a 
randomization.  We construct a M arkov  representation, i.e. a Markov  chain 
(X.),>o with a countable state space S and a function f :  S--+ I such that 

d 
( f ( X , ) ) ,  > o = (4,), > o. (1.4) 

The next result applies also in the non-stat ionary case. 

Theorem 1.2. I f  g satisfies (1.3) and (4,) is a chain with infinite connections such 
that (1.1) holds for  n>O, then there exists  a Markov  representation (1.4) for  

(4.). 
Let us mention that the M arkov  chain in the representation happens to 

be quite simple: it has the form X,=(4,-j)o__<j__<.. where z, is a.s. finite. It was 
already known that  in the stat ionary case a chain with infinite connections 
has very strong mixing properties. However  Berbee and Bradley [1] have shown 
by examples that existence of a Markov  representation is only weakly related 
to mixing and so our result gives definite new information. Recently, Lalley 
[10] obtained by methods different from ours a similar result for the important  
subcase where r, --+ 0 at exponential rate. A remark at the end of Sect. 3 indicates 
a problem for this case that  is still open. Much earlier Harris  [6] obtained 
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a uniqueness result using a condition related to (1.2), that is even weaker in 
case I/J= 2. The corresponding limit result of this paper uses however a condition 
related to (1.3) instead of to (1.2). Kaijser [8] discusses the literature further. 

Theorem 1.2 can be applied also to one-dimensional Ising systems where 
the continuity of the g-function can be investigated using Lemma 1 in Gallavotti 
[53. We do not try here to get a generalization of Theorem 1.1 for Ising models, 
Let us just mention that the form of condition (1.2) seems to be pointing in 
the right direction by an example in Hofbauer [7]. 

2. A Setting for Markov Representation 

Suppose g is a given g-function. Let (~,) be stationary such that (1.1) holds 
for all n. Assume there is a Markov representation as follows: there is a station- 
ary Markov chain with a transition probability Q from a countable state S 
to itself and there is a function f :  S ~ I  such that (f(X,))=(~,) .  For  the ease 
of the exposition we assume ~ = f ( X . ) .  

To the pair f, Q describing the representation there is associated in a natural 
way an entrance law (~ from I_ to S calculated as 

Q~-,x '= l im P ( X . = x l ~ . - l = i - 1 ,  ..., 4. k=i-k)P((~k)k<.~di-)--a.s. (2.1) 
k ~ o o  

The a.s.-existence of this limit is a consequence of the backward martingale 
theorem and by stationarity (~ does not depend on n. Because of (1.1) we have 
outside a null set 

O~_,:,=g(io[i-). (2.2) 
x ~ f -  1(io) 

By the Markov property 

P ( x .  = y I(~k)k < .)= E (P (X. = y  IX.-1)1 (~)k < .). (2.3) 

From this we can calculate P(r  1= io, X .  = Yl(~k)k<.-1 = i_) in tWO ways and 
we get the equality 

g(ioli-)Qi_io, r =  ~ (~-,~Qxr (2.4) 
x e f  1(io) 

valid outside a P(~_ edi_)-null  set for a suitable version of Q. 
The relation (2.4) is crucial for the Markov representation. It reflects that 

in (2.1) does not depend on n and that (2.2) holds. In Sect. 3 where we 
assume (1.3) we find a representation with (~ defined everywhere and also the 
relations above are valid everywhere. We mention that in case g is discontinuous, 
which may occur for nice processes one cannot always find these relations to 
be valid everywhere. 

The following converse is easily proved by an inductive calculation of (2.5) 
as described above. 
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L e m m a  2.1. Let  g be a g-function for  I. Suppose f :  S--* I and assume Q_ and 
Q are transition probabilities f rom I to S and f rom S to S respectively such 
that (2.4) holds for  all i_ e I _ ,  i oe I  and x, y e S .  Let  

- ,  X O, X 1 ,  . . .  

describe a Markov  chain with arbitrary initial distribution on I_  and transition 
probabilities Q, Q, Q . . . . .  Then writing ~, . - = f ( X , ) f o r  n > 0 we have 

P ( X ,  = x  I (~k)k<,,)= (~(~,),~.,X a.s. (2.5) 

for  n = 0, 1, ... and because of  (2.2) the process ~, develops as g for  n > O. 

Remark.  Suppose Q has only one invariant  distr ibution zc. If in L e m m a  2.1 
the initial dis tr ibut ion is chosen such that  the full sequence (3,) is s ta t ionary 
then X o has dis tr ibut ion 7r and there is only one g-measure. 

3. T h e  M a r k o v  R e p r e s e n t a t i o n  

To prove  Theo rem 1.2 we construct  an entrance law (~ from I_  to the state 
space S consisting of finite strings o f / - e l emen t s .  We const ruct  ~),_,. uniquely 
for all i_ e I _ ,  using cont inui ty  of g. Basic in our  use of cont inui ty  below and 
in Sect. 4 are the functions 

g(ioli_l...i , ) := inf g(ioli_). (3.1) 
( i  j ) j  > n 

Clearly g(io I i_ 1 ... i_ , )Tg(iol i_)  because r,$0 and we may  decompose  g as 

g ( i o l i - ) =  ~ A g ( i o l i - 1 . . . i - , )  
n > 0  

(3.2) 

which is a sum of the non-negat ive  terms 

A g ( i o l i _ l . . . i _ , ) : = g ( i o l i _ l . . . i _ , ) - g ( i o l i  1 . . . i _ , + 0  for n > l ,  

'=g  (io) for n = 0 .  

The split-up (3.2) suggests the cons t ruc t ion  of a M a r k o v  triple as follows. We 
construct  a r a n d o m  vector  (4o, Vo)eI x {0, 1, 2, ...} such that  

P(~o = io, Vo = no [ ~ -, = i_) = A g(i o [ i_ ~... i_,o). (3.3) 

No te  that  4o will have by (3.2) the right marginal  condi t ional  distribution.  Also 
in t roducing v o as above  needs a randomiza t ion  because v o is not  given determin-  
istically in terms of i-values.  

Let  us ment ion  that  as follows one can also construct  Vo in steps, condit ional-  
ly given ~ _ = i _ .  Genera te  the event  {Vo=0} such that  P(~o=io ,  v o = O l ~ _  
= i_) = g(io). Subsequent ly  for n = 1, 2 . . . .  generate {Vo = n} = {Vo < n}\{Vo_-< n 
- 1} such that  

P(~o = io, Vo <= n 1 ~ -  = i) = g(i o l i -~ . . ,  i-n). (3.4) 
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This can be done consistently because the right hand side increases in n. Also 
the right hand side does not depend on iy for j < - n  and one checks that 

4-, 4-1o, 

forms a Markov  triple. Here one writes 4~.'=(4,,, 4~+1, ..., 4,), m < n  and one 
says that X,  Y,, Z forms a Markov  triple if X and Z are independent given 
Y. 

Loosely speaking we may say that  the r andom truncation - * _ ~o of r _ contains 
the relevant information from the past 4 -  to "genera te"  ~o. However  it may 
be untrue that we can truncate subsequently (4 -1 40) so that this random 

--VO~ 

vector contains the relevant information to generate {,. Related to this difficulty 
is that  to the entrance law 

Qi , : , , :=P(Xo=xf4  =i_ )  where Xb:=~~ 

one may not be able to find Q' linked with Q' such that (2.4) holds. Note  
however that 

O,}_,x= Ag(io j i -1 ,  ... ,  i_,o) 

for x=( i_ ,o ,  .. . ,  io) has the property that it does not depend on iv, j <  - n .  This 
nice proper ty  also holds for the " r igh t"  entrance law (~ that we define below 
and makes it quite simple to come to our Markov  representation. 

We constructed (40, Vo) given 4 - .  Construct  also (~1, vi), (42, v2) . . . .  succes- 
sively in the same way such that vk is independent of all other variables, given 
({j)j<__k- To this end one requires 

P({o = io, Vo = no, ---, 4N = iN, VN = nu I 4 -  = i_) 

= A g ( i o l i - i  . . . i - ,o) . . .dg( iNl i~v-1,  ... ,  iN-n~). (3.5) 

Above we noted that (~_, 4--}o, {o) is a Markov  triple and similarly that  
(4k-~, 4~ --lvk, 4k) is a Markov  triple. We now want to form a Markov  triple 
of the form ( 4 ~ ,  -1 4-~o, (4o, 41, ...)). Let Fk be the random set Fk:={k--Vk, ..., 
k- - l} ,  k = 0 ,  1, 2 . . . .  and take z 0 such that 

{ - z  o, ..., - 1 } = I F  0voF lvo. . . ]  c~{ .... - 2 ,  - 1 } .  

Lemma 3.3 will imply that  ro is finite a.s. Define similarly Zk:=SUp {Vk . . . . .  Vk+j 

--j, ...}. Then as we will see below ~>o 

4 Xo:-4~ X k . . . .  , k:=4k . . . . . .  (3.6) 

describes the Markov  chain for our Markov  representation. F rom (3.5) one 
notes that the entrance law 

C) i_ , x=P(Xo= xl  4 = i - )  

is defined uniquely for all i_ e I _  as in lemma 2.1 and one takes f ( x )  as the 
last element in the string x of / -elements .  
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L e m m a  3.1. ~_ ,  Xo,  ((41, v0, (42, v2) . . . .  ) is a Markov  triple. 

We prove  this l e m m a  below. Us ing  the follow!ng trivial technical  l e m m a  

L e m m a  3.2. I f  X ,  Y, Z is a Markov  triple and X is (X, Y)-measurable and 
is (Y, Z)-measurable then X ,  Y,, 2 is a Markov triple, 
it follows f rom L e m m a  3.1 tha t  4 - ,  Xo,  X1 is also a M a r k o v  triple and  one 
easily verifies (2.4). Thus  L e m m a  2.1 gives us the M a r k o v  representat ion.  Below 
we prove  m o r e o v e r  tha t  (3.6) gives us a representa t ion,  which needs some more  
arguments .  

T o  this end we use L e m m a  3.1 again  to show that  (3.6) is M a r k o v  chain. 
Fix  k > 0  and  write ~- j -=~k+j ,J~j=Xk+j ,  etc. N o t e  tha t  the dis t r ibut ion of 
(~j, vj)i>__ 0 given ~_ = i_ is the same as the d is t r ibut ion of (~-j, ~)j__>o given ~-_ = i_.  
Thus  by  L e m m a  3.1 ~-_, )~o, (~-j, ~j)jal is a M a r k o v  triple. Because of the condi-  
t ional  independence  of (Vj)o<_j<k and the o ther  var iables  of tha t  triple, given 
~-_ = i_ it follows tha t  

(~- ,  (30, Vo) . . . .  , ( ~ _  ~, v~_ 0), x~ ,  ( (~+ 1, v~+ 0, -..) 

is a M a r k o v  triple. By L e m m a  3.2 it follows also tha t  
(~- ,  Xo  . . . . .  X k -  1), Xk ,  X k -  1 is a M a r k o v  triple for any  k and  thus (3.6) describes 
a M a r k o v  chain. Because the condi t iona l  d is t r ibut ion given ~-_ = i_ of  (~-j, ~j)~__> o 
and  so of Xk,  Xk+ 1, ... does not  depend  on k the M a r k o v  chain (3.6) has s tat ion-  
ary  t rans i t ion probabil i t ies .  

Proof  of  Lemma 3.1. Let X(o N) .'= ~)_ ~o)^ ... ^ ( s -~ , ) .  We  will show for any  N tha t  

4 - ,  X(o u), ((40, Vo), . . . ,  (~N, VN)) (3.7) 

is a M a r k o v  triple. T o  get the asser t ion observe  tha t  then for each n < N also 
~ - ,  X(o m, (~j, vj)~=o forms a M a r k o v  triple. F o r  fixed n let N ~ oe. Then  X(o u) 
is a vec tor  increasing in length to  X0 a.s., which has  finite length by  L e m m a  
3.3. The  asser t ion follows. 

To  p rove  (3.7) we have  to invest igate the ra t io  of  

P(X(o m = x, ~o = io, Vo = no.. .  ~N = iN, VN = nN[ ~-  = i_) (3.8') 
and  

p(X(om=X[4_ = i _ ) ,  (3.8") 

and  we wan t  to show tha t  this rat io  depends  only on x = ( i o  . . . .  , i_to ) and 
(io, no, . . . ,  iN, nN). Rewri te  (3.8') as the p roduc t  

= Ag(io ] i -1  ... i-no)"" Ag(iN [iN-,  . . . .  , iN-.~,) (3.9') 

in case t o = n o v (n 1 -- 1) v . . .  v (n N -  N) and  as 

= 0 otherwise.  (3.9') 

No te  tha t  x determines  t o. T o  find a similar  expression for (3.8") we have to 
sum (3.9') over  all (io, no . . . . .  iN, nN) for which 

x = (i( _ no~ ̂  ( a - ,1) ̂ ..- ^ (N - n~), "" ,  i _ 1, i0)" 
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Now note that in these expressions no i_j occurs with j > to = no v ... v ( n u - N ) .  
This proves the assertion about  the ratio and thus proves the lemma. 

Lemma 3.3. I f  Zr, < oo then Zo = sup (v i - j )  is finite a.s. 
j>_o 

Proof Write 

P(vo<nl~_=i_)= lim P(vo<n .... , v u < n + N l g _ = i _ ) .  
N--+ oo 

By (3.4) and (3.5) the expression in the limit can be written as 

~, g(ioli_l...i_,)g(illio...i_n)...g(iNliN_l...i_n). (3.10) 
io... iN 

Note that  as N increases this descends, say to qn(i_) for N ~ oa. Clearly P(zo 
< oo I ~-  = i_) = 1 if and only if 

q,(i_)T1 as n ~ o o .  (3.11) 

We prove this using the condition Xr,< oo. We bound q,(i_) from below. By 
the definition of r, we have 

g(io I i_1 ... i-.)>e-r"g(io l i - ) .  

Hence (3.10) is bounded from below by 

e - r " - -  . . . .  ~ g(io I i - )  g(il I(io i_)).., g(iN I-..). 
i o . . . i N  

Because g is a g-function the sum above equals 1. Hence 

q,(i_)> lim e - r - - " - r - + N = e  - r - -  . . . .  - - " "  

/g-+co 

So if E r, < oo we indeed have (3.11). []  

Note. The condition E r , <  oo is a smooth uniform continuity condition on g. 
By the proof  above it can be related to (3.11), retaining a.s. finiteness of %. 

Remark. We mention an open problem. Let (~,) be a chain with infinite connec- 
tions for which r,--+ 0 exponentially. For  this case Bowen [-3] in the proof  of 
1.25 verifies the ~b-mixing (or *-mixing) rate to be exponential. Blum et al. [2] 
introduce this mixing condition and prove that  a 0-mixing Markov  chain is 
exponentially 0-mixing. The question arises whether if r, --+ 0 exponentially there 
is a Markov  representation based on a 0-mixing Markov  chain. The Markov  
chain constructed above is obtained as a truncation of the past and does not 
help to answer this, loosely speaking because too much detailed information 
of the past may be preserved. 

4. Uniqueness of g-Measures 

We prove Theorem 1.1. We study measures/~ on I z (provided with the product  
a-field) and we do not yet assume shift invariance of #. Let ~., be the projection 
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on the nth coordinate. Assume for n = 0 ,  1, ... that 4, develops as g, i.e. (1.1) 
holds. Then as we noted in the introduction # is determined uniquely by the 
distribution #_ of 4-'=(4k)k<O under #. In case 4 - = i _  #-a.s. where i _ e l _  we 
write # -  #i_. 

We investigate the dependence of #i_ on i_ and do this by formalizing 
the classical coupling of Doeblin and Fortet  [4]. Suppose 4-1 = i_ 1, .--, 4 - ,  = i_,  
is given but 4 - , - 1  is "unknown  under #". Then {~o=io} under # has at least 
mass (3.1). So despite our lack of knowledge concerning 4 - , - ~  this gives some 
information concerning the distribution of 4o. We will try to make similar state- 
ments below (e.g. (4.2)). We will express absence of knowledge concerning 4 - , - 1  
by ~_,_1=~? where ~? is some point outside I. Write Is:=Ivo {•}. We extend 
the g-function g defined with respect to I to a g-function g8 with respect to 
18 such that  

gs(Jo [J-~, J -2  . . . .  ) :=g(io [ i_,  ... i_,) (4.1) 

in case j _ , _  ~ = #, and io =Jo . . . .  , i _ , = j _ ,  are in 1. The g-function normalization 
determines gs(a].). In this definition n =  m is allowed and we may consider 
g8 as a continuous extension of g. Let #8 on IF be such that 4 , = 0  for n < 0  
while 4, develops according to g8 for n > 0. We prove uniformly for the measures 
# in the first pa ragraph  that  

#8(4,,o = io . . . .  , ink  = ik) ~ #(4no = io, . . . ,  ~,,k = ik) (4.2) 

for 0 < n o < n 1 <  ... and all i jEI. We also show that (1.2) implies the important  
proper ty  #8(4,=~)--+0 as n ~  o% so under #8 we have for n < 0  that  4, equals 
0, so is " u n k n o w n "  while it becomes " k n o w n "  for large n. This will imply 
our results. 

To get (4.2) we construct step by step a coupling. Order 18 partially by 
letting i < j  i f j  = 0 or i =j .  We construct a probabil i ty P on (18 x 18) z. Let (4,, 4= ~ 
on this product  space be the projection on the nth coordinate. We assume 
that (4,, 4~), n < 0, under P has an arbi trary distribution subject to the condition 
that 4, < {a n <0 ,  a.s. We want to construct P such that  this inequality holds 
for all n and such that  marginally both 4, and {~, develop according to g~, 
for n > 0. Let us specify for n > 0 

p(4  = i o , 4 ~ = j o [ ~ , , _ l = i _ 1 ,  4~n_1 = j _ a , 4 n _ z = i _ 2 ,  ...) (4.3) 

where i 1 < J - i ,  i - 2 < J  2, --.- In case ioEI and j0 =io define (4.3) as 

g e ( i o [ J - l , j  2 . . . .  ) 

and if io e I  andjo = 0 as 

gs(io I i -  1, i -2  . . . .  ) - g s ( i o  [J-  1 ,J-2 ,  ""  ")  

which is easily verified to be non-negative because i_ < j _ .  Make (4.3) a g- 
function for 18 x 18, so a conditional probability, by assigning the remaining 
mass ge(01 i -  1, i -2 . . . .  ) to (4.3) for io=Jo = & Now let (4,, 4, ~) develop according 
to (4.3) for n > 0. This determines P and describes a "coupling".  
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We get (4.2) if we specify ~ -  4 , - ~ ,  n < 0, and let (~,),< o be distributed under 
P as under #. Then marginally 4. and 4 e. have distribution g and #0 and using 
that a.s. ~, < ~0 (so 4, = 4, e as soon as ~,~eI) we easily obtain (4.2). 

We can also get more information about  #0 in this way. Replace # in the 
argument  in the last paragraph  by T-~#o ,  where T is the shift on sequence 
space. Because now also ~ , < ~ ]  a.s. for n < 0  and consequently for all n, we 
have 

g0(4,o =io ,  ..., ~ , k = i k ) ~  T -  1 g0(~,o=io, ..., 4,k=ik)  

where all i j e I .  Hence g0(4,o+m=io . . . . .  ~,~+m=ik) is increasing in m and then 
T - " g o  converges weakly to a shift invariant measure #0* on (I0) z. If now g 
on I z in (4.2) is required to be translation invariant then we can improve (4.2) 
to 

#O*(~no ---- iO, "" ,  ~nk : it,) ~ # (~no : i0, "" ,  gnk:~ ik). (4.4) 

The follows because T - m # = #  and by replacing nj by n j + m ,  m ~  ~ in (4.2). 
By Lemma  4.1 below (1.2) implies that #0(~,=0) descends to 0. Then #0*(~o 

= 0 ) = 0  and #0* is concentrated on I g. Then we should have equality in (4.4) 
and so there is only one translation invariant measure #_= #0* on I z for which 
(1.1) holds for n=>0. 

The limit assertion of Theorem 1.1 is now easily seen. Using (4.2) 

# , -  (~m ~- io . . . .  ,4m+k = ik) ~ T - " # a ( ~ o  = io . . . .  ,4k  = ik) 

"~#O, (~o=io , . . . , ~k=ik )  as m - - + ~ .  

Because P0* is concentrated on I g it is easy to see from this that we have the 
asserted convergence, uniformly in i_. 

We claim also that 4, develops according to g under #~,. To this end note 
that 4, develops according to g~ under #~ for n > 0 ,  and by Lemma 4.1 takes 
the value O increasingly less often. Moreover  go is a (continuous) extension 
of g. The claim follows now easily by evaluating and estimating #e*(~0 = io ]~ - t  
= i_ ~... ~._, = i_,) using that #0* is a weak limit of T - " # ~ .  

Let us now proceed to show that  the shift T under this unique #~, is a 
Bernoulli shift. Let us verify the very weak Bernoulli condition (see Shields 
[13] and Schwarz [-12]). 

Consider now P ~ P ,  as above such that ~. and 4 ~. are distributed as #0, 
and #~ respectively. Similarly we can define P = P_ such that these marginal  
distributions are #~_ and #0 respectively. Now we construct a new probabil i ty 
space with processes ~*, ~5 and ~0. such that 

(i) (~*, ~.) has distribution P, 
(ii) (4- ,  4a.) has distribution P_. 

This could be done e.g. by letting ~* and ~_ be independent given ~ such 
that (i) and (ii) hold. On this new probabil i ty space we have clearly that as 
soon as ~,~ + ~ then 4, - 4,- = ~, a.s. and so 

n + l  1 4 " 4 ~ / <  l~=0.  
k= 0 = n + l  k= 



252 H. Berbee 

So the d-distance of (40 . . . .  , ~,) and (40,- . . ,  ~,)[(4j=ij)j<o (see Shields [13]) 
is at most 

n 

1 ~ o p ( 4 k = 8  
n + l k =  

and tends to 0 for n--+ oo. Note that this holds even uniformly in i_ =(ij)j< o. 
Thus the coupling has led us very easily to the verification of the very weak 
Bernoulli condition and so the shift is a Bernoulli shift under ~ = #~.. 

Using the notation of the proof above we have the following comparison 
lemma. 

Lemma 4.1. Suppose 4,=0, n<O, and let 4, for n>O develop according to go, 
the extension of g determined by (4.1). If  (1.2) holds for g then 

lim P (4 .  = ~) = 0 .  
n --+ o o  

Proof The process (4,) has distribution /~o- We want to compare e,.'=l(~ =0~, 
neZ,  with a simpler process. By (4.1) for n > 0  

P(~n=0]~n_l ,4n-2  . . . .  )=>p,,:= inf ~g(io[i_l. . . i  ,,) 
i-1...i-~ io 

on the set {2,=m} where 2, is the smallest m > 0  for which ~ ,_ , ,_1=& Hence 
taking conditional expectations we have on {2 ,=m}={e ,_~  . . . . .  e,_,, 
=0,  e ,_, ,_l  = 1} 

P (~ ,=0  I~,-1, e , -2 ,  ...)>Pro, m, n_>0. (4.5) 

If equality would hold above then e would be a renewal process. We construct 
g. > e, satisfying this property. Let g, .'= 1, n < 0. We prescribe for n > 0 a g-function 

P(e, = i o, g, =Jo I(e,- 1, g,-  1)=(i_ 1,J- 1), (e,-2, g , - 2 ) = ( i - 2 , J - 2 )  . . . .  ) (4.6) 

where i_k<J_k for all k. Let m and r~>0 be the smallest integers for which 
i_ , ,_1=1  and j _ ~ _ l = l .  Clearly t f < m .  For  i o = J o = 0  let (4.6) be p,~ and for 
i o = 0 , j o = l  

P ( g n = O l g n -  l = i - 1 ,  gn-- 2 = i -  2 . . . .  )--Pro" 

This is nonnegative because of (4.5) and Pm > P,~. Thus e, has the right conditional 
marginal distribution. Because we want e ,<g ,  the remaining mass has to be 
assigned to {io =Jo = 1} to make (4.6) a probability. So g, is a renewal process, 
satisfying for n > 0 

P ( g , = 0 l g , - t , g ,  a , . . . )=p,~ on {g._t . . . . .  g ,_~=0,  g ._ ,~_l=l}  

if we let (e,, 5,) develop according to the g-function (4.6). Because {e, = 1} = {g, 
= 1} it is sufficient to prove 

P(4.=~?)<P(g,=I)--+O as n--+oo. (4.7) 
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The renewal  process  g has  the fo l lowing  property.  Observe that for any  n > - 1 
on  the set {g,= 1} the distance t / . . = i n f { k > 0 '  gn+k= 1} to the next renewal  has 
a condi t iona l  distr ibut ion F, given by 

P(tl>ml~,, g,-1, . . . ) = P o  Pl ...pro 

F determines  the distr ibut ion of  6. Its m e a n  is # := ~,  Po- . .  Pro- F m a y  be defective 
m>0 

so lira Po--- Pm> 0. T h e n / z  = oo and ~ {n > 0" ~ = i } is finite a.s. implying (4.7). 
m --~ o o  

Otherwise by the renewal theorem 

1 
lim P(g,=I)= . 

So in either case # = o9 implies (4.7). Because (1.2) implies # = ov by the definition 
ofp, ,  this completes the proof.  [ ]  
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