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Summary. For symmetric stable sequences, notions of innovation and Wold 
decomposition are introduced, characterized, and their ramifications in pre- 
diction theory are discussed. As the usual covariance orthogonality is inap- 
plicable, the non-symmetric James orthogonality is used. This leads to right 
and left innovations and Wold decompositions, which are related to regression 
prediction and least pth moment prediction, respectively. Independent innova- 
tions and Wold decompositions are also characterized; and several examples 
illustrating the various decompositions are presented. 

O. Introduction 

The problem of prediction for processes with infinite variance is of compelling 
practical and theoretical interest, although very little work on this subject exists. 
The early work of Urbanik [19] shows that the classical theory is limited to 
the important class of nonanticipating moving averages. But, while all regular 
stationary Gaussian processes are indeed nonanticipating moving averages, 
among the non-Gaussian stable stationary processes those that are nonanticipat- 
ing moving averages form a thin class [1]. Another class of stationary stable 
processes, which is disjoint from the nonanticipating moving averages, consists 
of the hamonizable stable processes whose prediction was considered by Hosoya 
[6] and in [1]. The prediction of autoregressive moving averages was considered 
by Cline and Brockwell [3]. Except for the work of Urbanik all other papers 
treat the discrete time case. 

This paper describes the extent to which a reasonable theory of prediction 
holds for discrete time stable sequences, and also uncovers some intriguing be- 
havior, unsuspected from the classical Gaussian theory. In view of how little 
is currently known, and especially how differently innovations are built up for 
non-Gaussian random models, it is hoped that this paper may serve as a first 
step in approaching the more difficult problem of prediction for continuous 
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time stable processes, as well as for other non-Gaussian (e.g., general infinitely 
divisible) processes. 

The Wold (or orthogonal) decomposition of Gaussian and other second- 
order stochastic processes is a fundamental tool in their study, and in particular 
in their predictions. For stable and other pth-order processes (with p< 2) the 
lack of second moments renders the usual L 2 notion of orthogonality inapplic- 
able, and thus orthogonal decomposition of these processes does not even make 
sense a priori. There are, however, notions of orthogonality in Banach spaces; 
and one of these, due to G. Birkhoff and popularized by R.C. James [7], seems 
appropriate in this context. Still, the situation is much more complex than in 
the second-order case, as we shall see shortly. 

The purpose of this paper is to examine James' orthogonality as an appro- 
priate prediction theoretic tool for symmetric e-stable (SeS) random variables 
and processes. Using this orthogonality we define appropriate notions of Wold 
decomposition for Sc~S sequences and characterize those sequences which can 
be so decomposed. The role of independence is also examined. (Orthogonality 
implies independence in Gaussian systems, but not in stable systems !) 

The organization of the paper is as follows. Section 1 includes some prelimi- 
nary facts, which clarify the role of orthogonality in stable systems. We give 
some characterizations of orthogonality (Corollary 1.3); for example, we find 
that for jointly S~S r.v.'s X and Y, X is orthogonal to Y if and only if E(YI X)= 0. 
We also characterize the linearity of a conditional expectation in a stable system 
in terms of an appropriate orthogonality. 

In Sect. 2 we define two kinds of innovations, right orthogonal and left or- 
thogonal, and Wold decompositions for SeS sequences, and give necessary and 
sufficient conditions for their existence. It turns out that a right Wold decomposi- 
tion exists if and only if right innovations exist, if and only if the regressions 
on the past are linear (Theorem 2.3). Left innovations always exist (Proposition 
2.8), while a left Wold decomposition exists if and only if the metric projections 
on the past are linear (Theorem 2.10); and these results hold for general pth 
order processes. We also define "non-linear" innovations and Wold decomposi- 
tions. Right nonlinear innovations and Wold decompositions always exist (Theo- 
rem 2.2). Left nonlinear innovations always exist (Proposition 2.8) and we note 
that a left nonlinear Wold decomposition exists whenever a left Wold decomposi- 
tion exists. The right and left innovations and Wold decompositions have pre- 
cisely the properties required to solve the problem of predicting m-steps ahead 
based on past observations, and they correspond to regression prediction and 
best prediction in the usual pth order moment sense (1 < p < ~) respectively. Thus 
when a right or left Wold decomposition exists, the m-step linear regression 
prediction or best linear prediction has a fairly simple solution. However, when 
a Wold decomposition does not exist, then the prediction problem becomes 
difficult indeed as is illustrated by the case of harmonizable stable sequences 
(cf. [1]). 

In Sect. 3, an independent decomposition is introduced and spectral necessary 
and sufficient conditions are given for its existence. Section 4 consists entirely 
of examples, intended to illustrate the various decompositions and some of 
the complexities involved. 
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After this work was submitted we received the paper by Miamee and Pourah- 
madi "Wold decomposition, prediction and parametrization of stationary pro- 
cesses with infinite variance", Probab. Theor. Rel. Fields 79, 145-164 (1988), 
where a finite term left Wold decomposition is also given for ptn order processes. 

1. Orthogonality and Stable Systems 

A collection of random variables {Xt: ts T} defined on (O, S, 1~ will be called 
jointly symmetric e-stable or a symmetric e-stable process if each finite real-linear 
combination ~ 2;Xtj has a symmetric stable distribution of index c~. We abbre- 
viate "symmetric a-stable" by SeS. If X is SeS, then for 0 < p < e ,  we have 
EIX[P<oo, so that a SeS process {Xr} is a pth order process, i.e., 
{Xt}-LP(O, S, P). A useful tool in the analysis of SeS processes is the so-called 
spectral representation theorem. The version we will need here says that if {X,: 
n~A} (where A is finite or denumerably infinite) is a SeS process, then there 
exist functions {f,: n~A} __U [0, 1] such that 

- l~  E exp(i;~= lYJX"J)= i~=12jf"j i" 

Further, if {Z(s): s~ [0, 1]} is "e-stable motion",  i.e., an independent increments 
SeS process with - l o g  E exp it Z(s)= s[t [~, then the process { I1,} defined by 

1 

Y.= ~f~(s)dZ(s) 
0 

is stochastically equivalent to {X,}, and we say that {X,} is represented by 
{fn}" The spectral representation was first expressed in this form by Kuelbs 
[9]; for more information consult [5]. 

Now let 5# be a normed linear space, with norm I}'ll- For x, y E ~  a, we say 
that x is (James) orthognal to y, written x I y, if 

Nx + 2 yll ~ llxll 

for all scalars 2. For subspaces M and N of ~ ,  we say M_I_N if m_l_n for 
all m~M and n~N If ~ is in fact a Hilbert space, this defines the usual "inner 
product"  orthogonality. For  general Banach spaces, however, this is a non- 
symmetric notion, i.e., x may be orthogonal to y, but not vice versa. 

This definition makes sense for random variables with pth moments in that 
we may take (&o, II" Jl) to be LP(O) with the usual norm. For X and Y in LP(fY), 
if X is orthogonaI to Y,, we will write X_l_p Y The relation 5_p is well-defined 
for jointly SeS random variables as long as 1 __<p < e. 

The following known characterization of orthogonality will be useful for 
us. For  a proof, consult [15; Thm. 1.1l, p. 56 and Lemma 1.14, p. 92] 

Lemma 1.1. Let X and Y be random variables with p'~ moments, p> 1. Then 
X Lp Y if and only if EX <v- l> y= O. 
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Here, we use the convention that for complex z and real q, z <q> denotes 
I z I q- 1 ~. (We take 0 <q> = 0.) 

A point evident from this lemma and crucial for us is that the orthogonality 
relation is "l inear" in the second argument, but not in the first, i.e., X Lp Y 
and X_kpZ implies X•  for all a, b - but we may have X •  and 
Y-[-pZ without X + Y-I-vZ. 

The next lemma is somewhat curious. 

Lemma 1.2. Let c~> 1 and {X, Y} be jointly SaS represented by {f, g). Then for 
all pc(l ,  a), 

EX<V-t>y ~f<~-l>gdm 
EIXI ~ ~lfl=dm 

(m is Lebesgue measure on [0, 1]). 

Remark. Note that the right-hand side does not depend on p. It follows from 
this and Lemma 1.1 that for such X and Y, X_J_v Y for some p~(1, ~) if and 
only if X Z p Y  for all such p, if and only if f_l_pg. We shall henceforth say 
in this case simply that X is orthogonal to Y, omitting mention of p, and write 
X_I_Y 

Proof of Lemma 1.2. Let Xo be S~S with Ee"X~ -I'h~. Now, Eexp[i t (X 
+ 2  Y ) ] = e x p [ - I I f + 2 g l l ~ l t [ ' ] ,  which shows that X + 2  Y is distributed as Ihf 
+ 2 g/I ~ Xo. Therefore, 

EIX + 2 YI v= I]f + 2glL~EIXol ~. 

Differentiating this expression with respect to 2 and putting 2 =0, we obtain 
when 1 < p < e that 

EX<P-x> Y=E IXoW Ilfll~P-=~f <~- ~>g dm =E [XI p IIf [l~-~ ~ f <~- ~> g din, 

proving the lemma. [] 

It follows from Lemma 1.2 that 

X -EX<p-~> Y X  
EhXl p 

where the first equality is established by Kanter [8]. This combined with Lemma 
1.1 shows 

Corollary 1.3. For 1 < p < a  and SaS {X, Y} represented by {f, g} we have 

X •  EX<V- ~> Y X =  Y - E ( Y [ X ) ;  
EIXl ~ 
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and the following are equivalent: 

(i) X •  Y, 
(ii) E(Y[X)=O, 

(iii) E X  <v-l> Y=0, 
(iv) ~f<=-*>gdm=O. 

We note that if X and Y are independent Sc~S variables, then necessarily 
XA_Y and YA_X. The converse is not true, however, since Schilder [14] has 
shown that X and Y are independent if and only if their representatives f and 
g have a.e. disjoint support (i.e., f . g  = 0 a.e.). Clearly there exist f and g with 
~f<=- '>g dm=O yet f . g # 0  a.e. In fact, orthogonality implies independence 
only in Gaussian systems, in the following sense. 

Proposition 1.4. Let 1 < c~ <= 2, and let L be a closed linear space of Sc~S random 
variables with dim(L)> 1. Suppose that whenever X, Y~L and X_k I1,, then X is 
independent of Y. Then ~=2,  i.e. L consists of mean-zero Gaussian random vari- 
ables. 

Proof Choose an arbitrary non-zero X e L  and let 1 < p < e .  By the hypothesis 
d i m(L )> l  we may find Z e L  such that Z4~2X for any 2MR. Let fl 
=EX<P-I>Z/EIX[P. This gives that EX<P-I>(Z-flX)=O. Since Z - f i X # O ,  we 
may find a constant b so that YA=b(Z--flX) is distributed as X. Since 
EX<V-'>Y=O, Corollary 1.3 shows X_I_Y, and so X and Y are independent 
by hypothesis. This implies that (X, Y) is distributed as (Y, X), and hence that 

E(X+ Y)<P-'>(X- Y)=E(X+ Y)<P-I>X-E(X+ y)<p-l> Y=O. 

Hence X + Y_l_ X -  Y,, and again this means that X + Y is independent of X -  Y. 
Now let c be such that r Y). Then 

by independence we have that for all t, 

and 

E exp {i [t(X + Y) + t(X - Y)]} = E exp {i t (X + Y)}. E exp {i t (X--  Y)} 

= q~4 (t)= exp(--4c I t I~), 

E exp {i[t(X + Y) + t ( X -  I1)]} = E exp {i 2t X} 

= q~ (2 t) = exp(-- U c I t 1=). 

Therefore 2~=4 and e=2 .  [] 

The equivalences of Corollary 1.3 can be seen in a broader context. Let 
1<p<cr and let {Xt: t s r }  be any SeS process represented by { f :  t eT}  (T 
here is arbitrary). Fix an arbitrary subset S of T, let tE T \S ,  and define L(S) 
=@{Xs: s~S}L,(e)and E(S)=@{fs: seS}L~. The following result gives necessary 
and sufficient conditions for the conditional expectation to be linear, i.e. to 
belong to L(S). 
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Propos i t ion  1.5. The following are equivalent: 

(i) e (Xt I Xs: s ~ S) ~ L(S). 

(ii) There exists 2eL(S)  such that L(S)_I_Xt-X (in which case E(XtlX~: 
s~S)=2). 

(iii) There exists ~, ~ E(S) such that L'(S)-k, f t-~,  (in which case E (Xt [X~: s e S) 
is represented by ~,). 

Proof. Let Jo be the spectral representation map for {Xt}, i.e., Jo(Xt)=f.  Use 
the same argument as in the proof of Lemma 1.2 to see that for any t j sT  
and scalars 2j, 

n 

where Xo is as in Lemma 1.2. Putting c =  [[XoIIL,(e), this shows cJ o extends 
by linearity and continuity to an isometry cJ of L(S) onto E(S). Hence (ii) 
and (iii) are equivalent. 

We show (i) and (iii) are equivalent. Let Y by any arbitrary element of 
L(S), and define h = J(Y). (Or equivalently, let h be arbitrary in E(S) and define 
y =  j -  1 (h).) For  q~ (u) __a E exp [i (u Xt + Y)], we have q~ (u) = exp [ - [t uft + h II ~-I, and 
thus, putting X = E (Xt I Xs: s ~ S), that 

E e i r X = E X t e i r =  - i  ~6'(0)= i e exp[--Ilhll~] ~ h<V- l>f din. 

Now for arbitrary Y2~L(S), let g = d ( 2 ) .  (Again, we may let ~EE(S) and define 
2 = J -  l(g).) Define 0 (u) = E exp [i(u 2 + Y)], and note that ~ (u) = exp [ -  LI u 
+ hi[ ~], and 

This gives 

EeiYX= -- i 0'(0) = i a e x p [ -  ][h[]~] ~h (~- 1> ~ din. 

E eiY(~ - 2)  = i ~ exp [ - H h II ~] ~ h <" - 1 >  (ft - -  g )  d m .  

Since both )~ and 2 are measurable with respect to o-{X(s): seS}, we have 
that X~=2  if and only if E e i r ( ~ - 2 ) = O  for all YEL(S) (see, e.g., [8] or [10]). 
This fact and Lemma 1.1 applied to the last equation give us the equivalence 
of (i) and (iii), proving the proposition. []  

In particular, this shows how the linearity of regression is related to ortho- 
gonality. 

Corollary 1.6. The following are equivalent. 

(i) E(Xt[X~: s~S)=0 .  
(ii) @{X~: s~S}v,(~).J-X,. 

(iii) ~{f~:  Sc--S}Le L ~ f  t. 
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2. Orthogonal Decomposition of Stable Sequences 

Throughout this section we assume 1 < e < 2  and take p such that l < p < e .  
Also we let {X,: - o o < n < o o }  be a SeS sequence on (f2,2, P). We define the 
linear spaces of the sequence: 

L,=spp{Xk: k<n}L~,(o), 
L-oo= ('] L,, 

n 

and the corresponding nonlinear spaces: 

= Z . ,  P) ,  

11 

where 2,  = cr {Xk, k < n}. Note that L, consists of SeS random variables, while 
5e, contains much more. Note also that since for every X e ~ { X , :  - oo < n < oo} 
with representative f ~ U  we have, as in the proof of Lemma 1.2, ]JXrlLp<e) 
=CplrfllL, for some constant Cp= IIXollLp(e) depending only on p and not on 
X, the choice of p in (1, e) throughout the following is immaterial. 

We will be concerned with the orthogonal decomposition of these spaces. 
Our notation, which is somewhat non-standard, is as follows. For a Banach 

space ~ '  and closed subspaces M1, M2 .. . .  , the symbol MI+ ... + M ,  or 
\ j = l  / 

denotes the subspace (x~+ . . .+x , :  xjeMj, l<j<n} .  Also, M I + M z + . . .  

or is defined to be the subspace U ~ Mj. Writing d g = M ~ O . . . |  
- +  ._~ 

j n j = l  

or means that Jr = M~ +. . .  + M, and also that 
. =  

(M~+...+Mk)A_(Mk+~+...+M,) for all l < k < n .  (2.1) 

Writing Jg = M1G... ~ M ,  or ~g = (~ means that ~ = M1 +. . .  + M, and 
that " J = 

(M,+.. .+Mk+I)A_(Mk+.. .+M1) for all l < k < n ,  (2.2) 

i.e., that J ~ = M , O . . . O M  1. Thus the statements JC[=MIOM 2 and 

=MIGM2 are, in general, distinct. Writing J ~ =  ~ OMj respectively, ~ 
~ j = l  --' 

f i r )  

= ~ *Mj/wi l l  denote that ,dt= ~ M; and further that (2.1)(respectively (2.2)) 
j = l  ~ ] j = l  

holds for all n. 
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If ~r ~ | and we pick O4xjeMj, it follows that {x2} forms a basis 
j = l  "-* 

for its closed linear span, i.e., each xeUp{xj: j =  1, 2 . . . .  } has a unique norm- 

convergent expansion x = ~ 2j xj for some scalars 2j. This is so because a neces- 
j = l  

sary and sufficient condition for {xj} to be a basis for its closed linear span 

m Xj 
is the existence of K < oo such that for all n, m___ n, and scalars flj, _~ flj 

J n 

<K j~=tfljx j (see, e.g., [16]); and, because of orthogonality, 

The same argument cannot be made in the case J / =  ~ GMj.  
j = l  ~ 

Right Innovations and Wold Decomposition 

We will say that {X.} has right innovations if for each n there is a subspace 
N. so that L.=L._IGN.. N. is necessarily of dimension one or zero (by an 

elementary argument). Similarly, we say that {X.} has right non-linear innova- 
tions if for each n there is a subspace ~4/~. so that ~ .  = 5r 

-+ 

We say that {X.} has a right Wold decomposition if there are subspaces 

N., - o o < n < o o ,  so that for each n, L.= ON.-k OL_co, L._kN,. for all 
\ k = O  ~- / ~- c o  

re>n, and further each Z~ ~. GNu_ k has an LP-convergent expansion Z 
k = O  ~- c o  

= ~ W._k, W~Nj, which is then necessarily unique. In this case it is easy 
k = O  

to see that we can write X. = II. + Z. ,  where 

(i) {Y.} and {Z.} are jointly SeS processes, 
(ii) {I1.} _ L _  co (the "remote past") and {Y.} • {Z.}, 

co 

(iii) there exist ~jeN~ and ak,.el( so that Z . =  ~ ak, n~ ._  k. 
k = O  

In the case that {X.} is stationary and not completely deterministic (i.e., L_co 
+Lo), we may choose II~jllLp(e)=l and claim that ak,. is independent of n, 
i.e., Z .  is a moving average of an "or thonormal  sequence". 

Similarly, we can define right non-linear Wold decomposition by requiring 

the existence of ~ so that s = X . _  O~ - ~ o ,  ~ .  A_ ~ for m > n, and 
k k = O  / 
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oo 
with the property that each ~ e  ~ OJfs k has a norm convergent expansion 

k = 0  *-- o r )  

~ =  ~ ~/~,-k, ~ s ~ ,  which is then unique. 
k = 0  

The first result, Proposition 2.1, is the key ingredient to the proof that right 
innovations, linear or non-linear, imply the corresponding Wold decomposition 
(see Theorems 2.2 and 2.3). This proposition is implicit in [2] and [4]; we 
include a proof here for completeness. 

Proposition 2.1. Suppose that J/t is a closed subspace of some L p space, p> 1, 
and that there exist closed subspaces #r and (9, of Jg with ~ =  ~{,O(9,O... O(91 

for each n> l. Then Jet= (9, (O J/t,) and each k~ 0(9, has a unique 
\ n = l  / n n = l  

norm convergent expansion k = ~ on, on ~ (9.. 

Proof Define J l t~= ~ ~/~,, ~=(9 ,O . . .O(91 ,  and X ~ = U J f , .  We first show 
n n 

that ~/~ = J/l~ OX~.  Clearly, ~/~ 5_~ff, for each n, and by continuity, ~/~o~ • $(Co~. 

Now for xEdd, write x = m , + k ,  with m,~Jr k , ~ .  Since m, Lk ,  we have 
that 

Im.H<lm.+k.ll=j[xll and Ipk.ll<=llx-m.N<2]lxH. 

The sequences m. and k., being norm bounded in a reflexive Banach space, 
have simultaneously weakly convergent subsequences, say {m.~} and {k.,} with 
weak limits m~ and k~, respectively. It is clear that x=m~o+k~, and that 
k~ e :/g~, proving ~ = Jg~o O x#~o. 

__+ 

It remains to show that each element keYf~o has a unique norm convergent 

expansion k = ~ o,, o, e (9,. For each n we can write k = m, + k, uniquely where 
n = l  

m,~dg, and k , ~ ; .  In turn we may write k,=o~ + ... +o, uniquely with oje(9 i. 
Define the operator Q,: o%Co~ ~ ~ by Q, k = k,. It is easy to see that Q, Qz = Q, A ~. 
Also by orthogonality we have that 

IIQ.kl <= I lk -Q.k l  + Ilkll = IIm.ll +/kH < lira. + k.]l + I[kll =2  Ilk/ 

so that {Q.} is a bounded sequence. Clearly, s-lira Q . k = k  for any ke~)Xm. 

Hence, by continuity, we have for any k ~  that 

k=s-l im Q.k=s-l im ~ o~= ~ o,. [] 

Theorem 2.2. {X,} has right non-linear innovations and a right non-linear Wold 
decomposition. 
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Proof Note that for each n, ~n_t={E(X[z~n_l): Xe~:'n}. Define dV.={X 
- -E(XIZ ._J:  X ~ . } .  Clearly, each element of 5e. is the sum of an element 
of ~ . - 1  and an element of JV~.. To see 2e._ 11 JV., let X e ~ . - 1  and Y~/~., 
and note that E(YI Z._J=O.  Hence, 

EX<P- 1> y= EE (X<p- 1> Y I Z,,_ 1) = E X<P- 1) E ( Yi Z,,_ 1 )  = O ,  

and thus {X,} has right non-linear innovations. 
To see that {X,} has a right non-linear Wold decomposition, fix k and 

note that by the argument above 

= ~ 5 - . | 1 7 4 1 7 4  
__+ __+ ..~ 

Now identify ~ k - .  with Jg. and ~ _ . + ~  with (9 n of Proposition 2.1. [] 

The next result is somewhat more interesting. 

Theorem 2.3. The following are equivalent. 

(i) {Xn} has a right Wold decomposition. 

(ii) {X,} has right innovations. 

(iii) E(X,+IlX, ,  X,-1 .... )EL, for each n, i.e. regressions on the past are 
linear. 

Proof The "linear version" of the proof of the second statement of Theorem 
2.2 shows that if {X,} has right innovations it has a right Wold decomposition. 
The converse follows by definition, so (i) and (ii) are equivalent. 

We show the equivalence of (ii) and (iii). Take, in the notation of Proposition 
1.5, Xt~=X,+I and S = { n , n - 1  . . . .  }. Then L(S)=L,, and by that Proposition 
we have that (iii) is equivalent to the existence of 37 e L, such that L, .1_ X, + 1 -  )~. 
The latter, clearly, is in turn equivalent to the existence of the required innovation 
space N,+I. [] 

Remark. By Theorem 2.2, we may write X . = ~ , + ~ ,  where ~ . eS -oo  and 
+ o o  

~.~ ~ OJff,-k. If {X,} has a right Wold decomposition, we have X . =  Y,+Z,  
k = O  ~ 

as in the comment following the definition. In this case, we must have ~,---I1, 
and 2T,=Z,, since L -oo~r  and gk={X--E(Xlr, k_l): Xegk}~{X 
-E(XIXk_ 1): X e &Fk} = ~kk, and the decomposition is unique. 
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Left Innovations and Wold decomposition 

We now examine left innovations and Wold decompositions. Their definitions 
are obtained by reversing the arrows in the definitions of their right counter- 
parts, and ignoring the requirement L,_L Nm (or ~ ,  _L ~Ar) for the Wold decompo- 

sition as N,,, 2 L, follows from L, = ~ GN,_ k OL_ oo �9 Also, the "basis proper- 

ty" of ~ ON,_k is automatically satisfied, as can be seen from the argument 
k = 0  ~ 

following the definitions of �9 and O. 

As conditional expectation is an appropriate notion for the study of right 
orthogonality, the metric projection in L p is an appropriate notion for the study 
of left orthogonality. For completeness we include the needed definitions and 
preliminary results here in a compact, self-contained way (see [7, 11, 15]). 

Let (Se, ll'll) be a Banach space, and M a closed subspace of ~q. For xe~q ~ 
an element mxeM is called a best approximation to x in M if IIx-mx]l < ]Ix-roll 
for all x~M. If ~ is reflexive and strictly convex (as we henceforth assume 
throughout) m~ exists and is unique (see [15]). In this case we define PMX=m~ 
and call PM the metric projection onto M. PM is continuous, bounded, and 
idempotent, but not in general linear. In fact, if PM is a linear operator for 
all closed subspaces M of L,f, ~ must be isometrically isomorphic to a Hilbert 
space (see [i5]). 

The relation between orthogonality and metric projection is illustrated by 
the following two standard results. 

Proposition 2.4. Let Q: 2 e ~ M  be an operator (not necessarily linear). Then 
Q=PM if and only if ( I -Q)~_ l_M.  

Proof Q=PM if and only if I[x-Qxll < Hx-mll for all m e M  and x~& a, if and 
only if Hx-QxH<llx-Qx+ml[ for all mEM and xeSe, if and only if 
(I-Q)~Y? J_M. [] 

Proposition 2.5. x A_ M if and only if P~t x = O. 

Proof x_LM if and only if IIx-mll>=llxll= Ilx-01] for all meM, if and only 
if P~ x =0. [] 

Although PM is not a linear operator in general, the following known "quasi- 
linearity" properties are true and will be needed for the proof of Theorem 
2.10. 

Proposition 2.6. PM(a x)=a PM x for scalars a and xe  S~. Also, P~t(x + m)= P~t x 
+ P~tm for all x E ~  and m~M. 

Proof The homogeneity is obvious. Also, for fixed x E ~ ,  mcM,  

II(x+m)-(PMx+PMm)ll = IIx-P2~xll < [Ix+m-m'll 

for all m' e M, showing PM(x + m)= PM X + PM m. [] 

Proposition 2.7. I f  M has codimension one in ~ ,  then PM is a linear operator. 
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Proof We show additivity; the homogeneity follows from Proposition 2.6. Let 
ZoESf \M be non-zero. Then for Xl, x 2 ~  there are unique m f i M  and scalars 
aj such that 29 =mj + aj Zo. Then by Proposition 2.6, 

PM(Xt + X2) = P~t((ml + m2) + (al + a2) z0) 

= ml + m2 + (at + a2) PM Zo 

= P~t (ml + at Zo) + PM (mE + a2 Zo) 

=PMxI q-PMX2. [] 

We now apply these facts to our situation. Call L = L+ ~o = ~ { X . :  - o o  < n 
< 00}Lp(r~), 1 < p < a .  Since L v is reflexive, so is L. Denote by P, the metric projec- 
tion of L onto L..  It turns out that every Sc~S sequence has left innovations: 

Proposition 2.8. {X.} has left innovations, both linear and non-linear. 

Proof Define N . = ( I - P , - I ) L , .  By Proposition 2.4, N,J-L._t;  and since P,_IL,  
=L,_~ we have L ,=L ,_~+N. .  The proof for left non-linear innovations is 
identical. [] 

Thus no conditions are needed to split off a "left orthogonal" innovation 
space. But, unlike the case of right innovations, this is not enough to produce 
a left Wold decomposition. The problem lies in the impossibility of developing 
an argument like that of Theorem 2.2, as the following example shows. 

Example 2.9. There exist one-dimensional SaS subspaces Mr, M2, M 3 such 
that M j Z M k  for all j4:k, yet M t + M  2 is not orthogonal to M3; hence 
(M3 4GMz)(~M 1 =[: MaOM20M1.  

Proof Let 1 < e < 2 and define the functions 

f l  = 1A-- 18+ lc--  1D, 

f 2 =  l a + 2  " 1B--lc--2" 10, 

f3 = 1~0,11, 

1 1 where A = [0, �88 B = [4, z), C = [�89 3), and D = [�88 1]. It may be easily checked 
that 

~ fj<~-l> fkdrn=O for j4=k, 

(.fi +f2)<~- 1>f3 dm =�88 ~-1 + 1 --3 "- 1)>0. 

By Corollary 1.3 this implies that the S~S subspaces Mj& 2 ~ fj(s)dZ(s): 2~ 
have the advertised properties. [] o 

There is still, however, a nice characterization, in terms of the metric projec- 
tions P,, of those processes having a left Wold decomposition. 
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Theorem 2.10. The following are equivalent. 

(i) {X,} has a left Wold decomposition. 

(ii) The metric projection operators ~ : L+ ~ --+ L,  are linear. 

(iii) The operators P, commute. 

(iv) Denoting by P,,m the restriction of P~ to Lm, we have that for all k>  1, 

e.,.+~ e.+~,.+2 ... ~+~_1,.+~ = P.,.+~. 

Proof. We show (iv) ~ (ii) ~ (i)~ (iv) and (ii) <=> (iii). 

Assume (iv) holds. By Proposition 2.7, each operator P~+l,.+,+l is linear, 
implying each P~,n+k is linear. P,, being linear on each L,+k, is by continuity 
linear on all of L + ~, giving (ii). 

Assume (ii). Define N, = ( I - P . _  ~)L., and let Z.~  N.. Then Z .  _L L._ 1 by Prop- 
osition 2.4 and thus Z . L L . _ z  for I>1.  By Proposition 2.5, P._~Z.=O. The 
linearity of P. shows P,_ k (Z. + Zn-  1 +.- .  + Z ._  k + ~) = 0, giving us by Proposition 

2.5 that N. +N._ ,  + . . .  -q- N n _ k +  1 _LL. k; and hence that L . =  AT._ z L._  k. 
\ / = 0  / 

We now note that Propositon 2.1 and its proof are valid with all arrows and 
orthogonalities reversed, provided we change the estimates on m, and k, to 
read Plk,[I < ]lm,+k,H = Ilxll and IIm, FI _-< I I x - k ,  ll <2HxI/. (Also. we may ignore 
the proof of the basis property of S@(9, by our remarks following the definition 

of left Wold decomposition.) Applying this version of Proposition 2.1, then, 
we have that (i) holds. 

Assume (i). Then we may write for all n and l>  1, 

L,+t=N,+lGN,+I_10...@N,+I @L,. 

This means that writing YeL.+~ (uniquely) as Y = Z , + z + . . . + Z , +  1 + Y, with 
ZjeNj and Y.eL., we have P.,.+I(Y)= Y.. Then 

P.,.+~ "'" Pn+k- 1 ,n+k(Zn+k-[ -""  -'~ Z n + l  "{- Yn) 

= P n , n +  1 . . .  Pn+k-  2 ,n+k-  l ( Z n + k - 1  "Ai- ' ' '  -{- Zn+ l -{- Yn) 

- P.,.+ ~(z.+~ + Y.) 

= Y .  

=P~, .+k(Z.+k  + ... + Z . + l  + I1.). 

Thus, (iv) holds. 
We now show (ii)~(iii). Assuming first that (ii) holds, we note that for 

arbitrary WeL+ oo and m<n,  

PmP~ w =  p , . ( w - ( w -  p~ w)) =pm W-- Pm(W-- P. W) = P,~ W= e~P., W 
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since Pro(W-P, W)= 0 by Propositions 2.4 and 2.5. Hence (ii) implies (iii). Conver- 
sely, assume (iii) holds. We show by induction on k that P~ is linear on each 
L,+k, whence it is linear on L+ ~ by continuity. P, is homogeneous by Proposition 
2.6; we show additivity. Clearly, P, is additive on L,. Assume it is additive 
o n  Ln+k_ 1. Let W~, W 2 be arbitrary in Ln+k, and define Yj-..=Pn+k_IWj and Zj 
= Wj-Yj. Note Zj•  k_ 1. By Proposition 2.7, P~+k-1 is a linear operator 
on L,+k, and this coupled with (iii) and our induction assumption gives 

Pn(W1Ay W2)~- PnPn+k- l(~ 1 Jr- Y2 "]- Zl -[-22) 

=P.(YI+ 5 )  

=P. 5 + P .  V~ 

= P. P. + ~- ,(Vl + ZO + P. P.+~- ~(g~ +Z~) 

= P. W~ + P. W2. 

Thus (iii) implies (ii). The proof is complete. [] 

Remark. The observant reader will have noticed that we make no use whatsoever 
of the Sc~S property of {X,} in Proposition 2.8 and Theorem 2.10. Thus these 
results are true for any pth order process {X,} (i.e. EIX.IP< oe for all n) with 
p > 1. Of course, the definitions of innovation and Wold decomposition in this 
case are with respect to the L p orthogonality • 

We do not have a characterization of {X,} for which a left non-linear Wold 
decomposition exists. The method of proof of Theorem 2.10 will not work to 
prove a non-linear version of that theorem, as it uses the property that L, 
is codimension one in L,+I. However, the non-linear analog of the proof that 
(ii) implies (i) is valid, so that linearity of the metric projections P,: 5Y+ ~ ~ ,  
implies that {X,} has a left non-linear Wold decomposition. 

Innovations: Right and Left, Nonlinear and Linear 

It is of interest to compare the various types of innovations introduced earlier, 
which unfold the information of a SeS sequence {X,}. 

The right nonlinear innovations {~'} are given by the residuals of the regres- 
sion of X,  on the past X,  _ 1 . . . .  : 

Y . r = x . - E ( x . I x . _ I  . . . .  ). 

The right (linear) innovations {I~} exist precisely when these regressions are 
linear (Theorem 2.3) and then equal the right nonlinear innovations, It = ~r .  

The nonlinear left innovations {jL} and the (linear)left innovations {I~,} 
are given by the nonlinear and the linear prediction errors of X,  from the 
past X,_ 1, ... : 

J~'=X,-- NL(X,[X,_  1, ...), 

I ~ = X , - L ( X ,  IX,-1, ...), 
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where NL(X.  IX._ 1,...) is the "best" nonlinear and L(X. [X._ i . . . .  ) is the "best" 
linear predictor of X. from the past X. - I  .. . .  , i.e., the element of the nonlinear 
span of the past Y.  and of the linear span of the past L., which is nearest 
to X. in Lp-norm (1 <p < c~). 

The nonlinear and linear left innovations coincide, z In = J , ,  if and only if 
the best nonlinear and linear predictors of X, from the past X,_ 1 . . . .  coincide, 
i.e., if and only if the metric projection of X, onto L,_ 1 coincides with its 
metric projection onto ~ , -1 ,  if and only if there is a YneL,-1 such that 

E(Xn-- Y,,)<v- 1> Z=O for all Z~f~n_l, 

or equivalently 

E { ( X . -  V.)<P- I> IX._I  . . . .  }=0, 
(in which case of course 11, = i  = ~ ) . l  1 

The nonlinear left and right innovations coincide, ~r = ~ ,  if and only if 
the regression predictors from the past coincide with the best nonlinear predic- 
tors from the past, E(X, INn-1 . . . .  ) =NL(X,, I X,_x,. . .) ,  if and only if 

E{[X,-E(XnlXn_I . . . .  

This condition is a form of weak conditional symmetry, and is clearly satisfied 
if the conditional law of X, given X,_I , . . .  is symmetric (since it will then 
be necessarily symmetric about its conditional mean E(Xn [X,_ 1,...)). 

The right linear innovations exist and equal the left linear innovations, I~ = I~,, 
if and only if the regression predictors from the past coincide with the best 
linear predictors from the past, E(X.IX._I ,  . . . ) = L ( X n [ X n _ I ,  ...), if and only 
if E(X. [X._I, ...) is linear and 

E { [ X . - E ( X . I X . _ I  .. . .  )]<P-I>Xk}=O for all k<n. 

This is weaker than the previous conditional symmetry condition and is likewise 
satisfied whenever the conditional law of X, given Xn-1,... is symmetric. Thus 
symmetry of the conditional laws and linearity of the regressions implies that 
all types of innovations coincide. 

So far we have limited the discussion to one-step ahead prediction. But 
the Wold decompositions and innovations introduced here are precisely tailored 
to handle the general m-step ahead prediction; and indeed any estimation prob- 
lem based on observations of the past of X. To simplify the notation we will 
write the expression of the m-step predictors and their errors in terms of innova- 
tions only in the stationary case. Let 

ak ~n -k  
k = O  
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be the right nonlinear Wold decomposition of X, which always exists. Then 
r r ~, - a 0  ~,, and thus it can be written in the form 

• a ~  
X n : @/r -~ ~-r n - k "  

k=0 ao 

It then follows (as in the proof of Theorem 2.2) that the m-steps ahead (m > 1) 
regression predictor is 

oo a r 

E(X,  lX,_m, ...)=~,~ + E ~ J # - k  
k=m ao 

and the regression prediction error is 

. . )=~-1 a~ J,~-k. X,--E(X,,IX,,-m,.  ~=o a~o 

If a linear right Wold decomposition exists (cf. Theorem 2.3), then one simply 
replaces Y] by Y and J by I. 

Now assume a left linear Wold decomposition exists (cf. Theorem 2.10). 
Then we obtain likewise 

X,=- Y: + ~. al~k lZ_ k 
k = O  alo n 

from which it follows that the m-step ahead best linear predictor is 

oc I 
• K"  a k  l l  

L ( X . I X , _ m  .. . .  )=rd  _, 
k=m UO 

and the linear prediction error is 

m - 1  a t 
X , - L ( X ,  lX ,_m, . . . )=  k z Zg l,-k" 

k = 0  ~ 0  

3. Independent Decomposition of Stable Sequences 

As we observed following Corollary 1.3, ir~dependence implies two-sided ortho- 
gonality for SeS random variables, but n~t conversely. Thus we should not, 
in general, expect as in the Gaussian case~that the innovation subspaces in 
a Wold decomposition are independent. In this section, we study those processes 
for which this is the case. L 

Using the notation of Sect. 2, we say [hat a SeS sequence {X,} has indepen- 
dent innovations if for each n we can find 'a subspace N, so that L, = L,_ 1 + N,, 
with L,_ 1 and N, independent. To symbolize this we write L,=L,_I@N,.  We 



Innovations and Wold Decompositions of Stable Sequences 17 

say that {X,} has an independent Wold decomposition if there exist subspaces 

{Nk} so that for each n, L,,= ~ N,_k+L_co where {L_ co, Nk: k~Z} are mutually 
k = 0  

co 

independent(insymbols, Ln=(k~=o@N,-k)OL-co).If{X,}hasanindependent 

Wold decomposition then clearly it has both right and left Wold decompositions 
and all three coincide. 

The independent Wold decomposition for stochastic processes with infinite 
variance was studied by Urbanik [18-20] for strictly stationary processes 
"admitting prediction", and by Thu [173 for random fields. Here we give spectral 
necessary and sufficient conditions for the existence of such a decomposition 
for Sc~S sequences. 

Theorem 3.1. Let 1 <~ < 2 and let {X,} be a S~S sequence, represented by {f~}. 
The following are equivalent. 

(i) {X,} has independent innovations. 
(ii) {X,} has an independent Wold decomposition. 
(iii) For all n, f , = g , + h n ,  where g,e~{fk:  k<----n--1}L, and fk" h ,=0  a.e. for 

k <n-1 .  

(iv) For all n, f ,= ~ak,,O,_k+O,, where tp,e~Ufi{f  k" k<=m}, ~P{fk: k 
k = 0  m 

< = n } = ~ { f k :  k<m}+sp{Ok: k<n}, 0k.~b,=0 a.e. for all k, l, and ~bk.~bt=0 
m 

a.e. for all k 4=l. 

Proof We show first that (i) is equivalent to (ii). Assume (i) holds, and observe 
that for fixed n we may write 

=L~-2@Nn-I@Nn 

-L~_k_I@N~_~O...GN.. 

Choosing 1 < p < a ,  and applying Proposition 2.1 (remembering that indepen- 

dence implies orthogonality), we get that L, = N,-k L_co and that each 
k 

c o  

Ze ~ ON,_ k has the appropriate unique expansion. Since the spaces 
k = 0  

L,-k-1, N,-k,.. . ,  N, are mutually independent by the construction above, the 
mutual independence of {L_co,Nk: ke~} follows. So (i) implies (ii). Also, (ii) 
implies (i) by definition. 

We now deal with the spectral conditions (iii) and (iv). Recall Schilder's 
result that SaS variables are independent if and only if their spectral representa- 
tions have almost disjoint support. 
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Assume (i). We may then write Xn= Y , + Z  n with YneL,_~, and Z n indepen- 
dent of L,_a. Denoting by {g,, hn} the representatives of {Y,,Z,}, we see (iii) 
holds. Conversely, if (iii) holds, we let Z n be the random variable in L, which 
is represented by hn, and let Nn = sp {Z,}. Nn is independent of Ln- ~ since fk" hn = 0 
for k < n - 1. It is clear that Ln = Ln- 1 + Nn, so (i) holds. This shows (i) is equivalent 
to (iii). 

Assume (ii). If dim(Nj)+0, choose a non-zero WjsN~. Otherwise, let Wj=0. 
Let {qSj} be the representatives of {Wj}. By hypothesis, X,  has an independent 

expansion Xn= I1,+ ~ ak, n W,-k, where Y, e L _ ~ .  Letting {0i} represent {Y~}, 
k = 0  

we have f , = O n +  ~,ak, n4)n-k, with OnSOgfi{fk: k<m}. The relation Ln 
k = 0  m 

=L_Q@ ~, @Nn-k translates in representation space to the remaining state- 
r t 3  

k = 0  

ments in (iv). Hence (ii) implies (iv). That (iv) implies (ii) is easily seen, since 

(iv) implies (iii) with gn & 0n + ~ ak, n On-k and hn & ao,, qSn. Therefore (ii) is equiv- 
k = l  

alent to (iv) and the theorem is proved. []  

In the stationary case, this result takes on the following form, where we 
assume for simplicity that {X,} is completely non-deterministic, i.e., L_ 0o = {0}. 

Theorem 3.2. Let 1 < e < 2 ,  and let {Xn} be a SeS sequence represented by {f~}. 
Then {Xn} is stationary, completely non-deterministic, and has an independent 
Wold decomposition if and only if (iv) of Theorem 3.1 holds with On =0, and 
with ak, n and [[qSn[[ ~ independent of n. 

Proof Assume first that {Xn} is stationary, completely non-deterministic, and 
has an independent Wold decomposition. Let S be the canonical shift of {X,}, 
i.e., S is the isometric linear extension of the map S X , = X n _ I  on LP(f2, Z,P). 
Since S preserves joint distributions 

Ln I@Nn=L,=SL,+I=S(L,@N,+i)=SL,@SN,+~ 

=Ln-l@SNn+l. 

This implies SN,+ 1 = N.. Choosing a non-zero Wo~No and defining Wk = S-kWo 
we see that {Wk} is an i.i.d, sequence with WkeNk. By our assumption, then, 

we may find ak., SO that X , =  ~ ak., W,-k for each n. Note that 
k = 0  

a~ , .W,_k=X,=SX,+I=  ak . ,+ lSW,+ l -k=  Y, ak.,+l W,-k, 
k = O  k = 0  k = 0  

whence a, ~= a,,, does not depend on n. 
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Letting {q~j} be the representatives of (W j}, we have that f , =  ~ ak(O,_g. 
k=O 

That II~jlb~ is constant in j follows from the fact that {W~} is identically distrib- 
uted, and that ~ .  q~k = 0 a.e. for k ~ j  follows from the independence of { W~}. 
~{fk:  k<n}=~{C~k: k<n} since L ,=~{Wk:  k<n}, and the first implication 
is proved. 

For the reverse implication, let W~eLj be the SaS random variable repre- 

sented by ~bj, and let Nj=sp{Wj}. Clearly, {W~} is i.i.d, and X , =  ~ a k W,_ k. 
k=O 

This moving average is stationary and completely non-deterministic. L, = ~ { Wk: 
k<n} since ~{fk:  k<n} =~{q~k: k<n}, proving the theorem. [] 

4. Examples 

We present here some examples of SeS processes having or not having various 
of the decompositions discussed in previous sections. They are intended to illus- 
trate the theorems we have proved (although they do not exhaustively do so), 
and more importantly, to provide some feeling for what is and what is not 
possible regarding these decompositions. We should note at the outset that 
in the Gaussian case c~ = 2, all aforementioned decompositions exist and coincide; 
and the situation for c~ < 2 should be compared with this. 

Example 4.1. Certain autoregressive and moving average So~S processes have Wold 
decompositions. Specifically, let {4,} be a sequence of i.i.d. S~S variables. If for 
all n, {X,} satisfies either 

K 

(i) Xn+ 1 = ~ ~kXn_kAr-~n+l with ~, independent of L,_l,  or 
k=O 

K 

(ii) X, = ~ #k ~ -  k with ~, e L,, 
k=O 

then {X,} has an independent Wold decomposition. 

Proof. In the case (i), it is clear that {X,} has independent innovations, and 
so by Theorem 3.1 has an independent Wold decomposition. The existence 
of the decomposition in case (ii) follows by definition (with N, = sp { (,}). 

Of course, left, right, or two-sided decompositions exist for such {Xn} when 
the appropriate hypotheses of left, right, or two-sided orthogonality of {~} 
are assumed. [] 

If ~,~L,, however, a moving average as in 4.1 (ii) may not have a Wold 
decomposition, as the following example shows. 

Example 4.2. There exists a stationary S~S moving average that has a left Wold 
decomposition, yet does not have a right or independent Wold decomposition. Specif- 
ically, let {~,},~=_oo be an i.i.d, sequence of S~S random variables, 1 <c~<2. 
Set X, = ( , - -  2 (,_1. Then {X,} does not have a right (linear) Wold decomposi- 
tion, yet does have a left (linear) Wold decomposition. 
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Proof To show {X.} does not have a right Wold decomposition, we proceed 
as follows. Assume that {X.} does have a right Wold decomposition, in which 
case we have E ( X . + I I X . , X . - 1  . . . .  ) eL .  by Theorem 2.3. We show that {Xk: 
k<n}  forms a basis for its span, whereby we may write E ( X . + I I X . , X . _ a  . . . .  ) 

o0 

= ~'. 2 k X . - k  for some {2k}, We then determine, using orthogonality, the only 
k=0 

possible choice for the sequence {2k}, and show that all necessary orthogonality 
relations do not hold with this choice, completing the first half of the proof. 

To show that {Xk: k<n}  forms a basis for its span, it suffices to show 
there exists K such that 

for all flj and all M < N .  Recall that for any 1 < p < e  there is a constant c=c(p,  ~) 
such that for all SeS variables X with representative f, ]lXIIp=crlfll.. Note 
also that we may represent {{.} by {lt.,.+ 1~} on U(~) .  Hence 

L oE 

= flown+ ~,( f i j - -2 f l j - t )r  p 
j = l  

[ L ] 
=c = Iflol~+ ~ I f l F 2 f l j - d ~ + 1 2 f l L I  ~ 

j = l  

& c ~ . S L. 

It thus suffices to find K such that S N > K - L  We claim that K = 2  will satisfy 
Sv - ~ /~v+k 

this requirement. To see this, call fl=]flo[=+ ~ [fl~-2flj_ll ~, and 7a -  
Then S = 1 tim 

N 

/3+ y, I/~j-2fij_l( '+12/~l ~' 
S_y~= j = M + I  

s ~  /~+12/~1 = 
N 

Y~ [flj-2fis_d~'+ 12/~NI " 
( j=M+~ ) 

>min  1, 12flMl" 

=rain 1, ~ I~j_~--~'J21~+I~'N_MI . 
j = l  

Putting n = N - M ,  we have 
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N - M  

1 7 ~ - 1 - 7 / 2 1 = +  I?N-MI ~ 
j = l  

= I1 -71 /21=  + 171 - ? d 2 f f  + . . .  + I ~/._ 1 - ? d 2 l =  + I?.1 ~. 

We may verify this is > 2  -= as follows. If not, then all terms must be less 
than 2 -~, i.e., 11-71/2[< 1, [71-72/2[<�89 etc. But [1-71/2[<�89 implies 71>1, 
and [71-72/2[<�89 with 71>1 implies 72>1, and so on until we reach ? , > 1  
in which case the last term is not less than 2-L We now have that {Xk: k< n} 
forms a basis for L,.  

Under the assumption that X,  does in fact have a right Wold decomposition, 

we may write E(X,+ 1 [X,, X,-1 .... )= ~ 2kXn_ k for some choice of {2k}. Also, 
k=0  

the 2k must satisfy X,_jLX,+,-- ~ 2kX,-k for all j > 0  by Proposition 1.5. 
k=0  

This requirement is equivalent, by Lemmata 1.1 and 1.2, to 

k = O  

=E(~.-j-2{.-j-1)<P-I>@.+~-2{.-- ~ 2k({.-k--2~.-k-0) 
k = O  

{ - 2 - ( 1 + 2 ~ ) 2 o + 2 ~ - 1 2 1 ,  j = 0 ,  
=c;(1+2")v/ ' -1" 22 ;_ t - (1+2~)2 j+2~-12;+  1, j > 0 .  

Thus 2 k must satisfy 

21 = 22-~+ 2(1 +2  -~) 20, 

2k+l=2(l+2-~))~k--22-~2k_l, k>0 .  

A solution to these equations is determined by specifying 20. The solution for 
k_->O is 

2k = 2k(1 --2-~) -1 [21-~(1 -- 2-~k) + (1 --2 - ~(k +1)) 201. 

It is easily seen that lira IJ~k[ = oo unless 20 = -21-~. Hence we must have that 
k--* ao 

2k= --(21-~) k+l 

and furthermore that 

X . + I -  ~ 2kX~-k=r -~) ~ (21-~)k~n- k, 
k=O k=O 
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To obtain our contradiction, recall that all of L, (not just each X._j) must 

be orthogonal to X,+I-  ~ 2kX,-k. Check that for j > 0 ,  
k=O 

E(Xn-j'-[- Xn-j-1)<P- l > (Xn+ l --k~=o2k Xn-k ) 

= E(~n_j--~n-j_ l -- 2~,_j_ 2)<P-1> @.+ l -- 2(1-- 2-=) ~ (21-=)k ~n_k) 
k=0 

= (const. ~=0) [1 - 21 -=-  2~-1(21-=) 2] 

= (const. +0) [1 - 22-=], 

which is non-zero for e < 2, completing the proof that no right Wold decomposi- 
tion exists. 

To show {X,} has a left Wold decomposition, it suffices by Theorem 2.10 
to show that the operators P, are linear. Clearly these operators are linear if 
and only if they are linear on each LM, M < oo. By our arguments above, {X,} 
is a basic set. It is thus a simple matter to show, in view of Proposition 2.6, 
that P, is linear on L M if and only if 

P. ak Xk = Y', ak P, Xk. (]') 
k 1 k=n+l 

Since X k is by definition independent of (and thus orthogonal to) L, for 
k>n+2, the RHS of (t) is just a,+IP, X,+I, or P,(a ,+IX,+0,  by Propositions 
2.5 and 2.6. Recall (Proposition 2.4) that P,(a. + 1X, + 1) is the unique YeL, satisfy- 
ing 

E(a,+IX,+ 1-  Y)<P-I>Xz=O for l<=n. 

The LHS of ('~) is likewise the unique Y'eL, satisfying 

M ,~<p- i> 
E ~ akXk--Y I Xz=0 for l<n. 

k=n+l / 

Now represent { Y', X,:  - oe < n < oe } by {g', f , :  - oe < n < oe } and recall 
that independence of Xk and Xz for ] k - / l > 2  is equivalent to fk and fz having 
almost disjoint support for like indices. Thus for l<  n, 

M t)(p- 1) 
0 = E ~ ak X k  - -  Y Xz 

\ k = n + l  

M ,)<~- 1) 
= (c~ ~ O) J " Z akfk--g ftdrn 

\k=n+l  

= (const. =~0) ~ (a.+ 1 f l+ l  __ g t ) (a - -1) f /dm 

= ( c o n s t .  + O) E ( a .  + ~ X .  + ~ - -  Y')<P-  ~ > Xz. 
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Hence Y= Y' (i.e. (t) holds) and {X,} has a left Wold decomposition. 
For the sake of completeness, we also compute this left Wold decomposition. 

Since {X,} is basic, we must have that P ,X ,+I=  ~ 2kX,-k  for some choice 
k=0 

of {2k}. Analogous to what was done for the right Wold decomposition for 

this process, we may use the orthogonality relations X, + 1 -  ~ 2k X,_ k Z X~ for 
k=0 

l__< n to derive equations which {2k} must satisfy. We omit the details, and state 
only that the analogous arguments show that 

2k = _ (21--~1 ~) k + l  

provides the unique solution to these equations for which ~, 2kX,-k converges. 
Hence the left Wold decomposition for this process is given by: L_oo={0}; 

ao 1 1 
N, = sp {I~.} where t ~, 1.= (21-~)kX,_k; and X , = I , - - 2  1,_ 1. [] l 1 - - ~  l 

k=O 

Example 4.3. All sub-Gaussian sequences have identical right and left Wold decom- 
positions, yet never have independent Wold decompositions. 

Proof Any sub-Gaussian process {X,} may be represented as X, = A -~ G,, where 
{G,} is a mean-zero Gaussian process and A is a positive e/2-stable variable, 

independent of {G,}. Let E,=sp{Gk. k<n}, and let E'=L '_~O ' - -  " ON~_ b e  
k=0 

the standard (independent) Wold decomposition of {G,}. Then L,=A�89 
L_~=A-~E_oo; and letting Nk=A~N{, we have the decomposition L,=L-oo 

co 

+ ~ N,_ k. That this decomposition possesses the appropriate orthogonalities 
k=0 

follows from the fact that if A, Z1, and Z2 are independent with Z1, Z 2 mean-zero 
Gaussian, then A+Z1 and A~Z2 are two-sided orthogonal" 

E (A -I Z 1)(p- 1 > (A ~ Z2) = EA p/2 Z~ p- 1 )  Z2 = EAp/2. EZCtp- 1 )  EZ 2 = O .  

The decomposition cannot be independent, since L, contains no non-trivial 
independent random variables (cf. Lemma 2.1 in [1]). [] 

Example 4.4. Let {r be i.i.d. S~S, l < e < 2 .  Let 0<121<1 and define X, 

= ~ 2k ~,+k" Then {X,} has a right Wold decomposition, but has no independent 
k=0 

or left Wold decomposition. 
o0 

Proof Let # = 2  <~-1> and define Z , = X , - # X , _  1. Since X , =  ~ #kZ,_k, we 
k=0 

have L, = ~ {Xk: k < n} = ~ {Zk: k < n}. We claim that {Z,} is not an independent 
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sequence, yet {Xn} has a right Wold decomposition Ln= ~ GNn-k, where Nj 

= p{ZA. 
Note Z.=--2<~-t>~n_l+(1--[2[~)~2k~n+ k. Represent {@ by {Ij}, 

k = 0  

I~& 1u.j+al, so that {Zn} is represented by {f.}, where 

L =  --2<~--~> In_ ~ +(1-121 ~) ~ 2kln+ k . 
k = 0  

Note also that since ~ i = X j - 2 X j + I ,  we have Ln=kp{...,~n_2,r The 
N 

following calculation shows aoX,+ ~ akr for any choice of aj and 
hence that Ln _1_ Z, + 1 : k = 1 

~[ao( ~ 2Sln+j)+ u 1<,,- 1> L \ j = 0  / k~=lakln_k] f.+~dm 

oo 
=a<~ 

k = 0  

k = 0  

~ 0 .  

Now observe that 

E(X.+l]X,,Xn_~ .... )=E(Z.+a + 2<~-~> X, IX.,Xn_I . . . .  )=~('a-1) Xn. 

Hence {X,} has a right Wold decomposition by Theorem 2.3. However, the 
spaces Nk are not independent, since fk'fz~O a.e. (It is also clear that {X.} 
is not a sub-Gaussian process, since L, contains independent random variables.) 

We now wish to show {X,} has no left Wold decomposition. We do this 
by showing that condition (iii) of Theorem 2.10 is violated. To this end, let 
P~ be the metric projection onto L,. We show that there are constants bl and 
b 2 such that P, Xn+I =blXn and PnXn+2-~-b2Xn yet 

Pn+l PnXn+ z=PnXn+ 2=b2 Xn:~bZ Xn=PnPn+l Xn+ 2, 

showing P~ does not commute with P n + l .  

Let Yj=P~Xn+~, j = l ,  2. Then necessarily Y~=blXR+ ~ak~R-k, since L, 
k = l  

=sp{Xn, ~,-1, ~,-2,---} and {X,, ~,-1, ~,-2 ....  } is a basic set. By Proposition 
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2.4, Y1 must satisfy X , + I - Y , 2 L  .. The requirement X,+l-Yl_k@ j < n - 1 ,  
implies 

k = l  

which in turn implies a j = 0  for all j, and Yl=blX,.  To find b,, note that X, 

- b l X . =  - b t  ~ . + 0 ~ - l - b l )  ~ 2k~.+k and compute 
k = l  

0 = E (X, + 1 -- bi X,) <v- i > X,  

=(const. , O ) [ - b ~ -  l> +(2-i-bl)<~- l> ~ (2k)<~-l> 2 k] 
k = l  

= (const. ~= 0) [--b<l=-1> + ( 2 - 1 - b l )  <=-l> I,~1=(1- I;o?)-*]. 

Solve for bl to get 

1 (IZI=) ~ ~_ 1 
b~ = ~- ' (a - l.a.l=)~ + (l;d=)~' q c~- l"  

Using the same methods, we find that I12 = b2 X. where 

1 ( I ,~ I~)  ~ 
b2= h 2 (1--1)~1~)~+(I,~1~) ~ 

N o w ,  b 2 = b 2 if and only if 

(1 - i ,z i ' -) ,  + (l;.l '=)~ = [(~ - l ) o l ' ) '  + (i.z P)q t 

if and only if 

( i  + 121=) ~ = ( i  -121=)  ~ + 2( IZl=) ~. 

Since 1 < e < 2 and 0 < I)~l < 1, we have that q > 1 and 

(I -]s ~ + 2 (12I=) ~ < [ I  - ] , q =  + 2 ~/~ t2]=y 

< [1 + I)ti~] ~. 

This shows b 2 =i = bl 2 and hence that {X.} cannot have a left Wold decomposi- 
tion. []  

Example 4.5. The stationary sequence X.= f ei"ZdZ(2) is orthogonaI but has 
- i t  

no right or left or independent Wold decomposition. 

Proof. Since for m ~e n, (eim~)<~-l > ei"~ d 2= ~ e-ima d"~ d 2=O, it follows that 

Xm J_ X,,. 



26 S. Cambanis 

We show that sp{X._2,X._a} is not orthogonal to X. ,  i.e., that S (a 

+ b ei a) <~-~> e i2~dZ does not equal zero for all a and b. Taking a = b, we have 

I& (l+ei'Z)~ ~ (l+e-ia)ei2a 
-= - .  i1 +eial2-~ 

d2 

=2=/2 ~ COS 22+COS 2 

The numerator of the integrand vanishes at 0 with cos 0 =  k, is positive on 

[-0,0) and negative on (0, re), and of course ~ ( c o s 2 2 + c o s 2 ) d 2 = 0 .  We thus 
have 0 

~ i  ! ~  cos 2 2 + c o s  2 
1=2 ~/z + (1 +cos  2)1_=/a d2 

' - 0  

2=/2 { f  f }  < (1 +cos  0)1_=/2 + (cos 2 2 + c o s  2) d2 

=0. (**) 

Assume that {X.} has right innovations, i.e., L . =  L . _ l O N  .. Then X.  = Y. 

+ Z .  where Y. eL ._  1 and L._ 11 Z .  = X . -  Y.. A straightforward adaptation of 
Theorem 7.1 of [11] shows that {Xk, k<n} forms a basis in L. (see [-1, p. 606]) 
so that Y. = Y, ak Xk, the series converging in every Lp, p < e. Then Xk l X.  

k ~ n - - 1  

- -  Y., k =< n -  1, implies a k= 0, i.e. Y. = 0, so that L._I  l X.  and 
sp{X._2, X.-1} _l_ X .  contradicting our earlier result. Thus {X.} has no right 
innovations and no right Wold decomposition. 

The orthogonality of the X.'s implies X.  _L L._ ~ and thus the best approxima- 
tion to X.  in Lk, k < n -  1, is the zero element. It follows that the left innovations 
space L.-=L._IGN. is N.=sp{X.}. However N._lON . is not orthogonal to 

Ln_2, SO no left Wold decomposition exists. This is so because X . + X . _ t  is 
not orthogonal to X._  2 as 

(eln~-I-ei(n-1)~)<=-l> ei(n-2)Zd)~= S (1-t-eia)<=-l> e-i2~'d)L 
- ~  - r e  

= I < 0  

from (.) and (**). 
That {X.} has no independent Wold decomposition follows from the above, 

but also follows immediately from part (iii) of Theorem 3.1 and the fact that 
each f.  (2) = e ~" ~" has as support the entire interval [ -  ~, ~]. []  
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