(C) Springer-Verlag 1988

Remark on
 Exit Times from Cones in $\mathbb{R}^{\boldsymbol{n}}$ of Brownian Motion

Prob. Th. Rel. Fields 74, 1-29 (1987) *

R. Dante De Blassie
Department of Mathematics, Texas A\&M University, College Station, TX 77843, USA

Summary. Our purpose is to show how the asymptotics in Corollary 1.3 of [2] can be obtained under much weaker hypotheses. It turns out the problem essentially reduces to showing that if $R(s)$ is a Bessel process, $u>0$ and $\alpha>0$, then $P\left(\int_{0}^{t} R(s)^{-2} d s \leqq u\right)=O\left(t^{-\alpha}\right)$ as $t \rightarrow \infty$. We provide a simple proof of this fact.

Let Θ_{t} be Brownian motion on S^{d-1}, the unit sphere in \mathbb{R}^{d}. Thus Θ_{t} is governed by half the Laplace-Beltrami operator $L_{S^{d-1}}$ on $S^{d-1} . L_{S^{d-1}}$ is a nice elliptic operator that is self-adjoint with respect to normalized area measure $d \sigma$ on S^{d-1}. Thus for any open $D \subseteq \bar{D} \subseteq S^{d-1} \backslash(0, \ldots, 0,1)$ with regular boundary, we get for $y \in D$ and $\eta_{D}=\inf \left\{t>0: \Theta_{t} \notin D\right\}$,

$$
\begin{equation*}
P_{y}\left(\eta_{D}>t\right) \sim e^{-\lambda_{D} t / 2} m_{D}(y) \int_{D} m_{D} d \sigma \quad \text { as } t \rightarrow \infty \tag{1.1}
\end{equation*}
$$

Here $\left(\lambda_{D}, m_{D}\right)$ is the first eigenvalue-eigenfunction pair of $L_{S^{d-1}}$ on D with Dirichlet boundary conditions. See Port and Stone [4], pp. 121-127.

The Brownian motion B_{t} on \mathbb{R}^{d} can be represented by the skew product $(R(t), \Theta(T(t)))$, where $R(t)$ is a Bessel process with parameter d and generator $\frac{1}{2}\left(\frac{d^{2}}{d r^{2}}+\frac{d-1}{r} \frac{d}{d r}\right)$, independent of $\Theta(t)$ and $T(t)=\int_{0}^{t} R(s)^{-2} d s$ (see Itô and McKean [3], §7.15). Thus for any open cone $C \subseteq \mathbb{R}^{d}$ with vertex 0 , for G $=C \cap S^{d-1}$, and for $\tau_{C}=\inf \left\{t>0: B_{t} \notin C\right\}$ we have

$$
\begin{align*}
P_{x}\left(\tau_{C}>t\right) & =P_{x}(\Theta(T(s)) \in G \quad \text { for all } s \in[0, t]) \\
& =P_{x}\left(\eta_{G}>T(t)\right) \\
& =\int_{0}^{\infty} P_{x}\left(\eta_{G}>u\right) d_{u} P_{x}(T(t) \leqq u) . \tag{1.2}
\end{align*}
$$

[^0]Let C_{θ} be a right circular cone (with vertex 0) of angle $\theta \in(0, \pi)$. If

$$
\begin{equation*}
\gamma(\lambda):=\left\{-(d-2)+\left[(d-2)^{2}+4 \lambda\right]^{1 / 2}\right\} / 2 \tag{1.3}
\end{equation*}
$$

then by Theorem 1.2 and Corollary 1.3 in [2] and the application in Burkholder [1], pp. 192-193, the mapping

$$
\begin{equation*}
\theta \in(0, \pi) \rightarrow a_{\theta}:=\gamma\left(\lambda_{\theta}\right) \tag{1.4}
\end{equation*}
$$

is strictly decreasing and continuous with range $(0, \infty)$. Moreover

$$
\begin{equation*}
P_{x}\left(\tau_{\theta}>t\right) \sim B_{\theta}\left[|x|^{-2} t\right]^{-a_{\theta} / 2} m_{\theta}(x /|x|) \quad \text { as } t \rightarrow \infty \tag{1.5}
\end{equation*}
$$

where we have replaced C_{θ} subscripts by θ and

$$
\begin{equation*}
B_{\theta}=2^{-a_{\theta} / 2} \frac{\Gamma\left(\left(a_{\theta}+d\right) / 2\right)}{\Gamma\left(a_{\theta}+d / 2\right)} \int_{S^{d-1} \cap C_{\theta}} m_{\theta} d \sigma \tag{1.6}
\end{equation*}
$$

We use this to study $P_{x}(T(t) \leqq u)$.
Lemma. For any $\alpha>0$ and $u>0$,

$$
P_{x}(T(t) \leqq u)=O\left(t^{-\alpha}\right) \quad \text { as } t \rightarrow \infty
$$

Proof. Choose $\theta \in(0, \pi)$ such that $\gamma\left(\lambda_{\theta}\right)=2 \alpha$ and let $G_{\theta}=C_{\theta} \cap S^{d-1}$. By rotational invariance we may assume $x \in C_{\theta}$. In what follows, A will be constant independent of t which may change from line to line. As $t \rightarrow \infty$,

$$
\begin{aligned}
P_{x}(T(t) \leqq s) & \leqq e^{\lambda_{\theta} s / 2} E_{x} e^{-\lambda_{\theta} T(t) / 2} \\
& =A \int_{0}^{\infty} e^{-\lambda_{\theta} u / 2} d_{u} P_{x}(T(t) \leqq u) \\
& \left.\leqq A \int_{0}^{\infty} P_{x}\left(\eta_{G_{\theta}}>u\right) d_{u} P_{x}(T(t) \leqq u) \quad \text { (by }(1.1)\right) \\
& =A P_{x}\left(\tau_{\theta}>t\right) \quad(\text { by }(1.2)) \\
& \leqq A t^{-a_{\theta} / 2} \quad(\text { by }(1.5)) \\
& =A t^{-\alpha}
\end{aligned}
$$

as desired.
With this it is easy to obtain the following result.
Theorem. Let $G \subseteq \bar{G} \subseteq S^{d-1} \backslash(0, \ldots, 0,1)$ have a regular boundary. Then for the cone $C=\bigcup_{r>0} r G$ and $x \in C$,

$$
P_{x}\left(\tau_{C}>t\right) \sim B(x) t^{-a_{G} / 2}
$$

where $a_{G}=\gamma\left(\lambda_{G}\right)$ and

$$
B(x)=\frac{\Gamma\left(\left(a_{G}+d\right) / 2\right)}{\Gamma\left(a_{G}+d / 2\right)}\left[|x|^{2} / 2\right]^{a_{G} / 2} m_{G}(x /|x|) \int_{G} m_{G} d \sigma .
$$

Moreover if we replace B_{t} by the solution X_{1} to $d X_{t}=\left|X_{t}\right|^{\beta} d B_{1}, \beta \neq 1$, then

$$
P_{x}\left(\tau_{c}>t\right) \sim\left\{\begin{array}{ll}
B_{\beta}(x) t^{-\alpha_{G} / 2(1-\beta)} & \text { if } \beta<1 \\
B_{\beta}(x) t^{\left(2-d-a_{G}\right) / 2(\beta-1)} & \text { if } \beta>1
\end{array}\right\} \quad \text { as } t \rightarrow \infty
$$

where a_{G} is as before and

$$
\begin{aligned}
B_{\beta}(x)= & \frac{\Gamma\left(\left(a_{G}+d-2 \beta\right) / 2(1-\beta)\right)}{\Gamma\left(\left(2 a_{G}+d-2 \beta\right) / 2(1-\beta)\right)} \\
& \cdot\left\{|x|^{2(1-\beta)} 2(1-\beta)^{2}\right\}^{a_{G} / 2(1-\beta)} m_{G}(x /|x|) \int_{G} m_{G} d \sigma \quad \text { if } \beta<1, \\
& =\frac{\Gamma\left(\left(a_{G}+2 \beta-2\right) / 2(\beta-1)\right)}{\Gamma\left(\left(2 a_{G}+2 \beta+d-4\right) / 2(\beta-1)\right)} \\
& \cdot\left\{2(\beta-1)^{2}|x|^{2(\beta-1)\}^{\left(2-d-a_{G}\right) / 2(\beta-1)} m_{G}(x /|x|) \int_{G} m_{G} d \sigma \quad \text { if } \beta>1 .} .\right.
\end{aligned}
$$

Proof. By the Lemma, if f and g are bounded on [0, ∞), where $f \sim g \sim e^{-\lambda u}$ as $u \rightarrow \infty$ for some $\lambda>0$ and $E f(T(t))$ decays polynomially in t, then $E f(T(t))$ $\sim E g(T(t))$ as $t \rightarrow \infty$. Then to prove the Theorem for the Brownian motion case, just chose $\theta \in(0, \pi)$ such that $a_{\theta}=\gamma\left(\lambda_{\theta}\right)=\gamma\left(\lambda_{G}\right)=a_{G}$ and use (1.1), (1.2) and (1.5).

In the case of the diffusion X_{t}, see now that X_{t} may be represented as the skew product $(\widetilde{R}(t), \Theta(\widetilde{T}(t)))$ where $\widetilde{R}(t)$ is the diffusion on $(0, \infty)$ with generator $\frac{r^{2 \beta}}{2}\left(\frac{d^{2}}{d r^{2}}+\frac{d-1}{r} \frac{d}{d r}\right)$ independent of $\Theta(t)$ and $\widetilde{T}(t)=\int_{0}^{t} R(s)^{2 \beta-2} d s$. As in the Brownian case, the theorem reduces to the lemma with $\widetilde{T}(t)$ replacing $T(t)$. To prove the Lemma for $\widetilde{T}(t)$, as before it suffices to get the asymptotics of $P_{x}\left(\tau_{\theta}>t\right)$ (right circular cones) for X_{t}. With polar coordinates (r, θ) and a change of variables $s=r^{-2(1-\beta)} t$, separation of variables easily yields the asymptotic behavior of $P_{x}\left(\tau_{\theta}>t\right)$ as $t \rightarrow \infty$.

References

1. Burkholder, D.L.: Exit times of Brownian motion, harmonic majorization and Hardy spaces. Adv. Math. 26, 182-205 (1977)
2. DeBlassie, R.D.: Exit times from cones in \mathbb{R}^{n} of Brownian motion. Probab. Th. Rel. Fields 74, 1-29 (1987)
3. Itô, K., McKean, H.P.: Diffusion processes and their sample paths, 2nd edn. Berlin Heidelberg New York: Springer 1974
4. Port, S.C., Stone, C.J.: Brownian motion and classical potential theory. New York: Academic Press 1978

[^0]: * Supported in part by NSF

