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Exponential Convergence Under Mixing”

Roberto H. Schonmann**
Instituto de Matematica e Estatistica, USP Caixa Postal 20570 S0 Paulo, SP, Brasil

Summary. We show that for a ¢-mixing stationary sequence of bounded
random variables, the average of the first n variables converges exponentially
fast with »n to the mean value of these random variables.

A recurring pattern in the development of probability theory is the establishment
of results first for sequences of independent random variables and later the
generalization of such results for “weakly dependent” sequences. Usually the
notions of weak dependence are expressed by various types of mixing conditions
(see for instance [3, 5] or [7]).

Surprisingly enough there seems to be a lack in the literature of generaliza-
tions of Cramer-Chernoff [1, 2] large deviation theorem to the case of weakly
dependent sequences of random variables.

In this note we provide a result of this type for ¢-mixing (also called uniform-
ly mixing in [5], p. 308) stationary sequences of bounded random variables.
Let ...,¢ ,,¢ (& &1, &,,... be a stationary sequence of random variables,
bounded above by A< w0, Le., P(¢,=A)=0, and with finite first moment, i.e.,
E(£o):==p=+ F oo, where E(-) denotes expectation. Define X,=n"1(£;+ ... +&).
For m=<n let &, be the o-field generated by &,,,&,.41, ..., &,. Set also F* |
=) Zr, F = #7, and define

m=n nzm

¢():==sup |P(F|E)—P(F).
EeF0  FeFP
P(E)>0

Theorem. Under the conditions above, if ¢(I)—>0 as | — oo, then for any ¢>0
there exist y>0 and C < oo such that

P(X,2p+e)<Ce "
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Obviously if £, is bounded below (P((,<B)=0 for some B> —co) then
for any ¢>0, P(X,=<p —s) decays also exponentially with .

The Theorem above will be proven by a block (renormalization) argument.
By taking large enough blocks of indices we can usc the ergodicity of the
sequence to assure that the average inside each block is probably close to p.
Taking these blocks far from each other, the mixing condition can be used
to show that even disasters in many blocks do not increase very much the
probability of a disaster in the next block and we can then consider the blocks
as so nearly independent that very rough exponential estimates suffice to finish
the proof.

Proof of the Theorem. Given two positive integers L and N we define the blocks

RI:Z{I, N L},
R;=R,+NL(j—1)={1+NL(j—1), ..., L+ NL(—1)}, j=2.3,....
And set
k
Sk:z U Ri:
i=1
ngzL_l Z éi:

ieR;

k
Zk’=(kL)_1 Z §i=k_1 Z Vi
=1

ieSk

Let §:=3724~00¢ By the ergodicity of the sequence (£;) which is implied by
its mixing property [7], there exists L such that

P(Yi2p+¢/2)£6/2. )
By the mixing property, zlin; ¢())=0, there is N such that ¢(NL)=<6/2 and then,
for any choice of j, <j, < ... <j,<j
P(Y,zp+¢&/2|Y, Zp+e/2,r=1,...,5)=4. 2)
Now, by induction, it follows from (1) and (2) that
P(Y,zp+e2,r=1,..., )6 (3)

If the events {Y;=p+e&/2} occur for less than [ke/(2(A—p))] indices
je{1, ..., k}, then

kZy=A-(ke/(2(A—p)) +(k—ke/2(A—p)) (0 +¢/2)
=k(p+e)—ke*/(4(4—p))
Zk(p+e).
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Hence
P(Z,Zp+e) S P({Y;Zp+¢/2} for at least [ke/(2(A— p))] indices je{1, ..., k}).

But there are no more than 2* ways of choosing [ke/(2(4A—p)] out of k.
Therefore, using (3)

P(Z 2 p+e) S 2kshe/CA-mI< 571 .(2/3), 4)
Consider now the translations of S:
Se.g=S¢+qL, ¢=0,1,2,...,N—1.
And let Z, , be the average of the ;in S, ,:

Zig=kL)™" Y &

i€Sk,q
Then, by the stationarity of (&), it follows from (4) that
P(Z, ,2p+e<671-(2/3), ¢=0,1,2,...,N—1L

Now, if n=kNL, then
N—1
P2+ SP(U (242043 SNOT Q3 =Ce

q=0

where y>0 and C< o depend on N and L (and hence on &) but not on k.
This finishes the proof in case n is a multiple of NL. The extension to general
nis routine. []

One can observe that the only uniformity in the mixing condition, that
we needed for the proof was that on E. We chose to state the theorem in
the form above simply to match the usual definition of ¢-mixing. Besides relaxing
the uniformity in F we can weaken further the mixing condition by restricting
E to the type of events (depending on blocks) that we really need in the proof;
a mixing condition of this type was indeed needed for an application to a
Gibbs measure in [8].

Generalizations to higher dimensional index sets, i.e., to random fields {&));. 7«
are straightforward, provided that one has good enough mixing. (See the remarks
after the proof of Lemma 2 in [8], for more details).

The result in the Theorem above is weaker than in Cramer-Chernoff Theorem
for the i.i.d. case since we are not able to identify the rate of exponential decay
in general. Nevertheless, under extra assumptions we can provide a complete
generalization of Cramer-Chernoff Theorem. For this purpose we say that the
stationary sequence (&) is associated (or is FKG) if for any natural n and any
pair of functions f, g: R*—»IR which are coordinatewise non-decreasing,

E(f(filz EREE 6i,.))'E(g(€i17 e éi"))éE(f(éila sy gi")g(iila sy éi")):
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for any i, < ... <i,. Combining the results and methods in [4] and [6] with
the Theorem in this paper, it follows that if the random variables ¢; are bounded
on both sides by some A< 0, ie., P(|{,|=A4)=0, and (£;) is associated, then
there exists a convex function ¢: R—[0, co] such that ¢(x)=0 if and only
if x=p, p(x)=c0 if x¢[— A4, A], and for any pair a<b,

lim n~ ' log P(X,e(a, b))=— inf ¢(x).
a<x<b

n— oo

Moreover also the following limit exists for any helR
lim n~* log E(exp(hnX,)):=n(h),

and ¢ and = are dual convex functions:
¢ (x)=sup {xh—n(h)},
n(h)=sup {xh—@(x)}.

(In [6] the &; were assumed to take values on a finite space, but this was so
only because of our motivation there and the same proofs apply to the case
of bounded continuous variables). The reader is referred to [4] and references
there for another sufficient condition for these results to hold (superconvolutive-
ness).
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