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Large Deviations for Gibbs Random Fields* 

Stefano Olla** 
Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA 

Abstract. A large deviation principle for Gibbs random fields on Z a is proven 
and a corresponding large deviations proof of the Gibbs variational formula 
is given. A generalization of the Lanford theory of large deviations is also 
obtained. 

O. Introduction 

The object of this paper is the study of the large deviation properties of Gibbs 
measures with respect to the thermodynamic limit. In particular it contains 
an extension of the Donsker-Varadhan large deviations theory (cf. [-5, 6, 15]) 
to Gibbsian random fields on the lattice 71 d. 

The main result is a large deviation principle for the distribution of the 
empirical measure of a Gibbs field (cf. Definition 1.2 and Theorem 5.3). Large 
deviation properties for the distributions of the observables of the field can 
be obtained from this result via the contraction principle (cf. [15]). Thus this 
work can be seen as a generalization of Lanford's approach to equilibrium 
statistical mechanics (cf. [9]). The rate function involved is the relative entropy 
defined by (5.18). It depends only on the interaction and not on the particular 
Gibbs measure. 

It follows that for a given interaction, all the corresponding Gibbs measures 
have the same large deviation properties (at least at this order of exponential 
decay of probabilities). Furthermore, for a given interaction, the relative entropy 
of a Gibbs measure with respect to another Gibbs measure is zero. This will 
imply that if there exists more than one translation invariant Gibbs measure, 
then there exist deviations from the thermodynamic limit whose probabilities 
go to zero slower than exponentially in the volume of the system. Conversely 
the existence of an observable with a rate function not strictly convex at its 
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minimum implies the existence of more than one translation invariant Gibbs 
measure (i.e., a phase transition, cf. remark at the end of Sect. 6). 

In Sect. 2 we study the properties of the relative entropy of a translation 
invariant measure with respect to a homogeneous product  measure. A quasi- 
local characterization of the relative entropy (cf. (2.9), used also in [1] and 
[11]) is particularly useful in the proof  of the upper large deviation estimate 
in Sect. 3. The lower bound for the product  measure is proven in Sect. 4. Sec- 
tion 5 contains the large deviation principle for Gibbs measures (Theorem 5.3) 
and a large deviation proof  of the Gibbs variational formula (Theorem 5.1). 
All these results depend only on the local structure of the Gibbs measure, so 
they are valid also for non translation invariant Gibbs measures. 

The large deviation principles for the distributions of the observables and 
the connection with Lanford's theory are obtained in Sect. 6 using the contrac- 
tion principle (cf. [-15]). 

The results concerning product  measures (Sect. 2.4) are established for a 
complete metrizable state space, while compactness is assumed for the results 
concerning Gibbs measures (Sects. 5 and 6). In non-Gibbsian situations the strict 
convexity of the rate function is a typical condition in order to obtain large 
deviation results (cf. [-2, 8, 10]). These kind of conditions are not necessary in 
the Gibbs case, which permits us to study large deviations also in the presence 
of phase transition. 

For  an introduction to the relations between statistical mechanics and large 
deviations see the interesting book of Ellis [8]. A large deviations proof of 
the Gibbs variational formula for 1-dimensional ferromagnetic models is also 
contained in that book. 

After the first submission of this work we received the papers of F. Comets 
[16] in which similar results to those contained in Sects. 3, 4 and 5 are 
announced. See also H. FSllmer and S. Orey [17] for a different approach using 
the translation invariance of the Gibbs measure. 

1. Notations 

We consider the configuration space Q=X zd (i.e., (2={oJ: z d ~ x } )  where X 
is a polish space and deN.  On g2 we consider the product  topology. 

Given a region A c Z d let FA be the a-algebra on ~2 generated by the projec- 
tions coe~2~c0(j)~X for jeA. We will use the notat ion ~2A={co:A~X } 
~--(t2, FA). 

Let < be the natural lexicographical order on Z d. 
Denote by Z~< = {xeZ  ~, x < 0}, F< = Fz~<, F o = F{o } . 
For  j e Z d let 0~ be the translation operator  on ~2 defined by (0j 09) (i) = ~o (i +j). 
Let M(X) be the space of the probability measures on X and Mo(Q) be 

the space of the translation invariant probability measures on f2, both considered 
with the weak topology. 

Define Za+={zeZa;zi>O;i=l . . . . .  d}. For  aeZa+ define the hypercube 
A(a) = {ze Za+ ; 0 < z i < ai} c Za+. With a ~ oo we intend al ~ ov for any i=  1, ..., d. 

For  any coeg2 define a A(a)-periodized configuration co"e~2 in the following 
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way 
c0~ = co(j) if jeA(a) 

CO~(j+akek)=d(j) for all j e Z  d, (1.1) 

where e~ = 5k,h. 
Given meg] and aeZa+, define the empirical distribution of e) in the region 

A (a) as 

Ra(,),o~=lA(a)] -1 ~ 5ojo,~. (1.2) 
jeA(a) 

It is easy to check that RA(,) ' o~ e Mo (f2) and that it depends only on {co(j), j eA (a)}. 
Let P be a probability measure on ~2, then define the family of probability 

measures {~, aeZe+} on Mo(f2) as 

P,(A)=P(RA(a),o, eA). 

We say that P satisfies a large deviations principle for the empirical distribu- 
tion if there exists a rate function 

H: M o (~2) ~ [0, + oo ] 
such that: 

a) H is lower semicontinuous 

b) for any closed set CcMo(f2) 

lira sup I A (a) l- 1 log ~(C) < - infQ~ c H(Q) 
a ~ o o  

c) for any open set GcMo(g2) 

lira inflA(a) l - l - l o g  ~(G) > --infQ~G H(Q). 
a ~ o o  

In Sects. 3 and 4 we prove a large deviations principle for P a homogeneous 
product  measure, and in Sect. 5 for P a Gibbs measure for a given interaction. 

2. Entropy 

Given two measures 
is defined as 

v, fteM(X), the relative entropy of v with respect to ft 

h(v I#) = supertax) {v(~b) - l o g  ft (e~)}. (2.1) 

The relative entropy h(vl#) is finite if and only if v is absolutely continuous 
dv 1 

with respect to ft and log ~ e L  (v). In this situation we have (cf. [5]) 
a f t  

h v ,=v(log   22, 
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Given # ~ M (X) and Q ~ Mo (f2) define 

H u (Q) = Q (h (q < (d co (0))1 # (d c~ (0)))) (2.3) 

where q< (dco(0)) is the Q-conditional distribution of (~(0) given F<. 
By the same argument used in [5], Lemma 3.4, there exists a measurable 

function not depending on Q 

h: (~2, F< v F o ) - + R  + suchthat  H,(Q)=Q(h). (2.4) 

The proof  of (2.4) is based on the same argument used in [-5], Lemma 3.4. 
By (2.2) if H u (Q) < oo we have 

As in (cf. [5], Theorem 3.2) it is possible to give other variational character- 
izations of H ,  (Q) as: 

H~ (Q) = superB W< v Fo) Q (q~ - log (6 < | o #)(er (2.6) 

where the measure 6< |  is defined by 

(6<| 17 13 
JeZa<= o JeZa< 

Let {Ak} be an increasing sequence of finite subsets of Zd< such that AkT Zd< 
and define 

YA~ = { r e C (f2) ~ B (FA~ v Fo); (6 < | o ~)(e*) =< 1 } (2.7) 

Y= Vk YA~ (2.8) 

then using the same argument of ([11], Theorem 2.4) one shows that 

H,(Q) = sup4~y Q (r (2.9) 

for any choice of the sequence {Ak}. 
It follows immediately from (2.9) that H~ is a non negative lower semicontin- 

uous function on Mo(f2). 
This last characterization will be used in the next section to prove the upper 

estimate for the large deviations. 

3. Upper Estimates 

This and the following sections concern only the product  measure case. Let 
# be any probability measure on X and denote Pu = #zd. Define the measure 
6< | on f2 as 

(6<| (II Fl I] gq.(oJ(j')). 
j z Z  a jzZa< j" eZa>= o 
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Lemma 3.1. For any ~)~ Y, and for any a~Za+ 

(6<| ~ ~,b(Ojco))=<l. 
jeA(a) 

Proof Observe that O_.(2(a)\{a})cZa<, then 

(6<| Y~ ~(Ojco))] 
j~A(a) 

=[(6<| ~ q~(Ojco))]l-(6<| ~b(co)) 
j~A (a)\{a} 

<(5<| p y '  (;b(Ojco)) 
jeA(a)\{a} 

(3.1) 

and (3.1) follows by iteration on the 
by <.  [] 

Lemma 3.2. Let F be a finite subset of Z~<, then for any 4)e Yr 

Pu (exp {1A (a) l Ra(,), o~(~b)}) < exp(2 II ~ II ~o I Vr(a)l) 

where Vr(a ) = {j~A(a); F +j*A(a)}.  

Proof The localization of q5 on F implies that for any co ~ t2: 

I Z r(~(Oico)-4)(O;cogJl<Rl[Oll~lgr(a)[, 
jeA(a) 

then (3.2) follows from Lemma 3.1. [] 

Lemma 3.3. For any set A ~ Mo(~2 ) and any finite subset F sZa< �9 

lira sup [A (a)[- 1 log Pu (Ra(,),,~ e A) =< -- supo~ y~_ infQ~A Q (~b). 

Proof By (3.2) for any q~ ~ Yr (defined by (2.7)) and by Chebyshev inequality 

Pu (RA(~),~, S A) <= exp( --[A (a) I inf~A Q (~b)) exp (2 [I ~b [I ~ ] Vr (a)I) 

then taking the logarithm of both parts and dividing by the volume 

IA(a) l - l log Pu(RA(a) ~ a ) <  --infQ~A Q(~b)+2 [Iq~[I I Vr(a)[ 
, = ~o [ A ( a ) l  " 

By the finiteness of F we have that 

lim I gr(a)[ =0. 
a ~  I / ( a ) l  

all set A(a) following the order given 

(3.2) 

(3.3) 

(3.4) 

Then after the limit as a ~ oo it is possible to take the sup over all ~b in 
Yr and (3.4) follows. [] 
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Lemma 3.4. For any compact set A ~ Mo(~2 ) 

lim sup [ A (a) [ - 1 log Pu (RA (~), ~, E A) < -- infQ~ a H~, (Q). 
a - ~ o o  

(3.5) 

Proof Consider an increasing sequence {Fk} of subset of Zd< such that FkT zd. 
Then (3.5) follows by the lower semicontinuity of H,(Q), the argument used 
in ([5 (IV)] Theorem 4.2 and 4.3) and the variational formula (2.9). [] 

Theorem 3.5. For any closed set A c Mo(O ) 

lim sup ] A (a)[ - 1 log P~ (R a (a), co ~z A) < - infQ cA H,  (Q). (3.6) 
a - - + ~  

Proof For any aeZe+ and any co~f2 let 

rA(.),~,=lA(a)1-1 6o(~)~M (X) (3.7) 
j ~  a ( a )  

which is the marginal of RA(a) ,,~. 
By Lemma 3.32 of [13], for any L > 0  there exists a compact set C L c M ( X  ) 

such that 

lim sup I A (a)]- 1 log P. (Ta(.) ' ~,~ C~)__< - L. (3.8) 
a ---~ oo 

Let CL = {QeMo(f2); QoeCL}, where 
tight for any L > 0. 

So we have 

Qo is the marginal of Q, then CL is 

c Pu(Ra(,),~oeA)<=P~(Ra(,),~oeAn CL)+ P~(TA(a),,,~CL). 

Now A c~ CL is compact, then by  (3.5) and (3.8) 

lim sup I A (a) I - a log Pu (Ra(a),~ E A) 
a --* oo 

< max { - infA ~ eL H ,  (q), -- L} < max { -- infA H ,  (Q), - L} 

and the result follows taking L large enough. [] 

4. Lower Estimates 

Lemma 4.1. Let Q~Mo(f2) be ergodic and such that H,(Q)<  + Go. Then for any 
open neighborhood N of QeMo(f2) we have 

lim inflA (a) l - 1 log P~ ( R A ( a )  ' ~o ~ N) > -- H,  (Q). 
a --+ o~ 

(4.1) 

Proof For any aeZe+ and for anyjeA(a)  define 

A)= {zeZd< ; z+jeA(a),  z+j<j} .  (4.2) 
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Let q(dco(O) lF~) be the Q-conditional probability distribution of co(0) given 
F~ .  From the assumption that H~,(Q) is finite we have that q(dco(O)]Fa~) is 

J �9 �9 t~ 

absolutely continuous with respect to #(dco(0)) (Q-a.s.). Then define ~j the corre- 
sponding density. 

Let D(a)= {coEQ; Ra~).o,~N}. Denote 71(a)=A(a)\{O}, then for x ~ X  using 
the 0-invariance of Q we have 

E~'~(D(a))> ~ exp[-- ~ log(~j(Ojco))]3~(dco(O))qo(dcoa~)) (4.3) 
D(a) j6ffl(a) 

where qo(dco;~a)) and E~ '~ are respectively the Q-conditional expectation and 
the Pu-conditional expectation of co;~) given F~o~. 

In Appendix A.1 it is shown that the condition Hu(Q)< ~ implies the conver- 
gence in L 1 (Q) of 

[A(a)] -1 ~ log[~(0jco)]  ~H~,(Q). (4.4) 
j e l l (a )  

For e > 0  and aeZd+ define 

F(a)= {co; [IA(a)l-1 
je.71(a) 

Then from (4.3) 

Eg'X(D(a)) > e x p -  [] A (a) ] (Hu(Q) + e)] 
O (a) c~ F (a) 

For a~Zd+ and x ~ X  define 

gb (a, x) = {E~ '~ (D (a)) exp [I A (a) ] (H u (Q) + e)] }/x 1. 

Then by (4.5) integrating respect to Q 

gb(a, co(0)) Qo (dco(0)) > Q(D(a) c~ F(a)). 

By the ergodic theorem (and (4.4) which is a consequence too) 

lim Q (D (a) c~ F (a)) = 1 
a ---} o o  

and then 
lim ~ gb(a, co(0))Qo(dco(0))= 1. 

a - + o ~  

log [qz~ (0jco)] - H u (Q)[ ~ e}. 

6x(dco(O)) qo(dco;l(a)). (4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

But the condition Hu(Q)< 0o implies also that Qo is absolutely continuous 
to/~ and then there exists a constant c > 0 such that 

lim inf ~ gb (a, x)/1 (d x) > c (4.10) 
a ~ o o  

and then for any e > 0 

lim inf[A (a)] -1 log Pu (D (a)) >_ -- H u (Q) + e 
a --+ o o  

(4.11) 

and for e ~ 0 we have (4.1). []  
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T h e o r e m  4.2. Let Q ~Mo(12 ) be such that H~(Q)< ~ .  Then for any open neighbor- 
hood N in M o (0) 

lim inflA (a)[ - 1 log Pu (RA(,),~o e N)  > -- H u (Q). 
a ---~ oo 

(4.12) 

Thus if A is any open set in Mo(f2) 

lim inflA (a) l - 1 log Pu (Raca),~, ~ A) < -- infQ~ A H ,  (Q). 
a ~ o o  

(4.13) 

Proof By the property (2.4) of Hu(Q) it is enough to prove it for Q a finite 
convex combination of ergodic measures. Let then 

I I 

Q = ~ Ph" Qh, ~ Ph = 1, Qh ergodic. 
h = 0  h = 0  

Divide A(a) in disjoint sets Ah(a ), h= 1, ..., I, such that I Ah(a)l=[ph]A(a)l] 
(where Ix] means the integer part of x). Then the theorem follows by an easy 
modification of the argument used in [5 (IV)] Theorem 5.5. [] 

5. The  Gibbs  Var iat ional  Principle  and Large  Dev ia t ions  
for Gibbs  M e a s u r e s  

Let X be a compact polish space and /~ a probability measure on X. Let 
be a translation invariant interaction, i.e. a family of continuous functions 

{~A: (f2, FA)~ R, A c Z d bounded} such that ~a(0j~o)= ~A+j(co) 
for any bounded A c Z d and a n y j e Z  d. 

An interaction �9 is of finite range if there exists a finite set A ~ c Z  a such 
that if0EA then ~A=0 i fA~qbA. 

Denote by A the Banach space of the translation invariant interactions 
endowed with the norm 

1 
I~l = Z I~[[~A[I~ (5,1) 

A ~ 0  

and let Ao be the dense linear subspace of the finite range interactions (cf. 
[12]). 

Define, for a ~eA and 2 c Z  n bounded, 

Ua~(co)= ~ ~x(co) (5.2) 
X c A  

ZA~ = S exp [ - -  UA~(Cn)] Pu(d~o) (5.3) 
t2 

where Pu is the homogeneous product measure with marginal # considered in 
the preceding sections. 
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For  any ~ e A  define a continuous function A*e  C(f2) as 

1 
Ae(c~ - ~ I ~  ~bA(c~ (5.4) 

A ~ O  

The map �9 cA ~ A* e C (f2) is linear and continuous (because [I A* H + < I ~ I)- 

Theorem 5.1 (The Gibbs Variational  Formula) .  Let q~A, then 

1 
lim ~ log ZA*(a) = supQ~Mo(a) {Q (A*) -  Hu (Q)}. (5.5) 

a ---~ oo 

Proof From the large deviation result of Sects. 3 and 4 and Theorem 2.2 of 
[15] 

1 
lim - - l o g  I exp( ~" [a*(Ojoo~)])dPu=supe~Mo(~){Q(A~)-Hu(Q)}. (5.6) 
. ~ [A(a)[ a j~a(a) 

Then it is enough to show that the limit at the left hand side of (5.6) is 
equal to the left hand side of (5.5). We proceed as in ([12] ; Theorem 3.4). 

Suppose ~EA o, then for any coeQ 

[UA~,)(CO) + Z A*(0JC~ (5.7) 
j e  A (a)  

where N (A (a)) = {j e A (a); A~ + j  r A (a)}, and then 

N(A (a)) �9 0 a s  a ~ oe. 
IA(a)l 

It follows that, for ~b~A o, 

1 , 
lim 7STss {log Za(,) -- log ~ exp[ 2 A*(0Jc~ (5.8) 

a--+ oo I+/l~yl ~ jeA(a) 

Denote PA* = [@l log ZAA*; and for A e C(f2) define 

1 
PACa)(A)= IA(a)] log ~ exp[ ~ A(0jco")] P,(dco). (5.9) 

j~A(a) 

If A, BeC(f2) it is easy to show that for any aeZe+ 

] P A(.)(A) -- PA(.)(B)[< I [A-  B II co- (5.10) 

Then by the density of {A~ #~Ao} in C(g2) and the equicontinuity property 
(5.10), (5.5) follows for any ~ A .  [] 

The theorem above is true also if we consider fixed boundary conditions, 
i.e. for co'~f2 let 
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where 

ZA~* (CO ') = ~exp -- [U~ (e)) + Wff (co, co')] Pu (d co) 

S. Olla 

(5.11) 

where 

The proof of (5.14) use the same argument of the proof of Theorem 5.1 (cf. 
[12]). In the following we will denote P(4~) the R.H.S. of (5.14). 

For  A c Z  d bounded and 0~Es define the Gibbs conditional probability 
distribution on A given ~o' on A ~ as 

xA~,~o,(d r = EZ~ ,  ((.o,)] -1  exp - [ UA~ (co)+ Wff (o), oY)] #A (d O)a). (5.15) 

A probability measure v on (2 is a Gibbs measure for the interaction q~A 
if for any A c Z n bounded and any f ~  C(O) 

v (f)  = ~ nA r ~, (f)  V (d co'). (5.16) 

The Eq. (5.16) are called D L R  equations (cf. [9, 12]). Denote with G ~ the 
set of all Gibbs measure for the interaction 4. The following theorem establish 
a uniform large deviations principle for the Gibbs conditional distributions 
defined by (5.15). 

Theorem 5.2. For any ~o' ~ (2, any C ~ Mo((2) closed and any G ~ Mo(~2) open 

1 
l i ra  sup ~ logn~,~,(Ra(,)~C)<= -info~cH~u(Q) (5.17) 

1 
l irn inf ~ log 7C~A,oy(RA(a)EG)>= --infQ~a Hu*(Q ) (5A8) 

H~ (Q) = H u (Q) - Q (A ~ + P (4). (5.19) 

Proof Again using Theorem 2.2 of [15] it is possible to show that for any 
C c Mo (O) closed 

WA~(~O, d ) =  ~, Cbx(O3 A V ~O]o) (5.12) 
XnA~-~;XnAC4:~ 

and if the interaction qo satisfies the condition 

11411 = ~ II~all~< + ~ .  (5.13) 
A ~ 0  

In (5.12) we use the notation 

(,0A V (/)~tc ( j )  = O ( j )  for j e A  

V t �9 co A C0Ao(j)=d(j) for j ~ A  c. 

Then we have, uniformly for any oYe~2, 

1 
l im  ~ logZ~)(~#)=supQ~Mo(~){Q(A~ (5.14) 



Large Deviations for Gibbs Random Fields 353 

1 
lim sup ~ log f exp [ ~ A~(0j~oa)] Pu(do)) 

a -~ m {RA (a) e C} jE A (a) 

< supe~ c { Q (A*)-  H ,  (Q)}. (5.20) 

Then by (5.14) 

1 
J im sup , 7 . . .  log g~,a),e),(RA(a)~C) 

I a ta)  I 

1 
= l i m  sup ~ a ~  log i exp-[U~176176176176 - P ( ~  ) 

{R A(a)eC} 

< supe~c {Q (A*) - Hu (Q)} - P(~) (5.21) 

where in the last inequality we have used the same density argument of the 
proof of Theorem 5.1. The proof of (5.18) is analogous. [] 

The next theorem gives the large deviation principle for any Gibbs measure 
for a given interaction ~ e A  and its proof is an immediate consequence of Theo- 
rem 5.2, the DLR equations (5.16) and the continuity of the map e)e Q ~ rCa ~, ~o. 

Observe that the result depends only on the interaction �9 and the reference 
measure kt and not on the particular Gibbs measure v chosen in G*. This fact 
follows from the uniformity of the estimate for the Gibbs conditional distribu- 
tions in the boundary conditions (cf. Theorem 5.2). 

Theorem 5.3. Given an interaction rheA, then for any v~G ~, for any closed set 
C and any open set G ~ Mo(f2) 

1 
.--. oolim sup ~ log V(RA(.)~ C) < --infe~ c H~u(Q) (5.22) 

l i r a  
" 1 

+ m f ~ l o g v ( R A ( , ) e G ) < - - i n f Q ~ G H u ~ ( Q )  (5.23) 

where H~u(Q) is defined by (5.18). 

6. The Lanford Theory 

In this section we deduce the Lanford theory of large deviations for finite range 
observables (cf. [9]), using the results obtained for the empirical distribution. 
In fact the Theorem 5.3 gives us all the information that we need to control 
the large deviations for the observables. The tool used to obtain this information 
is the so called "contraction principle" (cf. [15]). 

Let us first give the definition of finite range observable. As in Sect. 5 we 
assume that X is compact and that the reference measure # on X is normalized. 

Definition. A finite range observable is a set of continuous functions {fA : 0 ~ R, 
A c Z d finite} such that: 
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a) fa is G-measurable  
b) fa+j=faoOj j e Z  a 
c) fa,,a' = f a + f A '  if the distance between A and A' is larger than r( f)  (that 

we call the range of the observable). 

d) f4=0 .  

Given an observable {fA}, one can define recursively a translation invariant 
finite range interaction ~SeAo (as in the definition of Sect. 5) such that 

fA = ~ ~Px I (6.1) 
X = A  

It is also easy to check that given a finite range interaction 7-'eAo, (6.1) 
define a finite range observable in the sense of the definition above, with r( f)  
given by the maximum diameter of the range of 7 ~s. So we have a 1 - 1 correspon- 
dence between observables and translation invariant interactions. Then as in 
Sect. 5, for a given observable define the continuous function on f2 

1 (,o). A f ( o ~ ) = -  E 
A~0 

(6.2) 

Theorem 6.1. Let ~ e A  satisfying (5.13) and fa be a finite range observable, then 
for any v ~ ~ G ~ : 

a) /f J c R is closed 

1 
,-+o~lim sup I A ~  l~ - infx~j I ( x ; f  ~b) (6.3) 

b) /f d c R is open 

. . 1 a~oohm lnf ~ log ve(I A (a) l- lfA(a)~ J) = - inf~es I(x ; f  q~) (6.4) 

where 

I ( x ; f  ~)=inf{Hu~(Q); QeMo(O ), Q(AS)=x} (6.51) 
o r  

I ( x ; f , ~ ) =  +oo /f {QeMo(O), Q ( A S ) = x } = 4 .  (6.5 z) 

Remark. I (x; f ;  ~ ) =  + oo if Ix[ > ]ASIa, i.e., the set {xeR, I (x)<  oo} is relatively 
compact 

Proof Define 
Sa(a)(fo)=RA(a),o)(Af) =[A(a)l-a ~ Af(Ojoga) (6.6) 

jeA(a) 

and let be 7a the distribution of Sa(a)(r on R induced by v ~, i.e., for d c R 

7, (d) = v~ (SA {,) e J). (6.7) 
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Observe that the map Q ~ Q(A s) is continuous from Mo(f2) to R. Then by 
Theorem 5.3 and the contraction principle (cf. [-15]) the family of probability 
measures {Ta, aEZd} satisfies a large deviations principle with rate function 
I(x;f ~). 

Because the range o f f  is finite, we have for any coe(2 

where 

Sa(~)(c~ [A(a)[1 fA(,)(CO ) <Ny(A(a))]A(a)I (6.8) 

N s (A (a)) = {j ~ A (a); A~s + j  q~ A (a)}. 

By the affinity and the lower semicontinuity of Hu ~ we have that I(x;f, rb) 
is convex and lower semicontinuous. For  a closed set J define 

J2 = { x ~ R ;  dist (,x 3)=< Ns(A(a))[A(a)] [[ 7is[I} ' (6.9) 

then j2 + j if a ---, oo. For e > 0 let a' such that 

infx~s,, I(x;f 4~)>infx~sI(x;f, ~)--e. (6.10) 

Let a E Za+ such that A (a) D A (a'), then 

v ~ ([ A (a)[ - l fa(a) e J) =< 7, (ja) =< 7, (Ja')). 

Then for any e > 0 we have 

1 
a-.~oaim sup ~ log v $ (1A (a)[ - lfA (~) E J) < -- infx~ s I (x ; f  ~b) + e 

and if we let e ~ 0 we obtain (6.3). 
The proof of (6.4) is analogous considering, for a given open J c R, the 

sets 

Ja={x~J;dist(x'J~)>Nf(A(a))'[TJf"} " ] A ( a ) ]  [] 

Theorem 6.1 extends immediately to R"-valued observables, for any n~N. 

Remark. By the lower semicontinuity of Hu ~ and the continuity of A s, it follows 
that I(x;f, ~ ) = 0  if only if there exists a translation invariant Gibbs measure 
veGenMo(f~) such that v(AS)=x. Thus I(x;f;~) may have more than one 
zero only if there is a phase transition. Conversely it is sufficient to find an 
observable with a corresponding /-function with a non unique zero in order 
to establish the existence of more than one translation invariant Gibbs measure. 
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A p p e n d i x  

We prove here, using a result of  Bar ron  (cf. I-3]), the formula  (4.4) used in 
the p roo f  of  the lower estimate (Sect. 4). 

L e m m a  A1. Under the assumptions of Lemma 3.1 

lim IN(a)] -1 ~ log(O~Oi)=HF,(Q) (a.1) 
a ~ co je.71 (a) 

Q-almost surely and in L 1 (Q). 

Proof Let F~ any  increasing sequence of  subsets of  Z~< such that  F, ~ Za<. Then  
by [3], L e m m a  2, {log 0r ,}  is b o u n d e d  in L 1 (Q) and 

l o g 0 r  ~ l o g O <  in LI(Q) and  Q-a.s. (A.1) 

Let A~ the sequence of  sets defined by (4.2). Then  consider F, = {z ~ Za< ;I z i] < n; 
i = 1, . . . ,  d}. F o r  any e > 0 there exists n enough  large such that  if F, c A~, then 

Then 
]llog 0 a T - l o g  O< [IL~(q)_<~- 

IIlog 0A 7" 0j--  log 0<  "Oj}IL,(~)<= E IA(a) l + ] A (a)* [supr,  I[log ~9r,]lL,~) 
jeA(a) 

where A (a)* = {j e A (a); F , ,  A ~}. 
We  have that  

IA(a)*l ~ 0  as a--* oo 
]A(a)[ 

and (A.1) follows f rom the arbi t rar i ty  of  e and  the d-dimensional  ergodic theo- 
rem. [ ]  
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