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Summary. A discrete time stochastic process {Xt} is said to be a p-stationary 
" [P " Ip 

process ( l < p ~ 2 ) i f  Ek~l_~ bkXt~,+ h =Ek~_. bkXtk, for all integers n=>l, 

t 1 . . . .  , t,, h and scalars bl . . . .  , b,. The class of  p-stationary processes includes the 
class of second-order weakly stationary stochastic processes, harmonizable 
stable processes of order ~ (1 < ~_< 2), and p th order strictly stationary processes. 
For  any nondeterministic process in this class a finite Wold decomposition 
(moving average representation) and a finite predictive decomposition (auto- 
regressive representation) are given without alluding to any notion of 
"covariance" or "spectrum". These decompositions produce two unique 
(interrelated) sequences of scalar which are used as parameters of the process 
{Xt}. It is shown that the finite Wold and predictive decomposition are all that 
one needs in developing a Kolmogorov-Wiener type prediction theory for such 
processes. 

1. Introduction 

In recent years there has been considerable interest in developing a prediction 
theory for and analyzing data from stochastic processes with infinite variance, cf. 
[2-7, 14, 19] and references therein. The notion of covariance and spectral 
distribution functions can not be defined properly for such processes. This makes it 
difficult to construct a spectral-domain and even harder to establish a correspon- 
dence between time and spectral domains. Despite this, there has been attempts to 
mimick the procedure of Kolmogorov-Wiener theory in developing a prediction 
theory for processes with infinite variance. This is usually done by introducing 
(pseudo-) covariance and (pseudo-) spectral distribution function for the process 
under study, cf. [3-5, 9, 19]. 

The success of the Kolmogorov-Wiener theory of prediction for weakly 
stationary processes, looking at it in retrospect, can be attributed to two important 
properties which seem to be valid only for such processes and are intrinsic to the 
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Hilbertian structure of the time-domain. The first property is that the innovation 
process {et} is a white noise or orthogonal process, and this is essential in 
establishing the Wold decomposition Theorem, cf. Sects. 2, 4 and 5. The second 
property is that for such processes the notions of covariance and spectral 
distribution function F are defined. Thus, it is possible to define the spectral domain 
L2(F) and establish the Kolmogorov isomorphism between time and spectral 
domains, and use the spectral technique (harmonic analysis) in the development of 
prediction theory. 

The main purpose of this paper is to develop a time-domain theory of prediction 
for stochastic processes without alluding to any notion of covariance or spectral 
distribution function even when a genuine covariance or spectral distribution 
function exists. We rely merely on the linearity of the time-domain and a basic 
consequence of the notion of linear independence for vectors in a linear space. The 
core of our approach is the observation that for each t, the closed linear span of the 

past values of the process, i. e. H t-- sp {X s" s <= t} can be generated simultaneously by 

Ht=sp{Xt, Ht_l}=sp{et,Ht-1}, 

for notation see Sects. 2 and 3. This observation combined with a regression-typed 
lemma (proved in Sect. 4) give all the results of this paper and they render our 
approach a regression analytic outlook; this is in accord with the seminal work of 
Wold [22, Sects. 18, 19, 20, 26] where the idea of multiple linear regression were used 
to obtain structural representations for stationary processes. 

The outline of  the paper is as follows. In Sect. 2 a summary of known results 
concerning prediction of a weakly stationary process is given. The notion of p- 
stationary process is defined in Sect. 3. Note that such a process may have infinite 
variance when p < 2. We show that a p-stationary process has a shift operator U 
which is an isometric isomorphism from H(X) onto H(X). Also, the predictor 
process {J(t, v}, v > 1 fixed, and the innovation process {st} have the same shift U as 
{Xt} itself. 

In Sect. 4 by using our Main Lemma 4.3 we find (finite) Wold decomposition 
(moving average representation) and (finite) predictive decomposition (auto- 
regressive representation) for a nondeterministic p-stationary process, cf. 
Theorem 4.4. 

The second-order properties of a weakly stationary process are determined by 
its covariance function {7k} or spectral distribution function F and as such either of 
them provides a natural parametrization for such processes. Of course, for 
stationary processes with infinite variance there is not such a parametrization. Due 
to the importance ofparameterization in statistical analysis of data it is desirable to 
have an alternative parameterization for stationary processes with infinite variance. 
As a by product of our approach, we associate to each stationary process with 
infinite variance two unique (interrelated) sequences of sca la r s  {Ck}k~-_l and  {ak}~_- 1 
so that each of them can provide a parameterization for the process under study. 

The function qS(z)= 1 + ~, Ck zk defined, in the open disc with radius 1/2 in the 
k=l 

complex-plane, in terms of the ck's plays roles very similar to the roles of the optimal 
factor of the spectral density for weakly stationary processes. Since ~b(0) = 1 ~ 0, the 
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function 1/q5 (z) is analytic in a neighborhood of 0 and has a Taylor expansion with 
coefficients d o = t, dx, dz . . . .  In Sect. 4, it is shown that ak = --dk, k = 1,2 . . . .  and that 
the coefficients of the v-step ahead predictor of {Xt} can be expressed in terms of the 
Ck'S and dk'S, of. Theorem 4.18 and Corollary 4.22. These results confirm the 
distinguished role of the sequence {Ck} as the parameter of such stochastic processes. 
At this point it is important to note that we have obtained all these results for ap-  
stationary process and its predictor under the mere assumption that {X~} is 
nondeterministic. In this, the Wold decomposition did not play any role, but its 
place is taken by finite Wold and predictive decompositions of {Xt}. 

For weakly stationary processes Wold decomposition plays a crucial role in 
characterizing purely nondeterministic processes as a one-sided moving average of 
their innovation processes. To obtain such characterization for a purely nondeter- 
ministic p-stationary process, the possibility of establishing Wold and predictive 
decomposition for such processes is studied in Sect. 5. In Theorem 5.1, a simple 

sufficient condition is given for the convergence of ~, Ck~t_ k and ~ akXt_ k in 
k = l  k = l  

the mean oforderp.  Theorem 5.2 provides Wold and predictive decompositions for 
a nondeterministic p-stationary process under the assumption of convergence of 
these series. As a corollary of this theorem, it is shown that a purely nondeter- 
ministic p-stationary process has a one-sided moving average representation in 
terms of its innovation process, and an autoregressive representation. 

It is certainly of interest to know whether ap-stationary process which has a one- 
sided moving average representation in terms of its innovation process is purely 
nondeterministic. Although this question has a positive answer, unlike the case of 
weakly stationary process, its proof requires a careful analysis of every element of 
Ht(X  ) and more powerful tools than Lemma 4.3. Our work on this and some other 
related problems will appear elsewhere. 

The paper is self-contained and Lemma 4.3 is the only prerequisite for solving 
the prediction problem via our approach. When applied to weakly stationary 
processes one obtains the most general results about the structure and predictor of 
such processes rather quickly without using any standard analytical tools. It should 
be noted that the structural results given here are useful for actual prediction in 
certain circumstances, for example when the process under study has an auto- 
regressive representation, cf. Sect. 5. 

2. Summary of Some Results on Prediction of Stationary Processes 

In this section for ease of reference and comparison we summarize some of the 
known results concerning the prediction of a weakly stationary stochastic process 
and explicit computation of the best linear predictors. For more information and 
proofs see [12, 21]. 

Let ( f2 ,F,P)  be a probability space and Lz(f2)=LZ(f2,F,P). A zero-mean, 
stochastic process {Xt} is said to be a weakly stationary stochastic process if 

X~ ~ L2(~2), for all t, 
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and, for all s, t 

(2.1) cov (xs, xt) = (x~, x,) = E x ? ? ,  

depends only on s -  t. In this case the function {Tk} defined by 

7k=(Xt+k, Xt), k = 0 ,  -t-1, +2 , . . .  

is referred to as the covariancefunction of {Xt}. It is well-known that {~,} has the 
spectral representation 

(2.2) ?k = i e-lk~F(d2), 

and Fis referred to as the spectral distribution funetion of the processes {Xt}. To each 
stochastic process {Xt} with Xt~L2( (2 )  we associate the following important 
subspaces" 

H(X) = sp {X~" all integers}, time-domain of {Xt}, 

(2.3) H t = H t(X) = sp {X~ ; s < t}, past and present (up to t) of {Xt}, 

H_~ = H _ ~ ( X ) =  0 H~(X), remote past of {X~}, 
t<o 

where sp {... } stands for the closed linear span of elements of {... } in the norm of 
L2(~'2). The non-decreasing chain of subspaces Ht(X ), -oo < t <  o% contains 
considerable information about the linear structure of {Xt}. It is said that {X~} is 
deterministic if 

Ht_I(X)=Ht(X),  for one and hence all t. 

Otherwise, {Jft} is said to be nondeterministic. Thus, for a nondeterministic process 
we have 

(2.4) Xtq~Ht_l(X ) or Ht_I(X)U=Ht(X ). 

A nondeterministic process is said to be purely nondeterministic (regular) if 

(2.5) H_ o~ (X) = {0}. 

For a nondeterministic process the best linear predictor of Jft + ~, v > 1, based on its 
infinite past X t, X t_ a . . . .  is denoted by Xt, v and is given as the orthogonal projection 
of J(t+v onto the subspace Ht(X). Thus, Xt,~eHt(X ) is such that 

(2.6) EIX~+~--J~t,~I 2<=ElXt+v- y]2, for all Y~Ht(X).  

When {Xt} is nondeterministic, it is immediate from (2.4) that the error in 
predicting X t by J(t-t,1 is non-zero, i.e. 

(2.7) et=Xt-Xt_a, l#O,  for all t ,  

or  
~ = E I ~ , I 2 # 0 ,  for all t. 

The process {et} is referred to as the innovation process of {Xt} and it plays an 
important role in the prediction of {Xt} as the e~'s are uncorrelated (orthogonat). We 
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note that even though {Xt} or a segment of it is directly observable, this is not the 
case for the innovation process {et}. 

By the well-known Wold decomposition Theorem, every nondeterministic 
process can be written as the sum of two unique uncorrelated stationary processes 
{U,} and {Vt}, i.e. 

(2.8) X t = U  t+V~, for all t, 

where {V t} is deterministic and {U t} , is purely nondeterministic with a one-sided 
moving average representation 

(2.9) Ut= ~ ck~,-k, Co=1, ~ Icf<oo, o-2=Elgf<oe. 
k = O  k = 0  

This time-domain decomposition of a nondeterministic {Xt} corresponds to a 
unique (Cramer-Lebesgue) decomposition of its spectral distribution function F 
into its absolutely continuous and singular parts: 

(2.10) F(d,~) =f(2)  d2 + Fs(d2 ) . 

Thus, if {Xt} is purely nondeterministic or equivalently F is absolutely continuous 
with density O<fEL 1 and log feL  1, it follows from (2.8) and (2.9) that 

(2.11) Xt= ~ Cket_k, C0--1, ~ ICkl2<o0, a2=Eletl2<oo, 
k = 0  k = O  

and from (2.2), (2.10) and (2.11) that 

f()O=O "2 1 q'-k=~l Ckeik'~2--az[~[ 2, (2.12) 

with 

(2.13) 49(2) = 3 + ~, c S  k~, 
k = l  

The function 4) in (2.1 3) is referred to as the transferjhnction of {Xt}. It is well- 
known that the extension of this function 4) (also denoted by q~) in the open unit disc 
D={z; lz  I < 1} in the complex plane does not have any zeros, i.e, 

(2.14) qS(z)=l+ ~ ckzk=ko, z~D.  
k = l  

Thus, its reciprocal 1 ]qb (z) has a Taylor expansion in D with Taylor coefficients dk'S" 

(2,15) ll~(z)= ~ 47, do=l. 
k = O  

The coefficients {Ck} and {4} of q5 and qS-t, respectively, play important roles in 
finding explicit formulae for the predictor of future values of {X~}. 

From the definition of )(t,v, v>1, cf. (2.6), and the moving average repre- 
sentation of {Xt} in (2.11) it follows that 

(2.16) J ( , ,=  ~ Cket+~_ k 
k = v  
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with the variance of prediction error 
v--1  

(2.17) ElX ,+v-~ t ,  dz=o -2 ~ ICkl 2, 
k = O  

But, since {et} is the innovation process of {Xt} and therefore not directly 
observable, (2.16) can not be used to compute Xt, ~ unless one expresses e~' s in terms of  
the past values X t , X t_ ~ .. . .  o f  the process {Xt} or equivalently finds an autoregressive 
series representation for the predictor Xt,~ in the time-domain, cf. [1, 11, 15, 16, 21]. 

It is shown by Wiener and Masani [21] that J(t,~ has a formal autoregressive 
series representation: 

(2.18) 

where, 

(2.19) 

Yt, v -  ~,, ek, v-3~t-k, 
k = O  

k 

ek, v = E Cv+jdk-J~ 
j = O  

k = 0 , 1 , 2  .... ( c o = d o = l )  . 

The problem of mean-convergence (or any other reasonable mode of conver- 

gence) of the infinite series ~, e,,kX t_k is a formidable analytical problem and it has 
k = l  

been studied by several authors including [1, 11-13, 15, 16, 21 ]. It is shown in [16] 
that the problem of convergence of the series (2.18) is equivalent to the convergence 
of the (apparently simpler) series 

(2.20) e , ~ X , +  ~ dkX,_ k . 
k=l 

In the spectral-domain the latter convergence problem is the same as the 
convergence of the Fourier (Taylor)-series of the function ~b-1 in L2(f). 

Rearranging (2.20) one gets 

(2.21) Xt~et+ ~ akXt_k, ak=--dk ,  k>l. 
k = l  

Thus, the problem of finding mean-convergent autoregressive series representation 
for Xt,~, v__> 1, is equivalent to finding mean-convergent autoregressive repre- 
sentation for the process {Xt} itself. 

3. p-Stationary Stochastic Processes 

In this section, for 0 <p  < o% a definition of stationarity for p-th order stochastic 
processes is given. It is shown that this is the most natural and useful generalization 
of the notion of second-order weakly stationary stochastic processes to the LP(f2)- 
setting. Also, it is shown that such stationary processes have shift operators which 
are isometric isomoprhism from H(X)  onto H(X).  
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(3.1) Definition. For 0 <p  < ~ ,  a stochastic process {Art} is said to be ap-stationary 
process if 

and 
X t e LP(f2), for all integers t, 

(3.2) E k~=l akXtk+h P= E k~=l akXtk P, 

for all integers n_>_ 1, q ,  t 2 . . . .  , t,, h and scalars al, a 2 . . . . .  a n. 

(3.3) Remarks. (a) For  p = 2 ,  it is easy to check that every weakly stationary 
process {Xt} satisfies (3.2) and therefore is a 2-stationary process. Conversely, it 
follows from the parallelogram law for the Hilbert space LE(f2) that every 2-sta- 
tionarity process is a weakly stationary process. Thus our definition of p-stationary 
for p - - 2  coincides with that of weak stationarity. 

(b) It is rather easy to show that any p-th order strictly stationary process is a 
p-stationary process. This shows that the ARMA  processes with infinite veriance 
studied by Brockwell and Cline [6] is a subclass of p-stationary processes withp < 2. 

(c) For  I < e__< 2, by using the spectral representation of  a harmonizable sym- 
metric c~-stable process, cf. [3, 4], one can show that such processes arep-stationary 
for any p < ~. 

In the following we produce more examples of p-stationary processes which are 
important as far as prediction of these processes are concerned. 

(3.4) 

scalars such that the infinite series 
j= -09 

Then, the process {Xt} defined by 

Xt= ~ cjet-j, 
j=-09 

is a p-stationary process. 

Theorem. Let (~ } + 09 be a p-stationary process and {cj}fS_ 09 a sequence of t j j=-09 

cjej is convergent in the metric of LP(f2). 

for all integers t, 

Proof For all integers n > 1, t l , . . . ,  t,, h and scalars a 1 .. . .  , a, we have from the 
definition of {Xt} that 

i agXtk = ~ cj ~ aget~-j=lim ~ Q ( ~  aketk-j), 
k = l  j = - 0 9  k = l  m~09 j=-m k = l  

and 

k = l  j = - ~  k = l  m~09 j=-m k = l  

where the lim stands for the limit in the metric of LV(~?). Therefore, 

(1) ak k = im cJ(k=  
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and 

(2) E akXtk+h  = lim cj ake,k+h_ ~ . 

Since {@ is ap-stationary process, it follows that the right hand sides of (1) and (2) 
are equal and so are the left hand sides, i.e. {Xt} is ap-stationary process. Q.E.D. 

(3.5) Corollary. Let {ej}j~-oo be an independent identically distributed (i.i.d.) 
sequence of random variables with ej E LP(f2), for all integers j, and t j } + oO oo be a 

+ o o  

sequence of scalars such that the series ~ cjej is convergent in the metric of LP(f2 ). 
Then, the process {Xt} defined by j= - ~o 

X t= ~. cjet_j, for all integers t, 
j =  - oo 

is a p-stationary process. 

For the prediction of ap-stationary process {Xt} we need to, and do restrictp to 
the range 1 < p < 2 .  Since for p <  1 an element XeLP(f2) does not have a unique 
projection on a closed subspace M of Lv(f2). For  2 <p  < o% the prediction problem 
of {Xt} is similar to the case p = 2. 

Let XE L;(f2) be an element, and M a  closed subspace of this Banach space such 
that X6 M. Then, there exists a unique element J(in M which is the closest to X, i.e. 

(3.6) E [ X - X [ P < E { X -  YI p, for all Y ~ M ,  

this closest element X'is called the metric projection (or simply the projection) of X 
on M. An alternative characterization of .Y is given by, cf. [18, p. 56], 

(3.7) E Y ( X - X ) ( p - I > = O ,  for all Y ~ M ,  

where for a complex number z, (z) <p-l> = [zlP-2i. 
For a p-stationary process {Xt} the time-domain H(X),  the past and present 

subspaces Ht(X), - oo < t < o% and the remote past H_ ~(X) are defined as in (2.3) 
with the exception that the closure is taken in the norm of LP(f2). Similarly, the 
notions of  deterministic, nondeterministic, purely nondeterministic and innovation 
process can be defined. 

To each p-stationary process {X~} we associate an operator U which is an 
isometric isomorphism from H(X)  onto H(X). To define this operator, consider the 
linear map U defined on the linear span of {Xt}, i. e. on L(X)  = sp {X s ; all integers s}, 
by 

akXtk akX, k+~, 
k 

for all integers n > l ,  t 1 . . . .  , t, and scalars as, a 2 . . . . .  a n. Then, from (3.2) it is 
immediate that U is an isometry from L(X)  onto L(X),  and therefore by continuity 
it can be extended to a unique isometric isomorphism from H(X)  onto H(X). We 
refer to this extension of U (also denoted by U) as the shift operator of the process. 
We note that for a 2-stationary process the shift operator U is a unitary operator. 
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For any integer v > 1, J(~, ~ denotes the best linear predictor of the future value 
X~+~, based on X~, ~ - 1  . . . . .  !.e. J?~,~ is such that ]1~ +~-)?t,~l]p < ]lXt+ ~ - Y]Ip f~ all 
YeHt(X  ). For fixed v> 1, {2t,~} can be viewed as a stochastic process. The next 
theorem is essential for our study of the prediction problems of a p-stationary 
process. 

(3.8) Theorem. Let {X~} be a nondeterministic p-stationary process with the shift 
operator U, innovationprocess {et} andpredictorprocess {Xt ~}. Then, (a) theprocess 
{Xt,1 } is a p-stationary process with shift U. (b) for any v >='1, the process'{Xt, ~} is a 
p-stationary process with shift operator U. (c) the innovation process {et} is a 
p-stationary process with shift operator U. 

Proof. (a) Since ~,1 ~Ht(X), it can be expressed as 

(1) zYt, 1 = lim ~ a,,,kX~_k, 
n ~ o ~  k = O  

for some scalars a,,,k ; k = 0, 1,2 . . . . .  n; n = 1,2,. . . .  Thus, by definition of J(t,1, cf. 
(3.6), 

X~+j ~ a,,kX~_ k 
P 

(2) lim E - =EIX~+x -)?,,alp 
n ~ c ~  k = 0  

Since {Xt} is a p-stationary process cf. (3.2), it follows from (2) that 

Xt+a ~, a,,kXt+l-k 
P 

(3) lim E - <EIX~+ 2 - YI p, for all Y~H,+I(X ). 
n---~ ~ k = O  

Now, since ~ a,,kX~_ k is convergent, as n~oQ, and hence Cauchy in H(X), it 
k = O  

follows that ~ a,,kXt+l_ k is also Cauchy and hence convergent (because {X~} is a 
k = 0  

p-stationary process). Therefore, we get from (3) that 

1_kV< EiXt+ _ ylv 
k = O  

for all YeHt+I(X), i.e. 

J~t+l ,1  = l i m  ~ a,,,kXt+l_k= lim ~ a,,kUXt_ k 
n ~ o o  k = O  n ~ o o  k = O  

:lim,~ U k:O ~ a"'kXt-k:U(lim\n-~o k=O ~ a"'kXt-k) :U~t ' l "  

The fourth equality holds because U is an isometry and hence bounded. This 
completes proof  of (a). Proof of (b) is similar to (a), and (c) follows from (a), since 
8t+l=X~+l-Xt, l=VXt-U~t_l,l=Vl3t Q.E.D. 
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4. Finite Wold and Predictive Decompositions 

Let {Xe} be a nondeterministic p-stationary process, 1 <p  <2, with innovation 
process {e~}. Since {~} is not a white noise process in general the Wold 
decomposition of {X~}, even when it exists [3, 4], is not as useful in finding the 
predictors of the future values of {X~} as it is in the case of 2-stationary processes, cf. 
(2.16). In this section we provide finite Wold and predictive decompositions for a 
nondeterministic p-stationary process and show that these simultaneous decom- 
positions o f X  t do provide valuable information about the predictor and structure of 
such processes. These decompositions are obtained by noting that for any 
nondeterministic p-stationary process with innovation {et} we have 

(4.1) Ht=~-p{Xt, Ht_~}, Xtf~Ht_j., for all t. 

and also 

(4.2) Ht=sp{et ,  Ht_l} ,  ete}IIt_l, foral l  t. 

The following basic and important lemma plays a crucial role in bringing out the 
geometrical meaning of (4.1), (4.2) and its implications as far as the problems of 
prediction of {Xt} are concerned. This lemma constitutes the cornerstone of our 
approach to the prediction problem of processes with infinite variance. 

(4.3) Main Lemma. Let M be a subspace of a Banach space B and let X be an 

element of  B so that Xq~ M. Then, a f ixed Y~sp {X, M} can be written as 

Y = a X + e  

for a unique (scalar) a and vector e ~ M. 

Proof. Since Ye sp {X, M}, there exists a convergent sequence {Y,} such that 

(1) Y , = a , X + e , ~ { X , M }  and Y = l i m  yn. 
n - - *  of) 

To establish the Lemma we need to show that the sequence of constants {a,} is 
bounded. If {an} is not bounded, then there exists a subsequence {a,~} such that 
0:t=ank~oo as k ~ o o .  But, since from (1) 

(2) Yn~=a,~X+en~, 

it follows from the boundedness of { Y.~} that 

X =  lim Y"~ - lim e,~ _ lim e,~ e M ,  
n--, m a n  k n ~ m a n k  n--, ~ a n k  

which is a contradiction. Thus, {a,} is bounded. Since {a,} is bounded, it has (by 
Bolzano-Weierstrass theorem) a convergent subsequence {an,,}. Let lim an,,=a. 

n - - *  oo 

From (2) it follows that {e,k } is convergent, and by letting e = lim e,k we get that 
e ~ M  and ,~o~ 

Y = a X + e .  
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To prove the uniqueness of  a and e, note that if Y has two different 
representations; 

Y = a l X + e  1 , 

Y = a z X + e  2 , 

then by subtraction we get that 

(a t -- a2) X---- e 2 - e 1 e M ,  

which is impossible unless a 1 =aa  and e 1 = e  2. Q.E.D. 

In the next theorem by using Lemma 4.3 we obtain finite Wold and predictive 
decompositions for nondeterministic p-stat ionary processes. 

(4.4) Main Theorem. Let  {Xt} be a nondeterministie p-stationary process with 
innovation process {et}. Then, fo r  any integer n > 1, 

(a) there exist unique constants a 1 . . . .  , a, and a unique p-stationary Process {%,}  
with e~,, ~ I I t_ ._  1 (X)  such that 

X~-I 1 = ~ akXt-k+e~, , ,  
(4.5) k=l 

X t = e t +  ~ a k X t - k + % , .  
k = l  

(b) there exist unique constants c 1 . . . . .  c n and a unique p-stationary-process { Vt,,} 
with Vt , ,~Ht_n_ 1 such that 

 ,-11=2 
(4.6) k=l 

X~=~t+ ~ Cket-k + V,,, �9 
k = l  

Proof. (a) Since J(o,1 ~ Ho = sp {X o, H_I}  by applying Lemma 4.3 with X = X o ,  
M =  H_ a, it follows that there exist a unique constant a 1 and e 1 ~ H_ 1 such that 

(1) Xo,1 =al  Xo + el . 

By applying the same argument to e 1 e sp {X_ 1, H-2} and repeating it we get that 

(2) Xo,1 =al  Xo + a 2 X - 1  + ... + a n X t - n  + e , ,  

for unique constants a 1 . . . . .  a n and e. ~ H _  n. Let U be the shift operator of the 
process {Xt}, by applying the operator U t-1 to both sides of  (2) it follows from 
Theorem 3.8 that 

2 t _ i ,  i = ~ akXt-k+et ,n ,  
k = l  

where % n = Ut-  1 en s Ht_ n- 1- Furthermore,  {et, n} is a p-stat ionary process. 
The second equation in (4.5) follows f rom the first by observing that 

X~ - )? t_  1,1 = ~t. Proof  of  part  (b) is similar to (a) by noting that H t = sp  {et, H~_I }, 
cf. (4.2). Q.E,D. 
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Since the integer n in Theorem 4.4 is arbitrary and the set of coefficients ak'S and 
Ck'S do not depend on n, and furthermore they are unique, it follows that the two 
infinite sequences {ak}~~ and {Ck}k%l must carry considerable information about a 
nondeterministic p-stationary process. It is even more important to note that the 
two sequences are closely related, i.e. knowing one it is possible to find the other 
uniquely, cf. Corollary 4.7. This suggests the possibility that either of these 
sequences be used to parameterize a general nondeterministic p-stationary process. 

(4.7) Corollary. The sequences {ak} and {G} of Theorem 4.4 are related by the 
recursion 

t" Co 11, (4.8) 

ckat_k=Ct, l = 1 , 2  . . . . .  
~ k = 0  

Proof. To establish (4.8), we note that for any n=> 1, a 1 .. . .  , a n satisfy, cf. (4.5), 

X t - t , 1 -  ~ a k X t - k C H t - n - , ,  
k = l  

and from (4.6) we have 

(1) 
k = l  

akX't_k = C l -- Ckal_ k Gt-ld--Rn,t, 
l = l  k = O  

where Rn,t~Ht_n_ 1. It follows from (I) that Xt-l,1 - ~ akXt-k~H,-n-1, if and 
only if (4.8) is satisfied. Q.E.D. k=l 

When the sequence {Ck} is known, one can write (4.8) as the following (Toeplitz) 
system of equations with {ak} as the vector of unknowns; 

(4.9) [;00 i1[ill Eel q 1 0 2 = . 

C 1 ] 

In the following we study two examples where the {ak} sequence is found in terms of 
a given sequence {Ck}. As usual we assume that {et} is the innovation process of the 
p-stationary process {Xt} and our starting point in these examples are the finite 
Wold decomposition of {Xt}, cf. Theorem 4.4 (b). 

(4.10) Example. Let {AT,} be given by 

Xt=et-et-1, for all t, 

i.e. co=1, c 1 =1,  Ck=O, k>2. Then, it follows from (4.8) that 

a k = - l ,  for all k > l ,  
and 

et, n-'--~t-~,l- ~ a k X t - k = - - s  . 
k = l  
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(4.11) Example. Let {Xt} be given by 

X r = e ~ - 2 e ~ _ l + e t _ z ,  for all t, 

i.e. Co=1, q = - 2 ,  c2=1, Ck=O, for all k > 3 .  Then, it follows from (4.8) that 

a k = - - ( k + l ) ,  for k > l ,  
and 

et , , ,=2t_l ,  1 - ~ akX , - k=  - - (n+Z)e t_ ,_  1 +(n+ l ) e~_ ._  2 . 
k = l  

In the previous two examples, it is interesting to note that although the {Ck} 
sequencesare very similar in nature, this is not the case for their corresponding {ak} 
sequences. The first one is bounded while the other is unbounded. This difference in 
the boundedness property of  {ak} plays an important role in studying the 
convergence of et,n, a s  ///---+ oO, 

(4.12) Remarks.  (a) The representation J(t_ 1,1 -- ~ ak X t -  k + et,, in (4.5) provides 
k = l  

a formula for approximating the predictor J?r-l,a when only n observations 
Xt_ 1 . . . . .  Xt_,, from the past are available. The interesting feature of this 
approximation is that the coefficients a k do not depend on n, and therefore they do 
not change as n increases or as more observations become available. This is in sharp 
contrast to the best linear predictor of X t based on n observations Xt_ 1 .. . .  , Xt_,,. 
Denoting this by i5"t,,, we have to find a,,k's such that 

E I ~ - ~ * , I P = E I X ~  - ~ a~ p, 
k = l  

1 < p < 2 ,  is minimized. Finding these a,,,k'S is not easy. However, w h e n p = 2 ,  i.e. 
{X,} is a 2-stationary process with covariance function {]1~} the a,,,k'S can be found 
by solving the following (Toeplitz) system of linear equations 

(4.~3) [o 1 11111 ]11 70 ... " an,2 = 72 

]1n 1 7 , , - 2  ]11 70 , n 

Despite some differences between 2,-1,1 and Xff,, it is interesting to note that in 
computing both Xt_l, 1, and Yt* . (when p = 2 )  one needs to deal with Toeplitz 
matrices. For  1 <p < 2, there is no simple and clear way to find Yt*,, but even in this 
case J?t- 1,1 can be approximated by solving a finite section of (4.9). This shows the 
importance of the sequence {Ck} in determining l?t-l,a and other important 
characteristics of a p-stationary process. 

In view of the important role of {Ck} as the parameter of a nondeterministic p- 
stationary process it is desirable to have more information about this sequence. For  
nondeterministic weakly stationaryprocesses it is well-known that the sequence {ek} 
is square-summable and therefore it is bounded. For  a generalp-stationary process 
all we know about the sequence {ek} is that ICkl < e 2~, k = 1,2 .. . .  for a constant e and 
this is proved in the next theorem. Also, this theorem sheds some light on the 
meaning of  the process {V~,,} appearing in Theorem 4.4(b). 
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(4.14) Theorem. Let { Xt} be a nondeterministic p-stationary process with innovation 
{et}, and {Ck}, { Vt,,}, n > l ,  be as in Theorem 4.4(b). Then, for any n> l, 

(a) v,.=P (x,-~ ck~,_~), 
' Ht_n_l k=0 

where PMX denotes the projection of X onto the subspace M of H(X), cf. (3.6). 

( b )  [Ck[~C2 k, 1 =1 ,2  .... for some constant c. 

Proof. (a) From Theorem 4.4(b), since Vt,,~Ht_._ 1 and 

(1) x , -  ~ ck~,_.-v,,.=c.~_., 
k=O 

it is enough to show that 

EY(cnet_,)(P-1)=O, for all Y~Ht_,_ 1, 

and this follows from the definition of the innovation process and (3.7). (b) it 
follows from (a) and (1) above that 

X t  n -1  Ck~t-k  P n -1  (2) IIc.~-.ll,- -< - 2 _-<llx&+ E IIc~,-~llp 
k=O k=O 

Since 
II~,II~ = IIx,-x,-1,1 II~ llx, ll,, 

it follows from (2) and stationarity of {Xt} and {6}, cf. Theorem 3.8, that 

<NXoll~ 
I c , l = ~  2", n = l , 2  . . . . .  

I - u l I P  
Q.E.D. 

Now, by using the unique sequence {Ck} associated to each nondeterministic 
p-stationary process {X~}, we define a function q5 

(4.15) q~(z )= l+  ~ Ck zk, ]zI<l /2,  
k = l  

which is analytic in the open disc with radius 1/2, cf. Theorem 4.14 (b), and refer to it 
as the transfer function of{Xt}. It is immediate from (4.8) or (4.9) that the sequence 
{ak} of Theorem 4.4(a) can be obtained from 

(4.16) ak=--dk, k =  1,2,... 

where the sequence {dk} is the Taylor coefficients of the reciprocal of  qS, i.e. 

(4.17) ~b- l (z )=l  + ~ dk zk. 
k = l  

This argument shows that by having the transfer function ~b of a nonde- 
terministicp-stationary process {Xt} one can find the two parameter sequences {Ck} 
and {ak} at once. Next, we explore the possibility of finding the coefficients of the v- 
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step ahead predictor of {Xt}, i.e. the coefficients of )(t,,, in terms of the coefficients 
of the functions 4, and q~-l. The following theorem which is more general than 
Theorem 4.4 and Corollary 4.7 combined, provides the basic ingredients for finding 
these coefficients. 

(4.18) Theorem. Let  {Xt} be nondeterministic p-stationary process with innovation 
{ee}. Then, for  a f i x ed  v >- 1 and any integer n > 1, 

(a) there exist unique constants a 1 . . . . . .  , a,, ~ and a unique p-stationary process 
e ~ - ~o e H t_ ._  1 (X) such that { , .... }t= with e, . . . .  

(4.19) )(t_a,~= ~ ak,,Xt_k +e , . . . .  . 
k = l  

"Note." For v = l ,  ak,~=ak, for  k > l . )  
(b) there exists unique constants q . . . . . . .  % ,  and a unique p-stationary process 

V~ ... .  }~=_~ with V t . . . .  e H , _ , _ t ( X  ) such that 

(4.20) )( t_t ,~= ~ Ck,~e,_k+V ~ . . . .  . 
k = l  

(Note." For v = l ,  Ck,,=Ck, for  k > l . )  
(c) for  a f i x ed  v > 1, the sequences {ak,,} and {% ~} o f  parts (a) and (b) are related 

by the recursion 

C 0 = 1  , 

l - t  

~, Ckal_g,v=Cz_~, l = 1 , 2  . . . . .  
k=O 

where {Ck} is the sequence o f  coefficients o f  the transfer function o f  X ,  cf. (4.15). 

Proof. Since X~_I ,~eHt_ , (X )  =sp  {X t_ l ,  Hi_2} =sp  {~,-1, H,-2}, proofs of  parts 
(a) and (b) are exactly the same as those in Theorem 4.4. Proof of (c) is the same as 
that of Corollary 4.7. Q.E.D. 

This theorem shows that for a fixed v > 1, the two sequences {ak,,} and {% ~} are 
related via the recursion (4.21). Thus to find the sequence {ak,,}, i.e. the coefficients 
of Xt- 1,~ one needs to know the sequence {Cg,~}. However, in general it is not that 
easy to find the sequence {Ck,,}, cf. [3, p. 610]. In the following two important cases 
we show that {%~} can be found. In fact, for these two cases we show that 

Cg,,=Ck+,_ 1, k = l , 2 , . . . .  

(4.22) Corollary. Let  {Xt} be a nondeterministic p-stationary process with &nova- 
tion process {et}. I f ( i )  p = 2  or (ii) the {et} is an i.i.d, sequence o f  random variables, 
then for  a f i x ed  v > 1, and any integer n >= 1, 

(a) X,-i,.-: ~ C~+k- le t -k+Vt - t+~, ,+~- l ,  
k = l  

where V,-1 + ~,,+~-i e H , - , - 1  - 

(b) X t _ l , , =  ~ ak,~Xt_k+e , . . . . .  e, . . . .  e H t _ , _  1 
k = l  
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and 
k - 1  

ak,~= y ,  c~+jdk_~, k = l , 2  . . . .  ( c o = d o = l )  . 
j = 0  

Proof. (a) For  any integer m > 1 and fixed v, m > v >_ 1, we have from the second 
relation in (4.5) that 

(1 )  X t - l + v = ' ~ t - - l + v  "~- Z CkGt-l+v-k Ar CkGt-l+v-k-[-Vt-l+ . . . .  
k = l  k=v 

v - 1  

with V t_ 1 + v,m ~ Ht -  1 + ~- m- 1" Since for p = 2, e t_ 1 + ~ + ~ Ck ~'t- 1 + v-- k is orthogonal 
k = l  

to/art_ t , it follows from (1) that 

k=v 
or equivalently 

(2) 
m-v+l 

Yt- l ,v  = 2 Ck+v-l'~t-k+ Vt-l+v,m 
k = l  

= ~ Ck+v-lF't-k-~gt-l+v,n+v-l~ 
k = l  

where n = m - v + l  and V t _ l + ~ , , + ~ _ l ~ H t _ , _ l .  Comparing (2) with (4.20) it 
follows, from the uniqueness of {Ck,~}, that 

Ck,~=Ck+~_l, for all k_>_l,v>=l. 

(b) follows from Theorem 4.18 (a), (c) and the fact that Ck,~=Ck+~_ 1. Q.E.D. 

This shows that even for v-step ahead prediction of some p-stat ionary processes 
one actually does not need the full power of  Wold decomposition in finding the 
coefficients of  the v-step ahead predictor. Only the finite Wold decomposition 
suffices and in this the orthogonality (independence) of  the random variables of the 
innovation process {et} plays a crucial role. The latter case is important  in the 
statistical analysis of  data f rom processes with infinite variance, cf. [2, 7]. 

5. Wold and Predictive Decompositions 

The role and importance of Wold decomposition in prediction and characterization 
of  purely nondeterministic weakly stationary processes are well-known. An 
important  factor in establishing Wold decomposition for such processes is the 
orthogonality of  the random variables of  the innovation process. Since for p-sta- 
t ionary processes, 1 < p  < 2, the innovation process is not an orthogonal process, it is 
natural to see if there is any kind of Wold decomposition for such processes. In this 
section we study nondeterministic p-stat ionary processes for which one can find 
Wold and predictive decompositions. Our starting point is Theorem 4.4 where finite 
Wold and predictive decompositions for such processes are given. 
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In view of Theorem 4.4, existence of a Wold or predictive decomposition for 
{Xt} depends very much on convergence properties of the processes { Vt,,} and {%,} 

as n-+ oo, and in turn is related to the covvergence properties of the series ~ CkE t_k 
k =  1 

and akXt- k in the norm of Lv(f2) or in the mean of orderp. Thus, the keyproblem 
k = l  

in establishin9 such decomposition is the problem of norm-convergence of these series, 
and as such the degrees of difficulty of establishing Wolddecomposition, andpredictive 
decomposition for stochastic process are the same in general. There is the simple and 
most important special case of weakly stationary processes for which the problem of 

norm-convergence of ~ Cke t_k is a simple consequence of the orthogonality of {et}. 
k = l  

In this case since {et} is a white noise process, it follows from (4.6) that 

a 2 ~ Ickl2<EIXol2<oo, foral l  n, 
k = l  

and therefore ~ ICk[ 2 < 0% which implies that the series ~ Ck4_ k is convergent in 
k = l  k = l  

the mean of order 2. Note that for such processes the problem of norm-convergence 

of the series ~" akXt_ k is quite complicated, since the Xt's are not uncorrelated, 
k = l  

cf. [11-t3, 15, I6, 21]. 
For other p-stationary processes it is difficult to find conditions for the mean- 

convergence of the series ~ Cket_k, let alone ~ akXt_ k. The next theorem 
k = l  k = l  

provides a simple sufficient condition for the mean-convergence of these series. 

(5.1) Theorem. Let {X,} be a nondeterministic p-stationary process with innovation 
{5,}. Then, 

(a) ~ akX~-k is convergent in the mean of order p, if ~ lakl < o0. 
k = l  k = l  

(b) ~ Cke~_ k is convergent in the mean of order p, if 
k = l  

Ickl < o 0 .  
k = l  

Proof. It is immediate from the fact that for all m <n,  

Q.E.D. 

The next theorem provides Wold and predictive decompositions for such 

processesundertheassumptionthat  ~ akXt_kand ~, Cke~_kareconvergentinthe 
mean of order p. k = ~ k = 1 
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(5.2) T h e o r e m  (Wold and predictive decompositions). Let {Xt} be a nonde- 
terministic p-stationary process with innovation {e,} and {ak}, {Ck}aS in Theorem 4.4. 

(a) I f  ~ agXt-k is convergent in the mean of  order p, then there exists a unique p- 
k=l  

stationary process {et} with e t ~ H_ ~(X)  such that, for all t, 

Xt=~t+ ~ akXt_k+e t. (Predictive decomposition). 
k=l  

(b) I f  ~ Ok,St- k is convergent in the mean of  order p, then there exists a unique 
k=l  

p-stationary process { Vt} with Vt ~ H_ o~ (X) such that, for all t, 

Xt=g,t-q- ~ Ck~t_k--~ Vt= UtAv Vt, (Wold decomposition). 
k=l  

where the p-stationary process {Ut) is a one-sided moving-average of  {et), i.e. 

Ut=,St-~- ~ Ck'~'t-k. 
k=l  

Proof. (a) We have from (4.5) that, for all n >  1, 

(I) e t , , = X t - e  , -  ~ akXt_kEH~_,_l(X).  
k=l  

Since the series ~ akXr_k is convergent in the mean oforderp ,  it follows from (1) 
k=l  

that, for each t, et, . converges to an dement  e t in the norm of order p, and 

furthermore e t c ~ H t_ ._ 1 ( X)  = H_ o~ ( X). Now, the result follows by letting n ~ oo 
n=l  

on both sides of (1). Proof of (b) is similar to that of (a). 
An important consequence of Wold decomposition for nondeterministic weakly 

stationary process {Xt} with innovation {e,} is the characterization of purely 
nondeterministic processes: A nondeterministic weakly stationary process {Xt} is 
purely nondeterministic, if and only if 

~t=~Ck,~t_k, C o = l ,  ~ [ek] 2 < 0 0  , 
k=l  k=l  

i.e. Xt is a one-sided moving average o f  its innovation process. In proving this the 
orthogonality of {et}, or {Ut} and {Vt) plays an important role. Lack of 
orthogonality of {et}, or { Ut} and { Vt), cf. Theorem 5.2(b), makes it difficult to find 
such characterizations of pure nondeterminism forp-stationary processes, 1 <p  < 2. 
Only a necessary condition for this is given in the following Corollary, part (b). 

(5.3) Corollary. Let {Xt} be a purely nondeterministic p-stationary process with 
innovation {et} and (ak} , {Ck} a s  in Theorem 4.4. 
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(a) I f  ~ akXt_ k is convergent in the mean of order p, then for all t, 
k=l  

X, = e, + ~, ak X~ _ k , 
k=l  

i.e. {Xt} has an autoregressive representaiton. 

(b) I f  ~ Cker_ k is convergent in the mean of order p, then for all t, 
k=l  

~t -~- ~ Ck~t-k, C0=1  , 
k=t  

i.e. {Xt} is a one-sided movin9 average of its innovation process. 

P r o o f  of  this corol lary is immediate  f rom Theorem 5.2 since H_  ~o(X) = {0}, and 
therefore e t = V~ = 0, for  all t. 
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