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Exponential Convergence Under Mixing* 
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Summary. We show that for a qS-mixing stationary sequence of bounded 
random variables, the average of the first n variables converges exponentially 
fast with n to the mean value of these random variables. 

A recurring pattern in the development of probability theory is the establishment 
of results first for sequences of independent random variables and later the 
generalization of such results for "weakly dependent" sequences. Usually the 
notions of weak dependence are expressed by various types of mixing conditions 
(see for instance [3, 5] or [7]). 

Surprisingly enough there seems to be a lack in the literature of generaliza- 
tions of Cramer-Chernoff [1, 2] large deviation theorem to the case of weakly 
dependent sequences of random variables. 

In this note we provide a result of this type for q%mixing (also called uniform- 
ly mixing in [5], p. 308) stationary sequences of bounded random variables. 
Let . . . .  ~--2, ~--1, ~0, ~1, ~2, ' ' "  be a stationary sequence of random variables, 
bounded above by A < ~ ,  i.e., P(~o>A)=0, and with finite first moment, i.e., 
E(~o),=p# -T-~, where E(') denotes expectation. Define X , = n - l ( ~  1 + ... + ~,). 
For m < n  let ~2 be the a-field generated by ~,,,~m+l, "-', ~,. Set also ff-"o~ 

= U U = ~,;~, and define 
m < n  n > m  

qS(/)= sup ]P(FIE)--P(F)]. 

P (E) > 0 

Theorem. Under the conditions above, if (9 ( I )~0  as I ~  0% then for any e > 0 
there exist 7 > 0 and C < ~ such that 

P ( X , >  p + e ) < C e  -~". 
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Obviously if 4o is bounded below (P(~o<=B)=O for some B > - - o o )  then 
for any e > 0, P(X,  <_p-8) decays also exponentially with n. 

The Theorem above will be proven by a block (renormalization) argument. 
By taking large enough blocks of indices we can use the ergodicity of the 
sequence to assure that the average inside each block is probably close to p. 
Taking these blocks far from each other, the mixing condition can be used 
to show that even disasters in many blocks do not increase very much the 
probability of a disaster in the next block and we can then consider the blocks 
as so nearly independent that very rough exponential estimates suffice to finish 
the proof. 

Proof of the Theorem. Given two positive integers L and N we define the blocks 

R~ ,={1 ,  . . . ,  L},  

R p = R I + N L { j - 1 ) = { I + N L ( j - 1 ) ,  . . . , L + N L ( j - 1 ) } ,  j = 2 ,  3, .... 

And set 

k 

Sk := U Ri, 
i=1 

ieRj 

k 

Z k.'=(kL)-I Z ~i = k-1 2 Y J" 
i~Sk j= 1 

Let 6,=3 -2(A-~ By the ergodicity of the sequence (~i) which is implied by 
its mixing property E7], there exists L such that 

P(Y1 > P + e/2) < 6/2. (1) 

By the mixing property, lim q~ (/)= 0, there is N such that ~b (NL)< 6/2 and then, 
l ~ o o  

for any choice of j l  <J2 < " "  <js<j 

P(Y~>p+5/2I Yj>p+5/2,  r = l ,  ..., s)_<_& 

Now, by induction, it follows from (1) and (2) that 

P(Yjr> p+5/2, r= 1 . . . . .  s)<6*. 

If the events { Yj > p + e/2} occur for less than 
j e { 1  . . . .  , k}, then 

kZ k <= A. (ke/(2(A- p))) + ( k -  ke/(2(A - p))) (p + 5/2) 

= k(p + e) - ke2/(4(A -- p)) 

<=k(p+e). 

(2) 

(3) 

[ke/(2(A--p)) ] indices 
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Hence 

P (Z k >= p + e) <= P ({ Yj => p + e/2} for at least [-k e/(2 (A - p)) ] indices j ~ { 1 . . . . .  k}). 

But there are no more than 2 k ways of choosing [ke / (2 (A-p)]  out of k. 
Therefore, using (3) 

P (Z k > p + e) < 2 k (~[kel(2 (a - -  p))] ~ t ~  - 1. (2/3)k. (4) 

Consider now the translations of S k: 

Sk.q:=Sk+qL, q=0 ,  1, 2, . . . , N - - 1 .  

And let Zk,q be the average of the ~i in Sk, q: 

Zk, q'=(kL) -1 Y~ 4,. 
i e S k ,  q 

Then, by the stationarity of (~i), it follows from (4) that 

P(Zk, q>p+e)<6-1 . (2 /3 )  k, q=0 ,  1, 2, ..., N- -1 .  

Now, if n = kNL,  then 

P(X,,>=p + ~) <-- P ( ~  l { Zk, q> p + e}) <--N ~- l (2/3)k= C e - ' ' ,  
- -  \ q = O  

where 7 > 0  and C < ~  depend on N and L (and hence on e) but not on k. 
This finishes the proof  in case n is a multiple of NL. The extension to general 
n is routine. [] 

One can observe that the only uniformity in the mixing condition, that 
we needed for the proof  was that on E. We chose to state the theorem in 
the form above simply to match the usual definition of qS-mixing. Besides relaxing 
the uniformity in F we can weaken further the mixing condition by restricting 
E to the type of events (depending on blocks) that we really need in the proof; 
a mixing condition of this type was indeed needed for an application to a 
Gibbs measure in [8]. 

Generalizations to higher dimensional index sets, i.e., to random fields {~)i~zd 
are straightforward, provided that one has good enough mixing. (See the remarks 
after the proof of Lemma 2 in [8], for more details). 

The result in the Theorem above is weaker than in Cramer-Chernoff Theorem 
for the i.i.d, case since we are not able to identify the rate of exponential decay 
in general. Nevertheless, under extra assumptions we can provide a complete 
generalization of Cramer-Chernoff Theorem. For  this purpose we say that the 
stationary sequence (~i) is associated (or is FKG)  if for any natural n and any 
pair of functions f, g: IR" ~ which are coordinatewise non-decreasing, 

E(f(~i l ,  ..., ~i.))" E(g(~i . . . . . .  ~i.)) <= E(f(~i , ,  ..., ~i.) g(~i . . . . . .  ~i.)), 
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for a n y  i 1 < ... < i , .  C o m b i n i n g  the  resul ts  a n d  m e t h o d s  in  [4]  a n d  1-6] wi th  
the  T h e o r e m  in  this  paper ,  it fo l lows tha t  if the  r a n d o m  va r i ab le s  ~ a re  b o u n d e d  
o n  b o t h  sides b y  s o m e  A <  o% i.e., P ( l ~ o l > A ) = 0 ,  a n d  (~i) is assoc ia ted ,  t h e n  
there  exists a c o n v e x  f u n c t i o n  ~o: R - - , [ 0 ,  oo] such  tha t  q~(x)=0  if a n d  o n l y  
if x = p, q~ (x) = oo if x r 1--  A, A] ,  a n d  for a n y  pa i r  a < b, 

l im n -1  logP(X,~(a, b ) ) =  - in f  q)(x). 
n--* oo a < x < b  

M o r e o v e r  a lso the  fo l l owing  l imi t  exists  for a n y  h e n  

l im n - i  log E(exp(hnX,)):=z(h), 
n ---roo 

a n d  ~o a n d  rc are  d u a l  c o n v e x  f u n c t i o n s :  

(p(x)=sup {xh- ~z(h)}, 
h 

7z(h)=sup {xh-~o(x)}. 
X 

( In  1-6] the  r were  a s s u m e d  to t ake  va lues  o n  a f ini te  space,  b u t  this  was  so 
o n l y  because  of  o u r  m o t i v a t i o n  the re  a n d  the  s a m e  proofs  a p p l y  to the  case 
of  b o u n d e d  c o n t i n u o u s  var iables) .  T h e  r eade r  is referred to 1-4] a n d  references  
there  for a n o t h e r  suff icient  c o n d i t i o n  for  these  resul t s  to h o l d  ( s u p e r c o n v o l u t i v e -  
ness). 
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