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Summary. Probability inequalities are obtained for the supremum of  a weighted 
empirical process indexed by a Vapnik-Cervonenkis class cg of  sets. These inequa- 
lities are particularly useful under the assumption P (w { C e cg: p (C) < t}) ~ 0 
as t ~ 0. They are used to obtain almost sure bounds on the rate of  growth of the 
process as the sample size approaches infinity, to find an asymptotic sample 
modulus for the unweighted empirical process, and to study the ratio P,/P of the 
empirical measure to the actual measure. 

I. Introduction 

Let X1, X;,  ... be i. i. d. random variables with law P taking values in a space (X, s~), 
and let cgc s~ be a class of sets. Define the n-th empirical measure and process: 

P , = n  -1 ~ 3x,, v,=n~(P,-P). 
i = 1  

v, may be viewed as a stochastic process indexed by (g. When cg is 
Nd = {(-- o% x]: x ~ lRd}, v, becomes a normalized empirical distribution function; 
we call this the d. f  case. Properties ofv ,  in this case, and in the related case where cg 
is the class Jd of  all subrectangles of IR e, have been extensively studied. Recently, 
attention has been given to more general classes of  sets or functions, both in the 
theory (Dudley, 1978; Gin6 and Zinn, 1984; Le Cam, 1983; Pollard, 1982, 1984; 
and Vapnik and ~ervonenkis, 1971, 1981) and in the statistical applications, 
primarily to nonparametric regression (Breiman et al., 1984), density estimation 
(Alexander 1985; Pollard 1984; Yukich 1985); and projection pursuit (Diaconis 
and Freedman 1982; Huber 1985). It is in the more general setting that we work 
here. 
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To obtain detailed information about the behavior of v, on small sets, it is often 
helpful to weight v, at each set C by a function of  cr 2 ( C ) =  P(C) (1 - P ( C ) ) ,  the 
variance of  v, (C). Since o -2 (C)--~ P(C) as P(C)~O, this is often equivalent to 
weighting by the same function of  P(C) ;  when convenient we do the latter. In 
particular, given a nonnegative nondecreasing function q e C [0, 1 ] and sequences 
V , ~ 0  and (c~,), we may ask for a finite R and a sequence (b,) such that 

limsupsup{[v.(C)l/b.q(a2(C)):Cefg, 7n<=~rz(c)~n}=R a.s. (1.1) 
n 

or such that 

IP[[v,(C)l>b,q(cr2(C)) for some CeCgwith o - 2 ( C ) > ~ , ] ~ 0 ,  (1.2) 

perhaps at a particular rate. 
From another angle, we may ask for a function q such that (1.1) or (1.2) 

hold with b,-b for some 0 < b <  ~ ,  i.e. such that {[vn(C) l/q(~r2(C))'C~C~, 
~)n ~ 0"2 (C) ~ an} remains bounded, a.s. or in probability, as n ~  m. Such a q (or 
more precisely, the function q (t2)) acts as a sort of  asymptotic sample modulus 
for v, on (g. Thirdly, we might ask for the best range [V,, ~, ] of  "sizes" of  sets C s (g 
for which (1.1) or (1.2) is valid. 

Many special cases of  these questions have been considered. For  example, 
Shorack and Wellner (1982) proved that for P uniform on [0, 1] and e > 0, 

limsupsup{lv,(C)[/(P(C)Ln)~: C~Jl, P(C)>en-lLn} < ~  a.s. (1.3) 

and for - oo < fi < 1, 

. f [v , (C)]  LLn } 
lmnsup sup l f i - ( ~  (Ln)l_t~5: C~Jl, P(C)>=n-I(Ln) ~_ < ~ a.s. (1.4) 

where Lx denotes log (max (x, e)). Stute (1982a) showed that if 7,$ 0 with 
n~,~ oz,n-lLn=o(?,), and LLn=o(LT~I),P is uniform on [0,1], and 
0 < / ? < 0 <  ~ ,  then 

limsup{[v,(C)[/(ZP(C)LT]l) ~" CEJ,, flT,<P(C)<O7,}=I a.s. (1.5) 
n 

This is generalized to d dimensions in Stute (1984). (1.5) was used to obtain exact 
rates of  convergence for kernel density estimators (Stute 1982b). Note that (1.5) is 
equivalent to the statement that 

limsup{[v,(C)[/(ZP(C)LP(C)-l)~:C~Jl, fiT,< P(C)_-< 07, } = 1  a.s. (1.6) 
n 

which essentially says that the function t (Lt-2)~ is a local asymptotic modulus of  
continuity for v, on J l .  A precise definition of" loca l  asymptotic modulus" will be 
given in Sect. 4. 

Van Zuijlen (1982) showed that in the d-dimensional d.f. case, for each 6 > 0 
there exists K and n o such that 

IP[sup{[v,(C)]/cr(C)Ln:Ce~, 3n-I<=P(C)<=I -3n-1}>K]<n -O+a) (1.7) 

and 

IP[P, (C) < (KLn)-IP(C) for some C~a  with P,(C) + 0] < n -~ (1.8) 
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for all n > n o . These results were applied to the asymptotic theory of  rank statistics. 
Breiman et al. (1984) showed that if cg is a Vapnik-Cervonenkis, or "VC",  class of 
sets (defined below), then for g, e > 0 there exist K and no such that 

IP[sup{IP, (C) /P(C)- l t :P(C)>Kn-ILn ,  C~C~}>e]=O(n-(~+~)). (1.9) 

(To express this in the form of (1.2), take b, = n~.) 
In Alexander (1985) the upper bounds in (1.3)-(1.9) were extended to more 

general classes of sets and functions, including VC classes. The growth constants 
and cutoff levels (the (b,), (7,), and (%) in (1.1) or (1.2)) remain the same for VC 
classes as they are in the special cases (1.3)-(1.9). These extensions, however, do not 
give the full story, for the growth constants implicit in (1.3)-(1.9) are only upper 
bounds, except for (1.5). They are not sharp for all <g and P, as the following shows. 

For  z > 0 define/~ to be the solution/3 > 1 of/~ (log/~ - 1) = (1 - z)/~:, and set 
/~o~ = 1. Then 

flz ~ ( z L ~ - l )  - 1  a s  z ~ 0 ,  

/ ~ -  1 ~  (2~-1) ~ as z ~ o o ,  

/ ~ -  1 > ( 2 z - l )  } for all z > 0 ,  

and 
(1.10) 

(1.11) 

(1.12) 

where h I is given by 

h1(2) = ( 1 +  2-~) l o g ( l +  ~ ) -  1, 2 > 0  

(see Shorack and Wellner 1982). 
Csfiki (1977) established that in the one-dimensional d. f. case with P uniform on 

[0, i], 
limsupsup{lv,(C)l/b,~(C)" C e ~ l ,  a2 (C)>7 , }=R a.s. (1.13) 

n 

where 

R = (2 (a + 1)) ~ and b, = (LLn) ~ if n- 1 LLn = o (7,) and LL721/LLn ~ a 

R = m a x ( 2 ,  z~-(/?~ - 1)) and b,=(LLn) ~ i f T , = r n - l L L n  for all n 

R = 1 and b, = LLn/((nT,)�89 L(LLn/nT,)) if 

7 , =  o(n -1 LLn) and LLn/L(LLn/n?, ) ~ oo. (1.14) 

Wellner (1978) showed that, for P uniform on [0, 1], if n -  ~ = o (7,) then 

sup{IP,(C)/P(C)-I["  C ~ ,  P(C)  > 7 , ) ~ 0  in probability, (1.15) 

while if n- ~ LLn = o (7,), then 

sup{IP,(C)/P(C)-II 'Ce~I,P(C)>=Tn}--~O a.s. (1.16) 

Note that the growth rates (b,) in (1.13) differ from those in (1.3)-(1.6) and the 
cutoff levels (7,) in (1.15) and (1.16) differ from those in (1.9); we would like to 
understand such differences from a general point of  view. In this paper we present 
an approach which unifies all the results (1.3)-(1.9), (1.13), and (1.15)-(1.16). We 
will extend them to all VC classes of  sets, including extension to higher dimensions 
of  the d.f. and interval cases, and show how to choose optimal q, (b,), and (7,) in 
general. 
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The underlying idea is that the right local asymptotic modulus for v,, call it ~ul, 
should be the oscillation modulus for the Gaussian process Gp which is the weak 
limit of v, on cg. That is, ql (t) = q~l (t~) should satisfy 

O<limsupsup{lGe(C)[/ql(~r~(C)):CeCg, a 2 ( C ) < t } < ~  a.s. (1.17) 
t~0 

The problem of finding such a ql was considered in Alexander (1986). The main 
result can be summarized as follows. 

Given a class cg and a law P on (X, ~d), define for t > 0: 

cg t = { C ~ : a  2(C) < t ,P(C) < �89 w {CO: C~Cg, 62(C) < t, P(C) > �89 

cgt, s = {C\D:  C,D~Cgt, a2(C\D)  <=s}, 

E,= U c, 

a(t) = P(E,) v t, 

g(t) = a(t)/t.  

We may assume E, is measurable; if not, then replace it throughout by a measurable 
F ~ E  t with P ( F t ) = P *  (E~). We call g the capacity function of  cs (forP).  This is 
because g (t) can be thought of  roughly as the number of  disjoint sets of  size t which 
will "fit" in cg: a (t) is the space available, and t is the approximate space needed 
for each set C with P(C) ,~,a e (C) = t. Thus when we approximate all sets in cg t 
using a finite subcollection, g (t) should give a lower bound on the number needed. 
This is quantified in Sect. 3 using the concept of  a full class cg. Note that since 
v, (C) = - v, (CO), one can often simplify matters, especially the definition of  cg t, 
by imposing the condition that P (C) < �89 for all C e cg, then considering separately 
those C e cg with P (C) < �89 and the complement of  those with P (C) > �89 This means 
o -2 (C) is of  the order o f P  (C) for those sets of  principal interest, i. e. those with small 
a z (C). For  a reasonably regular VC class cg, 

ql (t) = (2 t (Lg (t) + LLt-1))~ (1.18) 

satisfies (1.17). 
Suppose q =< ql is given, and we wish to find growth constants (b,) such that 

(1.1) or (1.2) holds. Since v, is less well-behaved on smaller sets, we might expect that 
roughly 

sup { Iv. (C) Iq (o 2 (C)) : c ~ ~,  ~. < o -2 (C) < ~.} 

sup ~ql- (-a~-)) [ Iv. (C) [ qlq( a2( a2 (C))c)) " C ~ c~, 0-2 (C) = 7n} ~ R ql (7.)/q (7.) 

for some 0 < R < ~ .  This, along with the standard LIL, leads us to expect (b,) in 
(1.1) to be on the order of  ql (7,)/q(7.) or (LLn) ~, whichever is greater. For  
example, when q (t) = t ~ we expect b, to be on the order of  

(max (Lg (7,), LLT; 1, LLn))~ (1.19) 

which is true provided y, is not too small, as Theorem 3.1 shows. 
Upper bounds for (b,) can be obtained by replacing g (t) with its upper bound 
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t - ~; this is equivalent to disregarding the possibility that E t may be only a small part 
of  the whole space X. This is reasonable in the non-i, i. d. case, where g (t) might vary 
with n in a complicated way, and is the reason the present results improve on those 
in Alexander (1985). In the one-dimensional d.f. case, for example, g (t) - t, so if 
L72 ~ ~ Ln then the rate (1.19) is (LLn) ~ (cf. (1.13)) while the upper bound rate is 
(Ln) ~. The present approach remedies this deficiency and gives exact results in a 
large number of  cases. 

II. An Inequality 

The Vapnik-Cervonenkis property of  a class T of  sets has proven to be a useful tool 
in the study of empirical processes indexed by ~ (Alexander 1984, 1985; Dudley 
1978; Gin~ and Zinn 1984; Pollard 1982; Vapnik and Cervonenkis 1971). The 
definition is as follows: a class c~ of  subsets of  a set Xis called a Vapnik-Cervonenkis, 
or VC class if 

sup {card {F~ C: C e cg}: card (F) = n, F c  X} < 2" 

for some n > 1. The least such n is called the index of  C~ and denoted V(Cg). Examples 
in IR e include the classes of  all rectangles, all ellipsoids, all lower orthants ( -  o% x], 
or all polyhedra with at most k sides (k fixed). Any subset o fa  VC class is a VC class, 
and {C\D:C,  D ~ off} or {C zx D'C,  D s ~} is a VC class if cg is one. See Dudley 
(1978, 1984) for more about VC classes. 

The supremum of  v n over an uncountable class c~ need not be measurable in 
general. This sometimes necessitates use of  the outer probability measure IP*. To 
avoid further measurability difficulties, we assume throughout this paper that cg t 
and c~t, S are deviation measurable for P (as defined in Alexander 1984) for all 
s, t > 0. For  this it suffices that cg~ and cgt, S be separable for all t, s for the topology 
of pointwise convergence (i.e. the topology in which C i ~ C  if and only if 
lc--, 1 c pointwise). Further, we assume that the r.v.'s X i are canonically formed, 
i.e. that they are defined on the probability space (Jr% d ~, IP) with J(i the ith 
coordinate function, where I P = P  ~. This terminology comes from Gaenssler 
(1983). 

Given the law P, define a P-stratified VC class to be an ordered pair of  functions 
(cg (.), ~ (.)) on an interval [7, c~], with ~ nonnegative and nondecreasing, and cg (t) a 
deviation-mesurable (for P) VC class for all t, satisfying 

~e (s)=~ (t) 
and 

P (C)  __< �89 ,z2 (C) <= ~ (t) 

Given a P-stratified VC class, we define 

U c, 
C~Cg(t) 

,~(t) = P ( ~ , )  v ~ ( t ) ,  

g(O = a(t)/~ (t).  

for s < t, 

for all C~Cg(t). 



384 K.S. Alexander 

(As with E t we may assume/~ measurable.) This notation is used to suggest the 
canonical example of  a P-stratified VC class: (g ( t )=  cg t and ~ ( t ) =  t. The other 
example of  interest here is, given a function ~, to take cg( t )= ~,r 

The key to our results is a bound on probabilities like those in (1.2), analogous 
to Theorems 1.1 and 1.5 in Alexander (1985) and Inequality 1.2 in Shorack and 
Wellner (1982). We need a regularity condition for the weight function q: define 

Q= {qeC[O, 1]:q>O,q?,  q(t)/ t  $ }. 

As a convention, for monotone functions f on [0, 1/4] we define 

~sup {s E [0, 1/4] : f (s)  < t} 
f - 1  (t) = [sup {s e [0, 1/4] : f (s)  > t} 

taking sup q5 to be 0. 

i f f  "~, 
i f f  $, 

Theorem 2.1. Let (cg (t), ~ (t)), t e [7, ~], be a P-strat~'ed VC class, and let q e Q, 
n => 1, and p, b, u >= O. Set z ( t ) =  q(t)/~ (t) and suppose that z(t), ~(t), and ~ (t)/t 
are noninereasing. Define 

r = [(8 - 1 (p/n) A z-  i (2n~/b)) v q-  1 (u/b) v ~)] A O~ 

S = inf{t > 0: z (t) < 2n~/b}. (2.1) 

There exists a constant K =  K(V(Cg(c0)) such that if  

q2 (t)/~ (t) L~ (t) > Kb -2 for all r v s <- t <- ~, (2.2) 

q ( t ) / L ( n 8 ( t ) ) > K n - ~ b  -1 fora l l  r v s < _ t < ~ ,  (2.3) 

q(r)>=Kn-~b -1 if r < s  and r < ~ ,  (2.4) 

q( t )L(bq( t ) /n  ~ ( ( t ) ) /L(nS( t ) )>=Kn-~b -1 for all t~[r ,s)~[r,  7], (2.5) 

then 

I P [ l v , ( C ) l > b q ( t ) + u  for some 7 < t < ~  

< p + 3 6  i t -1 e x p ( - b  eq2( t ) /512~(t) )dt  
r/2 

+ 68 exp ( -  bq (r) n~/256). 

and C e (g(t)] 

I f  also 

q( t )~L~( t )  

for some 0 < fl < 1, and if 

bq (r) n ~ L (~, (r) A (bq (r)/n ~ ~ (r))) __> (1 - / ~ ) - 1 ,  

then (2.6) may be improved to 

and q(t) pL(bq( t ) /n  ~ ( t ) ) ?  on [7, c~] 

(2.6) 

(2.7) 

(2.8) 
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l P [ l v , ( C ) [ > b q ( t ) + u  forsome y<t<_e  and CsCg(t)] 

< p  + 36 i t - ' exp ( -  b 2 q2 (0/512 (( t ) )  dt 
r/2 

+ 68 exp ( - 2-  8 bq (r) n +- L~, (r)) 

+ 36 exp ( -  2-  8 bq (r) n ~ L (bq (r)/n ~ ~ (r))). [] (2.9) 

The heuristics of  (2.6) and (2.9) are as follows, for "regular" cases: the 
probability that there is a C e ~g with P (C) < r and P, (C) > 0 is at mostp,  giving the 
first term. The integral term arises from sets C with r v s < 0 -2 ( C )  ~ ~. For  these 
C, IP [Iv, (C ) ] >  bq (0-z (C))+ u] can be approximated by a Gaussian probability, 
and (2.2) and (2.3) are used. The last term(s) arise from sets C with r < 0-2 (C) < s, 
where a Poisson rather than a Gaussian approximation is valid, and (2.4) and (2.5) 
are used. 

In this paper we are interested only in the case p = u = 0, so we tactitly assume 
these values whenever Theorem 2.1 is cited henceforth. 

Remark2.2. In the results that follows, the only intrinsic properties of  the capacity 
function g actually used are that a (t)/t < g (t) < l i t  and that tg (t) increases. Hence 
for a given c~ and P, all results remain valid ifg is replaced throughout by a function 
go > g with go (t) < 1/t and tgo (t) increasing. The same applies to ~ (t), ~ (t), and ~ (t) 
(in place o f g ( t ) ,  a(t), and t) for Theorem 2.1. Thus the following loses us little 
generality: we tacitly assume henceforth that g (or ~) is nonincreasing. The 
possibility of modifying ~ makes (2.7) a very mild condition. [] 

III. The Square Root Weight Function 

The results in this section may be compared to Cs/tki's result (1.13). 
The key to obtaining upper bounds for the lim sup in (1.1), with q (t) = t ~, lies in 

the behavior of  the metric entropies of  the classes c#~. Define for u > 0: 

N2 (u, ~q, P) = min {k > 1 : there exist C1, . . . ,  Ck e (g such that 

minP(Czx C i ) < u  2 for all Ce(g} .  
i < k  

The function log N 2 ( . ,  c#, p) is called the metric entropy of  cg in L 2 (P). (Note 
P ( C a D ) =  [Jl c -  1D]]z~(p).) It measures the size of c#, telling us "how totally 
bounded" (g is. 

Define probability measures Pt (0 < t < 1) by Pt (A) = P (A ~ Et)/P (Et). If  
C, D E c# t then Pt (C zx D) -~ P (C zx D)/P (E~). Hence using Lemma 2.7 of Alexander 
(1984), which is based on Lemma 7.13 of Dudley (1978), we have for any Nt ~ cgt 
and uE(0, 1): 

N2 (ut ~, 9t ,  P) = N2 (ut + P (Et)- ~, ~t ,  P~) 

< 2 (16g (t) u - 2 L (8 g (t) u-  2)) v(e)-i 

<= K(g (t)/u 2) ~(~)-1+~ (3.~) 

for some constant K =  K(6, V(Cg)) for each 6 > 0. 
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F o r  lower bounds  on the l im sup in (1.1), the following concept  will be useful: we 
say the class ~ is fu l l  (for P)  o f  for  every sufficiently small 2 > 0 there is a 0 < ez < 1 
such tha t  for  each sufficiently small t > 0 there are k > e~g( t )  1 -~ sets C1 . . . . .  Ck e c( 
with 

and r ~ U  < . 
j=~i 

Roughly ,  cg is full i f  it contains  a large n u m b e r  o f  nearly-disjoint  sets o f  any given 
small size. We  say c~ is spat ia l ly fu l l i f the  C~'s can always be chosen disjoint. In  some 
o f  our  w o o f s  we will tacitly assume for  convenience tha t  "sufficiently small"  above  

1- means  " a t  mos t  z , but  it should always be clear that  this is not  a necessary 
restriction. 

Theorem 3.1. Let  cg be a VC class, let ~, $ O, and define 

w,  = L g  (~,) v L L n ,  

y .  = w./((n~.)-~ L ( w . / n ~ . ) ) ,  

c 1 = l im sup w n 1 L g  (7,), cz = lira sup w~ 1 L L v ~  t ,  
n n 

c 3 = lira sup w~ ~ L L n .  
?t 

Suppose that f o r  some O, ~ < oo, 

t~ 2 ,P )  < N 2 (t,t , ~ t~ ( ~ ( 1 - u /4 ) t  A u - n g  (t) ~176 

fo r  some A = A ( 6 ) < o c  fo r  all t, 6 > O  and u ~ ( 0 , 1 ) .  

(3.2) 

(3.3) 

(A) Then 

l i m s u p s u p { ] v , ( C ) l / b , ~ r ( C ) : C e ~ f ,  a z ( c ) > 7 , } = R a . s .  (3.4) 
n 

where 

(i) tf  n-  1 w, = o (7,) and n- 1 w~ decreases, then b, = w~, and R < (2 (Q c i + c2 + c3))~; 
(ii) i f  ~, ,,~ �9 n -  ~ w,  for  some �9 > 0 and n -  1 w~ decreases, then b, = w~ and 

R < m a x  ((2 (Q c 1 + c 2 + c 3))~, "c + (fl0~ - 1)), where 0 = (Q c 1 + c 3) - 1 ; 
(iii) i f  7. = o (n - 1 w,), n -  1 y ,  decreases, and 

L (w, /n  y,) = o (w,) ,  (3.5) 

then b, --- y ,  and R < ~ c 1 + c 3 . 
(B) I f  Q < 1, cg is full,  the lira sups in (3.2) are actually limits, and ( for  (i) and (ii) 

only) Lg  ( t ) /L t -1  is nondecreasing, then the upper bounds fo r  R in (i)-(iii) above are 
also lower bounds, so (i)-(iii) give the true values o f  R in (3.4). 

(C) I f  the assumptions in (B) hold, ~ is spatially full ,  and c 3 = O, then " l im sup"  
may be replaced by "l i ra"  in (3.4) f o r  each o f  (i)-(iii). []  

By (3.1), (3.3) is a lways valid with q / 2 =  Q =  V ( C g ) - 1 .  La te r  examples,  
however ,  will show that  this need not  be opt imal .  In  fact, we will have  0 = 1 with 
V(~g) arbi t rar i ly  large. 
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Remark3.2. The condition (3.3) is related to the "relative metric entropy" 
condition (1.25) in Alexander (1985). In fact, it is easy to verify that 

N2 ( b/t�89 , (~t~ (b~(1-u2/4)t, P) ~ N~ (u/2, c~, p) 

for all 0 < u < �89 and t > 0, where N~ is defined in Alexander (1985). 
Qualitatively, (3.3) with 0 = 1 can be interpreted as follows, in sufficiently 

regular cases, g (t) = P (EO/t is the maximum number of disjoint sets of  probability 
near t which can fit in cr Therefore g (t) should be a lower bound on the number of  
sets required to approximate all sets in cr of  probability near t to within a given 
fraction of  t. If  ~ = I, then (3.3) says g (t) is not far from also being an upper bound 
on this number of  sets. [] 

The dependence of Theorem 3.1 and later results on the behavior ofT,  relative 
to w,/n is rooted in the quality of the Gaussian approximation to 
IP[lv . (C)lib, 0 .(C)> R]. The approximation is good for all C with 0.2 (C)__> 7n if 
w,/n = o (~,), good up to a constant in the exponent if w,/n = O (7,), and not good in 
general if 7, = o (w./n). 

The condition (3.5) will ensure that, by a 0 - 1 law, the lim sup in (3.4) is some 
fixed constant a.s. 

The heuristics of  the value of  R in (3.4) are as follows. We need only consider a 
finite number of  sets in cg. cl comes from the number of  sets C, with a given fixed 
value of  0 .2 (C), which must be considered; this is related to the metric entropy. 
c 2 comes from the number of  fixed values of  0 .2 (C) which must be considered. 
c a comes from the requirement that sums of  certain probabilities, for geometrically 
increasing subsequences of  values of  n, must be finite, as in some proofs of  the LIL. 

If  cg is full, it is clear that 0 must be at least 1 if g is unbounded, hence in 
particular i fcl  > 0. Therefore there is no ambiguity in Theorem 3.1 (B) arising from 
the fact that (3.3) may hold for multiple values of  6. 

In Theorem 3.1 and in fact throughout this paper, any requirement that a 
sequence, say (2,) (or a function, say (p (t)), be monotone may be weakened to a 
requirement that 2, ,,~ 0, as n ~  oo (or q ) ( t )~  r (t) as t ~ 0 )  for some monotone 
sequence (0,) (or monotone function ~ (t)). 

When 

LLy2 ~ = o (LLn) and Lg (y,,) = o (LLn),  (3.6) 

we see from Theorem 3.1 (i) that the value of R in (3.4) is 2 ~. This is true, for 
example, in the one-dimensional uniform d. f. case if7, = (Ln)-~ for some a > 0. By 
the ordinary law of  the iterated logarithm, this is the same value achieved at each 
individual C e ~. Thus no "small" subclass of  cs corresponding to the tails in the 
d.f. case, is the sole determiner of  the rate of  growth of the weighted empirical 
process when (3.6) holds. 

Example3.3. When cg=@ 1 and P is uniform on [0,1] (the one-dimensional 
uniform d. f. case), we have P (Et) = t, so g (t) _= 1, and (3.3) is valid for Q = 0. Hence 
in Theorem 3.1 we have w . = L L n ,  y ,=LLn/( (nT, )~L(LLn/n7, ) ) ,  c 1 = 0 ,  and 
c a = 1. Under the assumptions in (1.14) we have (3.5) holding. Clearly ~1 is full. 
Thus (1.13) is a special case of  Theorem 3.1. [] 
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Example3 ,4 .  When i f =  ~a  and P is uni form on [0, 1] a with d >  1 (the d-dimen- 
sional un i form d.f. case), it is easy to check that P ( E , ) ~  t ( L t - 1 ) d - 1 / ( d  - i)! ,  
so g (t) ~ ( L t - 1 ) a - 1 / (  d _  1)! We will show in the p r o o f  o f  Corol lary  3.5 below that  
(3.3) is valid for 0 = 1. Hence if  LLT~  1/LLn ~ a for  some a > 0, in Theorem 3.1 (i) 
we have 

c 3 > O, w, ~ c3 1LLn ,  c 1 = ( d -  1) ac3, c 2 = ac3, 

and 
Oc 1 + c z + c 3 = c 3(1 + a d ) .  

In (ii), if 7, ~ 2 n - l L L n ,  we get 

w, ~ ( d -  1) LLn ,  c 1 = 1, c 2 = c 3 = ( d -  1)-  1, 

z = 2 ( d - 1 )  -1,  O C l + C 2 + C a = ( d + l ) / ( d - 1 ) ,  and O = ( d - 1 ) / d .  

In (iii), if  (3.5) holds, i.e. if  n - l ( L n ) - ~ =  0 (7,) for  all e > 0, the values are 

w, ,-~ ( d -  1) LLn,  c 1 = 1, c 3 = ( d -  1)-  1, and ( d -  1) (~c 1 + c3) = d. 

To  see that  ~a  is full, fix 0 < 2 < 1 and 0 < t < 1, and let/z = 2d  -1 and 

~.~= f[0,  x]: x =  ( f ( t ) p - J , ,  ltJ,, . . . .  IzJ,) el0,  1] a 
k. 

for  some integers j~ > 0 with Jl = ~ J i  (3.7) 
i 

where f ( t )  <= �89 is given by f ( t )  (1 - f ( t ) )  = t. Then 

d 

I~ - I  = [{U2 . . . . .  A )  eft-a+ -1 :2  Jl ~ (l~176 
i = 2  

> ea ((log t -  1)/(log # -  1))a- 1 v 1 

> ~az g (t) (3.8) 

for some constants ea and eaa, where 2~+ denotes the nonnegat ive integers. Since 

P ( C m (  ~ , ~ , D . c D ) ) < d l z P ( C ) f o r C e ~ , t h i s s h o w s t h a t ~ a i s f u l l .  

This establishes (up to the p r o o f  o f  (3.3)) the next corollary for d > 1. []  

Corol lary3.5 .  Let  P be the uniform law on [0 ,1 ]a (d>  1) and let y .$  0 so that 
LL7~  i/LLn--+ a for  some a > O. Then 

l imsup sup { I v, (C) I/b. cr (C) : C ~ ~a,  a:  (C) >= 7. } = R a.s. 

where 

R = (2 (1 + ad))  ~ and b. = (LLn)  ~ i f  n -  1 L L n  = o (7.) 

R = max ((2 (1 + d)) ~, 2 ~ (fla/a - 1) and b. = (LLn)  ~ i f  7. ~ 2 n -  1 L L n  

R = d and b. = LLn/ ( (nT . )~L  (LLn/n7 . ) )  i f  7. = o (n-1 LLn)  

and n - l ( L n ) - ~ = o ( v . )  f o r  all ~ > 0 .  [] 
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Example  3.6. Let P be a nondegenera te  normal  law on IRd let Cbv = {x ~ IRe: 
x .  v > b} for v in the sphere S a- 1 and b ~ IR, and let cg = {Cbv" b ~ IR, v e S a- 1 } be 
the class o f  all closed hal f  spaces in IRa. Then  there is an affine map  A : I R d ~  IRa 
with 5r (A) the normal  law N (0, /) .  Since A preserves all the relevant structure o f  cg, 
we may  assume P = N ( 0 , / ) .  

Let 4~ be the d.f. on IR of  N (0, 1), and let Ze z be a chi-squared r.v. with d degrees 
o f  freedom. N o w  for t < �89 a 2 (Cb~) < t (1 -- t) if and only if ]bl > ~ -  1 (1 - t), so 
E m - t )  = { x  e IRd:[ x l > 4~-1 (1 - t)}. Let r t = ~b-1 (1 - t); since r t ~ (2 L t -  1)~ and 

- -  2 1 r~ ~exp ( - r , / 2 )  ~ (27c) ~- t as t-~ 0, it follows that  as t ~ 0, 

P (Et (~ -o)  = IP If X 112 > r~] = IP [X~ > r~] ~ K 1 rt d- 2 exp ( - r2/2) ~ K z t (L t  - 1)(a - 1)/2 

where K 1 and K z are constants  depending on d, so g ( t ) ~  K 2 ( L t - 1 )  (d-1)/2. 

We will show in the p r o o f  o f  the next corollary that  cg is full and (3.3) is valid 
with Q = 1, though  V(Cg) > d + 2. Suppose L L y ]  ~ /LLn ~ a for  some a > 0. Then in 
Theorem 3.1 (i) we have 

c 3 > O, w, ~ c~ 1 LLn ,  c 1 = ( d -  1) ac3/2 , c z = ac3, 

and Qc 1 + c a + c 3 = c 3 (1 + a ( d +  1)/2). 

In (ii), if 7, ~ )~n- 1 L L n  we get 

c 2 = c 3 > O, w, ~ c 31 LLn ,  c 1 = ( d -  1) c3/2 , -c = 2c3, 0 = 2/c 3 ( d +  1), 

and pc 1 + c 2 + c  3 = ( d +  3) c3/2. 

In (iii), we find 

c 3 > 0 ,  w , ~ c ~ l L L n ,  c l = ( d - 1 ) c 3 / 2 ,  and Q c l + c 3 = ( d + l ) c 3 / 2 .  

The next corol lary summarizes this. [ ]  

Corollary 3.7. Let  P be a nondegenerate normal  law on IRe and let ~g be the class o f a i l  

closed ha l f  spaces in IRa(d> 1). L e t  7,$ 0 so that L L  T~ l / L L n ~  a f o r  some a > O. 
Then 

l i m s u p l i m s u p s u p { [ v , ( C ) l / b , ~ ( C ) :  CeCg, a ( C ) > 7 , } = R  a.s. 
n ?t 

where 

R = (2 (1 + a (d + 1)/2)) ~ and b, = (LLn)  ~ i f  n -  1 L L n  = o (7,) 

R = m a x ( ( d +  3) ~, -(lJ2a/(a+l) - 1)) and b, = (LLn)  ~ i f  ~, ~ 2n - 1 L L n  

R = ( d +  1)/2 and b, = L L n / ( ( n 2 , ) ~ L ( L L n / n T , ) )  

i f  T , = o ( n - l  L L n )  and n - a ( L n ) - ~ = o ( 7 , )  f o r  all e > O .  V3 

Example  3.8. Let P be the uni form law on [0, 1 ]a (d > 1), recall that  Ja  is the class o f  
all subrectangles o f  [0, 1] a, and let cs = { C s ~ r  < �89 The bound  on P ( C )  is 
assumed for  convenience, to avoid the technicalities o f  dealing with complements  o f  
large rectangles. Then P (/it) - 1, so g (t) = t -  a. It is clear that  cg is spatially full. 
(3.3) with ~ = 1 will be checked in the p r o o f  o f  the next corollary, using the 
techniques o f  Theorem 2.1 o f  Orey and Pruit t  (1973). Suppose L L n / L ? ]  ~ --,a for 
some 0 _< a <_ oe. I f  a < 1, the constants  in Theorem 3.1 are 

C 1 = 1 ,  C 2 = O ,  C 3 = a ,  w.  ~ L ? ~  1 
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while if a > 1 they are 

c~ = a - l ,  c2 =0 ,  c 3 = 1, w , ~  LLn .  

By Theorem 3.1 (i), i f  i < a < oo we have 

l imsup sup { Iv, (C) I/((72 (C) LLn) ~" C ~ cg, (7 (C) > 7, } = (2 (1 + a -~))~ a.s. 

which is equivalent to 

lira sup sup { [ v, (C) I/((7 2 (C) L7~ 1)~ : C e cg, 0 -2 (C) ~ ~)n } = (2 (1 + a)) -~ a.s. 
n 

In Theorem 3.1 (ii), if  7, "~ 2n -1  Ln the constants are 

a = 0 ,  z = ) ~ , 0 = l , w , ~ L n ,  c l = l  , c 2 = c 3 = 0  

and we can make  use o f  (1.10). In (iii), if  (3.5) holds, i.e. if n -(1 +~) = o (7,) for  all 
> 0, we get 

a = 0 ,  c1=1,  c 3 = 0 .  

This is summarized in the following corollary. []  

Corollary 3.9. Let P be the uniform law on [0,1] a ( d >  1) and let 7,$ 0 so that 
n -  1 (L7~- 1 )~ decreases and LLn/LT~ 1 ~ a for  some 0 < a <- oe. Then 

l imsupsup{Iv , (C)[ /b , (7 (C) :  C e J a ,  P ( C ) <  �89 a 2 ( C ) > 7 , } = R  a.s. (3.9) 

where 

R = 2 �89 and b, = (LLn) -~ i f  a = oe (i. e. i f  (Ln)-~ = o (7,) for  all ~ > O) 

R = ( 2 ( l + a ) )  ~ and b , = ( L T ~ l )  ~ i f - l L n = o ( 7 , )  and 0 < a < o e  (3.10) 

R = 2  ~ and b , = ( L T ; l )  ~ i f  n - l L n = o ( 7 , )  and a = 0  (3.11) 

R = 2 ~ ( / ? z - 1 )  and b , = ( L n )  ~ i f  v , ~ 2 n - ~ L n  (3.12) 

R = 1 and b, = Ln/((nT,) ~ L (Ln/nv,)  i f  c, ---- 0 (n-  1 Ln) 
(3.13) 

and n-(a+~)=o(7, , )  for  a l l ~ > O ,  

provided in each case that n -~ b, decreases. For (3.11)-(3.13), " l i m s u p "  may be 
replaced by " l im" in (3.9). [~ 

Taking 7, = n -  ~ (Ln) p ( - oo < /?  < 1) in Corol lary  3.9, we see that  the lira sup in 
(1.4) is (1 - f i )  a.s. 

F o r  d =  1, (3.11) is Stute 's result (1.5), and (3.10) and (3.12) are due to Mason  et 
al. (1983). Fo r  d >  1 (3.11) is related to o ther  results o f  Stute (1984). 

IV. The Asymptotic Modulus of the Empirical Process 

We will call a nondecreasing funct ion ~ on [0, 1/4] an asymptotic modulus of  
continuity for  (v,) on cg if 
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q~(0) = 0, (4.1) 

~u (s + t) < ~ (s) + ~ (t) for all s, t s [0, �88 (4.2) 

there exist sequences y,, % $ 0 satisfying he,  $, 7, < %, and (4.3) 

n- 1 Ln = o (%) (4.4) 

such that 

f l v , (C) -v , (O) l  1 
l imsup sup~ ~ ( ~ - ~  "C, De~,P(CzxD)<~,y ,<=G2(CAD)<%j  <oo a.s. 

(4.5) 

~u is a local asymptotic modulus at 4 (the empty set) for (v,) on cg if (4.1)-(4.3) hold 
with (4.5) replaced by 

lim sup sup ~ ,  [~u]v"(C) [ ( a  (C)) "Cecg'  '/" < ~2 (C) < %} < =  oo a.s. (4.6) 

The requirement (4.4) ensures that, in (4.5) and (4.6), we are not considering only 
sets so small that P, need not be much like P. 

Define gl (t) by 
Lg 1 (t) = Lg( t )  + LLt  -~, 

and set 
qJ~ (t) = t (Lg 1 (t2))~ = ql (t2), ~o (t) - t (Lt-2)~.  

Theorem 4.1. I f  Cg is a VC class then ~o (t) is an asymptotic modulus of continuity, 
and ~1 (t) a local asymptotic modulus at 4, for (v,). D 

It follows that in all dimensions, t ( L L t -  1)~ is a local asymptotic modulus at ty 
both for the uniform d. f. case (Example 3.4) and for the half space case with normal 
law (Example 3.6), and t (L t -  ~)~ is an asymptotic modulus of  both for the uniform 
interval case (Example 3.8). The latter fact is a variant of  Stute's (1982a) result 
(1.6). 

More detail can be obtained in some cases, as the next theorem shows. 

Theorem 4.2. Let cg be a VC class and let 7,, c~, $ 0 with n% t ,  7, <= ~,, 

Define 
n-  ~ Lg 1 (7,) = o (y,), and l iminf Lg~ (e,) /LLn > 0. (4.7) 

n 

c~ = lim sup Lg (t)/Lg~ (t),  
t ~ O  

C I �9 _ 2 -= h m s u p L L t  1/Lg 1 (t) 
t ~ O  

c~ = limsup LL (~; 1%)/Lg 1 (~,), 
! it 

C 2 ~ -  C 2 A C 2 , 

c 3 = limsup LLn/Lgl (~,). 

(i) Suppose the entropy condition (3.3) holds for some 0 > O. Then 

(4.8) 

lim sup sup { ]v,(C)]/ql 1 (a (C)) : CeCg, 7, < o-2(C) < c~,} < (2(Qq + c2 + c3)) ~ 
n 

a . s .  

(4.9) 



392 K.S. Alexander 

(ii) I f  ~ is full, ~ <_<_ 1, L g ( t ) / L t - ~ is nondecreasing, and the lira sups in (4.8) are 
actually limits, then equality holds in (4.9). 

(iii) I f  ~ is spatially full,  ~ < 1, and c a = O, then 

l i m s u p { I v , ( C ) l / q ~ a ( a ( C ) ) : C ~ c g ,  7 , < a 2 ( C ) < c ~ , } = 2  ~ a.s. (4.10) 
?I 

In the d-dimensional uniform interval case (Example 3.8), Theorem 4.2 (iii) 
tells us that (4.10) holds provided 7,,c~,$, n e , ? ,  n -~ Ln  = o(7,), 7 , <  0% and 
L L n = o ( L c ~ ] a ) .  Since here ~ u t ( t ) ~ t ( L t - 2 )  ~, this generalizes Stute's (1982a) 
result (1.9). 

Dudley (1978) proved that v,, indexed by a VC class cg, converges weakly (under 
some measurability conditions) to a Gaussian process Ge on cg with the same 
covariance as v,. Lemma 7.13 of  Dudley (1978) and Theorem 2.1 of  Dudley (1973) 
show that ~u o is a sample modulus for G e on cg. For cg = Na or Ja  (the d. f. or interval 
cases) and P uniform, Ge (C) is the increment of  a tied-down Brownian sheet over 
the rectangle C. Results of  Orey and Pruitt (1973) tell us that 

lira sup {I Gp (C) - Gp (D) I/q~o (~ (C ~x D)): C,D ~ a ,  or2 (C zx D) < e} = (2 d) ~ 
e ~ 0  

limsup {IG~(C)I/w~(G(C)):C~:~, P(C)<= �89 az(C)<e}-2~ a.s. 
e ~ 0  

a . s .  

(4.11) 
(4.12) 

l i m s u p { l G p ( C ) l / ~ u l ( a ( C ) ) :  C ~ a ,  P ( C ) < � 8 9  o ' 2 ( C ) < e } = 2  ~ a.s. (4.13) 
e ~ 0  

(4.12) and (4.13) are also obtained as special cases of  results for general set-indexed 
Gaussian processes in Alexander (1986). (4.11) and Theorem 4.1 tell us that the best 
possible sample modulus for Gp is also an asymptotic modulus of  continuity for 
(v,). (4.12) may be compared with (4.10), and (4.13) may be compared to the 
following corollary of  Theorem4.2. (Recall ~a was proved to be full in 
Example 3.4.) 

Corollary 4.3. Let  cg be @ a ( d >= 1), let P be the uniform law on [0, 1 ]d, and let ~, $ 0 
and ~, $ 0 so that 

n -  1 L L n  = o (~,), ~, < ~,, n~,  $, L L ~  1/LLn ~ a,  

and L L ( y ; I ~ , ) / L L ~ [ I - ~ b  fo r  some a , b > 0 .  

Then ~ (t) ~ t ( d L L t - a )  ~ and 

lim sup sup { Iv, (C)[/~u~ (a(C)) : C E Da, P ( C )  < �89 Vn < a2 (C) < a,} 
n 

=(2(d-2+(l^b)+a-1) /d)  ~. [] 

Our final theorem in this section is an in-probability version of  Theorem 4.1. 

Theorem 4.4. Let  ~ be a VC class and let ~, ~ 0 with n -  1 L g  (7,) = o (~,). Then 

sup { [ v, (C) [/qJ a (a (C)) : C ~ off, a 2 (C) > V, } 

is bounded in probability. [] 
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V. The Ratio P./P 

By taking q ( t ) =  t and b, = n ~ in (1.1) and (1.2), we can study the behavior of 

P, (C) 1 �9 C ~ (d, P (C) > 7,} sup (ip- 

as n ~ oo. As with q (t) = t ~, analogs of Wellner's (1978) results (1.15) and (1.16) will 
depend on the behavior of P(Et)  as t ~ 0 .  

Theorem 5.1. Let cff be a VC class and let 7, ~ 0. If 

t h e n  a s  n ~ cx3 

(IL(c) 
sup l 

If also 

1~-' Lg(~~ o (7.) 

P(C)  >= 7~ 0 Q CeCg, 

n-  ~ LLn = o (7~) 

then the convergence in (5.2) zs a.s. 
Conversely if  cg is full  and either 

~. = O(n -1Lg(~.)) 

then 

limsup sup 

The next theorem 

Theorem 5.2. Let ~q be 
for each e, A > 0 there 

]P* [Po(C) 

and 

(5.1) 

in probability. (5.2) 

(5.3) 

or 7, = 0 (n- 1 LLn) (5,4) 

{P.(C) } 
P(C---~-I " C ~ , P ( C ) > 7 ,  > 0  a.s. ~ (5.5) 

includes (1.7) as a special case. 

a VC class andIet 7" be the solution , /ofT/Lg (7) = n-  t. Then 
exist R < oo and n o such that for all n > no, 

<-_(RLg(7*))-IP(C) for some C s ~  with 
(5.6) L(c) + 01 < g (~.*)-A ̂  e-A 

• e * l -  (P"(C) } 1 [sup~p~-C~: C~ctf, aP(C) ~ 8~/* > R <g0~: )  -A A e - a .  (5.7) 

I f  g is bounded, then supP, (C) /P(C)  is bounded in probability (i.e. we can take 
=0  above). ~ 

7" is well-defined in Theorem 5.2 since g( t )  is assumed nonincreasing. In the 
d-dimensional uniform d.f. case (Example 3.4), g(7*) ~ (Ln) d 1 / (d -  1)! if d >  1, 
and g is bounded if d =  1. In the d-dimensional interval case (Example 3.8), 
g(7*) ~ n/Ln for all d >  1. 

By Remark 2.2, Theorem 5.2 remains valid if g is increased. This weakens the 
lower bound on P,/P in the event in (5.6), but improves the bound on the probability 
of that event. For  example, taking g ( t ) =  t-~ yietds (1.7). 
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VI. Proof of the Inequality 

The key to the proof of  Theorem 2.1 wit1 be an inequality from Alexander (1984). 
Recall from (1.12) that 

h I (2) = (1 -q- 2 - 1) log (1 + 2) - 1, 2 > O. 

It is readily shown that 

and 

hi (2) 1" , 2 - ah l  (2)$,  (6.1) 

~2/2 as 2 ~ 0  (6.2) 
h 1 (2) ,-~ [L2 as 2--* oo' 

h I (2) ~ ~(1 - ,,~) for all 2 > 0 ,  (6.3) 

h I (2) ~" ~2/4 if 2 < 4 (6.4) 
= [ ( L 2 ) / 2  if 2 > 4 "  

Bennett's inequality (Bennett, 1962) tells us that 

IP [I v, (C)[ > M] < 2 exp ( -  M n  ~ h 1 (M/n ~ az (C))) (6.5) 

for all M > 0 and all C. Hence (6.4) and Theorem 2.8 of Alexander (1984) give us the 
following. 

Proposition 6.1. Let ~ be a VC class of  sets, n > 1, M > 0, and ~ >= sup a 2 ( C) There 
exists a constant K o = Ko(V(Cg)) such that if  either (i) 

or (ii) 

then 

M 2 > K o c~L(n/c 0 and M >  KoL(n/~)/n ~L(M/n~cO (6.6) 

M 2>=Ko~L~ -1 and M>=Kon-~Ln (6.7) 

IP[sup [v,(C) l>  M I  < 16 exp(-  M2/8~)+ 16 exp ( - �88  [] (6.8) 

The first term in (6.8) corresponds to a Gaussian approximation, the second to a 
Poisson. If M / n ~  is small, the Gaussian approximation is dominant; if it is large, 
the Poisson approximation dominates. 

Proof of  Theorem 2.1. Suppose first that (2.7) and (2.8) hold. Set 

t o = O~, t j  = q - -  1 (2-J q (~)) V r for all j > 1, 

N = m i n { j > O : t ~ + l  <r} ,  and r ' = ( a - l ( p / n )  A z - l ( n ~ / b ) ) v 2 .  



Growth Rates for Empirical Processes 395 

Then 

lP[[v,(C)] > bq(t) + u  for some 7 < t-<c~ and Cs(g( t ) ]  

<IP[[v , (C)[>bq( t )  f o r s o m e T < t < r '  and C~Cg(t)] 

N 

+ ~, IP[ lv , (C) l>bq( t j+l )  for some CECg(t~)] 
j=0  

N 

j=O 

We begin with IP (~ Suppose 7 < t < r', C ~ cg (t), and P, (C) = 0. Then 

Iv, (C)[ = n~P (C) <= 2n ~ a 2 (C) <= 2n ~ q (t)/z (t) <= bq (t). 

It follows that 

IP(~ for some CeCg(t) 

< nP(E~,) < p .  

Turning next to the IP~ ~, we have 

and ? <  t < r ' ]  

L ~g(tj) 

+ IP[lv.(Et)I > ~bq(tj) g(tj) +] 

Fix j and let k~, k 2 be nonnegative integers such that 

Then 

(6.9) 

(6.10) 

(6.11) 

V 7 lp(2) < max IP | supLv , (C)[> �89  (6.13) ~ j  = 

kt <=k<k2 LCg(tj) 

Define a new probability measure ptj by 

ptj( .)  _~p( .  let ,  ) 

and let lP t=  (ptj)~ be the corresponding product measure on (X ~, ~ ) .  (~(tf l  
is easily shown to be deviation-measurable for pt~, since it is deviation-measurable 
for P by assumption.) Then 

ptj (C) = P (C)/P (/~,~) and 

a tg (C) -P ' J (C)  ( 1 - P t J ( C ) ) < ~ 2 ( C ) / P ( E t ) < g ( t j ) - ~  for CeCg(tfl .  (6.14) 

Fix k, k~ ___ k _<_ k2, and define 

#g = k~ (Pk -- PrO. 

[v,(/~tj)[ <~bq( t j )  g(tj) -~ if and only if ]c I ~/'/Pn(]~t,) ~]s (6.12) 
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By (6.12), for CeCg(tj), if nP,(Et, ) = k then 

_, n*P(C) ~ , ~ ,  k ]n*P(C)-  kn :Pt~(C)[- ~ r ( L , j -  
tl 

< 2g( t j ) - l lv .  (E,) I 

= < �88 

Now IP [nP~ [ ~(~) ~- ]nP~ (P~) = k] = IP~ [kP k ~ .], where P, ] ~(,~)is the restriction of/, ,  
to cg(tj). It follows that 

IP[sup Iv,(C)t > �89 (/~) = k t 
L~'(z) 

=IPt~[su(pn*(kP~ (C) P(C))  >�89 1 

= ]P,~/sup I(k/n)* IA(C) + kn-* P'~(C) - n*P(C)[> �89 
L~(t~) J 

< ]P,, [sup [/zk(C)[ > �88 bq(tj)]. 
L~(t:) 

- IP~ ) . (6.15) 

We now wish to apply Proposition 6.1 with M = �88 (n/k) -~ bq (tj), and ~ (tj)- ~ in the 
role of  the ~ there (see (6.14)). 

Case 1. 

z(tj) < 2n*/b, i.e. 
bq(tj) < 2n*~ (t~). (6.16) 

Combining this with (6.12), we get 

k 
-<8(tj)+~n-*bq(tj)~,(tj)-~<=2fi(tj)=2~(tj)~(ti).  (6.17) 
t/ 

Hence by (2.2), 

while by (2.3), 

M 2 > b e q2 (tj)/32 ~ (tj) g (tj) >= ~ Kg (tj)-I Lg (tj) (6.18) 

Mk* > �88 bq(tj) >= 1KL (n~(tj)) >= �89 

If Kis large enough we can now apply Proposition 6.1 (ii), and use (6.17) and (6.18) 
to get for the IP)~ ) of  (6.15): 

~jk~(*) = < 16 exp(-b2q2(tj)/28 ((tj)) 

+ 16 exp(-2-~n-~bq(ti)L(bq(tj)/8n~(tj))) ,  (6.19) 
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so by (6.13), for the IPj (2) of  (6.1]), 

IP (2) ~ 16 exp ( -  b 2 q2 (tj)/2 s ff (tj)) (6.20) 

+ 16 exp ( -  2-  * n ~ bq (t j) L (bq (tj)/n ~ ((ti)) . 

Next, by (6.5) and (6.4) we have for the IP) 3) of  (6.11) 

(3) < �9 �89 ]P) = 2 e x p ( -  ~bq(o) ~(O)~n-hl (bq(tj)/8n~C(t~) g(t~)~)) 
(6.21) 

< 2 exp ( -  b a q2 (tj)/28 ((tj)) 

since, by (6.16), the argument o fh  1 above is at most �88 Combining this with (6.11) 
and (6.20), we see that for the IP) 1) of  (6.9), 

IP) 1)< 18 exp(-bZqZ(ti) /28~(O))+ 18 exp(-2-Sn*-bq(ta) L(bq(tj)/n-~(tj))) 

+ 34 exp ( -  2-s  n ~ bq (ti) L~, (tj)). (6.22) 

(The last term in (6.22) is superfluous now but will be used later.) 

Case 2. 

z(tj) > 2n}/b. Then r < tj < s, so (2.4) holds, and 

bq (tj) > 2n ~ ~ (tj). (6.23) 

We wish to use Proposition 6.1 (i). To prove (6.6) it is sufficient to show that, for the 
constant Ko of that proposition, 

M2~, (t~) > �88 M k  ~ L (M~, (o)/k ~) > KoL (k~, (t~)). (6.24) 

We need two subcases, according to which of the two terms added in (6.17) is the 
larger. 

Case 2 a. 
bq(tj) <= 8n ~ ~ (tj) g(t~) ~. (6.25) 

Then (6.17) is again valid. By (6.17), (6.23), and (2.4), 

M~ (t~)/k *~ = n ~ bq (tj) ~ (O)/4k 

> bq (O)/8n ~ ~ (tj) (6.26) 

> (�88 v (K/8n((tj)) .  (6.27) 

By (6.27), Mff,(tj)/k ~ > �88 and the first inequality in (6.24) follows. 
The second follows, if K is large enough, from the following inequalities, which are 
consequences of (6.17), of  (2.4) and (6.27), and of (6.26) and (2.5), respectively. 

L(k~(tj))  < L(Zngt(O) ~(O ) < L(2/nr (tj)) + 2L(nfi(O)) 

M k  -~ L (M g (o)/k*) >= �88 KL (2/n( (tj)) 

M k  ~ L (M~ (tj)/k*) > �88 n -~ bq (tj) L (bq (0)/8 n* ~ (0)) 

> �88 KL  (n f (@) .  (6.28) 
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Thus (6.24) holds as desired. Proposition 6.1 (i), (6.17), and (6.28) now tell us that 
(6.19), and therefore (6.20), are again valid. From (6.25) we see that the argument of 
h 1 in (6.21) is at most i, so by (6.5) and (6.4), (6.21) again holds. Therefore so does 
(6.22). 

Case 2 b. 
bq(tj) > 8n-~ ~ (tj) ~(tj) ~. (6.29) 

Here, by (6.12) and (6.29), 

k 
- < F t ( t j ) + ~ n - ~ b q ( t j ) ~ ( t j ) � 8 9 1 8 8  ~. (6.30) 
n 

It follows that 

M~, (tj)/k -~ = n ~ bq (tj) ~ (tj)/4k >= ~, (tj) ~ > 1, (6.31) 

so the first inequality in (6.24) holds. By (6.30), (2.4), and the first inequality in 
(6.31), if K is large enough then 

KoL(k~(t j )  ) < KoL(�88 bq(tj)) + ~ KoL~(t j)  

<_ l n ~ b q ( t j )  L~(tj)  

=< �88  (Mg (tj)/k ~) 

Thus we have (6.24). From Proposition 6.1 (i), (6.24), and (6.31) we conclude that 

IPJ~ ) __< 16 exp ( - ~ M 2 ~ (tj)) + 16 exp ( - 1 M k  ~ L (M~ (tj)/k ~)) 

< 32 exp ( -  ~ z M k ~ L  (M~, (tj)/k~)) 

32 exp ( - 2  -s n~bq(tj) L~,(tj)) 

so by (6.13), 
IP) z) < 32 exp ( -  2 -  8 n ~ bq (tj) Lg  (ti)) . (6.32) 

To bound IP) 3) we use (6.5) to conclude that 

= " ~ n~hl ~ ~ 1PJ3)<2exp( -~bq( t j )g ( t~ )  = (bq(tj)/8n ~(tj)g(t~) )) 

__< 2exp ( - ~ b q ( t j )  n~L~(tj)). (6.33) 

In the second inequality here we have used (6.29) to tell us that the argument ofh 1 in 
(6.33) is at least 1, along with the fact that hi (1) > �88 From (6.11), (6.32), and (6.33) 
it now follows that (6.22) holds. 

Having established (6.22) for all L it remains to sum it over j. Define 

(Pl (t) = 2-  s n ~ bq (t) L (bq (t)/n ~ ~ (t)), 

~02(t) = 2 - S n  ~ bq(t)  L~( t ) .  

By monotonicity o fg  (t)/~ (t) and q (t) ~ - z q~i (t) (which follows from (2.7)), we have 

t j+~<tJ2 and ~oi(tj+l)<2-(~-~qh(t~) ( j < N , i = I , 2 )  (6.34) 

Hence, using also the monotonicity of ~ (t)/t, 
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N 

exp ( -  b 2 q2 (tj)/2 s ~ (tj)) 
j = O  

N t j -  tJ2 
= ~ 2 - -  exp ( -  b z q2 ( ty28  ~ (tj)) 

j=o tj 

< 2 i t -  ~ exp ( -  b 2 q2 (t)/29 ~ (t)). (6.35) 
r/2 

Summing the second term in (6.22) over j, (6.34) and (2.8) may be applied to show, 
for i =  1,2, 

N N 

Y~ exp(-~o~(tj)) =< y, exp (-2"-e)(~-J) r 
j = O  j = 0  

N 

< ~ exp ( -  (1 + O ( N - j ) )  qh(tN)) 
j = 0  

< 2 exp ( -  ~o~ (tN)) (6.36) 

where 0 = 21 -~ - 1 > (1 - /~ ) log  2. The theorem now follows from (6.9), (6.10), 
(6.22), (6.35), and (6.36). 

When we do not have (2.7) or (2.8), we replace L ( . )  by its lower bound I in 
(6.22), and observe that the second term in (6.22) is then not needed, since the third 
term in (6.22) becomes an upper bound for the second term in (6.20). Otherwise the 
proof  remains essentially the same. [] 

VII. Proofs of the General Results 

Throughout  this section all inequalities in proofs should be taken to have the 
unstated qualification that the index n or k (which one will be clear from the 
context) is sufficiently large. 

We begin with a lemma demonstrating that a well-known fact about stopping 
times ~ remains true even if-c is not measurable. It is included solely to avoid 
unwieldy measurability assumptions and is not central to our arguments. 

Lemma 7.1. Let z be given on (X ~, d ~~ IP) by z = min {m: (X1, . . . ,  Xm) ~ A,,} for 
some sets A m c X  m, and let n > 1 , 0 < / ~ < 1 ,  and FOX' .  Suppose for each 
(x l , . . . ,  xm) 6A,~, m < n, there is a set B--  B ( x l , . . .  , x ,~ ) c X  "-m such that 

IP* [(X,~+ 1, ... , X,) ~B] > ~, and (7.1) 

(xm+l . . . .  , x , ) E B ( x  1 . . . .  ,x,,) implies ( x l , . . . , x , ) 6 F .  (7.2) 

Then IP* [z =< n] < /~-  t IP* [(X 1 . . . . .  Xn) ~ F]. 

Proof. We may write IP* (D) for IP* ((X~ . . . .  , Xm) e D) for any m and D c X m. Let G 
and D 1 . . . .  , D, be measurable sets with G ~F,  D,, = [z < m], IP(G) = IP* (F), and 
IP (D,,) = IP* [z < m]. Define z* on X ~ by z* (co) -= min {m" co ~Dm}. Then z* < z 
SO 

l P * [ r < n ] < l P [ z * < n ] =  ~ l P [ z * = m ] =  ~ IP(D,,\D,,_I) (7.3) 
m<=n m<__n 
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whereDo = q~. F i x M a n d  write ( X~~ d ~ ,  1P) as (~1, ~r P1) x (~'~2, s~r P2) where 
f21 is a copy of  X m on which X1, . . . ,  X,, are defined, f22 is a copy of  X 0o on 
which X,,+z,X,,+2 .. . .  are defined, P1 is Pro, and P2 is po~. For  o)1 ~f2~ let 
SA (O)1) = {O)z : (O)1, O)2) ~ G} be the section of  G over co 1 . Then 

IP [G ~(Dm \ Dm_ z) ] = ~ P2 (sA (col)) dP 1 (o)1) 

>= tiP1 [~ :P2 (sA (~ --> fi]" (7.4) 

Now if col6[z<_m]c~(Dm\Dm_~) (viewed as a subset o f  Xm), then by (7.1) 
and (7.2), 

/'2 (s~ (o)~)) _->/'~ [(xm+~ .... , x , )  ~B(x~ (o)~), ...,Xm (O)~))] _-->/~. 

It follows using (7.4) that  

IP[Gm(Dm\D,,_ ~) ] >= tiP? ([z -__< m]a(Dm\D~_ ~) ) . (7.5) 

If  E is a measurable set containing [z < m] ~ ( O m \ D  m_ 1) then 

.,~ (E) > PI ( E w D m -  I ) - P1 (Din-z) > P* [z <= m] - P1 (Dm- ~ ) 

= PI (Dm) - PI (Dm-1) = PI (Dm \ Dm-1)  , 

so P* ([z _-< m] r~ (Dm\D m_ 1 )) >= P1 (Dm\Dm - 1 )" Combining this with (7.5) and (7.3) 
we see that  

IV* [72 ~ n] ~ E fl-1 Ip[Gcs(D.~\Dm_I) ] 
m~. 

~f l -a  IP(G)=f l -1  IP*[(X 1 . . . . .  X , ) 6 F ] .  [] 

The asymptotic  upper bounds for the weighted empirical process will be 
obtained from Theorem 2.1 with the help of  the following lemma. 

Lemma 7.2. Let ~f be a class of  sets, let q ~ Q, and let (b,), (u,), (7,), (c~,) be 
nonnegative sequences with 

n -1 b, $,  u, ,L, 7, $, ne ,  ~" . (7.6) 

Define events 

A , = [ l v , ( C ) [ > b , q ( a 2 ( C ) ) + u ,  f o r s o m e C ~  with 7 ,_-<a2(C)<a , ] ,  

A',(~)= [Iv,(C)l > ( l - 8 ) ( b , q ( a 2 ( C ) ) + u , )  for some C~(g with 7, 

_-<~2(c)=< (1 + ~)~,]. 

Suppose 
inf{b. t-~q(t):n>= 1, t s [7 , ,e , ]}  > 0 ,  (7.7) 

and suppose that for some e, 0 > 0, 

IP* (A~ (e)) = 0 ((Ln) - (1 + 0 ) ) .  ( 7 . 8 )  
Then IP(A, i.o.) = 0. 
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Proof. Let r be the infimum in (7.7) and choose 6 > 0  small enough so 
262 + 2 r -  1 6 < ~. Fix m, (1 - 32) n < m < n. I f  (xl . . . .  , xm) e A~, then there exists 
C =  C(xi  . . . .  , x,~) ecg with 

and 

I v~ (c)  l > b~q (~2 (C)) + Urn ~ (1 -- 6 ~-) (b.q (a 2 (C)) + u.) 

7<~,<~2(C)<~m<(1+~2)~.; 
(7.9) 

here we have used (7.6). I f  (7.9) occurs for some C and 

I(nP, - mPm - (n - rn)P) (C)[_< 2 (n - m)~a (C) < 2n ~ c5 ~ (C), 

then by the definition of r, 

IO , . ( c )  I >__ (1 - 3 2) I~,. ,(c) I - 26o- ( c )  

> (1 - 262 - 2r-16) (b,q(~2(C)) + u,) 

> (1 - e) (b,q(~2(C)) + u,). 

(7.10) 

Let B = B ( x l  . . . . .  x,,) be the event that (7.10) holds for C = C ( X l , . . . , X m )  ; it 
follows from the above that (7.2) holds for F =  A~(e). By Cebygev's inequality, 
(7.10) occurs with probability more than 1/2 for any fixed C; thus (7.1) holds 
with/~ = 1/2. Hence by Lemma 7.1, 

]P*(\(1 -~%<m<=,U A, , )=IP*[~<n]<=ZIP*(A;(e)) .  (7.11) 

For  n(k)= [(1 + 62/2) k] (the integer part), we have by (7.8) that ~ IP* (A~(k)(e)) 
k=>l  

< o% and the lemma then follows from (7.11) and Borel-Cantelli. [] 
For  asymptotic lower bounds on full classes, our method is modeled somewhat 

after that of Stute (1982a). Let b ( j , n , p ) = ( ~ ) p J ( l - p ) " - J  denote the binomial 
probability, 

n 

a + (k ,n ,p)= Z b(j ,n,p) 
j=k  

the binomial upper tail, and 

h 2 (,~) = ,~/(1 + 2) - log (1 + 2) = - (1 + Z- 1)-1 hi (2). 

The following generalizes Lemma 1 of Kiefer (1972). 

Lemma 7.3. Let (.p,), (k,), (l,) be nonnegative sequences (with n > 1) satisfying 
p,--* O, k,--+ oo, and k ,  <= l, = o (n). Let 2 o > 0. Then there exists ~1, ~ 0 such that 

[log B + (k, n,p) - kh2 (2) 1 < ~/, khz (Z) 
whenever 

k - = ( l + Z )  np, k , < k < = l , , 0 < p < p , ,  and Z > Z  o. E~ (7.12) 

Proof. Fix n, k,p, and 2 satisfying (7.12). Comparison to a geometric series shows 

b (k , n , p )<  B+ ( k , n , p ) < ( l  + 2 -1 ) b(k ,n ,p) ,  
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so 

Define 
[log B + (k, n, p) - log b (k, n, p) [ < (k,, 2 o) - ~ k. (7.13) 

{nP~k{n(_l_-P)~"-k, b l ( n , k ) = (  n )~ 
b ~  k } \ n - k  } 2 r c k ( n - k )  " 

By Stirling's formula, if n is large, 

�89 (k, n,p) < b o (k, n,p) bl (n, k) < 2b (k, n,p). (7.14) 
Now 

[2 lOgbl(n,k)[ = [log2rc + logk + log(1 - (1 + 2)p)[ < t/', k (7.15) 

for some q',--+0, since k , ~  oo and (1 + 2)p < l,/n-~O. Also 

] 2 1 - ( 1 + 2 ) p  l o g ( 1 _ 1 ~ )  I h z ( 2 ) - k - l l ~ 1 7 6  1 + 2  ( l + 2 ) p  

< 1 1 - p  } + 0 1 2 
= I 
< r/;,'--, 0 as n--+ oo, (7.16) 

where 10[ < 1 if n is large, since p,--, 0, 2p < (1 + 2)p < l , /n~O, and Ilog(1 - x) 
+ X2+ X2/2[-=-O(X 2) as x--*0. The lemma now follows from (7.13)-(7.16), since 
h2 (2) is bounded away from 0 for 2 > 2o. [] 

Lemma 7.3 can be translated into a statement about v, (C) for easier later use. 
This we state as the next lemma. 

Lemma 7.4. Let 20 > 0 and let (p,), (m,), and (M,) be nonnegative sequences 
satisfying p, ~ O, n - 1/2 = o (m,), and M,  = o (n 1/z). Then there exists 7, ~ 0 such that 

I - log IP [v, (C) > M] - mn~hl (M/n~a z (C))l < t/, Mn+hl (M/n~a 2 (C)) 

whenever P(C) < p,,  M/n~a 2 (C) >= 2o, and m, <= M < M,.  [2] 
The next lemma is a version of Theorem 5.2.2 (iii) of Stout (1974). It covers 

the case, excluded in Lemma 7.4, when M/n~a 2 (C) is near 0. 

Lemma 7.5. For each 0 > 0 there exist K, 2 o > 0 such that 

IP [v,(C) > M] > exp ( -  (1 + O)MZ/2a2(C)) 

whenever n > 1, M 2 >>_ Ka 2 ( C), and M/n�89 a 2 ( C) <= 2 o. [] 

Proof of  Theorem 3.1 (A). It is easily verified that nb 2 7 , ~  oo in each of (i)-(iii). 
It follows that 

sup {n-S/b, a (C) : C ~ ~f, a s (C) > 7,} < ( nb2 ?;,) -~ = o (1). 

From the Kolmogorov 0-1 law we then conclude that the lim sup in (3.4) is some 
constant a.s. By Lemma 7.2, to prove (A) it suffices to show that for each 6 > 0, 

IP*[ l v , (C ) l>( l+8 f i ) R~b ,a ( C)  fo rsomeC~Cg with a 2 ( C ) > v , ]  

= O((Ln)-(1 +~)) (7.17) 
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where R~ $ R o as 6 ~ 0 and R o is the upper bound for R given in whichever of(i), (ii), 
or (iii) we are considering; Ro will be specified later. 

Fix 0 < 6 < 1/8. Let (%) and (u,) be nonincreasing sequences, to be specified 
later, with % > 7, and 0 < u, < 6. Fix n and set 

t j=  (1 - u~/4)Jc~,,j>O, 

g (j) = cgt~\ cgt~.~, and 

N,= min ~] >= O: tj+ l =<7,}. 

By (3.3) there exists ~ ( j ) ~  g(j)  for all j_< N,, and A = A(6)< oe such tha t  

I~(j)l<Au["g(y,)e+~ n exp((Q+6)(q+6)w.)  for all j <  N,,  (7.18) 

and such that for each C e gO), there is a Co (C) e ~ ( j )  with P (C A C o (C)) < u, 2 tj. 
Set 

~(t) = {C\D: C,D E~,, o-2 (C \D )  < u, 2 t}. (7.19) 

Since 

Iv.(C)l < Iv.(Co(C))l + l~,~(C\ Co(C))l + Iv.(Co(C)\ C)l, 

we have 

]P* [Iv,(C)l > (1 +86)Rob, a(C) for some CEcal with 7n~72(C)<=o~n] 

< IP* [Iv. (C)[ > (1 + 86) Rob, ty+ 2 for some j < N, and C ~ g(j)]  
u. 

< ~ I P [ l v , ( C ) l > ( l + 4 6 ) R ~ b ,  ty  2 for some C e ~ - ( j ) ]  
j=0  

+ IP* [ [v . (C) [>  6R~n,t 1/2 for some 7, < t < % and CeCal(t)] 
N. 

-~ Z IPj + IP*. (7.20) 
j=0  

We now consider separately the cases (i)-(iii) of (3.4). 

Proof of (A) (i). Here we take % = 1/4, u, = u for some 0 < u < 6 to be specified 
later, and Ro = (2 ((0 + 6) (C 1 @ 6) "q- C 2 71- C 3 -~- 26)) ~. 

Now a2(C)<tj for C e ~ ( j ) ,  and maxwl./Z/n~t)~O as n ~ o e  since 
j<=U. 

n -1 w , =  o(7,) , so by (6.5), (6.2), and (7.18), 

IPj < 2[ ~ ( j )  [exp ( -  (1 + 46) R 2 w./2) 

< exp ( -  [(1 + 46) R~/2 - (~ + 6) (e 1 + 6)] w,) 

< exp ( -  (1 + 6) (c 2 + c 3 + 26) % ) .  

Since N, < (log (1 - u2/4)- 1)- 1 LTn- 1, it follows that 
N. 

IP~ < N, exp ( -  (1 +6 )  (c2+c3+26)w,) 
j=0 

< exp ( -  (1 + 6) (c 3 + 6) w,) 

< exp ( -  (1 + 6) LLn). (7.21) 
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To  bound  IP* we use T h e o r e m  2.1, with ~(t) = u 2 t, b = f iRo  w, ~, 7 = ?,,  e = �88 
q(t)  = t ~, and c~(t) f rom (7.19). In  the no ta t ion  o f  Theo rem 2.1, ~i(t) is at mos t  a(t), 
we can take ~( t )  to be u-2g( t )  (see R e m a r k  2.2), z( t )  is u -z  t -~, r is 7,, and  s is 
w,/4uZn = o (7,), so r > s and  (2.4) and  (2.5) are vacuous.  Let  K be the constant  
f rom Theo rem 2.1; i f  we take u < 6R~K --~ then 

Lg( t )  <= L g ( v . )  < b2/u2K for  all y. __< t__< 1 

and  (2.2) follows. Since n -  1 w, = o (7,) ,  

and  

t -~ Lg  (t) < 7~ ~ Lg  (7,) = o ((nw,) ~) 

( n t ) - ~ L ( n t )  <= (nT,) -~ L(nT,)  = o(1) 

for  all t > 7,, so 

Kt -~  L(n~( t ) )  < K t -~  L(n t )  + Kt  -~ Lg( t )  < (~Ro(nw,) ~ 

for  all t >  6,,  and  (2.3) follows. T h e o r e m  2.1 now tells us that,  if  we take u 2 
< 62/512, 

IP* < 36 j t -1 exp ( -  62 R 2 w,/512 u 2) dt 
y./2 

+ 68 exp ( -  6Ro (n7.w,)~/256) 

< a40(Lv; ~) e x p ( -  (1 +6)R~w, /2)  

< 140 exp ( -  (1 + 6) (c 3 + 6) w,) 

< 140 exp ( - (1 + 6) LLn) .  

With (7.20) and  (7.21) this proves  (7.17), and (A) (i) follows. 

Proof o f  (A)  (ii). Here  we take u, = u for some 0 < u <  6 to be specified 
later, and  R~ = max  (Rol, R~2) with R~I = (2 ((0 + 6) (cl + 6) + c2 + c3 + 26)) ~ and  
R ~ 2  = "r�89 (flo(~)~ - -  1), where 0 (6) = ((~ + 3) (c I + 6) + c 3 + 6 ) -  1. We take c~, $ 0 with 

7, = o (c~,) and  L (7~- i c~,) = o (w,) .  (7.22) 

Set v~, = Lg(c~,) v LLn. Since 

Lg (~,) <= Lg (7,) --< L (an- 1 a (c~,)) + L (7~- 1 c~,) ---- Lg (c~,) + o (w,) ,  

we have w, ~ v?, and  n -  1 v?, = o (c~,). I t  is easily then verified that  the constants  
c 1 , c2, c 3 are unchanged  i f7 ,  is replaced by c~, in (3.2). Hence  by the above  p r o o f  o f  
par t  (A) (i) o f  the theorem,  

]P*[[Vn(C)[>( I+S f } )Ro lW~(C  ) for  some C e ( g  with a z ( c ) > e , ]  

= 0 ((Ln)-(1 +~)). (7.23) 

Hence  to obta in  (7.17) it suffices to bound  the left side (or therefore  the right side) 
o f  (7.20) by O ((Ln)-(1 +~)). 

Define 2 t = (1 + 46)Ra2 w~/(nt) ~. Then  by (6.5) and  (6A), since a z (C) < tj for 
c e ~ - ( j ) ,  
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IPj<=]P[Ivn(C)[>(I+4'5)Ra2w~t} for some C~ ~-(j')] 

2[ ~ ( j )  l exp ( -  (1 + 4`5) 2 R22 w n )~tT. 1 h 1 (/~tj)) 

< 2] ~ U )  l exp ( -  (1 + 4`5) 2 RaZ2 w, 2~. 1 h,  (2~,)). (7.24) 

Set %=nT,  w~ ~ and {=f i0{a )~ - l .  Since %--+z, we have Q*=0+4,5) 
R~2 "c~-~ > (1 + 3 ̀ 5) {. F r o m  (1.11) we know that  { h 1 ({) = (0 (`5) ~)-*. It follows that  

,z~* hi (Q) ____ Q ~ (l + 3,5) ~ h, (~) 
= (1 + 3`5) Zn/(1 + 4`5) 2 R220(`5) "c 

> (1 42,5)/(1 +4,5) e R22 0(`5) 

so by (7.24) and (7.18), 

iv. ~vo 
IP~< ~, 21~,~(j)[ e x p ( -  (a w~ 

j = O  i=O 

< 2 A u - "  N,  exp ( -  (1 + 2`5) (c 3 + `5) % )  

< exp ( -  (1 + `5) (c 3 + `5) w,) 

< exp ( -  (1 + `5) LLn) (7.25) 

since LN,  = 0 (LL (y~-* a.)) = o (%)  by (7.22). 
To bound  IP* we use Theorem 2.1, as in the p roo f  of  (A) (i), with ~ (t) = u 2 t, 

b='sRazw~, 7 = 7 n ,  C~=~n, q ( t ) = t  ~, and cg(t) f rom (7.19). Again 6 ( t )  is at 
most  a (t), ~ (t) is u -  2 g (t), z (t) = u -  2 t - } ,  r is 7,, and s is s, = '5 z R22 w,/4u4n ~ 5̀2 
R~a 7, /4u 4 z > 2y,  provided we take u < (`52 2 t Ra2/8z)~. Thus r v s = s,. I f  we take 
u < '5R62 K -~ then 

L ~ ( t ) < L ( u - 2 g ( 7 , ) ) < b 2 / u Z K  for a l l t > s ,  

and (2.2) follows. Also 

t -~ Lg(t)  < s# ~ Lg(s,)  <_ (2u2/,sRa2) (nw,) ~ 
and 

(nt)-*~L(nt) < (nT,) -}  L(nT.  ) = o(1) (7.26) 

for  all t >  s,, so if u 2 < ,SZR2z/4K , 

Kt -~  L(na(t))  < Kt -~  L(nt )  + Kt -~  Lg( t )  

< (4 Ku2/,5 Ra2 ) (nw,) ~ < (5 Roz (n w,) -~ (7.27) 

and (2.3) follows. (2.4) and (2.8) follow from the fact that  nT, w,--~ zw 2 -+ Go. To  
establish (2.5), by the first inequality in (7.27) it suffices to show 

2 K L ( n t ) +  2KLg(t)<='sRa2(nw, t) ~ L('sZRZaw,/nu4t), t>7 , .  (7.28) 

The first term on the left o f  (7.28) is handled using (7.26); for the second it suffices to 
consider t = 7, only, since Lg (t) decreases and the right side o f  (7.28) increases in t. 
I f  we take u small enough so L (,sZRZz/2ur ~)> 8K/,SR~e z -~, then 

~ L  2 2 4 > ~  'sRaz(nW,7,): (̀ 5 Rozwn/nu Yn) = g'sRa2"f wnL('52R262/2u4z) >=4KLg(7,) 
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and (7.28), and then (2.5), follow. Since g(t) and t-P/2Lt decrease and a(t) 
increases, we have t~/ZL~(t)= u-~ a(t) ~/2 (u-Zg(t)) -p/2 L(u-Zg(t)) increasing, 
and (2.7) follows. Theorem 2.1 and (7.22) can now be applied, and the result is that 

~t n 

IP* < 36 ~ t -  ~ exp ( -  62 R22 w,/512 u 2) dt 
y./2 

+68 exp ( -2-92~6R~2 wnLu -2) 
+ 36 exp ( - 2 - 9 ,c�89 t~ R62 W n L (fi Ro2/2"c ~ U 2)) 

< 140L(27, -1 e,) exp(-- (1 +26)  (c3+6) w,) 

< 140 exp ( -  (1 + ~) (c a + 6) w,) 

< 140exp(-- (1 + 6 ) L L n )  

provided u < u 0 for some u o (z, 6) > 0. In combination with (7.20) and (7.25) this 
proves (7.17), and (A) (ii) is proved. 

Proof of (A) (iii). This time we take u, = (nv,/w,)u for some (large) p > 0 to be 
specified later, and take c~, = n -  1 w, and 

R~ = (~ + 6) (cl + ~) + c3 + ~. 

Set k,  = Lg (c~,) v LLn. Since c~, __> 7,, we have n-  1 ~n ~ F/- 1 Wn = O~n. Since 
~ = o (y,), it follows from the proofs of parts (A) (i) and (A) (ii) that 

IP*[]v,(C)[>(l+86)R~y,~r(C) for some CeCg with a 2 ( C ) > e , ]  

= 0 ( (Ln)- (1  +~)). 

Hence as in the proof of part (A) (ii) it suffices to bound the right side of (7.20) by 
0 ((Ln)-(1 +~)). 

Analogously to (7.24), setting 2, = (1 + 46) R~y,/(nT,) ~, we get 

IP~ =< 2 [ J~(j) [exp ( - (1 + 46) 2 ~i;72"~6 yn2 An~ - -  1 hi (~n)) 

< 2] ~-(j) [exp ( -  (1 + 36) Roy" (nT,)~ L (w,/nT,)) 

= 2 [ ~( j ' ) lexp ( -  (1 + 36) R~ w,) (7.29) 

since h 1 (2,) ~ L2.  ~ L(w,/nT,) by (6.2). Now Lu;  1 = o(w,) and N , =  O(Lu~ 2 
+ LL(7~ -1 ~ , ) )=  o(w,) by (3.5), so as in (7.25), (7.29) and (7.18) give 

U. 
Z IPj < exp ( -  (1 + 6) LLn). 

j=0 

Once again Theorem 2.1 will provide the needed bound on IP*. As before we 
take ~(t)=uZt, b = f R ~ y , ,  7 = 7 , ,  ~=c~,, q( t )= t  ~, and cg(t) as in (7.19), so 

_ _ 1  2 2 2 4 ~(t) < a(t),  ~(t)----- u~2g(t), z(t) = u, 2 t 7, r is 7,, and s is s ,= 6 R~ y, /4u,  > ~,, 
so (2.2) and (2.3) are vacuous. (2.4) and (2.8) follow from (3.5). As in the proof of 
(A) (ii), to establish (2.5) it suffices to show 

2 K L ( n t ) +  2KLg(t)<fRo(nt)-~ y,L(w,/nu4t) ,  c~.>t>=7,. (7.30) 
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The first term in (7.30) is handled by noting that, since 7. < t < % = n-  1 w., 

(nt)-~ L (n t )  < (nT.) -~ L(nT.)  = y .w~  1 r ( w . / n ? . ) r ( n T . )  

< y .  w2 ~ (4/~)- 1 L (u2 ~) L w .  <-<_ (4~)- ~ y .  L (w./nu'. O. 

For  the second term, 

(nt)-~ Lg( t )  < (nT.)-  ~- Lg (7.) < y . L  (w./nT.) 

__< (4/~)-1 y~ L (w./nu'. t) . 

Thus (7.30) holds if /z is large enough. (2.7) is established as in the 
proof  of (A) (ii). We now apply Theorem 2.1 and use the fact that by (3.5), 
L L  (27~- 1 ~.) = L L  (27~- 1 n -  1%) = o (w.), to obtain, if # is large enough, 

c~ n 

IP* < 36 ~ t -  1 exp ( -  2 2 2 2 6 R ~ y . / 5 1 2 u . ) d t  
~./2  

+ 68 exp ( -  2-  8 6 R 0 y.  (nT.) 4 L (u~- 2)) 

+ 36 exp ( -  2 - 86 R a y .  (n 7.) ~ L (6 Ra y./(n ?.)~ u~ )) 

=< 140L(27~ -1 ~.) e x p ( - 2  -7 6Ralzy.(nT.)  ~ L(w. /n7. ) )  

< 140 exp (-- (1 + 6) (c a + 6) w.) 

< 1 4 0 e x p ( -  (1 +6 )  LLn) .  

The result now follows as in the proof  of  (A) (ii). [] 
We introduce now some notation and do preliminary calculations for use in the 

proofs of  the next three propositions. Let R > 0 and 6, 2,/z e (0, 1) be constants to be 
specified later. Let c.g be a full VC class. For  each t e (0, �88 let 

~ t ~  with ~;~g(t)l-~<= ]~t l<=e~g(t) l - ; '+l ,  and 

az (c )=t ,P(C)<=�89  and P ( C ~ (  ~ D ~ < 2 P ( C ) f o r a l l C e ~ t ,  
k,D~.@,,D4C / /  

where e~ < ~ is the constant in the definition of  "full". Let (7.), (a.), and (b.) be 
nonnegative sequences with 7. =< a. = �88 and 

n ~ b. q (7.) ~ ~ .  (7.31) 

Let (n (k), k > 0) be a strictly increasing sequence of  integers with n (0) = 0, and set 

m ( k ) = n ( k ) - n ( k - l )  
n (k) 

r~(c) = y, l~(x~) 
i = n ( k - 1 ) +  l 

S k (C) = Yk (C) - m (k) P(C)  = n (k) ~ V.(k) (C) - n (k - 1) ~ v.( k_ 1) (C) 

tkj = ~n(k)/A j ,  

N k = min ( j  > 0: tk,j+ 1 < ])n(k)}, 
~ 1 - 0 / 1 6  N~ = min {j > 0 : tkj = ~.(k) }, 

Z~={(j,i):N~<=j<_N~, 1 ---_ i-<_ I~ ,~1} ,  

r ( k , j ) =  ]~t~l, 
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and observe that  
~t~ = {Ck~i :1 <-- i<_ r ( k , j ) }  

for  some sets Ck~ i. Note  the k indexes the number  of  sample points, j indexes the 
sizes o f  the sets, and i indexes the collection o f  sets corresponding to each k and j .  
The Ckj i are nearly disjoint for  fixed k and j ;  we wish to replace them with fully 
disjoint sets Dkj i. Define 

t D;ji = Ckji\ Gkji, 

Gk~i = D ~ i ~  U Gzm , 
m<=r(k,Z) 

Gkj~ = G' w G" kji  kji  , 

Dkj i = Ck j i \  Gkjl, and 

Hki = 0 Dkji. 
i < r ( k , j )  

Thus for fixed k, Dkj ~ is obta ined f rom Ckj i by throwing out  any intersection 
Gkj i with other  sets o f  equal or smaller size. Since ~ is full, P (D'kji) >= (1 -- 2) P (Ckj i). 
{Dkj i :j  > O, i < r (k, j)} and {D~j i �9 i N r (k,j)} are each disjoint collections, so 

P Dkj i > r (k , j )  (1 - 2) tkj _-> e~ (1 - 2) a (tkj) tkj 

while 

P Gkj i <--_ ~ 2 tkl r (k, l) 
l > j  

<= ~'~ (2e,l a(tkz) 1 -'~ tk~t -k- 2tkl) 
l>j 

< ~ (2e~ a ( t g y  - ;~ "~ ,,x(l-j) + 2 tki# ~(z-j)) ~kj I ~ 
l>j 

< 2 ( e z +  1)/zz(1 -lz;~) -1 a ( t k j ) l - Z t ~ .  

If, as we hencefor th  assume,/z  is chosen small enouth so 2/(e;o + 1) #4 (1 - # ~ ) - 1  

< 2ez ( 1 - 2 ) / 2 ,  it follows that  P Gkj i < 2 P  Dkj i 2. Hence for fixed k, j ,  

for  at least ha l f  the values of  i we have P (Gi~i) < 2P  (D;ji). By reducing ex and ] ~**, [ 
by half  if necessary, we may  assume this is valid for  all i; it then follows f rom cg being 
full that  

P (Dkji) >--_ (1 -- 2) P (Ckji) -- 2 P  (Dh,) => (1 - 22) P (Ck)z), SO 

a 2 (Dkj 0 > (1 -- 22) a 2 (C~ji), and P(a~ji) <= 2 2 P ( C k j O .  (7.32) 

Observe also that  

Ck~i = Dk~i W Gkji as a disjoint union, and 

G~j~c~(U<=j ~<=Uk,j) Dk~, , )=4) .  (7.33) 
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We now define events 

Akj~ = [Sk (Ckj~) >= (1 -- 26) R n  (k)  ~ b,(k)q (a z (Ckj,))] 

A~ji = [Sk (Dk~i) > (1 -- 3) R n  (k) -~ b,(k) q (0.2 (Cksi))] 

A s i = IS k ( G k~i ) > -- 6 R n  ( k ) ~ b,(k) q (0 .2 ( Ckji ) ) ] 

Ekii = [V,(k- 1)(Ckji) > -- 6 R  (n (k) /n  (k  - 1)) ~ b,(k)q (0.z (Ckji))] 

V k =  U E~ji 
(j,i) eIk 

Bk= U Ak~ 
(J,i)~Ik 

B~= U %.  
(j,i)eI~ 

Note that As and A~}~ together imply Akin, and that Akj ~ and Ekj ~ together imply 
that V,(k) (Ckj~) > (1 -- 3 6) Rb,(~) q (0.2 (Ckj~)). Thus 

lim supsup {v,(C)/b,(k) q(0.2 (C)): Cefg, 7, < 0.2 (C) < e,} > ( 1 - 3 6 ) R  a.s. (7.34) 
n 

provided 
IP(B k i.o.) = 1, IP(F  k i.o.) = 0. (7.35) 

Since the S k are independent, (7.35) will follow if 

~ IP(Bk) = 0% ~ IP(Fk) < oe, (7.36) 

so we wish to bound IP(Bk)  from below. Define events 

Ukj= [Yk(Hkj) < Zkj ] 
where Zkj is given by 

162 tk~ (z~j - m (k) P (Hkj)) =- 6 R n  (k)  -~ b,(k) q (tkj)/2. (7.37) 

Fix k and define stopping times for co e B~ by 

T1 (co) = min {j" co e A'kji for some i}, 

T2 (co) = rain {i: co ~ A;r,(~)i}, 

and let T~ = T 2 = oe off B~. If  Sk is large on Dki~, it is probably also large on Ckj~, 
because Dkj ~ is most of Ck~ ~ by (7.32). To make this precise, we will show that 

IP (B k [Bk, Ukj , (T1, T2) = (J, i)) > IP rA" ' ' = , ,ozIBk, Uk~ , (T  ~ T2)=0" , i ) )> �89  (7.38) 

Once (7.38) is established, we have 

2 w ( ~ ,  ~ =j)  __> 2 w(e~, u~j, ~ - j )  _>_ ~ ( ~ ,  u~, 7"1 =j) 
__> w(~i ,  ~ = j )  - ~l,(U~) 

so that 
N~ 

21P(B~) > IP(B~)-  ~ IP(U~). (7.39) 
j =  N; 

The first inequality in (7.38) follows directly from the definitions. To prove 
the second, observe that by (7.33), Sk (G~i) is conditionally independent of (S  k (D~m), 
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m < r (k,j))  given S k (Hkj) (or equivalently, given Yk (Hkj)). It follows that 

IP (A~},[Bs Ukj , (T1, Tz) = (j, i)) 

= ~ IPIA . . . .  , kj~ 1i >=J, rk(Hkj) = l )  I P ( r k ( H k i ) = l l B k '  Ukj,(T1, T2) = (J, i)) 
l < z~j 

>= ~ IP (A ~ t Yk (Hkj) = I) IP (Y~ (Hkj) = it Bi,  Ukj, (TI,  T 2) = U, i)) 
l <-<_ z,j 

> m'ln IP (Akj, [ "  Ek(Hkj)=l).  (7.40) 
l<=z~j 

Fix i, j, k, and l, l < Zkj. Given Yk (Hkj) = l, Yk (Gkji) has a binomial distribution with 
parameters (N,p) ,  where N = m (k) - l andp = P (Gkji)/P (HT, j). Since the median of 
a binomial distribution is within one of the mean (Uhlmann 1966; Jogdeo and 
Samuels 1968), it follows that 

IP [ r  k ( Gkj,) >= N p  - 1 [ r~ (Hk~) = l] >= �89 

Thus (7.38) will follow from (7.40) once we establish that 

Np - 1 > m (k) P (Gki,) -- 6 Rn  (k) ~ b,(k) q (a z (Ckj,)) (7.41) 

whenever the right side of (7.41) is positive. (Note that (Ai~) c = ~b if it is not 
positive.) Now recalling we took e x <1 ,  we get P(Hk~ ) < r ( k , j )  max  P(Dk~i) 

< 2 (e~g(tkj) + 1) tkj < 2e z + 2e,(k) < �88 SO by (7.33), 7.37), and (7.31), on the event 
[Yk (Hkj) = l], 

m (k )P (Gk j , )  - Np  = P(H~j) -~ P(Gkji)Sk(Hkj ) 

< 162a 2 (Ck3i) (zka-- m ( k )  P(Hki))  

* b ) q ( t k y 2  < fi Rn  (k):  n(k 

< - 1 + 6 Rn  (k) ~ b,(k) q (a z (Ckj i)). 

(7.41), then (7.38) and (7.39), now follow. 
It is clear that for any m and M and any collection Jo . . . . .  J,, of disjoint sets, 

IP [Yk (Jo) < MI  Yk (J*) = l, for all 1 < i < m] is monotone increasing in each li. From 
this "negative dependence" of Yk on disjoint sets, it follows that 

N~ 

IP((Bk) ~) < 1-I ]P((Ahi) ~) < 1-[ (1 - min IP(A~j,)) "(kd). (7.42) 
U,i)e l~ j=N; ,  i<=r(k,]) 

For the remainder of the proof it is necessary to split into cases. We state each of 
these as a separate proposition. In each proof we will specify (n k)), R, 6, and 2, then 
continue the present calculation. 

Proposition 7.9. Let  cg be a fu l l  VC class and q ~ Q, and suppose 

q ( t) / t  ~ $,  q (t)/(t  L t -  1 )~ $,  L g  ( t ) /L  t -  ~ $ .  (7.43) 

Let (V,), (~,), (b,) be nonnegative sequences satisfying 

~ , < a ,  
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and 
b, q (?,)/n ~ ?, ~ 0.  (7.44) 

Suppose the following limits exist and are finite: 

e~ = lira 7. Lg (7,)/be, q2 (7,) 
n 

c 2 = lira ~, L L  (7~ ~ e,)/b2,q 2 (~,) 
n 

c 3 = lim 7, LLn/bZ, q2 (7,).  (7.45) 
n 

Then 

l imsup sup { Iv, (C)I /b ,  q (a 2 (C)) '  C e c#, 7, < a2 (C) < c~,} 

>(2(C l+C 2+ea) )  ~ a.s. [] (7.46) 

Proof. Let  0 < 6 < 1 and V =  165-1 ;  we continue our  calculation taking 

R=(2(Cl + C2"q-c3)) �89 2 = 6 / 1 6 ,  and n ( k ) =  [vk]. 

We may assume R > 0. By (7.44), L e m m a  7.5, (7.32), and (7.43), 

IP (A~j~) > IP [v m (k)(Dkj~) > (1 -- 6) (1 + 2 V-~)  ~ Rb,(k) q (a 2 (Ck~))] 

> e x p ( - ( 1 - 6 / 2 )  R 2 2 2 2 b,(k) q (~ (Ckji))/2 (1 -- 22) a 2 (Ckji)) 

> exp (-- (1 -- 6/4) 02 l.~2 -2 = ~" ~,(k) q (?,(k))/27,(k)) 

=Pk" (7.47) 

Set 
u(k)  = ezg(7,(k)) 1-6/S, N ( k )  = Nk -- Ns + 1. 

Since tg( t )  and L g ( t ) / L t  -1 increase, for  j >  N~ we have 

r(k , j )  >= ezg(tkj) 1 -z  => ;62n g--"~,,vn'l(k)- 6/16 ~'l) -6 /16  => u (k). 

Hence by (7.42) and (7.47), 

IP ((B;,) c) < (1 --pk) "(k)u(k) < (1 -- N (k) u (k)pk/2) V �89 

SO 

IP(B~) >= (N (k) u(k)pk/2 ) A (�89 

I f  Ns > 0 then 

SO 

while similarly 

71-6/16 n(k) < tk,  N ~ - i  = O~n(k)t u N ; - I  

N ~ < l + ( l o g p - 1 )  1 ( 1 - 5 / 1 6 )  - 1  ' - l o g  (7 . (k)  c~.(k)) 

Nk > _ i + ( l o g / z - i ) - 1  -1 log (7,(k) %(k))" 

(7.48) 
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Hence  
N(k)  __ ( - 1  + (6/16 l o g ~ - 1 )  log (~2~ ~,,(~))) v 1. 

Since - 7.(k) O~,(k) ~ ~ if  c 2 > 0, it follows that  

L N ( k )  > c 2 (1 - 6/4) 2 : = bn(k) q (Tn(k))/?n(k)" (7.49) 

Similarly, since c 2 ~ R2/2 < (1 - 6/4) R 2, 

L N  (k) <= (1 - 6/4) R 2 bZ(k) q2 (7,(k))/7,(k) = 1ogp~-:.  (7.50) 

F o r  j > N ; ,  we have  tkj'<"l-O/16<:~'~=r,(k) -=Z,(k)/"'/9 Using this and  T h e o r e m 1  of  
Hoef fd ing  (1963) we get for N;, < j <  Nk: 

IP (U~j) ~ ~P [Vm(k) (Hk;) > Rbn(k) q (tkj)/2 tkj] 
< exp ( - -  R 2 2 2 2 b,(k) q (tkfl/2 tkfl 
< e x p ( _ 2 R 2 b  2 2 = .(~)q (7,(~))1~.(~)) 
< p 4 .  (7.51) 

Hence  by (7.50), 

N~ 
IP(U[,j) < N(k )  p4 < p2 < (N(k)  u ( k ) p J 4 )  /x (�88 

j=u~ 

Combin ing  this with (7.48) and  (7.39) we see that  

8 IP(Bk) __> N(k )  u (k )p  k/x 1. (7.52) 

Using (7.49) we obta in  

N(k )  u(k)p  k = ez N(k)g(V,(k)) 1 -a/s exp (--  (1 -- 6/4) R e b2(k)qZ(7,(k))/27,(g)) 
2 2 > e~ exp ( -  (1 - 6/4) c 3 bn(k) q (Tn(k))/Tn(k)) 

> e;~ e x p ( -  ( 1 - 6 / 8 )  LLn(k ) )  

Ca. k -  (1 - 6/16). (7.53) 

Also 

and  

q2 (t) > q2 (Y,(k)) Le~  1 q2 (7,(k)) 

t Y,(k) LVn(kl) = 27n(k) 

N ( k ) < N k +  1 < ( l o g / z - l ) - z  -1 log (Tn(k) ~,(k)) + 1. 

With  (7.52) this shows ~, IP(Bk)= ~ .  
To establish (7.36) it remains  to bound  ]P(Fk). By (7.43), for  V,(k) < t<ek  

,~1- 6/16 

q2(t) > q2(Tn(k)) L~k I > q2(Tn(k)) LeZ 1 

tLg  (t) = V,(k) LT,-(k 1) L g  (ek) = ~)n(k)Lg (Y,(k)) LT,-(k~ 

_-> (cl + R2/2) -1 (1 - 6/16) b.~k~ > (2c~ + R 2) -1 b.~k~ 
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Combining these facts with (6.5), (6.4), (7.44), and (7.43) we obtain 

lP(Fk) < ~ 2exp (_52VR2  2 z 2 b,(k) q (a (Ckii))/4a 2 (Ckj,)) 
(j,i)~Ik 

Nt 

_< Y, 4g (t~j) exp ( -  4R 2 b~{~) q2 (t~j)/t~) 
j~--N; 

N~ 
< ~ 4 exp ( -  (R 2 + 2cz + 2c3) b2(k)q2 (tus)/tks) 

j=N; 

< 4N(k) exp ( -  (R2/2 + c z + ca) z : = b,(k) q (~,(k))/7,(k)) 

< 4 exp (-- (R2/4 + c3) b2(k) q2 (7,(k))/Y,(k)) 

< 4 exp ( -  (�88 L L n  (k)) 

and (7.36), and then (7.34), follow. Since 5 may be arbitrarily small, this proves the 
proposition. [] 

Remark  7.10. From the above proof it is apparent that the assumption that the 
limits in (7.45) exist is stronger than needed. In fact we have shown that if the 
lim sup of each sequence in (7.45) is finite, then the lira sup in (7.46) is at least (2 cr r 
where 

c,~ = lim inf7, (Lg  (7,) + L L  (7,- 1%) + LLn) /b  2 q2 (7.)- 
t l  

Similar considerations apply in the next two propositions; it follows (see the proof 
of Theorem 3.1 (B) below) that the limits of the sequences in (3.2) need not exist, 
and 0 need not be at most one, for us to obtain some lower bound on the R in (3.4). 
As long as the lim sups ci exist, the corresponding lira infs, say c~, provide the lower 
bound (2 (c~ + c~ + c~)) for R. [] 

Proposition 7.11. Let  cg be a ful l  VC class. Let  ~,, w,, cl , and c 3 be as in Theorem 3.1 
and 0 = ( c 1 + c3)- 1, and suppose ~, ~ z n -  1 w, for  some z > O. Suppose the lira sups 
in (3.2) are actually limits. Then 

lim sup sup {Iv, (C) l/w ~. ~ (C) : C ~cd, a2 (C) = ~, } 
" ~ (7.54) 

> z:(flo~ - 1) a.s. 

Proof. Let 0 < 5 < 1  and take n ( k ) = [ V k ] ,  b ,=w~, ,  % = ~ , ,  R = z ~ ( f l o , - l ) ,  
2 = 6/16, q(t)  = t ~ where V> 86 -1 is large enough so 

5 R z  �89 h a (5 VR/2z  ~) > 6 (c 1 + c3). (7.55) 

We may assume R > 0 ,  so c , + c  a = 0 -  a > 0 .  Note that N k = N ~ = 0 ,  s o j  is 
always 0. By Lemma 7.4 and (1.11), similarly to (7.47), 

/ 

IP ( Aksi) > IP [Vm(k)(Dksz) > (1 -- 5/2) R (W.(k) y,(k)) ~* ] 

> exp (-- (1 - 6/4) W,(k) R z ~ h 1 (R z-+))  

= exp ( -  (1 - 6/4) (c 1 + c3) w,(k)) 

=-Pk" 
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As in Proposi t ion 7.9 (cf. (7.48)) it follows that  

IP(B'k) > (u(k) pk/2) /X (�89 

for  u(k) = e,g(7,(k)) 1-4. Analogously  to (7.5/)-(7.53),  we obtain IP(Uf, j)c <----Pk4 and 
then 

8 IP(Bk) >= u(k) Pk A 1 >= e~k -(1-~/s) 

so ~ IP(Bk)= oO. By (6.5) and (7.55), 

IP(Fk) --< 2r  (k, 0) exp ( -  6R (n (k) Wn(k)])n(k)) �89 h i (t~ VR/2z~)) 

< 4g (7,(k)) exp (-- 5 (c 1 + e3) W,(k) ) 

> 4 exp (-- 3 (C 1 "~- C3) Wn(k) ) 

< 4 exp ( -  2 LLn (k)) 

and, as in Proposi t ion 7.9, the desired result follows. []  

Proposi t ion7.12.  Let cg be a full VC class. Let 7 , ,w, ,y , ,ca ,  and c a be as in 
Theorem 3.1, and suppose 

7, = o (n- t  %) and (7.56) 

L (w,/nT,) = o (w.).  (7.57) 
Then 

l imsupsup{Iv , (C) l /y ,  c r (C) :Ce% o 2 ( C ) = 7 , } > q + c a  a.s. [] 

Proof. Let  0 < 6 < 1 and this t ime continue the calculation preceding (7.42) 
taking b , = y , ,  a ,=7 , ,  R = c ~ + e a ,  2 = 6 / 1 6 ,  and q ( t ) = t  ~. I f  c 3 > 0 ,  take 
n(k) = exp(kLk) .  I f  c a = 0, then since W,(k) < L T ~ ) L L n ( k  ) < 2Ln(k), by (7.56) 
and (7.57) we can inductively take n(k) large enough so 

L ( n ( k ) / n ( k -  1)) > w,(k)/4 > 35 -2 L(W,(k)/n(k)y,(k) ) 

and w,(k) > 4 Lk .  (7.58) 

Again we may assume R > 0, a n d j  is always 0. By Lemma  7.4, (6.2), and (7.56), 

IP(A~j~) >_ IP [Vm(k)(Dk~) > (1 --6/2)  Ry,(k)(Y,(k)n(k)/m (k)) ~ ] 

_> exp ( -  (1 - 6/2) Ry,(k) (n (k) 7,(k)) -~ L (RY,(k)/(n (k) ?,(k))~)) 

__> exp ( - (1 - 6/4) (c a + ca) W,(k)) 

~Pk" 

AS in Proposi t ion 7.11 it follows f rom this that  

8 IP(Bk) => u(k)p k/x 1 

where u(k)=e~g(7,(k)) 1-~. I f  c 3 = 0  then u(k)pk>= 1 so ~ ] P ( B k ) =  oo. I f  c 3 > 0  
then 

u(k) p k > e~exp ( -  (1 - 6/4) c a W,(k) ) > exp (-- (1 -- (5/8) LLn (k)) 

> exp ( -  (1 - 6/16) Lk) 

and again ~IP(Bk)=  oo. 
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By (6.5), (6.2), and (7.56), 

IP (Fk) __< 2r (k, 0) exp ( - 5Ryn(k) (n (k) ~)n(k)) �89 h t (6Ry,(k)n(k)~/n (k - 1) Y~(k))) 
(7.59) 

< 4g (7,(k)) exp (-- 62 Ry,(k) (n (k) y,(k)) ~ L (n (k)/n (k - 1))). 

I f  c 3 > 0 then e 3 W,(k) ~ L L n ( k )  so using (7.57), 

L (n (k)/n ( k -  1)) > L k  > (LLn (k))/2 > c 3 W,(k)/4 

> 46-2  L(W,(k)/n(k)7.(k)) 

Then by (7.59), 

IP(Fk) < 4 g(7,(k) ) exp ( - 4 ( c  1 + Ca) W,(k) ) 

< 4 exp (-- 3 c a W,(k)) N 4 exp ( -- 2 L L n  (k)) < 4 k -  2 

so ~ IP(Fk) < m. I f  c a = 0 then by (7.58) and (7.59), 

IP ( Fk ) < 4 g(7,(k) ) exp (-- 3 R W,(k) ) 

< 4 exp ( -- W,(k)) < 4 k -  2 

so once more  ~, IP (Fk) < oo. As in the previous two proposit ions,  the desired result 
now follows. [ ]  

Proof of  Theorem 3.1 (B).  For  (i) and (iii) the result is immediate f rom 
Proposi t ions 7.9 and 7.12 respectively. Fo r  (ii) we have R > z ~ ( f i o ~ - l )  by 
Proposi t ion 7.11 ; to get R > (2 (cl + c2 + c3)) ~ we can take a sequence (c~,) as in the 
p roo f  o f  Theorem 3.1 (A) (ii). Tha t  is, ?, < c~,, and the c i in (3.2) are unchanged but  
(i) applies, if ;,, is replaced by ~,. [] 

Proof o f  Theorem 3.1 (C).  We return now to the nota t ion  o f  the calculation 
preceding Proposi t ions 7.9, 7.11, and 7.12, but  with the following changes: now 
S k ~. k �89 v k and D k j  i = C k j  i . 

We specify 
%=-7,,  n ( k ) - k ,  )~--5/8 

so that  N~ -- N k = 0. Observe that  c I must  be 1 and c 2 must  be 0. Since cg is spatially 
full, we take the Cko ~ to be disjoint for distinct i and fixed k. To  prove the theorem it 
suffices to show that, whatever  6 may  be, ]P(B~ i.o.) = 0. As in (7.42), since the Cko i 
are disjoint, 

IP(B~) < ( 1 -  min IP(Ako~)) ~(k'~ (7.60) 
i -_<r (k, O) 

while as in the proofs  of  Proposi t ions 7.9, 7.11, and 7.12, 

min IP(Ako~) ~ exp (-- (1 -- 5/4) Wk) 
i~r(k,O) 

= exp ( -  (1 - 6/4) Lg (Tk)) =-- Pk" 

Since % = 0 ,  

r (k, O)p k > ~ g(~,k) 1 - x exp (-- (1 -- 6/4) Lg (Tk)) 

_>_ ezexp ((6/8) Lg (Tk)) > 4 L k  
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so since pk--*0, (7.60) gives 

IP (B~,) < (1 --pk)r(k'O)< exp (--pkr(k,  0)/2) < k -2 

and the theorem follows. [] 
Theorem 4.1 will be proved after Theorem 4.2, and Corollaries 3.5, 3.7, and 3.9 

will be proved in Sect. VIII. 

Proof of  Theorem 4.2. The proof of(i) is like that of Theorem 3.1 (A) (i), so we will 
omit details which are similar. Recall that qt (t) = ~ul (t~). I f2 < 1 and g (t) > e then 
2 tLg(2 t )  < 2 tL(2  -~ g( t ) )< tLg( t ) ;  it follows that ~u a is increasing (at least for 
small t, which is clearly all that matters) so we may assume ql ~ Q. By Lemma 7.2, to 
prove (i) it suffices to show that for each 6 > 0, 

]P* [[Vn(C)[ > (1 +86)  R6q 1 (0-2 (C)) for some C ~  
(7.61) 

with 7, < o-2 (C) < ~,] = 0 ((Ln) -~  +6)), 

where R6 = (2 ((0 + 6) (c I + 6) + c 2 + c3 + 26)) ~. 
Fix n and 0 < 6 < ~, then 0 < u < 6 small enough so 

62R2/512 u 2 >__ 2 (c a + 2). (7.62) 

Let t j = ( 1 - u ) J ~ ,  and let g(j'), ~(j ' ) ,  N,,  and cg(t) be as in the proof of 
Theorem 3.1 (A). As in (7.20), 

IP* [[ v, (C) [ > (1 + 86) R6 ql ( a2 (C)) for some C e cg with 7, < a2 (C) ~ ~,] 
N. 

< ~ IP[[v,(C)[ > (1 +46)R6q  I (t~)for some C~ ~(j ' ) ]  
j=0  

+IP*[[v , (C) [>6R~q l ( t  ) f o r s o m e T , < t < ~  . and C ~ ( t ) ]  
U. 

= Z w.*. 
j=0  

By (3.3), we can take 

for some K =  K(6, u) < or. 
using (6.5) and (6.2) that 

IPj < 2 [ ~ ( J )  l exp ( -  (1 + 46) R 2 (Lg I (tj))/2 

< 2K exp ( -  (1 + 46) (c 2 + c a + 26) Lg 1 (tj)) 

< 2K exp ( -  (1 + 46) (c 2 + 6) Lg I (tj) - (1 + 46) LLn) .  
! 

If c 2 = c 2 then u. 

~, exp ( -  (1 + 46) (c 2 + 6) Lg~ (tj)) 
j = 0  

< ~ e x p ( -  (1 +46)  L L t f  ~) 
j=0  

< ~ (j l o g ( 1 - u ) - l + L T ~ - l )  -~1+4~) 
j = o  

=o(1)  as n ~  

I g ( j )  I ~ g g  ( t j )  ~ +~ 

Since ~ ql (tj)/n tj < ((Lgl (7,))/nTn) -~0, we obtain 

(7.63) 
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so by (7.63), No 

IPj = 0 ((Ln)-(1 +4~)). (7.64) 
j=0  

If  c 2 = c~ then since N, = O (L (Tn- 1 ~,)), 

U. 

e x p ( -  (1 +46 )  (Ce +6)  Lg 1 (tj)) 
j=0  

< N, exp ( -  (1 + 43) (c 2 + 5) Lg 1 (%)) = o (1) 

so again (7.64) holds. 
As in the proof  of  Theorem 3.1 (A) (i), we obtain from Theorem 2.1, (7.62), and 

(4.7) that ~, 
]P* < 36 ~ t -1 e x p ( - S e  RZ Lg 1 ( t) /512uZ)dt  

y./2 

+ 68 exp ( -  5 Ro (nT, Lgl (7,))+/256) 
c~ n 

< 3 6  ~ t -~ e x p ( - 2 L L t  - 1 - 2 ( c 3 + l ) L g ~ ( e . ) ) d t  
?.12 

+ 68 exp ( - 2  (c 3 + 1) Lg~ (7,)) 

= O (exp ( -  2 LLn)) ,  

and (7.61), and then (i), follow. 
For  (ii), fix 6 > 0  and set 7 * = 7 ,  v%1+~. We wish to apply Propo- 

sition7.9. Consider the sequences in (7.45): since Lg( t ) /L t  -~ increases, 
Lgl (7*) < (1 + 5 ) L g  I (c~,) so 

limTn* , 2 * _  Lg (7,)/ql (7,) - cl 

liminfT* L L  ((7*)-~c~,)/q 2 (7*) > (1 + 6) -~ e2 

lim infT* LLn/q  2 (7") > (1 + 5)-  ~ e 3 . 

Since 6 is arbitrary, Proposition 7.9 and Remark 7.10 prove (ii). 
For  (iii), by increasing 7, we may assume 7, = a,. The proof  is then just like that 

of  Theorem 3.1 (C), since c 2 = 0 and c I = 1 whenever c a = 0. [] 

Proof of  Theorem 4.1. It follows readily from Theorem 4.2 that ~1 is a local 
asymptotic modulus at q~ for (v,). 

To show ~u 0 is an asymptotic modulus of continuity, let 7,, c~, + 0 with n % ?, 7. 
<-_~,, n - l L n = o ( 7 , ) ,  and L L n =  0 (L~21) .  It suffices in (4.5) to consider C,D 
satisfying P ( C \  D) > P ( C zx D)/2. Let @ = { C \  D : C, D ~ cg, 7,/2 <= cr 2 ( C \  D) < c~, } 
and g = { C z x D : C ,  DeCg, 7, < o-2 (C /, D) < %}. We may take the capacity 
function of N or d ~ to be ~(t)  = t-1 (see Remark 2.2). Since [v, (C) - v. (D)[ 
< [v,(Czx D)] + 2 lv , (C \D)[ ,  we have 

I v . ( C ) -  v.(D)l 1 = 0 .  2 } 
- = ~ ,  Y .  = sup ~ - o ~ - ( ~ 2 ~  :C, D e ~ , P ( C ~ x D ) <  < ( C z x D ) < %  

< s u p  {Iv,(C)l/~o(~(c)): ce~.  7,__< ~=(c)__< ~,} 
+ 2 sup { Iv, (C)]/gt o (a (C)) : C e ~ ,  7,/2 < a 2 (C) < a,} 

so the result follows from Theorem 4.2. [] 
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Proof of Theorem 4.4. We use Theorem 2.1, with c~ (t) = cg~, ~ (t) = t, q (t) = ~ 1 (t~), 
7 = 7 , ,  and c~=�88 (As always, we use p = 0 . )  Then r = 7 , > s  in (2.1), since 
n-  1 Lg(7,) = o (7,). If  b is large enough then (2.2) is clear, (2.3) follows easily from 
the observation that 

L (na (t)) < L (nt) + Lg (t), (7.65) 

and (2.4) and (2.5) are vacuous. Hence (2.6) holds. If  b is large then 
exp ( -  b 2 q2 (0/512 t) < b-  1 (L t -  1)2, so the second term on the right side of (2.6) 
can be made small. Since q (7,)n~ > (nT,) + ~ oo as n-~ 0% the third term is small 
for large n, and the theorem follows. [] 

Proof of Theorems5.1 and 5.2. For simplicity we assume P( C) < �8 9  for all C; 
Proposition 6.1 easily handles any larger sets. Observe that for M >  0, 

1 C e cg, p (C) > 7.3 > (7.66) 

<IP[[v , (C) I>Mn~a2(C)  for some CEcg with a2 (C)>7 , /2 ] .  

Thus to prove the desired results we use Theorem 2.1 with cg(t) = cg~, ~ ( t )=  t, 
= 7,/2, e = 1, q ( t )=  t, and b = Mn ~. If  (2.2)-(2.5) hold then (2.6) bounds the 

right side of (7.66) by 

36 i t - i exp ( - M 2 n t/512) dt + 68 exp ( -  Mn 7,/256) 

y./2 (7.67) 
= O (exp ( -  M e n 7,/1024)) + O (exp ( -  Mn ~,/256)). 

In (2.1) the values are 

, f  
r = 7 , ,  s = ~ o o  if M > 2 "  (7.68) 

To prove (5.2), we take M fixed but arbitrarily small in (7.66). Then (5.1), (7.65), 
and the fact that n 7,--* oo establish (2.2) and (2.3). (2.4) and (2.5) are vacuous by 
(7.68), so (5.2) follows from (7.66) and (7.67). I f  (5.3) holds, then this same proof 
shows the right side of (7.66) is O ((Ln)-e), and a.s. convergence in (5.2) follows 
from Lemma 7.2. 

To prove (5.6), observe that if R > 2, since P, (C) > n" i whenever P, (C) + 0, 

IP[P,(C)<=(RLg(7*))-IP(C) for someC~Cg with P , ( C ) + 0 ]  
(7.69) 

NIP sup (  1 C s ~ , P ( C ) > = R 7  > 

so we use M = �89 and 7n = RT* this time in (7.65). If  R is large enough then (2.2) 
and (2.3) follow from (7.65), (7.68), and the observations that nT* > 1 and (nt)-1 
Lg( t )  <= 2R -1 for t >= R7"/2. (2.4) and (2.5) are vacuous. Hence (7.69), (7.66), and 
(7.67) bound the left side of (5.6) by O (exp ( - 2 - 1 3  R Lg (7")), and (5.6) follows. 
(5.7) is proved similarly, except that now it is (2.2) and (2.3) that are vacuous. 

I fg  is bounded, say g (t) < 2 for all t, then sup {Pn (C)/P (C) : C e cs p (C) > ~ 7* } 
is bounded in probability for all e > 0 by (5.7), while for R > 0, 
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IP [sup {P, (C)/P (C) : C ~ cg, p (C) < ey* } > R] 

< IP [sup {P, (C) '  C e cg, p (C) < e 7" } > 0] 

< n a ( s y * ) < n 2 s ? * < 2 e L ) ~ O  as s ~ 0 ,  

and the last s tatement  in Theorem 5.2 follows. 
It remains to prove (5.5) when cs is full and (5.4) holds. By (5.4) we have 

y , < z n  -1 ( L g ( y , ) v L L n )  for all n for some z > 0 ,  so if we define 7', to be the 
solution y of  

7 = ~n- 1 (Lg (7) v LLn), 

then y, < 7". Set w', = Lg(2',) v LLn. By Proposi t ion 7.11 and Remark  7.10, for 
some 0 < 0 < 1 we have infinitely often 

s u p { ~  I : C E c g ,  P ( C ) < l a 2 ( C )  > =  ~, = 7~} 

> sup{[v,(C)l/2(ny',) ~ a ( C ) :  C~Cg, ~72(C)-~--'yn} 
_-> (/~0~ - ~ ) / 4 .  ~ 

VIII. Proofs for Examples 

Define f ( t )  <_ �89 by f ( t )  (1 - f ( t ) )  = t, so f ( a  a (C)) = P ( C )  if P(C) <= �89 Observe 
that  by (3.1) it suffices to prove (3.3) for  small t, say t ____ 81, to prove it for all t > 0. 

Proof of  Corollary 3.5. F r o m  Example  3.4 we see that  if suffices to prove (3.3) for 
~ =  -@d, 9 = 1, and some ~ < ~ .  Fix u~(0 ,  1) and t s (0 ,~] ,  and set 

c~, = { C ~ ~@~" (1 - u2/4) t < a2 (C )  < t, P (C )  < �89 

cg,, = {C  c �9 C ~ ~d, (1 - u2/4) t < a2 (C) < t, P (C) > �89 

so cg,\ cg~ _ "2/4)' = cg, w cg,,; we will consider cg, and cg,, separately. 
For  cg,, l e t / ,  = 1 - u2/8d and let ~,~ be as in (3.7). We have (cf. (3.8)) 

I ~ l  _-< K,  (log /t - l) - (e - 1 ) (L t -  1)a-* ~ K 2 u-2(a-*)g(t) 

where K 1 and K z depend only on d. 
Fix C e g ' .  There  exists C i = [ 0 , y  ] with C c C I , a 2 ( C 1 ) = t ,  C~eC~ ", and 

P(C~\  C) = f ( t )  - f ( a  2 (C)) < 2 ( t -  a s (C)) < u 2 t/2. Clearly there then exists 
C 2 =  [0, x ] E ~  with l~xi<y~</z-*x~ for  all i<d,  so P(C~ zx C2)<2d(~  - 1 - 1 )  
P(C1)  < u2 t/2. Hence P(C A C2) < u2t and ~g' is taken care of. 

Fo r  cg,, the p roo f  is somewhat  similar. Let  N be an integer between 20 du-2 and 
21 du-2 and set 

~ = t [ 0 ,  x ] : x i = J  - n i f ( t ) / N  for some n i < N  
L 

for  each i < d - 1 ,  1 - [ x i = l - f ( t  . 

Fix C with C ~  cg,,. There exists C1 = [0, y] with C ~ C~, C~ e cg,,, aa (C~)= t, and 
P (C \  C~) < u z t/2. Then we can find C 2 = [0, x] ~ N with x i - f ( O / N  <_ Yi <-5 xi for  

e a c h i = < d - l .  Now F[xi<= y, ( l + 4 d f ( t ) / N ) s o x d < y ~ < x ~ ( l + 4 d f ( t ) / N ) .  
Thus i = ~ \ ~ = 
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P(CC zx C~)= P ( C  zx C2) < P ( C \  C1) + P(C1 zx C2) 
d 

< u  2t /2+ ~ [x~-y~l  
i=J. 

< u 2 t/2 + 5 d f ( t ) / N  < u 2 t. 

Since 
[~ l  =< ( N +  1) a-1 < (22d) d-1 U - 2 ( a - 1 ) g ( t ) ,  

cg,, is now taken care of, and  (3.3) follows. [] 

Proof of  Corollary 3.7. We need to show that  (g is full and that  (3.3) holds with 
= 1. Example  3.6 shows we m a y  assume P = N ( 0 , / ) .  We use the no ta t ion  of  

Example  3.6. 
Fix u~(0 ,  1) and  t ~(0,~] ,  set 

r = ~ - 1  (1 - f ( t ) ) ,  r* = ~ - 1  (1 - f ( ( 1  - ue/4) t)) 

and fix 0 > 0 to be specified later. Then 

~t\~o_u=/4)t=fCbv:r<=b<r*, v ~ g d - 1 } k . j { C [ v : - r * < b <  - r ,  y e s  d-* } (8.1) 

Let  Vbe  a max imal  subset  o r s  a -  1 such that  the angle between any  two vectors  in V 
is at  least 0, and  ~ = { Cry : v e V}. Then  

a0 -(~-~)_-< I VI = I~1  < MO -~a-1) (8.2) 

for  some 6, M depending only on d. 
We now prove  (3.3). Let  us specify 0 = u2/16r. Let C ~ cg,\ cgo_,~/4~,. It  is clear 

that  there is a w e S  ~-~ for  which C c C ,  w and 

P(Ca c.~)<=P(C,.~)-P(C.~)=f(t)-f((1 -u2/4)t)<u2t/2. (8.3) 

Since Vis maximal ,  there is a v e V mak ing  an angle e < 0 with w. Suppose  we can 
show that  

P(Cr~ zx C~)  = 2 P ( C ~ \  C~w) < uZl/2. (8.4) 

With  (8.3) and (8.2) this shows that  

N 2 (ut +, ~t\C~(l_u2/4)t,P) <__MO -(a-1) <= 16a-lMu-g(a-1)ra-1" 

Since ~ - *  (1 - f ( t ) )  ~ (2 L f ( t ) -  1)~ as t ~ 0 ,  there exists K =  K(d)  such that  

K-~ g( t )  < r a-~ < Kg( t )  (8.5) 
and  (3.3) follows. 

The equali ty in (8.4) is clear. Since P ( C ~ \  C,~) depends only on r and the angle 
~, we m a y  assume d = 2, v = (0, 1), and  w = ( - sin ~, cos ~) in p rov ing  the inequali ty 
in (8.4). Let  l, be the b o u n d a r y  o f  C ~ ,  l 2 = {x : x .  w = r cos ~} the line parallel  to l 1 
th rough  rv, T the strip between l, and 12, H = {X : x -  W ~ r Cos c~} the dosed  ha l f  
plane bounded  by lz and disjoint f rom C~w, and W t h e  wedge Hc~ C~ with vertex at  
rv. Then  

P ( C ~ \  C ~ )  < P ( T )  + P ( W ) .  (8.6) 

Let  t o satisfy �9 - * (1 - f ( t o ) )  = 1. Fo r  t bounded  away  f rom 0, (3.3) follows f rom 
L e m m a  7.13 o f  Dudley  (~978), so we m a y  assume t < to. Then  r > ] and  
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P (T) = @ (r) - �9 (r cos ~) 

< r (1 - cos c~) exp ( -  r 2 (cos 2 ~)/2) 

< r 02 exp (r 2 02/2) exp ( -  r2/2)/2 

<= uZr -~ exp(-r2 /2) /16  <-_ u 2 (1 - ~(r))/8 __ u2t/4. 

Using polar  coordinates  centered at rv we obtain 

P ( W ) =  ~(2rc) -1 e x p ( -  (r2+s2+2rssinf l ) /2)sdf ids  
0 0 

o3 

< e e x p ( - r 2 / 2 )  ~ (2n) -1 e x p ( -  s2/2) sds  
0 

< u 2 r -  1 exp ( -  r2/2)/16 < u 2 (1 - ~b (r))/8 < u 2 t/4. (8.8) 

Combining  (8.6), (8.7), and (8.8) proves (8.4), and (3.3) follows. 
To show cg is full we use similar ideas, but  change 0 to (16 dLr)~/r. Fix 2 E (0, 1) 

and take b = b (d) large enough  so 

P[{x= Ilxll >r}l~br  ~-2 e x p ( -  r2/2) for all r > l .  (8.9) 

We may  assume t is small enough (i. e. r large enough) so 

r=>l  and l>=02>=16r-2L(2-1(2r)a-1).  (8.10) 

I f x  ~ C,~ c~ C ~  for some distinct vectors v, w e V, then since the angle between v and 
w is at least 0, we have Ilxll 2 ___ r 2 + r2tan2(O/2), so Ilxll _-__ r(1 + 02/16). It follows 
using (8.9) and (8.10) that  

___< P ({x. II x II _--- ~ (J + 0~/16)}) 
< b (2r) e-2 exp ( -  r202/16) exp ( -  r2/2) 

< 2 (2r) - 1 exp ( -  r2/2) 

< 2P(C  ) 

Since by (8.2) and (8.5), 

I~1  = I VI ~ ~0-<d-1) ~ 6#-1/ (16  dLr) (d- 1~/2 > ~g( t)l - ~ 

for some constant  e = e (2, d), it follows that  ~f is full. [ ]  

Proof of  Corollary 3.9. We must  verify (3.3) with 0 = 1. Fix u ~ (0, 1) and t ~ (0, ~] 
and set z = log (2 t -  1) and r = 20 du-  2. Let 2~ + denote the nonnegat ive integers. Fo r  
each j, k ~ 2U+ with k i < r eJ,/r for  all i < d and ~J i  < z r, define a Jk, b jk ~ [0, 1 ]a by 

a{k=kie-J'/r'--r b{k = [k i+le - j ' /~+e- i '# l /X l"r  
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The number  of  rectangles [#k, b~k] is at most  

( r +  1) d exp(~ji/r ) 
j:  Z j ,  <= Tr 

< (zr) a (r + 1) a e ~ < K 1 u T M  t- 1 (Lt 1)~ < Ka u-4eg(t)l +o 

for  some constants K,. = Ki (d, 6). 
Fix [v, w] ~ Jd with P([v, w]) = �89 and (i - u2/4) t < a z ([v, w]) < t, and let 

j i= max {j: e-J/" > w i -  vi}, ki= max {k:ke-i,/r < vl} 

for  each i =< d. Then 

~ji<rlogP([v,w])-l<=rz and ki<=reJ,/'. 
N o w  

vi--2r- l (v i - -wi)~aJk~vi  and w i ~ b i k ~ w i - [ -  3 r - l ( w l - - v i ) ,  

so Iv, w]~  [#k, b~k] and 

P([a jk, b j~ ]) < (1 + 5 r-1)d p ([v, w]) _-< P([v, w]) + uZt. 

(3.3) now follows. [] 

K. S. Alexander 
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