Rates of Growth and Sample Moduli for Weighted Empirical Processes Indexed by Sets^

Kenneth S. Alexander**
University of Washington, Department of Statistics, Seattle, WA 98195, USA

Summary. Probability inequalities are obtained for the supremum of a weighted empirical process indexed by a Vapnik-Červonenkis class \mathscr{C} of sets. These inequalities are particularly useful under the assumption $P(\cup\{C \in \mathscr{C}: P(C)<t\}) \rightarrow 0$ as $t \rightarrow 0$. They are used to obtain almost sure bounds on the rate of growth of the process as the sample size approaches infinity, to find an asymptotic sample modulus for the unweighted empirical process, and to study the ratio P_{n} / P of the empirical measure to the actual measure.

I. Introduction

Let X_{1}, X_{2}, \ldots be i.i.d. random variables with law P taking values in a space (X, \mathscr{A}), and let $\mathscr{C} \subset \mathscr{A}$ be a class of sets. Define the n-th empirical measure and process:

$$
P_{n}=n^{-1} \sum_{i=1}^{n} \delta_{X_{i}}, \quad v_{n}=n^{\frac{1}{2}}\left(P_{n}-P\right) .
$$

v_{n} may be viewed as a stochastic process indexed by \mathscr{C}. When \mathscr{C} is $\mathscr{D}_{d}=\left\{(-\infty, x]: x \in \mathbb{R}^{d}\right\}, v_{n}$ becomes a normalized empirical distribution function; we call this the d.f. case. Properties of v_{n} in this case, and in the related case where \mathscr{C} is the class \mathscr{I}_{d} of all subrectangles of \mathbb{R}^{d}, have been extensively studied. Recently, attention has been given to more general classes of sets or functions, both in the theory (Dudley, 1978; Giné and Zinn, 1984; Le Cam, 1983; Pollard, 1982, 1984; and Vapnik and Červonenkis, 1971,1981) and in the statistical applications, primarily to nonparametric regression (Breiman et al., 1984), density estimation (Alexander 1985; Pollard 1984; Yukich 1985); and projection pursuit (Diaconis and Freedman 1982; Huber 1985). It is in the more general setting that we work here.

[^0]To obtain detailed information about the behavior of v_{n} on small sets, it is often helpful to weight v_{n} at each set C by a function of $\sigma^{2}(C)=P(C)(1-P(C))$, the variance of $v_{n}(C)$. Since $\sigma^{2}(C) \sim P(C)$ as $P(C) \rightarrow 0$, this is often equivalent to weighting by the same function of $P(C)$; when convenient we do the latter. In particular, given a nonnegative nondecreasing function $q \in C[0,1]$ and sequences $\gamma_{n} \rightarrow 0$ and $\left(\alpha_{n}\right)$, we may ask for a finite R and a sequence $\left(b_{n}\right)$ such that

$$
\begin{equation*}
\limsup _{n} \sup \left\{\left|v_{n}(C)\right| / b_{n} q\left(\sigma^{2}(C)\right): C \in \mathscr{C}, \gamma_{n} \leqq \sigma^{2}(C) \leqq \alpha_{n}\right\}=R \tag{1.1}
\end{equation*}
$$

or such that

$$
\begin{equation*}
\mathbb{P}\left[\left|v_{n}(C)\right|>b_{n} q\left(\sigma^{2}(C)\right) \quad \text { for some } C \in \mathscr{C} \text { with } \sigma^{2}(C) \geqq \gamma_{n}\right] \rightarrow 0 \tag{1.2}
\end{equation*}
$$

perhaps at a particular rate.
From another angle, we may ask for a function q such that (1.1) or (1.2) hold with $b_{n} \equiv b$ for some $0<b<\infty$, i.e. such that $\left\{\left|v_{n}(C)\right| / q\left(\sigma^{2}(C)\right): C \in \mathscr{C}\right.$, $\left.\gamma_{n} \leqq \sigma^{2}(C) \leqq \alpha_{n}\right\}$ remains bounded, a.s. or in probability, as $n \rightarrow \infty$. Such a q (or more precisely, the function $q\left(t^{2}\right)$) acts as a sort of asymptotic sample modulus for v_{n} on \mathscr{C}. Thirdly, we might ask for the best range $\left[\gamma_{n}, \alpha_{n}\right]$ of "sizes" of sets $C \in \mathscr{C}$ for which (1.1) or (1.2) is valid.

Many special cases of these questions have been considered. For example, Shorack and Wellner (1982) proved that for P uniform on $[0,1]$ and $\varepsilon>0$,

$$
\begin{equation*}
\limsup _{n} \sup \left\{\left|v_{n}(C)\right| /(P(C) L n)^{\frac{1}{2}}: C \in \mathscr{I}_{1}, P(C) \geqq \varepsilon n^{-1} L n\right\}<\infty \tag{1.3}
\end{equation*}
$$

and for $-\infty<\beta<1$,

$$
\begin{equation*}
\underset{n}{\lim } \sup _{n}\left\{\frac{\left|v_{n}(C)\right|}{P(C)^{\frac{1}{2}}} \frac{L L n}{(L n)^{1-\beta / 2}}: C \in \mathscr{I}_{1}, P(C) \geqq n^{-1}(L n)^{\beta}\right\}<\infty \tag{1.4}
\end{equation*}
$$

where $L x$ denotes $\log (\max (x, e))$. Stute (1982a) showed that if $\gamma_{n} \downarrow 0$ with $n \gamma_{n} \uparrow \infty, n^{-1} L n=o\left(\gamma_{n}\right)$, and $L L n=o\left(L \gamma_{n}^{-1}\right), P$ is uniform on $[0,1]$, and $0<\beta \leqq \theta<\infty$, then

$$
\begin{equation*}
\lim _{n} \sup \left\{\left|v_{n}(C)\right| /\left(2 P(C) L \gamma_{n}^{-1}\right)^{\frac{1}{2}}: C \in \mathscr{I}_{1}, \beta \gamma_{n} \leqq P(C) \leqq \theta \gamma_{n}\right\}=1 \tag{1.5}
\end{equation*}
$$

This is generalized to d dimensions in Stute (1984). (1.5) was used to obtain exact rates of convergence for kernel density estimators (Stute 1982b). Note that (1.5) is equivalent to the statement that

$$
\begin{equation*}
\lim _{n} \sup \left\{\left|v_{n}(C)\right| /\left(2 P(C) L P(C)^{-1}\right)^{\frac{1}{2}}: C \in \mathscr{I}_{1}, \beta \gamma_{n} \leqq P(C) \leqq \theta \gamma_{n}\right\}=1 \quad \text { a.s. } \tag{1.6}
\end{equation*}
$$

which essentially says that the function $t\left(L t^{-2}\right)^{\frac{1}{2}}$ is a local asymptotic modulus of continuity for v_{n} on \mathscr{I}_{1}. A precise definition of "local asymptotic modulus" will be given in Sect. 4.

Van Zuijlen (1982) showed that in the d-dimensional d.f. case, for each $\delta>0$ there exists K and n_{0} such that
$\mathbb{P}\left[\sup \left\{\left|v_{n}(C)\right| / \sigma(C) L n: C \in \mathscr{D}_{d}, 3 n^{-1} \leqq P(C) \leqq 1-3 n^{-1}\right\}>K\right]<n^{-(1+\delta)}$
and
$\mathbb{P}\left[P_{n}(C) \leqq(K L n)^{-1} P(C) \quad\right.$ for some $C \in \mathscr{D}_{d}$ with $\left.P_{n}(C) \neq 0\right]<n^{-(1+\delta)}$
for all $n \geqq n_{0}$. These results were applied to the asymptotic theory of rank statistics. Breiman et al. (1984) showed that if \mathscr{C} is a Vapnik-C̆ervonenkis, or "VC", class of sets (defined below), then for $\delta, \varepsilon>0$ there exist K and n_{0} such that
$\mathbb{P}\left[\sup \left\{\left|P_{n}(C) / P(C)-1\right|: P(C) \geqq K n^{-1} L n, C \in \mathscr{C}\right\}>\varepsilon\right]=O\left(n^{-(1+\delta)}\right)$.
(To express this in the form of (1.2), take $b_{n}=n^{\frac{1}{2}}$.)
In Alexander (1985) the upper bounds in (1.3)-(1.9) were extended to more general classes of sets and functions, including VC classes. The growth constants and cutoff levels (the $\left(b_{n}\right),\left(\gamma_{n}\right)$, and $\left(\alpha_{n}\right)$ in (1.1) or (1.2)) remain the same for VC classes as they are in the special cases (1.3)-(1.9). These extensions, however, do not give the full story, for the growth constants implicit in (1.3)-(1.9) are only upper bounds, except for (1.5). They are not sharp for all \mathscr{C} and P, as the following shows.

For $\tau>0$ define β_{τ} to be the solution $\beta>1$ of $\beta(\log \beta-1)=(1-\tau) / \tau$, and set $\beta_{\infty}=1$. Then

$$
\begin{array}{lll}
\beta_{\tau} \sim\left(\tau L \tau^{-1}\right)^{-1} & \text { as } & \tau \rightarrow 0, \\
\beta_{\tau}-1 \sim\left(2 \tau^{-1}\right)^{\frac{1}{2}} & \text { as } & \tau \rightarrow \infty, \\
\beta_{\tau}-1 \geqq\left(2 \tau^{-1}\right)^{\frac{1}{2}} & \text { for all } & \tau>0, \tag{1.10}
\end{array}
$$

and

$$
\begin{equation*}
\left(\beta_{\tau}-1\right) h_{1}\left(\beta_{\tau}-1\right)=\tau^{-1} \tag{1.11}
\end{equation*}
$$

where h_{1} is given by

$$
\begin{equation*}
h_{1}(\lambda)=\left(1+\lambda^{-1}\right) \log (1+\lambda)-1, \quad \lambda \geqq 0 \tag{1.12}
\end{equation*}
$$

(see Shorack and Wellner 1982).
Csáki (1977) established that in the one-dimensional d.f. case with P uniform on [0, 1],

$$
\begin{equation*}
\limsup _{n} \sup \left\{\left|v_{n}(C)\right| / b_{n} \sigma(C): C \in \mathscr{D}_{1}, \sigma^{2}(C) \geqq \gamma_{n}\right\}=R \quad \text { a.s. } \tag{1.13}
\end{equation*}
$$

where

$$
\begin{align*}
& R=(2(a+1))^{\frac{1}{2}} \text { and } b_{n}=(L L n)^{\frac{1}{2}} \quad \text { if } n^{-1} L L n=o\left(\gamma_{n}\right) \text { and } L L \gamma_{n}^{-1} / L L n \rightarrow a \\
& R=\max \left(2, \tau^{\frac{1}{2}}\left(\beta_{\tau}-1\right)\right) \text { and } b_{n}=(L L n)^{\frac{1}{2}} \text { if } \gamma_{n}=r n^{-1} L L n \text { for all } n \\
& R=1 \text { and } b_{n}=L L n /\left(\left(n \gamma_{n}\right)^{\frac{1}{2}} L\left(L L n / n \gamma_{n}\right)\right) \text { if } \\
& \qquad \gamma_{n}=o\left(n^{-1} L L n\right) \text { and } L L n / L\left(L L n / n \gamma_{n}\right) \uparrow \infty . \tag{1.14}
\end{align*}
$$

Wellner (1978) showed that, for P uniform on $[0,1]$, if $n^{-1}=o\left(\gamma_{n}\right)$ then

$$
\begin{equation*}
\sup \left\{\left|P_{n}(C) / P(C)-1\right|: C \in \mathscr{D}_{1}, P(C) \geqq \gamma_{n}\right\} \rightarrow 0 \text { in probability }, \tag{1.15}
\end{equation*}
$$

while if $n^{-1} L L n=o\left(\gamma_{n}\right)$, then

$$
\begin{equation*}
\sup \left\{\left|P_{n}(C) / P(C)-1\right|: C \in \mathscr{D}_{1}, P(C) \geqq \gamma_{n}\right\} \rightarrow 0 \quad \text { a.s. } \tag{1.16}
\end{equation*}
$$

Note that the growth rates $\left(b_{n}\right)$ in (1.13) differ from those in (1.3)-(1.6) and the cutoff levels $\left(\gamma_{n}\right)$ in (1.15) and (1.16) differ from those in (1.9); we would like to understand such differences from a general point of view. In this paper we present an approach which unifies all the results (1.3)-(1.9), (1.13), and (1.15)-(1.16). We will extend them to all VC classes of sets, including extension to higher dimensions of the d.f. and interval cases, and show how to choose optimal $q,\left(b_{n}\right)$, and $\left(\gamma_{n}\right)$ in general.

The underlying idea is that the right local asymptotic modulus for v_{n}, call it ψ_{1}, should be the oscillation modulus for the Gaussian process G_{P} which is the weak limit of v_{n} on \mathscr{C}. That is, $q_{1}(t)=\psi_{1}\left(t^{\frac{1}{2}}\right)$ should satisfy

$$
\begin{equation*}
0<\underset{t \rightarrow 0}{\limsup \sup }\left\{\left|G_{P}(C)\right| / q_{1}\left(\sigma^{2}(C)\right): C \in \mathscr{C}, \sigma^{2}(C) \leqq t\right\}<\infty \tag{1.17}
\end{equation*}
$$

The problem of finding such a q_{1} was considered in Alexander (1986). The main result can be summarized as follows.

Given a class \mathscr{C} and a law P on (X, \mathscr{A}), define for $t \geqq 0$:

$$
\begin{aligned}
\mathscr{C}_{t} & =\left\{C \in \mathscr{C}: \sigma^{2}(C) \leqq t, P(C) \leqq \frac{1}{2}\right\} \cup\left\{C^{c}: C \in \mathscr{C}, \sigma^{2}(C) \leqq t, P(C)>\frac{1}{2}\right\} \\
\mathscr{C}_{t, s} & =\left\{C \backslash D: C, D \in \mathscr{C}_{t}, \sigma^{2}(C \backslash D) \leqq s\right\} \\
E_{t} & =\bigcup_{C \in \mathscr{C}_{1}} C \\
a(t) & =P\left(E_{t}\right) \vee t \\
g(t) & =a(t) / t
\end{aligned}
$$

We may assume E_{t} is measurable; if not, then replace it throughout by a measurable $F_{t} \supset E_{t}$ with $P\left(F_{t}\right)=P^{*}\left(E_{t}\right)$. We call g the capacity function of \mathscr{C} (for P). This is because $g(t)$ can be thought of roughly as the number of disjoint sets of size t which will "fit" in $\mathscr{C}: a(t)$ is the space available, and t is the approximate space needed for each set C with $P(C) \approx \sigma^{2}(C)=t$. Thus when we approximate all sets in \mathscr{C}_{t} using a finite subcollection, $g(t)$ should give a lower bound on the number needed. This is quantified in Sect. 3 using the concept of a full class \mathscr{C}. Note that since $v_{n}(C)=-v_{n}\left(C^{c}\right)$, one can often simplify matters, especially the definition of \mathscr{C}_{t}, by imposing the condition that $P(C) \leqq \frac{1}{2}$ for all $C \in \mathscr{C}$, then considering separately those $C \in \mathscr{C}$ with $P(C) \leqq \frac{1}{2}$ and the complement of those with $P(C)>\frac{1}{2}$. This means $\sigma^{2}(C)$ is of the order of $P(C)$ for those sets of principal interest, i.e. those with small $\sigma^{2}(C)$. For a reasonably regular $V C$ class \mathscr{C},

$$
\begin{equation*}
q_{1}(t)=\left(2 t\left(L g(t)+L L t^{-1}\right)\right)^{\frac{1}{2}} \tag{1.18}
\end{equation*}
$$

satisfies (1.17).
Suppose $q \leqq q_{1}$ is given, and we wish to find growth constants $\left(b_{n}\right)$ such that (1.1) or (1.2) holds. Since v_{n} is less well-behaved on smaller sets, we might expect that roughly

$$
\begin{gathered}
\sup \left\{\left|v_{n}(C)\right| q\left(\sigma^{2}(C)\right): C \in \mathscr{C}, \gamma_{n} \leqq \sigma^{2}(C) \leqq \alpha_{n}\right\} \\
\approx \sup \left\{\frac{\left|v_{n}(C)\right|}{q_{1}\left(\sigma^{2}(C)\right)} \frac{q_{1}\left(\sigma^{2}(C)\right)}{\left.q\left(\sigma^{2} C\right)\right)}: C \in \mathscr{C}, \sigma^{2}(C)=\gamma_{n}\right\} \approx R q_{1}\left(\gamma_{n}\right) / q\left(\gamma_{n}\right)
\end{gathered}
$$

for some $0<R<\infty$. This, along with the standard LIL, leads us to expect $\left(b_{n}\right)$ in (1.1) to be on the order of $q_{1}\left(\gamma_{n}\right) / g\left(\gamma_{n}\right)$ or $(L L n)^{\frac{1}{2}}$, whichever is greater. For example, when $q(t)=t^{\frac{1}{2}}$ we expect b_{n} to be on the order of

$$
\begin{equation*}
\left(\max \left(L g\left(\gamma_{n}\right), L L \gamma_{n}^{-1}, L L n\right)\right)^{\frac{1}{2}} \tag{1.19}
\end{equation*}
$$

which is true provided γ_{n} is not too small, as Theorem 3.1 shows.
Upper bounds for $\left(b_{n}\right)$ can be obtained by replacing $g(t)$ with its upper bound
t^{-1}; this is equivalent to disregarding the possibility that E_{t} may be only a small part of the whole space X. This is reasonable in the non-i.i.d. case, where $g(t)$ might vary with n in a complicated way, and is the reason the present results improve on those in Alexander (1985). In the one-dimensional d.f. case, for example, $g(t) \equiv t$, so if $L \gamma_{n}^{-1} \sim L n$ then the rate (1.19) is ($\left.L L n\right)^{\frac{1}{2}}$ (cf. (1.13)) while the upper bound rate is $(L n)^{\frac{1}{2}}$. The present approach remedies this deficiency and gives exact results in a large number of cases.

II. An Inequality

The Vapnik-Červonenkis property of a class \mathscr{C} of sets has proven to be a useful tool in the study of empirical processes indexed by \mathscr{C} (Alexander 1984, 1985; Dudley 1978; Giné and Zinn 1984; Pollard 1982; Vapnik and Červonenkis 1971). The definition is as follows: a class \mathscr{C} of subsets of a set X is called a Vapnik-Červonenkis, or $V C$ class if

$$
\sup \{\operatorname{card}\{F \cap C: C \in \mathscr{C}\}: \operatorname{card}(F)=n, F \subset X\}<2^{n}
$$

for some $n \geqq 1$. The least such n is called the index of \mathscr{C} and denoted $V(\mathscr{C})$. Examples in \mathbb{R}^{d} include the classes of all rectangles, all ellipsoids, all lower orthants $(-\infty, x]$, or all polyhedra with at most k sides (k fixed). Any subset of a VC class is a VC class, and $\{C \backslash D: C, D \in \mathscr{C}\}$ or $\{C \triangle D: C, D \in \mathscr{C}\}$ is a VC class if \mathscr{C} is one. See Dudley $(1978,1984)$ for more about VC classes.

The supremum of v_{n} over an uncountable class \mathscr{C} need not be measurable in general. This sometimes necessitates use of the outer probability measure \mathbb{P}^{*}. To avoid further measurability difficulties, we assume throughout this paper that \mathscr{C}_{t} and $\mathscr{C}_{t, s}$ are deviation measurable for P (as defined in Alexander 1984) for all $s, t>0$. For this it suffices that \mathscr{C}_{t} and $\mathscr{C}_{t, \mathrm{~s}}$ be separable for all t, s for the topology of pointwise convergence (i.e. the topology in which $C_{i} \rightarrow C$ if and only if $1_{c_{i} \rightarrow 1_{C}}$ pointwise). Further, we assume that the r.v.'s X_{i} are canonically formed, i.e. that they are defined on the probability space $\left(X^{\infty}, \mathscr{A}^{\infty}, \mathbb{P}\right)$ with X_{i} the i th coordinate function, where $\mathbb{P}=P^{\infty}$. This terminology comes from Gaenssler (1983).

Given the law P, define a P-stratified $V C$ class to be an ordered pair of functions $(\mathscr{C}(\cdot), \zeta(\cdot))$ on an interval $[\gamma, \alpha]$, with ζ nonnegative and nondecreasing, and $\mathscr{C}(t)$ a deviation-mesurable (for P) VC class for all t, satisfying

$$
\mathscr{C}(s) \subset \mathscr{C}(t) \quad \text { for } s \leqq t
$$

and

$$
P(C) \leqq \frac{1}{2}, \sigma^{2}(C) \leqq \zeta(t) \quad \text { for all } C \in \mathscr{C}(t)
$$

Given a P-stratified VC class, we define

$$
\begin{aligned}
\tilde{E}_{t} & =\bigcup_{C \in \mathscr{C}(t)} C \\
\tilde{a}(t) & =P\left(\tilde{E}_{t}\right) \vee \zeta(t), \\
\tilde{g}(t) & =\tilde{a}(t) / \zeta(t)
\end{aligned}
$$

(As with E_{t} we may assume \tilde{E}_{t} measurable.) This notation is used to suggest the canonical example of a P-stratified VC class: $\mathscr{C}(t)=\mathscr{C}_{t}$ and $\zeta(t)=t$. The other example of interest here is, given a function ζ, to take $\mathscr{C}(t)=\mathscr{C}_{t, \zeta(t)}$.

The key to our results is a bound on probabilities like those in (1.2), analogous to Theorems 1.1 and 1.5 in Alexander (1985) and Inequality 1.2 in Shorack and Wellner (1982). We need a regularity condition for the weight function q : define

$$
Q=\{q \in C[0,1]: q \geqq 0, q \uparrow, q(t) / t \downarrow\}
$$

As a convention, for monotone functions f on $[0,1 / 4]$ we define

$$
f^{-1}(t)= \begin{cases}\sup \{s \in[0,1 / 4]: f(s) \leqq t\} & \text { if } f \uparrow \\ \sup \{s \in[0,1 / 4]: f(s) \geqq t\} & \text { if } f \downarrow\end{cases}
$$

taking $\sup \phi$ to be 0 .
Theorem 2.1. Let $(\mathscr{C}(t), \zeta(t)), t \in[\gamma, \alpha]$, be a P-stratified $V C$ class, and let $q \in Q$, $n \geqq 1$, and $p, b, u \geqq 0$. Set $z(t)=q(t) / \zeta(t)$ and suppose that $z(t), \tilde{g}(t)$, and $\zeta(t) / t$ are nonincreasing. Define

$$
\begin{align*}
& r=\left[\left(\tilde{a}^{-1}(p / n) \wedge z^{-1}\left(2 n^{\frac{1}{2}} / b\right)\right) \vee q^{-1}(u / b) \vee \gamma\right] \wedge \alpha \\
& s=\inf \left\{t \geqq 0: z(t) \leqq 2 n^{\frac{1}{2}} / b\right\} \tag{2.1}
\end{align*}
$$

There exists a constant $K=K(V(\mathscr{C}(\alpha)))$ such that if

$$
\begin{gather*}
q^{2}(t) / \zeta(t) L \tilde{g}(t) \geqq K b^{-2} \quad \text { for all } r \vee s \leqq t \leqq \alpha, \tag{2.2}\\
q(t) / L(n \tilde{a}(t)) \geqq K n^{-\frac{1}{2}} b^{-1} \quad \text { for all } r \vee s \leqq t \leqq \alpha, \tag{2.3}\\
q(r) \geqq K n^{-\frac{1}{2}} b^{-1} \quad \text { if } r<s \quad \text { and } r \leqq \alpha, \tag{2.4}\\
q(t) L\left(b q(t) / n^{\frac{1}{2}} \zeta(t)\right) / L(n \tilde{a}(t)) \geqq K n^{-\frac{1}{2}} b^{-1} \quad \text { for all } t \in[r, s) \cap[r, \alpha], \tag{2.5}
\end{gather*}
$$

then

$$
\begin{align*}
& \mathbb{P}\left[\left|v_{n}(C)\right|>b q(t)+u \quad \text { for some } \gamma \leqq t \leqq \alpha \text { and } C \in \mathscr{C}(t)\right] \\
& \quad \leqq p+36 \int_{r / 2}^{\alpha} t^{-1} \exp \left(-b^{2} q^{2}(t) / 512 \zeta(t)\right) d t \\
& \quad+68 \exp \left(-b q(r) n^{\frac{1}{2}} / 256\right) \tag{2.6}
\end{align*}
$$

If also

$$
\begin{equation*}
q(t)^{\beta} L \tilde{g}(t) \text { and } \quad q(t)^{\beta} L\left(b q(t) / n^{\frac{1}{2}} \zeta(t)\right) \uparrow \quad \text { on } \quad[\gamma, \alpha] \tag{2.7}
\end{equation*}
$$

for some $0 \leqq \beta<1$, and if

$$
\begin{equation*}
b q(r) n^{\frac{1}{2}} L\left(\tilde{g}(r) \wedge\left(b q(r) / n^{\frac{1}{2}} \zeta(r)\right)\right) \geqq(1-\beta)^{-1} \tag{2.8}
\end{equation*}
$$

then (2.6) may be improved to

$$
\begin{align*}
& \mathbb{P}\left[\left|v_{n}(C)\right|>b q(t)+u \text { for some } \gamma \leqq t \leqq \alpha \text { and } C \in \mathscr{C}(t)\right] \\
& \qquad \begin{array}{l}
\leqq p+36 \int_{r / 2}^{\alpha} t^{-1} \exp \left(-b^{2} q^{2}(t) / 512 \zeta(t)\right) d t \\
\quad+68 \exp \left(-2^{-8} b q(r) n^{\frac{1}{2}} L \tilde{g}(r)\right) \\
\quad+36 \exp \left(-2^{-8} b q(r) n^{\frac{1}{2}} L\left(b q(r) / n^{\frac{1}{2}} \zeta(r)\right)\right) .
\end{array}
\end{align*}
$$

The heuristics of (2.6) and (2.9) are as follows, for "regular" cases: the probability that there is a $C \in \mathscr{C}$ with $P(C)<r$ and $P_{n}(C)>0$ is at most p, giving the first term. The integral term arises from sets C with $r \vee s \leqq \sigma^{2}(C) \leqq \alpha$. For these $C, \mathbb{P}\left[\left|v_{n}(C)\right|>b q\left(\sigma^{2}(C)\right)+u\right]$ can be approximated by a Gaussian probability, and (2.2) and (2.3) are used. The last term(s) arise from sets C with $r \leqq \sigma^{2}(C)<s$, where a Poisson rather than a Gaussian approximation is valid, and (2.4) and (2.5) are used.

In this paper we are interested only in the case $p=u=0$, so we tactitly assume these values whenever Theorem 2.1 is cited henceforth.

Remark 2.2. In the results that follows, the only intrinsic properties of the capacity function g actually used are that $a(t) / t \leqq g(t) \leqq 1 / t$ and that $t g(t)$ increases. Hence for a given \mathscr{G} and P, all results remain valid if g is replaced throughout by a function $g_{o} \geqq g$ with $g_{o}(t) \leqq 1 / t$ and $t g_{o}(t)$ increasing. The same applies to $\tilde{g}(t), \tilde{a}(t)$, and $\zeta(t)$ (in place of $g(t), a(t)$, and t) for Theorem 2.1. Thus the following loses us little generality: we tacitly assume henceforth that g (or \tilde{g}) is nonincreasing. The possibility of modifying \tilde{g} makes (2.7) a very mild condition.

III. The Square Root Weight Function

The results in this section may be compared to Csáki's result (1.13).
The key to obtaining upper bounds for the lim sup in (1.1), with $q(t)=t^{\frac{1}{2}}$, lies in the behavior of the metric entropies of the classes \mathscr{C}_{1}. Define for $u>0$:

$$
\begin{aligned}
N_{2}(u, \mathscr{C}, P)= & \min \left\{k \geqq 1: \quad \text { there exist } C_{1}, \ldots, C_{k} \in \mathscr{C}\right. \text { such that } \\
& \left.\min _{i \leqq k} P\left(C \Delta C_{i}\right)<u^{2} \text { for all } C \in \mathscr{C}\right\} .
\end{aligned}
$$

The function $\log N_{2}(\cdot, \mathscr{C}, P)$ is called the metric entropy of \mathscr{C} in $L^{2}(P)$. (Note $P(C \Delta D)=\left\|1_{C}-1_{D}\right\|_{L^{2}(P)}^{2}$. $)$ It measures the size of \mathscr{C}, telling us "how totally bounded" \mathscr{C} is.

Define probability measures $P_{t}\left(0<t \leqq \frac{1}{4}\right)$ by $P_{t}(A)=P\left(A \cap E_{t}\right) / P\left(E_{t}\right)$. If $C, D \in \mathscr{C}_{t}$ then $P_{t}(C \Delta D)=P(C \Delta D) / P\left(E_{t}\right)$. Hence using Lemma 2.7 of Alexander (1984), which is based on Lemma 7.13 of Dudley (1978), we have for any $\mathscr{D}_{t} \subset \mathscr{C}_{t}$ and $u \in(0,1)$:

$$
\begin{align*}
N_{2}\left(u t^{\frac{1}{2}}, \mathscr{D}_{t}, P\right) & =N_{2}\left(u i^{\frac{1}{2}} P\left(E_{t}\right)^{-\frac{1}{2}}, \mathscr{D}_{t}, P_{t}\right) \\
& \leqq 2\left(16 g(t) u^{-2} L\left(8 g(t) u^{-2}\right)\right)^{V(\mathscr{6})-1} \\
& \leqq K\left(g(t) / u^{2}\right)^{V(\mathscr{C})-1+\delta} \tag{3.1}
\end{align*}
$$

for some constant $K=K(\delta, V(\mathscr{C}))$ for each $\delta>0$.

For lower bounds on the lim sup in (1.1), the following concept will be useful: we say the class \mathscr{C} is full (for P) of for every sufficiently small $\lambda>0$ there is a $0<\varepsilon_{\lambda}<1$ such that for each sufficiently small $t>0$ there are $k \geqq \varepsilon_{\lambda} g(t)^{1-\lambda}$ sets $C_{1}, \ldots, C_{k} \in \mathscr{C}$ with

$$
\sigma^{2}\left(C_{i}\right)=t \text { and } P\left(C_{i} \cap\left(\bigcup_{j \neq i} C_{j}\right)\right) \leqq \lambda P\left(C_{i}\right)
$$

Roughly, \mathscr{C} is full if it contains a large number of nearly-disjoint sets of any given small size. We say \mathscr{C} is spatially full if the C_{i} 's can always be chosen disjoint. In some of our proofs we will tacitly assume for convenience that "sufficiently small" above means "at most $\frac{1}{4}$ ", but it should always be clear that this is not a necessary restriction.

Theorem 3.1. Let \mathscr{C} be a VC class, let $\gamma_{n} \downarrow 0$, and define

$$
\begin{align*}
& w_{n}=L g\left(\gamma_{n}\right) \vee L L n, \\
& y_{n}=w_{n} /\left(\left(n \gamma_{n} \frac{1}{2} L\left(w_{n} / n \gamma_{n}\right)\right),\right. \\
& c_{1}=\lim _{n} \sup _{n}^{-1} L g\left(\gamma_{n}\right), c_{2}=\underset{n}{\lim \sup } w_{n}^{-1} L L \gamma_{n}^{-1}, \\
& c_{3}=\limsup w_{n}^{-1} L L n . \tag{3.2}
\end{align*}
$$

Suppose that for some $\varrho, \eta<\infty$,

$$
\begin{equation*}
N_{2}\left(u t^{\frac{1}{2}}, \mathscr{C}_{t} \backslash \mathscr{C}_{\left(1-u^{2} / 4\right) t}, P\right) \leqq A u^{-\eta} g(t)^{\varrho+\delta} \tag{3.3}
\end{equation*}
$$

$$
\text { for some } A=A(\delta)<\infty \quad \text { for all } t, \delta>0 \text { and } u \in(0,1)
$$

(A) Then

$$
\begin{equation*}
\limsup _{n} \sup \left\{\left|v_{n}(C)\right| / b_{n} \sigma(C): C \in \mathscr{C}, \sigma^{2}(C) \geqq \gamma_{n}\right\}=R \text { a.s. } \tag{3.4}
\end{equation*}
$$

where
(i) if $n^{-1} w_{n}=o\left(\gamma_{n}\right)$ and $n^{-1} w_{n}^{\frac{1}{2}}$ decreases, then $b_{n}=w_{n}^{\frac{1}{2}}$ and $R \leqq\left(2\left(\varrho c_{1}+c_{2}+c_{3}\right)\right)^{\frac{1}{2}}$;
(ii) if $\gamma_{n} \sim \tau n^{-1} w_{n}$ for some $\tau>0$ and $n^{-1} w_{n}^{\frac{1}{2}}$ decreases, then $b_{n}=w_{n}^{\frac{1}{2}}$ and $R \leqq \max \left(\left(2\left(\varrho c_{1}+c_{2}+c_{3}\right)\right)^{\frac{1}{2}}, \tau^{\frac{1}{2}}\left(\beta_{\theta \tau}-1\right)\right)$, where $\theta=\left(\varrho c_{1}+c_{3}\right)^{-1}$;
(iii) if $\gamma_{n}=o\left(n^{-1} w_{n}\right), n^{-1} y_{n}$ decreases, and

$$
\begin{equation*}
L\left(w_{n} / n \gamma_{n}\right)=o\left(w_{n}\right) \tag{3.5}
\end{equation*}
$$

then $b_{n}=y_{n}$ and $R \leqq \varrho c_{1}+c_{3}$.
(B) If $\varrho \leqq 1, \mathscr{C}$ is full, the lim sups in (3.2) are actually limits, and (for (i) and (ii) only) $\operatorname{Lg}(t) / L t^{-1}$ is nondecreasing, then the upper bounds for R in (i)-(iii) above are also lower bounds, so (i)-(iii) give the true values of R in (3.4).
(C) If the assumptions in (B) hold, \mathscr{C} is spatially full, and $c_{3}=0$, then "lim sup" may be replaced by "lim" in (3.4) for each of (i)-(iii).

By (3.1), (3.3) is always valid with $\eta / 2=\varrho=V(\mathscr{C})-1$. Later examples, however, will show that this need not be optimal. In fact, we will have $\varrho=1$ with $V(\mathscr{C})$ arbitrarily large.

Remark 3.2. The condition (3.3) is related to the "relative metric entropy" condition (1.25) in Alexander (1985). In fact, it is easy to verify that

$$
N_{2}\left(u t^{\frac{1}{2}}, \mathscr{C}_{t} \backslash \mathscr{C}_{\left(1-u^{2} \mid 4\right) t}, P\right) \leqq N_{2}^{R}(u / 2, \mathscr{C}, P)
$$

for all $0<u<\frac{1}{2}$ and $t>0$, where N_{2}^{R} is defined in Alexander (1985).
Qualitatively, (3.3) with $\varrho=1$ can be interpreted as follows, in sufficiently regular cases. $g(t)=P\left(E_{t}\right) / t$ is the maximum number of disjoint sets of probability near t which can fit in \mathscr{C}. Therefore $g(t)$ should be a lower bound on the number of sets required to approximate all sets in \mathscr{C} of probability near t to within a given fraction of t. If $\varrho=1$, then (3.3) says $g(t)$ is not far from also being an upper bound on this number of sets.

The dependence of Theorem 3.1 and later results on the behavior of γ_{n} relative to w_{n} / n is rooted in the quality of the Gaussian approximation to $\mathbb{P}\left[\left|v_{n}(C)\right| / b_{n} \sigma(C)>R\right]$. The approximation is good for all C with $\sigma^{2}(C) \geqq \gamma_{n}$ if $w_{n} / n=o\left(\gamma_{n}\right)$, good up to a constant in the exponent if $w_{n} / n=O\left(\gamma_{n}\right)$, and not good in general if $\gamma_{n}=o\left(w_{n} / n\right)$.

The condition (3.5) will ensure that, by a $0-1$ law, the lim sup in (3.4) is some fixed constant a.s.

The heuristics of the value of R in (3.4) are as follows. We need only consider a finite number of sets in $\mathscr{C} . c_{1}$ comes from the number of sets C, with a given fixed value of $\sigma^{2}(C)$, which must be considered; this is related to the metric entropy. c_{2} comes from the number of fixed values of $\sigma^{2}(C)$ which must be considered. c_{3} comes from the requirement that sums of certain probabilities, for geometrically increasing subsequences of values of n, must be finite, as in some proofs of the LIL.

If \mathscr{C} is full, it is clear that ϱ must be at least 1 if g is unbounded, hence in particular if $c_{1}>0$. Therefore there is no ambiguity in Theorem $3.1(\mathrm{~B})$ arising from the fact that (3.3) may hold for multiple values of ϱ.

In Theorem 3.1 and in fact throughout this paper, any requirement that a sequence, say $\left(\lambda_{n}\right)$ (or a function, say $\varphi(t)$), be monotone may be weakened to a requirement that $\lambda_{n} \sim \theta_{n}$ as $n \rightarrow \infty$ (or $\varphi(t) \sim \xi(t)$ as $t \rightarrow 0$) for some monotone sequence $\left(\theta_{n}\right)$ (or monotone function $\xi(t)$).

When

$$
\begin{equation*}
L L \gamma_{n}^{-1}=o(L L n) \quad \text { and } \quad L g\left(\gamma_{n}\right)=o(L L n) \tag{3,6}
\end{equation*}
$$

we see from Theorem 3.1 (i) that the value of R in (3.4) is $2^{\frac{1}{2}}$. This is true, for example, in the one-dimensional uniform d.f. case if $\gamma_{n}=(L n)^{-\alpha}$ for some $a>0$. By the ordinary law of the iterated logarithm, this is the same value achieved at each individual $C \in \mathscr{C}$. Thus no "small" subclass of \mathscr{C}, corresponding to the tails in the d.f. case, is the sole determiner of the rate of growth of the weighted empirical process when (3.6) holds.

Example 3.3. When $\mathscr{C}=\mathscr{D}_{1}$ and P is uniform on $[0,1]$ (the one-dimensional uniform d.f. case), we have $P\left(E_{t}\right)=t$, so $g(t) \equiv 1$, and (3.3) is valid for $\varrho=0$. Hence in Theorem 3.1 we have $w_{n}=L L n, y_{n}=L L n /\left(\left(n \gamma_{n}\right)^{\frac{1}{2}} L\left(L L n / n \gamma_{n}\right)\right), c_{1}=0$, and $c_{3}=1$. Under the assumptions in (1.14) we have (3.5) holding. Clearly \mathscr{D}_{1} is full. Thus (1.13) is a special case of Theorem 3.1.

Example 3.4. When $\mathscr{C}=\mathscr{D}_{d}$ and P is uniform on $[0,1]^{\dot{d}}$ with $d>1$ (the d-dimensional uniform d.f. case), it is easy to check that $P\left(E_{t}\right) \sim t\left(L t^{-1}\right)^{d-1} /(d-1)$!, so $g(t) \sim\left(L t^{-1}\right)^{d-1} /(d-1)$! We will show in the proof of Corollary 3.5 below that (3.3) is valid for $\varrho=1$. Hence if $L L \gamma_{n}^{-1} / L L n \rightarrow a$ for some $a \geqq 0$, in Theorem 3.1 (i) we have

$$
c_{3}>0, w_{n} \sim c_{3}^{-1} L L n, c_{1}=(d-1) a c_{3}, c_{2}=a c_{3},
$$

and

$$
\varrho c_{1}+c_{2}+c_{3}=c_{3}(1+a d) .
$$

In (ii), if $\gamma_{n} \sim \lambda n^{-1} L L n$, we get

$$
\begin{gathered}
w_{n} \sim(d-1) L L n, c_{1}=1, c_{2}=c_{3}=(d-1)^{-1} \\
\tau=\lambda(d-1)^{-1}, \varrho c_{1}+c_{2}+c_{3}=(d+1) /(d-1), \quad \text { and } \quad \theta=(d-1) / d
\end{gathered}
$$

In (iii), if (3.5) holds, i.e. if $n^{-1}(L n)^{-\varepsilon}=0\left(\gamma_{n}\right)$ for all $\varepsilon>0$, the values are

$$
w_{n} \sim(d-1) L L n, c_{1}=1, c_{3}=(d-1)^{-1}, \quad \text { and } \quad(d-1)\left(\varrho c_{1}+c_{3}\right)=d
$$

To see that \mathscr{D}_{d} is full, fix $0<\lambda<1$ and $0<t<1$, and let $\mu=\lambda d^{-1}$ and

$$
\begin{align*}
& \mathscr{F}=\left\{[0, x]: x=\left(f(t) \mu^{-j_{1}}, \mu^{i_{2}}, \ldots, \mu^{j_{d}}\right) \in[0,1]^{d}\right. \\
& \text { for some integers } \left.j_{i} \geqq 0 \text { with } j_{1}=\sum_{i=2}^{d} j_{i}\right\} \tag{3.7}
\end{align*}
$$

where $f(t) \leqq \frac{1}{2}$ is given by $f(t)(1-f(t))=t$. Then

$$
\begin{align*}
|\mathscr{F}| & =\mid\left\{\left(j_{2}, \ldots, j_{d}\right) \in \mathbb{Z}_{+}^{d-1}: \sum_{i=2}^{d} j_{1} \leqq\left(\log f(t)^{-1} /\left(\log \mu^{-1}\right)\right\} \mid\right. \\
& \geqq \varepsilon_{d}\left(\left(\log t^{-1}\right) /\left(\log \mu^{-1}\right)\right)^{d-1} \vee 1 \\
& \geqq \varepsilon_{d \lambda} g(t) \tag{3.8}
\end{align*}
$$

for some constants ε_{d} and $\varepsilon_{d \lambda}$, where \mathbb{Z}_{+}denotes the nonnegative integers. Since $P(C \cap(\underset{D \in \mathscr{F}, D \neq C}{\bigcup} D)) \leqq d \mu P(C)$ for $C \in \mathscr{F}$, this shows that \mathscr{D}_{d} is full.

This establishes (up to the proof of (3.3)) the next corollary for $d>1$.
Corollary 3.5. Let P be the uniform law on $[0,1]^{d}(d \geqq 1)$ and let $\gamma_{n} \downarrow 0$ so that $L L \gamma_{n}^{-1} / L L n \rightarrow a$ for some $a \geqq 0$. Then

$$
\limsup _{n} \sup \left\{\left|v_{n}(C)\right| / b_{n} \sigma(C): C \in \mathscr{D}_{d}, \sigma^{2}(C) \geqq \gamma_{n}\right\}=R \quad \text { a.s. }
$$

where

$$
\begin{aligned}
& R=(2(1+a d))^{\frac{1}{2}} \text { and } b_{n}=(L L n)^{\frac{1}{2}} \quad \text { if } n^{-1} L L n=o\left(\gamma_{n}\right) \\
& R=\max \left((2(1+d))^{\frac{1}{2}}, \lambda^{\frac{1}{2}}\left(\beta_{\lambda / d}-1\right) \text { and } b_{n}=(L L n)^{\frac{1}{2}} \quad \text { if } \gamma_{n} \sim \lambda n^{-1} L L n\right. \\
& R=d \text { and } b_{n}=L L n /\left(\left(n \gamma_{n}\right)^{\frac{1}{2}} L\left(L L n / n \gamma_{n}\right)\right) \quad \text { if } \gamma_{n}=o\left(n^{-1} L L n\right) \\
& \quad \text { and } n^{-1}(L n)^{-\varepsilon}=o\left(\gamma_{n}\right) \quad \text { for all } \varepsilon>0 . \quad \square
\end{aligned}
$$

Example 3.6. Let P be a nondegenerate normal law on \mathbb{R}^{d}, let $C_{b v}=\left\{x \in \mathbb{R}^{d}\right.$: $x \cdot v \geqq b\}$ for v in the sphere S^{d-1} and $b \in \mathbb{R}$, and let $\mathscr{C}=\left\{\mathrm{C}_{b v}: b \in \mathbb{R}, v \in S^{d-1}\right\}$ be the class of all closed half spaces in \mathbb{R}^{d}. Then there is an affine map $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with $\mathscr{L}(A)$ the normal law $N(0, I)$. Since A preserves all the relevant structure of \mathscr{C}, we may assume $P=N(0, I)$.

Let Φ be the d.f. on \mathbb{R} of $N(0,1)$, and let χ_{d}^{2} be a chi-squared r.v. with d degrees of freedom. Now for $t \leqq \frac{1}{2}, \sigma^{2}\left(C_{b v}\right) \leqq t(1-t)$ if and only if $|b| \geqq \Phi^{-1}(1-t)$, so $E_{t(1-t)}=\left\{x \in \mathbb{R}^{d}:|x| \geqq \Phi^{-1}(1-t)\right\}$. Let $r_{t}=\Phi^{-1}(1-t) ;$ since $r_{t} \sim\left(2 L t^{-1}\right)^{\frac{1}{2}}$ and $r_{t}^{-1} \exp \left(-r_{t}^{2} / 2\right) \sim(2 \pi)^{\frac{1}{2}} t$ as $t \rightarrow 0$, it follows that as $t \rightarrow 0$,
$P\left(E_{t(1-t)}\right)=\mathbb{P}\left[\left|X_{1}\right|^{2} \geqq r_{t}^{2}\right]=\mathbb{P}\left[\chi_{d}^{2} \geqq r_{t}^{2}\right] \sim K_{1} r_{t}^{d-2} \exp \left(-r_{t}^{2} / 2\right) \sim K_{2} t\left(L t^{-1}\right)^{(d-1) / 2}$ where K_{1} and K_{2} are constants depending on d, so $g(t) \sim K_{2}\left(L t^{-1}\right)^{(d-1) / 2}$.

We will show in the proof of the next corollary that \mathscr{C} is full and (3.3) is valid with $\varrho=1$, though $V(\mathscr{C}) \geqq d+2$. Suppose $L L \gamma_{n}^{-1} / L L n \rightarrow a$ for some $a \geqq 0$. Then in Theorem 3.1 (i) we have
and

$$
c_{3}>0, w_{n} \sim c_{3}^{-1} L L n, c_{1}=(d-1) \mathrm{ac}_{3} / 2, c_{2}=a c_{3},
$$

In (ii), if $\gamma_{n} \sim \lambda n^{-1} L L n$ we get

$$
c_{2}=c_{3}>0, w_{n} \sim c_{3}^{-1} L L n, c_{1}=(d-1) c_{3} / 2, \tau=\lambda c_{3}, \theta=2 / c_{3}(d+1)
$$

and

$$
\varrho c_{1}+c_{2}+c_{3}=(d+3) c_{3} / 2
$$

In (iii), we find

$$
c_{3}>0, w_{n} \sim c_{3}^{-1} L L n, c_{1}=(d-1) c_{3} / 2, \quad \text { and } \quad \varrho c_{1}+c_{3}=(d+1) c_{3} / 2
$$

The next corollary summarizes this.
Corollary 3.7. Let P be a nondegenerate normal law on \mathbb{R}^{d} and let \mathscr{C} be the class of all closed half spaces in $\mathbb{R}^{d}(d \geqq 1)$. Let $\gamma_{n} \downarrow 0$ so that $L L \gamma_{n}^{-1} / L L n \rightarrow$ a for some $a>0$. Then

$$
\operatorname{limsuplim}_{n} \sup \sup \left\{\left|v_{n}(C)\right| / b_{n} \sigma(C): C \in \mathscr{C}, \sigma(C) \geqq \gamma_{n}\right\}=R \quad \text { a.s. }
$$

where

$$
\begin{aligned}
R= & (2(1+a(d+1) / 2))^{\frac{1}{2}} \quad \text { and } \quad b_{n}=(L L n)^{\frac{1}{2}} \quad \text { if } n^{-1} L L n=o\left(\gamma_{n}\right) \\
R= & \max \left((d+3)^{\frac{1}{2}}, \lambda^{\frac{1}{2}}\left(\beta_{2 \lambda /(d+1)}-1\right)\right) \quad \text { and } \quad b_{n}=(L L n)^{\frac{1}{2}} \quad \text { if } \gamma_{n} \sim \lambda n^{-1} L L n \\
R= & (d+1) / 2 \quad \text { and } \quad b_{n}=L L n /\left(\left(n \lambda_{n}\right)^{\frac{1}{2}} L\left(L L n / n \gamma_{n}\right)\right) \\
& \text { if } \gamma_{n}=o\left(n^{-1} L L n\right) \quad \text { and } \quad n^{-1}(L n)^{-\varepsilon}=o\left(\gamma_{n}\right) \quad \text { for all } \varepsilon>0 . \quad \square
\end{aligned}
$$

Example 3.8. Let P be the uniform law on $[0,1]^{d}(d \geqq 1)$, recall that \mathscr{I}_{d} is the class of all subrectangles of $[0,1]^{d}$, and let $\mathscr{C}=\left\{C \in \mathscr{I}_{d}: P(C) \leqq \frac{1}{2}\right\}$. The bound on $P(C)$ is assumed for convenience, to avoid the technicalities of dealing with complements of large rectangles. Then $P\left(E_{t}\right) \equiv 1$, so $g(t)=t^{-1}$. It is clear that \mathscr{C} is spatially full. (3.3) with $\varrho=1$ will be checked in the proof of the next corollary, using the techniques of Theorem 2.1 of Orey and Pruitt (1973). Suppose $L L n / L \gamma_{n}^{-1} \rightarrow a$ for some $0 \leqq a \leqq \infty$. If $a \leqq 1$, the constants in Theorem 3.1 are

$$
c_{1}=1, c_{2}=0, c_{3}=a, w_{n} \sim L \gamma_{n}^{-1}
$$

while if $a>1$ they are

$$
c_{1}=a^{-1}, c_{2}=0, c_{3}=1, w_{n} \sim L L n
$$

By Theorem 3.1 (i), if $1<a<\infty$ we have

$$
\limsup _{n} \sup \left\{\left|v_{n}(C)\right| /\left(\sigma^{2}(C) L L n\right)^{\frac{1}{2}}: C \in \mathscr{C}, \sigma(C) \geqq \gamma_{n}\right\}=\left(2\left(1+a^{-1}\right)\right)^{\frac{1}{2}} \quad \text { a.s. }
$$

which is equivalent to

$$
\limsup _{n} \sup \left\{\left|v_{n}(C)\right| /\left(\sigma^{2}(C) L \gamma_{n}^{-1}\right)^{\frac{1}{2}}: C \in \mathscr{C}, \sigma^{2}(C) \geqq \gamma_{n}\right\}=(2(1+a))^{\frac{1}{2}} \quad \text { a.s. }
$$

In Theorem 3.1 (ii), if $\gamma_{n} \sim \lambda n^{-1} L n$ the constants are

$$
a=0, \tau=\lambda, \theta=1, w_{n} \sim L n, c_{1}=1, c_{2}=c_{3}=0
$$

and we can make use of (1.10). In (iii), if (3.5) holds, i.e. if $n^{-(1+\varepsilon)}=o\left(\gamma_{n}\right)$ for all $\varepsilon>0$, we get

$$
a=0, c_{1}=1, c_{3}=0
$$

This is summarized in the following corollary.
Corollary 3.9. Let P be the uniform law on $[0,1]^{d}(d \geqq 1)$ and let $\gamma_{n} \downarrow 0$ so that $n^{-1}\left(L \gamma_{n}^{-1}\right)^{\frac{1}{2}}$ decreases and $L L n / L \gamma_{n}^{-1} \rightarrow a$ for some $0 \leqq a \leqq \infty$. Then

where
$R=2^{\frac{1}{2}}$ and $b_{n}=(L L n)^{\frac{1}{2}} \quad$ if $a=\infty \quad$ (i.e. if $(L n)^{-\varepsilon}=o\left(\gamma_{n}\right)$ for all $\varepsilon>0$)
$R=(2(1+a))^{\frac{1}{2}}$ and $b_{n}=\left(L \gamma_{n}^{-1}\right)^{\frac{1}{2}} \quad$ if ${ }^{-1} L n=o\left(\gamma_{n}\right)$ and $0<a<\infty$
$R=2^{\frac{1}{2}}$ and $b_{n}=\left(L \gamma_{n}^{-1}\right)^{\frac{1}{2}}$ if $n^{-1} L n=o\left(\gamma_{n}\right)$ and $a=0$
$R=\lambda^{\frac{1}{2}}\left(\beta_{\lambda}-1\right)$ and $b_{n}=(L n)^{\frac{1}{2}}$ if $\gamma_{n} \sim \lambda n^{-1} L n$
$R=1$ and $b_{n}=L n /\left(\left(n \gamma_{n}\right)^{\frac{1}{2}} L\left(L n / n \gamma_{n}\right)\right.$ if $c_{n}=O\left(n^{-1} L n\right)$
and $n^{-(1+\varepsilon)}=o\left(\gamma_{n}\right) \quad$ for all $\varepsilon>0$,
provided in each case that $n^{-1} b_{n}$ decreases. For (3.11)-(3.13), "lim sup" may be replaced by "lim" in (3.9).

Taking $\gamma_{n}=n^{-1}(L n)^{\beta}(-\infty<\beta<1)$ in Corollary 3.9, we see that the lim sup in (1.4) is $(1-\beta)$ a.s.

For $d=1$, (3.11) is Stute's result (1.5), and (3.10) and (3.12) are due to Mason et al. (1983). For $d>1$ (3.11) is related to other results of Stute (1984).

IV. The Asymptotic Modulus of the Empirical Process

We will call a nondecreasing function ψ on $[0,1 / 4]$ an asymptotic modulus of continuity for $\left(v_{n}\right)$ on \mathscr{C} if

$$
\begin{gather*}
\psi(0)=0 \tag{4.1}\\
\psi(s+t) \leqq \psi(s)+\psi(t) \quad \text { for all } s, t \in\left[0, \frac{1}{4}\right] \tag{4.2}
\end{gather*}
$$

$$
\begin{equation*}
\text { there exist sequences } \gamma_{n}, \alpha_{n} \downarrow 0 \text { satisfying } n \alpha_{n} \downarrow, \gamma_{n} \leqq \alpha_{n} \text {, and } \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
n^{-1} L n=o\left(\alpha_{n}\right) \tag{4.4}
\end{equation*}
$$

such that

$$
\begin{equation*}
\limsup _{n}\left\{\frac{\left|v_{n}(C)-v_{n}(D)\right|}{\psi(\sigma(C \Delta D))}: C, D \in \mathscr{C}, P(C \Delta D) \leqq \frac{1}{2}, \gamma_{n} \leqq \sigma^{2}(C \Delta D) \leqq \alpha_{n}\right\}<\infty \text { a.s. } \tag{4.5}
\end{equation*}
$$

ψ is a local asymptotic modulus at ϕ (the empty set) for $\left(v_{n}\right)$ on \mathscr{C} if (4.1)-(4.3) hold with (4.5) replaced by

$$
\begin{equation*}
\lim _{n} \sup \sup \left\{\frac{\left|v_{n}(C)\right|}{\psi(\sigma(C))}: C \in \mathscr{C}, \gamma_{n} \leqq \sigma^{2}(C) \leqq \alpha_{n}\right\}<\infty \quad \text { a.s. } \tag{4.6}
\end{equation*}
$$

The requirement (4.4) ensures that, in (4.5) and (4.6), we are not considering only sets so small that P_{n} need not be much like P.

Define $g_{1}(t)$ by

$$
L g_{1}(t)=L g(t)+L L t^{-1}
$$

and set

$$
\psi_{1}(t)=t\left(L g_{1}\left(t^{2}\right)\right)^{\frac{1}{2}}=q_{1}\left(t^{2}\right), \quad \psi_{0}(t)=t\left(L t^{-2}\right)^{\frac{1}{2}}
$$

Theorem 4.1. If \mathscr{C} is $a V C$ class then $\psi_{0}(t)$ is an asymptotic modulus of continuity, and $\psi_{1}(t)$ a local asymptotic modulus at ϕ, for $\left(v_{n}\right)$.

It follows that in all dimensions, $t\left(L L t^{-1}\right)^{\frac{1}{2}}$ is a local asymptotic modulus at ψ both for the uniform d.f. case (Example 3.4) and for the half space case with normal law (Example 3.6), and $t\left(L t^{-1}\right)^{\frac{1}{2}}$ is an asymptotic modulus of both for the uniform interval case (Example 3.8). The latter fact is a variant of Stute's (1982a) result (1.6).

More detail can be obtained in some cases, as the next theorem shows.
Theorem 4.2. Let \mathscr{C} be a VC class and let $\gamma_{n}, \alpha_{n} \downarrow 0$ with $n \alpha_{n} \uparrow, \gamma_{n} \leqq \alpha_{n}$,

$$
\begin{equation*}
n^{-1} L g_{1}\left(\gamma_{n}\right)=o\left(\gamma_{n}\right), \quad \text { and } \quad \liminf _{n} L g_{1}\left(\alpha_{n}\right) / L L n>0 \tag{4.7}
\end{equation*}
$$

Define

$$
\begin{align*}
& c_{1}=\limsup _{t \rightarrow 0} L g(t) / L g_{1}(t), \\
& c_{2}^{\prime}=\limsup _{t \rightarrow 0} L L t^{-1} / L g_{1}(t), \\
& c_{2}^{\prime \prime}=\limsup _{n} L L\left(\gamma_{n}^{-1} \alpha_{n}\right) / L g_{1}\left(\alpha_{n}\right), \\
& c_{2}=c_{2}^{\prime} \wedge c_{2}^{\prime \prime} \\
& c_{3}=\limsup _{n} L L n / L g_{1}\left(\alpha_{n}\right) \tag{4.8}
\end{align*}
$$

(i) Suppose the entropy condition (3.3) holds for some $\varrho \geqq 0$. Then
$\limsup _{n} \sup \left\{\left|\nu_{n}(C)\right| / \psi_{1}(\sigma(C)): C \in \mathscr{C}, \gamma_{n} \leqq \sigma^{2}(C) \leqq \alpha_{n}\right\} \leqq\left(2\left(\varrho c_{1}+c_{2}+c_{3}\right)\right)^{\frac{1}{2}} \quad$ a.s.
(ii) If \mathscr{C} is full, $\varrho \leqq 1, L g(t) / L t^{-1}$ is nondecreasing, and the lim sups in (4.8) are actually limits, then equality holds in (4.9).
(iii) If \mathscr{C} is spatially full, $\varrho \leqq 1$, and $c_{3}=0$, then

$$
\begin{equation*}
\lim _{n} \sup \left\{\left|v_{n}(C)\right| / \psi_{1}(\sigma(C)): C \in \mathscr{C}, \gamma_{n} \leqq \sigma^{2}(C) \leqq \alpha_{n}\right\}=2^{\frac{1}{2}} \quad \text { a.s. } \tag{4.10}
\end{equation*}
$$

In the d-dimensional uniform interval case (Example 3.8), Theorem 4.2 (iii) tells us that (4.10) holds provided $\gamma_{n}, \alpha_{n} \downarrow, n \alpha_{n} \uparrow, n^{-1} L n=o\left(\gamma_{n}\right), \gamma_{n} \leqq \alpha_{n}$, and $L L n=o\left(L \alpha_{n}^{-1}\right)$. Since here $\psi_{1}(t) \sim t\left(L t^{-2}\right)^{\frac{1}{2}}$, this generalizes Stute's (1982a) result (1.9).

Dudley (1978) proved that v_{n}, indexed by a VC class \mathscr{C}, converges weakly (under some measurability conditions) to a Gaussian process G_{P} on \mathscr{C} with the same covariance as v_{n}. Lemma 7.13 of Dudley (1978) and Theorem 2.1 of Dudley (1973) show that ψ_{0} is a sample modulus for G_{P} on \mathscr{C}. For $\mathscr{C}=\mathscr{D}_{d}$ or \mathscr{I}_{d} (the d.f. or interval cases) and P uniform, $G_{P}(C)$ is the increment of a tied-down Brownian sheet over the rectangle C. Results of Orey and Pruitt (1973) tell us that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \sup \left\{\left|G_{P}(C)-G_{P}(D)\right| / \psi_{0}(\sigma(C \Delta D)): C, D \in \mathscr{D}_{d}, \sigma^{2}(C \Delta D)<\varepsilon\right\}=(2 d)^{\frac{1}{2}} \quad \text { a.s. } \tag{4.11}
\end{equation*}
$$

$\limsup _{\varepsilon \rightarrow 0}\left\{\left|G_{P}(C)\right| / \psi_{1}(\sigma(C)): C \in \mathscr{I}_{d}, P(C) \leqq \frac{1}{2}, \sigma^{2}(C)<\varepsilon\right\}=2^{\frac{1}{2}} \quad$ a.s.
$\lim _{\varepsilon \rightarrow 0} \sup \left\{\left|G_{P}(C)\right| / \psi_{1}(\sigma(C)): C \in \mathscr{D}_{d}, P(C) \leqq \frac{1}{2}, \sigma^{2}(C)<\varepsilon\right\}=2^{\frac{1}{2}} \quad$ a.s.
(4.12) and (4.13) are also obtained as special cases of results for general set-indexed Gaussian processes in Alexander (1986). (4.11) and Theorem 4.1 tell us that the best possible sample modulus for G_{P} is also an asymptotic modulus of continuity for $\left(v_{n}\right)$. (4.12) may be compared with (4.10), and (4.13) may be compared to the following corollary of Theorem 4.2. (Recall \mathscr{D}_{d} was proved to be full in Example 3.4.)

Corollary 4.3. Let \mathscr{C} be $\mathscr{D}_{d}(d \geqq 1)$, let P be the uniform law on $[0,1]^{d}$, and let $\gamma_{n} \downarrow 0$ and $\alpha_{n} \downarrow 0$ so that

$$
n^{-1} L L n=o\left(\gamma_{n}\right), \gamma_{n} \leqq \alpha_{n}, n \alpha_{n} \uparrow, L L \alpha_{n}^{-1} / L L n \rightarrow a
$$

and

$$
L L\left(\gamma_{n}^{-1} \alpha_{n}\right) / L L \alpha_{n}^{-1} \rightarrow b \quad \text { for some } a, b>0
$$

Then $\psi_{1}(t) \sim t\left(d L L t^{-1}\right)^{\frac{1}{2}}$ and

$$
\begin{aligned}
\limsup _{n} \sup & \left\{\left|v_{n}(C)\right| / \psi_{1}(\sigma(C)): C \in \mathscr{D}_{d}, P(C) \leqq \frac{1}{2}, \gamma_{n} \leqq \sigma^{2}(C) \leqq \alpha_{n}\right\} \\
& =\left(2\left(d-2+(1 \wedge b)+a^{-1}\right) / d\right)^{\frac{1}{2}} .
\end{aligned}
$$

Our final theorem in this section is an in-probability version of Theorem 4.1.
Theorem 4.4. Let \mathscr{C} be a VC class and let $\gamma_{n} \rightarrow 0$ with $n^{-1} \operatorname{Lg}\left(\gamma_{n}\right)=o\left(\gamma_{n}\right)$. Then

$$
\sup \left\{\left|v_{n}(C)\right| / \psi_{1}(\sigma(C)): C \in \mathscr{C}, \sigma^{2}(C) \geqq \gamma_{n}\right\}
$$

is bounded in probability.

V. The Ratio P_{n} / P

By taking $q(t)=t$ and $b_{n}=n^{\frac{1}{2}}$ in (1.1) and (1.2), we can study the behavior of

$$
\sup \left\{\left|\frac{P_{n}(C)}{P(C)}-1\right|: C \in \mathscr{C}, P(C) \geqq \gamma_{n}\right\}
$$

as $n \rightarrow \infty$. As with $q(t)=t^{\frac{1}{2}}$, analogs of Wellner's (1978) results (1.15) and (1.16) will depend on the behavior of $P\left(E_{t}\right)$ as $t \rightarrow 0$.

Theorem 5.1. Let \mathscr{C} be a VC class and let $\gamma_{n} \rightarrow 0$. If

$$
\begin{equation*}
n^{-1} \operatorname{Lg}\left(\gamma_{n}\right)=o\left(\gamma_{n}\right) \tag{5.1}
\end{equation*}
$$

then as $n \rightarrow \infty$,

$$
\begin{equation*}
\sup \left\{\left|\frac{P_{n}(C)}{P(C)}-1\right|: C \in \mathscr{C}, P(C) \geqq \gamma_{n}\right\} \rightarrow 0 \quad \text { in probability. } \tag{5.2}
\end{equation*}
$$

If also

$$
\begin{equation*}
n^{-1} L L n=o\left(\gamma_{n}\right) \tag{5.3}
\end{equation*}
$$

then the convergence in (5.2) is a.s.
Conversely if \mathscr{C} is full and either

$$
\begin{equation*}
\gamma_{n}=O\left(n^{-1} L g\left(\gamma_{n}\right)\right) \quad \text { or } \quad \gamma_{n}=O\left(n^{-1} L L n\right) \tag{5.4}
\end{equation*}
$$

then

$$
\begin{equation*}
\limsup _{n}\left\{\left|\frac{P_{n}(C)}{P(C)}-1\right|: C \in \mathscr{C}, P(C) \geqq \gamma_{n}\right\}>0 \quad \text { a.s. } \quad \square \tag{5.5}
\end{equation*}
$$

The next theorem includes (1.7) as a special case.
Theorem 5.2. Let \mathscr{G} be a VC class and let γ_{n}^{*} be the solution γ of $\gamma / L g(\gamma)=n^{-1}$. Then for each $\varepsilon, A>0$ there exist $R<\infty$ and n_{0} such that for all $n \geqq n_{0}$,

$$
\begin{gather*}
\mathbb{P}^{*}\left[P_{n}(C) \leqq\left(R L g\left(\gamma_{n}^{*}\right)\right)^{-1} P(C) \text { for some } C \in \mathscr{C}\right. \text { with } \\
\left.P_{n}(C) \neq 0\right]<g\left(\gamma_{n}^{*}\right)^{-A} \wedge e^{-A} \tag{5.6}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathbb{P} *\left[\sup \left\{\frac{P_{n}(C)}{P(C)}: C \in \mathscr{C}, P(C) \geqq \varepsilon \gamma_{n}^{*}\right\}>R\right]<g\left(\gamma_{n}^{*}\right)^{-A} \wedge e^{-A} \tag{5.7}
\end{equation*}
$$

If g is bounded, then $\sup P_{n}(C) / P(C)$ is bounded in probability (i.e. we can take $\varepsilon=0$ above).
γ_{n}^{*} is well-defined in Theorem 5.2 since $g(t)$ is assumed nonincreasing. In the d-dimensional uniform d.f. case (Example 3.4), $g\left(\gamma_{n}^{*}\right) \sim(L n)^{d-1} /(d-1)$! if $d>1$, and g is bounded if $d=1$. In the d-dimensional interval case (Example 3.8), $g\left(\gamma_{n}^{*}\right) \sim n / L n$ for all $d \geqq 1$.

By Remark 2.2, Theorem 5.2 remains valid if g is increased. This weakens the lower bound on P_{n} / P in the event in (5.6), but improves the bound on the probability of that event. For example, taking $g(t)=t^{-1}$ yields (1.7).

VI. Proof of the Inequality

The key to the proof of Theorem 2.1 will be an inequality from Alexander (1984). Recall from (1.12) that

$$
h_{1}(\lambda)=\left(1+\lambda^{-1}\right) \log (1+\lambda)-1, \lambda>0 .
$$

It is readily shown that

$$
\begin{gather*}
h_{1}(\lambda) \uparrow, \quad \lambda^{-1} h_{1}(\lambda) \downarrow, \tag{6.1}\\
h_{1}(\lambda) \sim \begin{cases}\lambda / 2 & \text { as } \lambda \rightarrow 0 \\
L \lambda & \text { as } \lambda \rightarrow \infty\end{cases} \tag{6.2}\\
h_{1}(\lambda) \geqq \frac{\lambda}{2}(1-\lambda) \quad \text { for all } \lambda>0, \tag{6.3}
\end{gather*}
$$

and

$$
h_{1}(\lambda) \geqq\left\{\begin{array}{ll}
\lambda / 4 & \text { if } \lambda \leqq 4 \tag{6.4}\\
(L \lambda) / 2 & \text { if } \lambda \geqq 4
\end{array} .\right.
$$

Bennett's inequality (Bennett, 1962) tells us that

$$
\begin{equation*}
\mathbb{P}\left[\left|v_{n}(C)\right|>M\right] \leqq 2 \exp \left(-M n^{\frac{1}{2}} h_{1}\left(M / n^{\frac{1}{2}} \sigma^{2}(C)\right)\right) \tag{6.5}
\end{equation*}
$$

for all $M \geqq 0$ and all C. Hence (6.4) and Theorem 2.8 of Alexander (1984) give us the following.

Proposition 6.1. Let \mathscr{C} be a VC class of sets, $n \geqq 1, M>0$, and $\alpha \geqq \sup \sigma^{2}(C)$ There exists a constant $K_{o}=K_{o}(V(\mathscr{C}))$ such that if either (i)

$$
\begin{equation*}
M^{2} \geqq K_{o} \alpha L(n / \alpha) \quad \text { and } \quad M \geqq K_{o} L(n / \alpha) / n^{\frac{1}{2}} L\left(M / n^{\frac{1}{2}} \alpha\right) \tag{6.6}
\end{equation*}
$$

or (ii)

$$
\begin{equation*}
M^{2} \geqq K_{o} \alpha L \alpha^{-1} \quad \text { and } \quad M \geqq K_{o} n^{-\frac{1}{2}} L n \tag{6.7}
\end{equation*}
$$

then
$\mathbb{P}\left[\sup _{8}\left|v_{n}(C)\right|>M\right] \leqq 16 \exp \left(-M^{2} / 8 \alpha\right)+16 \exp \left(-\frac{1}{4} M n^{\frac{1}{2}} L\left(M / n^{\frac{1}{2}} \alpha\right)\right)$.
The first term in (6.8) corresponds to a Gaussian approximation, the second to a Poisson. If $M / n^{\frac{1}{2}} \alpha$ is small, the Gaussian approximation is dominant; if it is large, the Poisson approximation dominates.

Proof of Theorem 2.1. Suppose first that (2.7) and (2.8) hold. Set

$$
\begin{aligned}
& t_{0}=\alpha, t_{j}=q^{-1}\left(2^{-j} g(\alpha)\right) \vee r \quad \text { for all } j \geqq 1, \\
& N=\min \left\{j \geqq 0: t_{j+1} \leqq r\right\}, \quad \text { and } \quad r^{\prime}=\left(\tilde{a}^{-1}(p / n) \wedge z^{-1}\left(n^{\frac{1}{2}} / b\right)\right) \vee \gamma .
\end{aligned}
$$

Then

$$
\begin{align*}
& \mathbb{P}\left[\left|v_{n}(C)\right|>b q(t)+u \text { for some } \gamma \leqq t \leqq \alpha \text { and } C \in \mathscr{C}(t)\right] \\
& \leqq \\
& \quad+\mathbb{P}\left[\left|v_{n}(C)\right|>b q(t) \text { for some } \gamma \leqq t<r^{\prime} \text { and } C \in \mathscr{C}(t)\right] \\
& \quad+\mathbb{P}\left[\left|v_{n}(C)\right|>b q\left(t_{j+1}\right) \text { for some } C \in \mathscr{C}\left(t_{j}\right)\right] \tag{6.9}\\
& \equiv \mathbb{P}^{(0)}+\sum_{j=0}^{N} \mathbb{P}_{j}^{(1)} .
\end{align*}
$$

We begin with $\mathbb{P}^{(0)}$. Suppose $\gamma \leqq t<r^{\prime}, C \in \mathscr{C}(t)$, and $P_{n}(C)=0$. Then

$$
\left|v_{n}(C)\right|=n^{\frac{1}{2}} P(C) \leqq 2 n^{\frac{1}{2}} \sigma^{2}(C) \leqq 2 n^{\frac{1}{2}} q(t) / z(t) \leqq b q(t) .
$$

It follows that

$$
\begin{align*}
\mathbb{P}^{(0)} & \leqq \mathbb{P}\left[P_{n}(C)>0 \quad \text { for some } C \in \mathscr{C}(t) \quad \text { and } \quad \gamma \leqq t<r^{\prime}\right] \\
& \leqq n P\left(E_{r^{\prime}}\right) \leqq p \tag{6.10}
\end{align*}
$$

Turning next to the $\mathbb{P}_{j}^{(1)}$, we have

$$
\begin{align*}
\mathbb{P}_{j}^{(1)} \leqq & \mathbb{P}\left[\left.\sup _{\mathscr{\not}\left(t_{j}\right)}\left|v_{n}(C)\right|>\frac{1}{2} b q\left(t_{j}\right)| | v_{n}\left(\tilde{E}_{t_{j}}\right) \right\rvert\, \leqq \frac{1}{8} b q\left(t_{j}\right) \tilde{g}\left(t_{j}\right)^{\frac{1}{2}}\right] \\
& +\mathbb{P}\left[\left|v_{n}\left(\tilde{E}_{t_{j}}\right)\right|>\frac{1}{8} b q\left(t_{j}\right) \tilde{g}\left(t_{j}\right)^{\frac{1}{2}}\right] \\
\equiv & \mathbb{P}_{j}^{(2)}+\mathbb{P}_{j}^{(3)} . \tag{6.11}
\end{align*}
$$

Fix j and let k_{1}, k_{2} be nonnegative integers such that

$$
\begin{equation*}
\left|v_{n}\left(\widetilde{E}_{t_{j}}\right)\right| \leqq \frac{1}{8} b q\left(t_{j}\right) \tilde{g}\left(t_{j}\right)^{\frac{1}{2}} \quad \text { if and only if } k_{1} \leqq n P_{n}\left(\widetilde{E}_{t_{j}}\right) \leqq k_{2} . \tag{6.12}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathbb{P}_{j}^{(2)} \leqq \max _{k_{1} \leqq k \leqq k_{2}} \mathbb{P}\left[\left.\sup _{\psi_{\left(t_{j}\right)}}\left|v_{n}(C)\right|>\frac{1}{2} b q\left(t_{j}\right) \right\rvert\, n P_{n}\left(\widetilde{E}_{t_{j}}\right)=k\right] . \tag{6.13}
\end{equation*}
$$

Define a new probability measure $P^{t_{j}}$ by

$$
P^{t_{j}}(\cdot)=P\left(\cdot \mid \widetilde{E}_{t_{j}}\right)
$$

and let $\mathbb{P}_{t_{j}}=\left(P^{t_{j}}\right)^{\infty}$ be the corresponding product measure on $\left(X^{\infty}, \mathscr{A}^{\infty}\right) .\left(\mathscr{C}\left(t_{j}\right)\right.$ is easily shown to be deviation-measurable for $P^{t_{j}}$, since it is deviation-measurable for P by assumption.) Then

$$
\begin{gather*}
P^{t_{j}}(C)=P(C) / P\left(\widetilde{E}_{t_{j}}\right) \text { and } \\
\sigma_{t_{j}}^{2}(C) \equiv P^{t_{j}}(C)\left(1-P^{t_{j}}(C)\right) \leqq \sigma^{2}(C) / P\left(\widetilde{E}_{t_{j}}\right) \leqq \tilde{g}\left(t_{j}\right)^{-1} \quad \text { for } C \in \mathscr{C}\left(t_{j}\right) . \tag{6.14}
\end{gather*}
$$

Fix $k, k_{1} \leqq k \leqq k_{2}$, and define

$$
\mu_{k}=k^{\frac{1}{2}}\left(P_{k}-P^{t_{j}}\right) .
$$

By (6.12), for $C \in \mathscr{C}\left(t_{j}\right)$, if $n P_{n}\left(E_{t_{j}}\right)=k$ then

$$
\begin{aligned}
\left|n^{\frac{1}{2}} P(C)-k n^{-\frac{1}{2}} P^{t_{j}}(C)\right| & =\frac{n^{\frac{1}{2}} P(C)}{P\left(\widetilde{E_{t_{j}}}\right)}\left|P\left(\widetilde{E}_{t_{j}}\right)-\frac{k}{n}\right| \\
& \leqq 2 \tilde{g}\left(t_{j}\right)^{-1}\left|v_{n}\left(\widetilde{E}_{t_{j}}\right)\right| \\
& \leqq \frac{1}{4} b q\left(t_{j}\right) .
\end{aligned}
$$

Now $\mathbb{P}\left[\left.n P_{n}\right|_{\mathscr{(}\left(t_{j}\right)} \in \cdot \mid n P_{n}\left(\widetilde{E}_{t_{j}}\right)=k\right]=\mathbb{P}_{t_{j}}\left[k P_{k} \in \cdot\right]$, where $\left.P_{n}\right|_{\mathscr{E}\left(t_{j}\right)}$ is the restriction of P_{n} to $\mathscr{C}\left(t_{j}\right)$. It follows that

$$
\begin{align*}
\mathbb{P} & {\left[\left.\sup _{\mathscr{G}\left(t_{j}\right)}\left|v_{n}(C)\right|>\frac{1}{2} b q\left(t_{j}\right) \right\rvert\, n P_{n}\left(\tilde{E}_{t_{j}}\right)=k\right] } \\
& =\mathbb{P}_{t_{j}}\left[\left.\sup _{\mathscr{U}\left(t_{j}\right)} n^{\frac{1}{2}}\left(\frac{k P_{k}(C)}{n}-P(C)\right) \right\rvert\,>\frac{1}{2} b q\left(t_{j}\right)\right] \\
& =\mathbb{P}_{i_{j}}\left[\sup _{\mathscr{U}\left(t_{j}\right)}\left|(k / n)^{\frac{1}{2}} \mu_{k}(C)+k n^{-\frac{1}{2}} P^{t_{j}}(C)-n^{\frac{1}{2}} P(C)\right|>\frac{1}{2} b q\left(t_{j}\right)\right] \\
& \leqq \mathbb{P}_{t_{j}}\left[\sup _{\mathscr{U}\left(t_{j}\right)}\left|\mu_{k}(C)\right|>\frac{1}{4}(n \mid k)^{\frac{1}{2}} b q\left(t_{j}\right)\right] . \\
& \equiv \mathbb{P}_{j k}^{(4)} . \tag{6.15}
\end{align*}
$$

We now wish to apply Proposition 6.1 with $M=\frac{1}{4}(n / k)^{\frac{1}{2}} b q\left(t_{j}\right)$, and $\tilde{g}\left(t_{j}\right)^{-1}$ in the role of the α there (see (6.14)).

Case 1.
$z\left(t_{j}\right) \leqq 2 n^{\frac{1}{2}} / b$, i.e.

$$
\begin{equation*}
b q\left(t_{j}\right) \leqq 2 n^{\frac{1}{2}} \zeta\left(t_{j}\right) \tag{6.16}
\end{equation*}
$$

Combining this with (6.12), we get

$$
\begin{equation*}
\frac{k}{n} \leqq \tilde{a}\left(t_{j}\right)+\frac{1}{8} n^{-\frac{1}{2}} b q\left(t_{j}\right) \tilde{g}\left(t_{j}\right)^{\frac{2}{2}} \leqq 2 \tilde{a}\left(t_{j}\right)=2 \zeta\left(t_{j}\right) \tilde{g}\left(t_{j}\right) \tag{6.17}
\end{equation*}
$$

Hence by (2.2),

$$
\begin{equation*}
M^{2} \geqq b^{2} q^{2}\left(t_{j}\right) / 32 \zeta\left(t_{j}\right) \tilde{g}\left(t_{j}\right) \geqq \frac{1}{32} K \tilde{g}\left(t_{j}\right)^{-1} L \tilde{g}\left(t_{j}\right) \tag{6.18}
\end{equation*}
$$

while by (2.3),

$$
M k^{\frac{1}{2}} \geqq \frac{1}{4} n^{\frac{1}{2}} b q\left(t_{j}\right) \geqq \frac{1}{4} K L\left(n \tilde{a}\left(t_{j}\right)\right) \geqq \frac{1}{8} K L k
$$

If K is large enough we can now apply Proposition 6.1 (ii), and use (6.17) and (6.18) to get for the $\mathbb{P}_{j k}^{(4)}$ of (6.15):

$$
\begin{align*}
\mathbb{P}_{j k}^{(4)} \leqq & 16 \exp \left(-b^{2} q^{2}\left(t_{j}\right) / 2^{8} \zeta\left(t_{j}\right)\right) \\
& +16 \exp \left(-2^{-4} n^{\frac{1}{2}} b q\left(t_{j}\right) L\left(b q\left(t_{j}\right) / 8 n^{\frac{1}{2}} \zeta\left(t_{j}\right)\right)\right) \tag{6.19}
\end{align*}
$$

so by (6.13), for the $\mathbb{P}_{j}^{(2)}$ of (6.11),

$$
\begin{align*}
\mathbb{P}_{j}^{(2)} \leqq & 16 \exp \left(-b^{2} q^{2}\left(t_{j}\right) / 2^{8} \zeta\left(t_{j}\right)\right) \tag{6.20}\\
& +16 \exp \left(-2^{-4} n^{\frac{1}{2}} b q\left(t_{j}\right) L\left(b q\left(t_{j}\right) / n^{\frac{1}{2}} \zeta\left(t_{j}\right)\right)\right.
\end{align*}
$$

Next, by (6.5) and (6.4) we have for the $\mathbb{P}_{j}^{(3)}$ of (6.11)

$$
\begin{align*}
\mathbb{P}_{j}^{(3)} & \leqq 2 \exp \left(-\frac{1}{8} b q\left(t_{j}\right) \tilde{g}\left(t_{j}\right)^{\frac{1}{2}} n^{\frac{1}{2}} h_{1}\left(b q\left(t_{j}\right) / 8 n^{\frac{1}{2}} \zeta\left(t_{j}\right) \tilde{g}\left(t_{j}\right)^{\frac{1}{2}}\right)\right) \tag{6.21}\\
& \leqq 2 \exp \left(-b^{2} q^{2}\left(t_{j}\right) / 2^{8} \zeta\left(t_{j}\right)\right)
\end{align*}
$$

since, by (6.16), the argument of h_{1} above is at most $\frac{1}{4}$. Combining this with (6.11) and (6.20), we see that for the $\mathbb{P}_{j}^{(1)}$ of (6.9),

$$
\begin{align*}
\mathbb{P}_{j}^{(1)} \leqq & 18 \exp \left(-b^{2} q^{2}\left(t_{j}\right) / 2^{8} \zeta\left(t_{j}\right)\right)+18 \exp \left(-2^{-8} n^{\frac{1}{2}} b q\left(t_{j}\right) L\left(b q\left(t_{j}\right) / n^{\frac{1}{2}} \zeta\left(t_{j}\right)\right)\right) \\
& +34 \exp \left(-2^{-8} n^{\frac{1}{2}} b q\left(t_{j}\right) L \tilde{g}\left(t_{j}\right)\right) . \tag{6.22}
\end{align*}
$$

(The last term in (6.22) is superfluous now but will be used later.)
Case 2.
$z\left(t_{j}\right)>2 n^{\frac{1}{2}} / b$. Then $r \leqq t_{j}<s$, so (2.4) holds, and

$$
\begin{equation*}
b q\left(t_{j}\right)>2 n^{\frac{1}{2}} \zeta\left(t_{j}\right) \tag{6.23}
\end{equation*}
$$

We wish to use Proposition 6.1 (i). To prove (6.6) it is sufficient to show that, for the constant K_{o} of that proposition,

$$
\begin{equation*}
M^{2} \tilde{g}\left(t_{j}\right) \geqq \frac{1}{4} M k^{\frac{1}{2}} L\left(M \tilde{g}\left(t_{j}\right) / k^{\frac{1}{2}}\right) \geqq K_{o} L\left(k \tilde{g}\left(t_{j}\right)\right) . \tag{6.24}
\end{equation*}
$$

We need two subcases, according to which of the two terms added in (6.17) is the larger.

Case $2 a$.

$$
\begin{equation*}
b q\left(t_{j}\right) \leqq 8 n^{\frac{1}{2}} \zeta\left(t_{j}\right) \tilde{g}\left(t_{j}\right)^{\frac{1}{2}} . \tag{6.25}
\end{equation*}
$$

Then (6.17) is again valid. By (6.17), (6.23), and (2.4),

$$
\begin{align*}
M \tilde{g}\left(t_{j}\right) / k^{\frac{1}{2}} & =n^{\frac{1}{2}} b q\left(t_{j}\right) \tilde{g}\left(t_{j}\right) / 4 k \\
& \geqq b q\left(t_{j}\right) / 8 n^{\frac{1}{2}} \zeta\left(t_{j}\right) \tag{6.26}\\
& \geqq\left(\frac{1}{4}\right) \vee\left(K / 8 n \zeta\left(t_{j}\right)\right) . \tag{6.27}
\end{align*}
$$

By (6.27), $M \tilde{g}\left(t_{j}\right) / k^{\frac{1}{2}} \geqq \frac{1}{4} L\left(M \tilde{g}\left(t_{j}\right) / k^{\frac{1}{2}}\right)$, and the first inequality in (6.24) follows. The second follows, if K is large enough, from the following inequalities, which are consequences of (6.17), of (2.4) and (6.27), and of (6.26) and (2.5), respectively.

$$
\begin{align*}
L\left(k \tilde{g}\left(t_{j}\right)\right) \leqq L\left(2 n \tilde{a}\left(t_{j}\right) \tilde{g}\left(t_{j}\right)\right. & \leqq L\left(2 / n \zeta\left(t_{j}\right)\right)+2 L\left(n \tilde{a}\left(t_{j}\right)\right) \\
M k^{\frac{1}{2}} L\left(M \tilde{g}\left(t_{j}\right) / k^{\frac{1}{2}}\right) & \geqq \frac{1}{4} K L\left(2 / n \zeta\left(t_{j}\right)\right) \\
M k^{\frac{1}{2}} L\left(M \tilde{g}\left(t_{j}\right) / k^{\frac{1}{2}}\right) & \geqq \frac{1}{4} n^{\frac{1}{2}} b q\left(t_{j}\right) L\left(b q\left(t_{j}\right) / 8 n^{\frac{1}{2}} \zeta\left(t_{j}\right)\right) \\
& \geqq \frac{1}{4} K L\left(n \tilde{a}\left(t_{j}\right)\right) . \tag{6.28}
\end{align*}
$$

Thus (6.24) holds as desired. Proposition 6.1 (i), (6.17), and (6.28) now tell us that (6.19), and therefore (6.20), are again valid. From (6.25) we see that the argument of h_{1} in (6.21) is at most 1 , so by (6.5) and (6.4), (6.21) again holds. Therefore so does (6.22).

Case $2 b$.

$$
\begin{equation*}
b q\left(t_{j}\right)>8 n^{\frac{1}{2}} \zeta\left(t_{j}\right) \tilde{g}\left(t_{j}\right)^{\frac{1}{2}} . \tag{6.29}
\end{equation*}
$$

Here, by (6.12) and (6.29),

$$
\begin{equation*}
\frac{k}{n} \leqq \tilde{a}\left(t_{j}\right)+\frac{1}{8} n^{-\frac{1}{2}} \mathrm{bq}\left(\mathrm{t}_{j}\right) \tilde{g}\left(t_{j}\right)^{\frac{1}{2}} \leqq \frac{1}{4} n^{-\frac{1}{2}} b q\left(t_{j}\right) \tilde{g}\left(t_{j}\right)^{\frac{1}{2}} . \tag{6.30}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
M \tilde{g}\left(t_{j}\right) / k^{\frac{1}{2}}=n^{\frac{1}{2}} b q\left(t_{j}\right) \tilde{g}\left(t_{j}\right) / 4 k \geqq \tilde{g}\left(t_{j}\right)^{\frac{1}{2}} \geqq 1, \tag{6.31}
\end{equation*}
$$

so the first inequality in (6.24) holds. By (6.30), (2.4), and the first inequality in (6.31), if K is large enough then

$$
\begin{aligned}
K_{o} L\left(k \tilde{g}\left(t_{j}\right)\right) & \leqq K_{0} L\left(\frac{1}{4} n^{\frac{1}{2}} b q\left(t_{j}\right)\right)+\frac{3}{2} K_{0} L \tilde{g}\left(t_{j}\right) \\
& \leqq \frac{1}{32} n^{\frac{1}{2}} b q\left(t_{j}\right) L \tilde{g}\left(t_{j}\right) \\
& \leqq \frac{1}{4} M k^{\frac{1}{2}} L\left(M \tilde{g}\left(t_{j}\right) / k^{\frac{1}{2}}\right)
\end{aligned}
$$

Thus we have (6.24). From Proposition 6.1 (i), (6.24), and (6.31) we conclude that

$$
\begin{aligned}
\mathbb{P}_{j k}^{(4)} & \leqq 16 \exp \left(-\frac{1}{8} M^{2} \tilde{g}\left(t_{j}\right)\right)+16 \exp \left(-\frac{1}{4} M k^{\frac{1}{2}} L\left(M \tilde{g}\left(t_{j}\right) / k^{\frac{1}{2}}\right)\right) \\
& \leqq 32 \exp \left(-\frac{1}{32} M k^{\frac{1}{2}} L\left(M \tilde{g}\left(t_{j}\right) / k^{\frac{1}{2}}\right)\right) \\
& \leqq 32 \exp \left(-2^{-8} n^{\frac{1}{2}} b q\left(t_{j}\right) L \tilde{g}\left(t_{j}\right)\right)
\end{aligned}
$$

so by (6.13),

$$
\begin{equation*}
\mathbb{P}_{j}^{(2)} \leqq 32 \exp \left(-2^{-8} n^{\frac{1}{2}} b q\left(t_{j}\right) L \tilde{g}\left(t_{j}\right)\right) \tag{6.32}
\end{equation*}
$$

To bound $\mathbb{P}_{j}^{(3)}$ we use (6.5) to conclude that

$$
\begin{align*}
\mathbb{P}_{j}^{(3)} & \leqq 2 \exp \left(-\frac{1}{8} b q\left(t_{j}\right) \tilde{g}\left(t_{j}\right)^{\frac{1}{2}} n^{\frac{1}{2}} h_{1}\left(b q\left(t_{j}\right) / 8 n^{\frac{1}{2}} \zeta\left(t_{j}\right) \tilde{g}\left(t_{j}\right)^{\frac{1}{2}}\right)\right) \\
& \leqq 2 \exp \left(-\frac{1}{32} b q\left(t_{j}\right) n^{\frac{1}{2}} L \tilde{g}\left(t_{j}\right)\right) . \tag{6.33}
\end{align*}
$$

In the second inequality here we have used (6.29) to tell us that the argument of h_{1} in (6.33) is at least 1 , along with the fact that $h_{1}(1)>\frac{1}{4}$. From (6.11), (6.32), and (6.33) it now follows that (6.22) holds.

Having established (6.22) for all j, it remains to sum it over j. Define

$$
\begin{aligned}
\varphi_{1}(t) & =2^{-8} n^{\frac{1}{2}} b q(t) L\left(b q(t) / n^{\frac{1}{2}} \zeta(t)\right) \\
\varphi_{2}(t) & =2^{-8} n^{\frac{1}{2}} b q(t) L \tilde{g}(t)
\end{aligned}
$$

By monotonicity of $g(t) / \zeta(t)$ and $q(t)^{\beta-1} \varphi_{i}(t)$ (which follows from (2.7)), we have

$$
\begin{equation*}
t_{j+1} \leqq t_{j} / 2 \quad \text { and } \quad \varphi_{i}\left(\mathrm{t}_{j+1}\right) \leqq 2^{-(1-\beta)} \varphi_{i}\left(t_{j}\right) \quad(j<N, i=1,2) \tag{6.34}
\end{equation*}
$$

Hence, using also the monotonicity of $\zeta(t) / t$,

$$
\begin{align*}
& \sum_{j=0}^{N} \exp \left(-b^{2} q^{2}\left(t_{j}\right) / 2^{8} \zeta\left(t_{j}\right)\right) \\
& \quad=\sum_{j=0}^{N} 2 \frac{t_{j}-t_{j} / 2}{t_{j}} \exp \left(-b^{2} q^{2}\left(t_{j}\right) / 2^{8} \zeta\left(t_{j}\right)\right) \\
& \quad \leqq 2 \int_{r / 2}^{\alpha} t^{-1} \exp \left(-b^{2} q^{2}(t) / 2^{9} \zeta(t)\right) \tag{6.35}
\end{align*}
$$

Summing the second term in (6.22) over $j,(6.34)$ and (2.8) may be applied to show, for $i=1,2$,

$$
\begin{align*}
\sum_{j=0}^{N} \exp \left(-\varphi_{i}\left(t_{j}\right)\right) & \leqq \sum_{j=0}^{N} \exp \left(-2^{(1-\beta)(N-j)} \varphi_{i}\left(t_{N}\right)\right) \\
& \leqq \sum_{j=0}^{N} \exp \left(-(1+\theta(N-j)) \varphi_{i}\left(t_{N}\right)\right) \\
& \leqq 2 \exp \left(-\varphi_{i}\left(t_{N}\right)\right) \tag{6.36}
\end{align*}
$$

where $\theta=2^{1-\beta}-1 \geqq(1-\beta) \log 2$. The theorem now follows from (6.9), (6.10), (6.22), (6.35), and (6.36).

When we do not have (2.7) or (2.8), we replace $L(\cdot)$ by its lower bound 1 in (6.22), and observe that the second term in (6.22) is then not needed, since the third term in (6.22) becomes an upper bound for the second term in (6.20). Otherwise the proof remains essentially the same.

VII. Proofs of the General Results

Throughout this section all inequalities in proofs should be taken to have the unstated qualification that the index n or k (which one will be clear from the context) is sufficiently large.

We begin with a lemma demonstrating that a well-known fact about stopping times τ remains true even if τ is not measurable. It is included solely to avoid unwieldy measurability assumptions and is not central to our arguments.
Lemma 7.1. Let τ be given on $\left(X^{\infty}, \mathscr{A}^{\infty}, \mathbb{P}\right)$ by $\tau=\min \left\{m:\left(X_{1}, \ldots, X_{m}\right) \in A_{m}\right\}$ for some sets $A_{m} \subset X^{m}$, and let $n \geqq 1,0<\beta<1$, and $F \subset X^{n}$. Suppose for each $\left(x_{1}, \ldots, x_{m}\right) \in A_{m}, m<n$, there is a set $B=B\left(x_{1}, \ldots, x_{m}\right) \subset X^{n-m}$ such that

$$
\begin{gather*}
\mathbb{P}^{*}\left[\left(X_{m+1}, \ldots, X_{n}\right) \in B\right] \geqq \beta, \quad \text { and } \tag{7.1}\\
\left(x_{m+1}, \ldots, x_{n}\right) \in B\left(x_{1}, \ldots, x_{m}\right) \quad \text { implies } \quad\left(x_{1}, \ldots, x_{n}\right) \in F . \tag{7.2}
\end{gather*}
$$

Then $\mathbb{P}^{*}[\tau \leqq n] \leqq \beta^{-1} \mathbb{P}^{*}\left[\left(X_{1}, \ldots, X_{n}\right) \in F\right]$.
Proof. We may write $\mathbb{P}^{*}(D)$ for $\mathbb{P}^{*}\left(\left(X_{1}, \ldots, X_{m}\right) \in D\right)$ for any m and $D \subset X^{m}$. Let G and D_{1}, \ldots, D_{n} be measurable sets with $G \supset F, D_{m} \supset[\tau \leqq m], \mathbb{P}(G)=\mathbb{P}^{*}(F)$, and $\mathbb{P}\left(D_{m}\right)=\mathbb{P}^{*}[\tau \leqq m]$. Define τ^{*} on X^{∞} by $\tau^{*}(\omega)=\min \left\{m: \omega \in D_{m}\right\}$. Then $\tau^{*} \leqq \tau$ so

$$
\begin{equation*}
\mathbb{P}^{*}[\tau \leqq n] \leqq \mathbb{P}\left[\tau^{*} \leqq n\right]=\sum_{m \leqq n} \mathbb{P}\left[\tau^{*}=m\right]=\sum_{m \leqq n} \mathbb{P}\left(D_{m} \backslash D_{m-1}\right) \tag{7.3}
\end{equation*}
$$

where $D_{0}=\phi$. Fix M and write $\left(X^{\infty}, \mathscr{A}^{\infty}, \mathbb{P}\right)$ as $\left(\Omega_{1}, \mathscr{A}^{m}, \mathrm{P}_{1}\right) \times\left(\Omega_{2}, \mathscr{A}^{\infty}, P_{2}\right)$ where Ω_{1} is a copy of X^{m} on which X_{1}, \ldots, X_{m} are defined, Ω_{2} is a copy of X^{∞} on which X_{m+1}, X_{m+2}, \ldots are defined, P_{1} is P^{m}, and P_{2} is P^{∞}. For $\omega_{1} \in \Omega_{1}$ let $s_{A}\left(\omega_{1}\right)=\left\{\omega_{2}:\left(\omega_{1}, \omega_{2}\right) \in G\right\}$ be the section of G over ω_{1}. Then

$$
\begin{align*}
\mathbb{P}\left[G \cap\left(D_{m} \backslash D_{m-1}\right)\right] & =\int_{\Omega_{1}} P_{2}\left(s_{A}\left(\omega_{1}\right)\right) d P_{1}\left(\omega_{1}\right) \\
& \geqq \beta P_{1}\left[\omega_{1}: P_{2}\left(s_{A}\left(\omega_{1}\right)\right) \geqq \beta\right] . \tag{7.4}
\end{align*}
$$

Now if $\omega_{1} \in[\tau \leqq m] \cap\left(D_{m} \backslash D_{m-1}\right)$ (viewed as a subset of X^{m}), then by (7.1) and (7.2),

$$
P_{2}\left(s_{A}\left(\omega_{1}\right)\right) \geqq P_{2}^{*}\left[\left(X_{m+1}, \ldots, X_{n}\right) \in B\left(X_{1}\left(\omega_{1}\right), \ldots, X_{m}\left(\omega_{1}\right)\right)\right] \geqq \beta
$$

It follows using (7.4) that

$$
\begin{equation*}
\mathbb{P}\left[G \cap\left(D_{m} \backslash D_{m-1}\right)\right] \geqq \beta P_{1}^{*}\left([\tau \leqq m] \cap\left(D_{m} \backslash D_{m-1}\right)\right) \tag{7.5}
\end{equation*}
$$

If E is a measurable set containing $[\tau \leqq m] \cap\left(D_{m} \backslash D_{m-1}\right)$ then

$$
\begin{aligned}
P_{1}(E) & \geqq P_{1}\left(E \cup D_{m-1}\right)-P_{1}\left(D_{m-1}\right) \geqq P_{1}^{*}[\tau \leqq m]-P_{1}\left(D_{m-1}\right) \\
& =P_{1}\left(D_{m}\right)-P_{1}\left(D_{m-1}\right)=P_{1}\left(D_{m} \backslash D_{m-1}\right),
\end{aligned}
$$

so $P_{1}^{*}\left([\tau \leqq m] \cap\left(D_{m} \backslash D_{m-1}\right)\right) \geqq P_{1}\left(D_{m} \backslash D_{m-1}\right)$. Combining this with (7.5) and (7.3) we see that

$$
\begin{aligned}
\mathbb{P}^{*}[\tau \leqq n] & \leqq \sum_{m \leqq n} \beta^{-1} \mathbb{P}\left[G \cap\left(D_{m} \backslash D_{m-1}\right)\right] \\
& \leqq \beta^{-1} \mathbb{P}(G)=\beta^{-1} \mathbb{P}^{*}\left[\left(X_{1}, \ldots, X_{n}\right) \in F\right]
\end{aligned}
$$

The asymptotic upper bounds for the weighted empirical process will be obtained from Theorem 2.1 with the help of the following lemma.

Lemma 7.2. Let \mathscr{C} be a class of sets, let $q \in Q$, and let $\left(b_{n}\right),\left(u_{n}\right),\left(\gamma_{n}\right),\left(\alpha_{n}\right)$ be nonnegative sequences with

$$
\begin{equation*}
n^{-1} b_{n} \downarrow, u_{n} \downarrow, \gamma_{n} \downarrow, n \alpha_{n} \uparrow \tag{7.6}
\end{equation*}
$$

Define events

$$
\begin{aligned}
A_{n}= & {\left[\left|v_{n}(C)\right|>b_{n} q\left(\sigma^{2}(C)\right)+u_{n} \quad \text { for some } C \in \mathscr{C} \text { with } \gamma_{n} \leqq \sigma^{2}(C) \leqq \alpha_{n}\right], } \\
A_{n}^{\prime}(\varepsilon)= & {\left[\left|v_{n}(C)\right|>(1-\varepsilon)\left(b_{n} q\left(\sigma^{2}(C)\right)+u_{n}\right) \quad \text { for some } C \in \mathscr{C} \text { with } \gamma_{n}\right.} \\
& \left.\leqq \sigma^{2}(C) \leqq(1+\varepsilon) \alpha_{n}\right] .
\end{aligned}
$$

Suppose

$$
\begin{equation*}
\inf \left\{b_{n} t^{-\frac{1}{2}} q(t): n \geqq 1, t \in\left[\gamma_{n}, \alpha_{n}\right]\right\}>0, \tag{7.7}
\end{equation*}
$$

and suppose that for some $\varepsilon, \theta>0$,

$$
\begin{equation*}
\mathbb{P}^{*}\left(A_{n}^{\prime}(\varepsilon)\right)=O\left((L n)^{-(1+\theta)}\right) \tag{7.8}
\end{equation*}
$$

Then $\mathbb{P}\left(A_{n}\right.$ i.o. $)=0$.

Proof. Let r be the infimum in (7.7) and choose $\delta>0$ small enough so $2 \delta^{2}+2 r^{-1} \delta<\varepsilon$. Fix $m,\left(1-\delta^{2}\right) n<m \leqq n$. If $\left(x_{1}, \ldots, x_{m}\right) \in A_{m}$, then there exists $C=C\left(x_{1}, \ldots, x_{m}\right) \in \mathscr{C}$ with

$$
\begin{gather*}
\left|v_{m}(C)\right|>b_{m} q\left(\sigma^{2}(C)\right)+u_{m} \geqq\left(1-\delta^{2}\right)\left(b_{n} q\left(\sigma^{2}(C)\right)+u_{n}\right) \tag{7.9}\\
\gamma_{n} \leqq \gamma_{m} \leqq \sigma^{2}(C) \leqq \alpha_{m} \leqq\left(1+\delta^{2}\right) \alpha_{n}
\end{gather*}
$$

and
here we have used (7.6). If (7.9) occurs for some C and

$$
\begin{equation*}
\left|\left(n P_{n}-m P_{m}-(n-m) P\right)(C)\right| \leqq 2(n-m)^{\frac{1}{2}} \sigma(C) \leqq 2 n^{\frac{1}{2}} \delta \sigma(C) \tag{7.10}
\end{equation*}
$$

then by the definition of r,

$$
\begin{aligned}
\mid\left(v_{n}(C) \mid\right. & \geqq\left(1-\delta^{2}\right)\left|v_{m}(C)\right|-2 \delta \sigma(C) \\
& \geqq\left(1-2 \delta^{2}-2 r^{-1} \delta\right)\left(b_{n} q\left(\sigma^{2}(C)\right)+u_{n}\right) \\
& \geqq(1-\varepsilon)\left(b_{n} q\left(\sigma^{2}(C)\right)+u_{n}\right)
\end{aligned}
$$

Let $B=B\left(x_{1}, \ldots, x_{m}\right)$ be the event that (7.10) holds for $C=C\left(x_{1}, \ldots, x_{m}\right)$; it follows from the above that (7.2) holds for $F=A_{n}^{\prime}(\varepsilon)$. By Čebyšev's inequality, (7.10) occurs with probability more than $1 / 2$ for any fixed C; thus (7.1) holds with $\beta=1 / 2$. Hence by Lemma 7.1,

$$
\begin{equation*}
\mathbb{P}^{*}\left(\underset{\left(1-\delta^{2}\right) n<m \leqq n}{\bigcup} A_{m}\right)=\mathbb{P}^{*}[\tau \leqq n] \leqq 2 \mathbb{P}^{*}\left(A_{n}^{\prime}(\varepsilon)\right) \tag{7.11}
\end{equation*}
$$

For $n(k)=\left[\left(1+\delta^{2} / 2\right)^{k}\right]$ (the integer part), we have by (7.8) that $\sum_{k \geqq 1} \mathbb{P}^{*}\left(A_{n(k)}^{\prime}(\varepsilon)\right)$ $<\infty$, and the lemma then follows from (7.11) and Borel-Cantelli.

For asymptotic lower bounds on full classes, our method is modeled somewhat after that of Stute (1982a). Let $b(j, n, p)=\binom{n}{j} p^{j}(1-p)^{n-j}$ denote the binomial probability,

$$
B^{+}(k, n, p)=\sum_{j=k}^{n} b(j, n, p)
$$

the binomial upper tail, and

$$
h_{2}(\lambda)=\lambda /(1+\lambda)-\log (1+\lambda)=-\left(1+\lambda^{-1}\right)^{-1} h_{1}(\lambda) .
$$

The following generalizes Lemma 1 of Kiefer (1972).
Lemma 7.3. Let $\left(p_{n}\right),\left(k_{n}\right),\left(l_{n}\right)$ be nonnegative sequences (with $n \geqq 1$) satisfying $p_{n} \rightarrow 0, k_{n} \rightarrow \infty$, and $k_{n} \leqq l_{n}=o(n)$. Let $\lambda_{0}>0$. Then there exists $\eta_{n} \rightarrow 0$ such that

$$
\left|\log B^{+}(k, n, p)-k h_{2}(\lambda)\right| \leqq \eta_{n} k h_{2}(\lambda)
$$

whenever

$$
\begin{equation*}
k=(1+\lambda) n p, k_{n} \leqq k \leqq l_{n}, 0<p \leqq p_{n}, \quad \text { and } \quad \lambda \geqq \lambda_{0} \tag{7.12}
\end{equation*}
$$

Proof. Fix n, k, p, and λ satisfying (7.12). Comparison to a geometric series shows

$$
b(k, n, p) \leqq B^{+}(k, n, p) \leqq\left(1+\lambda^{-1}\right) b(k, n, p)
$$

so

$$
\begin{equation*}
\left|\log B^{+}(k, n, p)-\log b(k, n, p)\right| \leqq\left(k_{n} \lambda_{0}\right)^{-1} k . \tag{7.13}
\end{equation*}
$$

Define

$$
b_{0}(k, n, p)=\left(\frac{n p}{k}\right)^{k}\left(\frac{n(1-p)}{n-k}\right)^{n-k}, b_{1}(n, k)=\left(\frac{n}{2 \pi k(n-k)}\right)^{\frac{2}{2}}
$$

By Stirling's formula, if n is large,

$$
\begin{equation*}
\frac{1}{2} b(k, n, p) \leqq b_{0}(k, n, p) b_{1}(n, k) \leqq 2 b(k, n, p) \tag{7.14}
\end{equation*}
$$

Now

$$
\begin{equation*}
\left|2 \log b_{1}(n, k)\right|=|\log 2 \pi+\log k+\log (1-(1+\lambda) p)| \leqq \eta_{n}^{\prime} k \tag{7.15}
\end{equation*}
$$

for some $\eta_{n}^{\prime} \rightarrow 0$, since $k_{n} \rightarrow \infty$ and $(1+\lambda) p \leqq l_{n} / n \rightarrow 0$. Also

$$
\begin{align*}
& \left|h_{2}(\lambda)-k^{-1} \log b_{0}(k, n, p)\right|=\left|\frac{\lambda}{1+\lambda}-\frac{1-(1+\lambda) p}{(1+\lambda) \mathrm{p}} \log \left(1-\frac{\lambda p}{1-p}\right)\right| \\
& \\
& \leqq\left|\frac{\lambda}{1+\lambda}\left(1-\frac{1-(1+\lambda) p}{1-p}\right)+\theta\left(\frac{1-(1+\lambda) p}{(1+\lambda) p}\right)\left(\frac{\lambda p}{1-p}\right)^{2}\right| \tag{7.16}\\
& \leqq \eta_{n}^{\prime \prime} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty,
\end{align*}
$$

where $|\theta| \leqq 1$ if n is large, since $p_{n} \rightarrow 0, \lambda p \leqq(1+\lambda) p \leqq l_{n} / n \rightarrow 0$, and $\mid \log (1-x)$ $+x^{2}+x^{2} / 2 \mid=o\left(x^{2}\right)$ as $x \rightarrow 0$. The lemma now follows from (7.13)-(7.16), since $h_{2}(\lambda)$ is bounded away from 0 for $\lambda \geqq \lambda_{0}$.

Lemma 7.3 can be translated into a statement about $v_{n}(C)$ for easier later use. This we state as the next lemma.

Lemma 7.4. Let $\lambda_{0}>0$ and let $\left(p_{n}\right),\left(m_{n}\right)$, and $\left(M_{n}\right)$ be nonnegative sequences satisfying $p_{n} \rightarrow 0, n^{-1 / 2}=o\left(m_{n}\right)$, and $M_{n}=o\left(n^{1 / 2}\right)$. Then there exists $\eta_{n} \rightarrow 0$ such that

$$
\left|-\log \mathbb{P}\left[v_{n}(C)>M\right]-M n^{\frac{1}{2}} h_{1}\left(M / n^{\frac{1}{2}} \sigma^{2}(C)\right)\right| \leqq \eta_{n} M n^{\frac{1}{2}} h_{1}\left(M / n^{\frac{1}{2}} \sigma^{2}(C)\right)
$$

whenever $P(C) \leqq p_{n}, M / n^{\frac{1}{2}} \sigma^{2}(C) \geqq \lambda_{0}$, and $m_{n} \leqq M \leqq M_{n}$.
The next lemma is a version of Theorem 5.2.2 (iii) of Stout (1974). It covers the case, excluded in Lemma 7.4, when $M / n^{\frac{1}{2}} \sigma^{2}(C)$ is near 0.

Lemma 7.5. For each $\theta>0$ there exist $K, \lambda_{0}>0$ such that

$$
\mathbb{P}\left[v_{n}(C)>M\right] \geqq \exp \left(-(1+\theta) M^{2} / 2 \sigma^{2}(C)\right)
$$

whenever $n \geqq 1, M^{2} \geqq K \sigma^{2}(C)$, and $M / n^{\frac{1}{2}} \sigma^{2}(C) \leqq \lambda_{0}$.
Proof of Theorem 3.1 (A). It is easily verified that $n b_{n}^{2} \gamma_{n} \rightarrow \infty$ in each of (i)-(iii). It follows that

$$
\sup \left\{n^{-\frac{1}{2}} / b_{n} \sigma(C): C \in \mathscr{C}, \sigma^{2}(C) \geqq \gamma_{n}\right\} \leqq\left(n b_{n}^{2} \gamma_{n}\right)^{-\frac{1}{2}}=o(1) .
$$

From the Kolmogorov 0-1 law we then conclude that the lim sup in (3.4) is some constant a.s. By Lemma 7.2, to prove (A) it suffices to show that for each $\delta>0$,

$$
\begin{align*}
\mathbb{P}^{*}\left[\left|v_{n}(C)\right|>\right. & \left.(1+8 \delta) R_{\delta} b_{n} \sigma(C) \quad \text { for some } \mathrm{C} \in \mathscr{C} \text { with } \sigma^{2}(C) \geqq \gamma_{n}\right] \\
& =O\left((L n)^{-(1+\delta)}\right) \tag{7.17}
\end{align*}
$$

where $R_{\delta} \downarrow R_{0}$ as $\delta \rightarrow 0$ and R_{0} is the upper bound for R given in whichever of (i), (ii), or (iii) we are considering; R_{δ} will be specified later.

Fix $0<\delta<1 / 8$. Let $\left(\alpha_{n}\right)$ and $\left(u_{n}\right)$ be nonincreasing sequences, to be specified later, with $\alpha_{n} \geqq \gamma_{n}$ and $0<u_{n}<\delta$. Fix n and set

$$
\begin{aligned}
t_{j} & =\left(1-u_{n}^{2} / 4\right)^{j} \alpha_{n}, j \geqq 0, \\
\mathscr{E}(j) & =\mathscr{C}_{i_{j}} \backslash \mathscr{C}_{t_{j+1}}, \quad \text { and } \\
N_{n} & =\min \left\{j \geqq 0: t_{j+1} \leqq \gamma_{n}\right\} .
\end{aligned}
$$

By (3.3) there exists $\mathscr{F}(j) \subset \mathscr{E}(j)$ for all $j \leqq N_{n}$, and $A=A(\delta)<\infty$ such that.
$|\mathscr{F}(j)| \leqq A u_{n}^{-\eta} g\left(\gamma_{n}\right)^{\rho+\delta} \leqq A u_{n}^{-\eta} \exp \left((\varrho+\delta)\left(c_{1}+\delta\right) w_{n}\right) \quad$ for all $j \leqq N_{n}$,
and such that for each $C \in \mathscr{E}(j)$, there is a $C_{0}(C) \in \mathscr{F}(j)$ with $P\left(C \triangle C_{0}(C)\right) \leqq u_{n}^{2} t_{j}$. Set

$$
\begin{equation*}
\mathscr{C}(t)=\left\{C \backslash D: C, D \in \mathscr{C}_{t}, \sigma^{2}(C \backslash D) \leqq u_{n}^{2} t\right\} . \tag{7.19}
\end{equation*}
$$

Since

$$
\left|v_{n}(C)\right| \leqq\left|v_{n}\left(C_{0}(C)\right)\right|+\left|v_{n}\left(C \backslash C_{0}(C)\right)\right|+\left|v_{n}\left(C_{0}(C) \backslash C\right)\right|,
$$

we have

$$
\begin{align*}
\mathbb{P}^{*} & {\left[\left|v_{n}(C)\right|>(1+8 \delta) R_{\delta} b_{n} \sigma(C) \quad \text { for some } C \in \mathscr{C} \text { with } \gamma_{n} \leqq \sigma^{2}(C) \leqq \alpha_{n}\right] } \\
\leqq & \mathbb{P}^{*}\left[\left|v_{n}(C)\right|>(1+8 \delta) R_{\delta} b_{n} t_{j+1}^{1 / 2} \quad \text { for some } j \leqq N_{n} \text { and } C \in \mathscr{E}(j)\right] \\
\leqq & \sum_{j=0}^{N_{n}} \mathbb{P}\left[\left|v_{n}(C)\right|>(1+4 \delta) R_{\delta} b_{n} t_{j}^{1 / 2} \quad \text { for some } C \in \mathscr{F}(j)\right] \\
& +\mathbb{P}^{*}\left[\left|v_{n}(C)\right|>\delta R_{\delta} n_{n} t^{1 / 2} \quad \text { for some } \gamma_{n} \leqq t \leqq \alpha_{n} \text { and } C \in \mathscr{C}(t)\right] \\
\equiv & \sum_{j=0}^{N_{n}} \mathbb{P}_{j}+\mathbb{P}_{n}^{*} . \tag{7.20}
\end{align*}
$$

We now consider separately the cases (i)-(iii) of (3.4).
Proof of (A) (i). Here we take $\alpha_{n} \equiv 1 / 4, u_{n} \equiv u$ for some $0<u<\delta$ to be specified later, and $R_{\delta}=\left(2\left((\varrho+\delta)\left(c_{1}+\delta\right)+c_{2}+c_{3}+2 \delta\right)\right)^{\frac{1}{2}}$.

Now $\sigma^{2}(C) \leqq t_{j}$ for $C \in \mathscr{F}(j)$, and $\max _{j \leq N_{n}} w_{n}^{1 / 2} / n^{\frac{1}{2}} t_{j}^{\frac{3}{2}} \rightarrow 0$ as $n \rightarrow \infty$ since $n^{-1} w_{n}=o\left(\gamma_{n}\right)$, so by (6.5), (6.2), and (7.18),

$$
\begin{aligned}
\mathbb{P}_{j} & \leqq 2|\mathscr{F}(j)| \exp \left(-(1+4 \delta) R_{\delta}^{2} w_{n} / 2\right) \\
& \leqq \exp \left(-\left[(1+4 \delta) R_{\delta}^{2} / 2-(\varrho+\delta)\left(c_{1}+\delta\right)\right] w_{n}\right) \\
& \leqq \exp \left(-(1+\delta)\left(c_{2}+c_{3}+2 \delta\right) w_{n}\right)
\end{aligned}
$$

Since $N_{n} \leqq\left(\log \left(1-u^{2} / 4\right)^{-1}\right)^{-1} L \gamma_{n}^{-1}$, it follows that

$$
\begin{align*}
& \sum_{j=0}^{N_{n}} \mathbb{P}_{j} \leqq N_{n} \exp \left(-(1+\delta)\left(c_{2}+c_{3}+2 \delta\right) w_{n}\right) \\
& \leqq \exp \left(-(1+\delta)\left(c_{3}+\delta\right) w_{n}\right) \\
& \leqq \exp (-(1+\delta) L L n) \tag{7.21}
\end{align*}
$$

To bound \mathbb{P}_{n}^{*} we use Theorem 2.1, with $\zeta(t)=u^{2} t, b=\delta R_{\delta} w_{n}^{\frac{1}{2}}, \gamma=\gamma_{n}, \alpha=\frac{1}{4}$, $q(t)=t^{\frac{1}{2}}$, and $\mathscr{C}(t)$ from (7.19). In the notation of Theorem 2.1, $\tilde{a}(t)$ is at most $a(t)$, we can take $\tilde{g}(t)$ to be $u^{-2} g(t)$ (see Remark 2.2), $z(t)$ is $u^{-2} t^{-\frac{3}{2}}, r$ is γ_{n}, and s is $w_{n} / 4 u^{2} n=o\left(\gamma_{n}\right)$, so $r>s$ and (2.4) and (2.5) are vacuous. Let K be the constant from Theorem 2.1; if we take $u \leqq \delta R_{\delta} K^{-\frac{1}{2}}$ then

$$
L g(t) \leqq L g\left(\gamma_{n}\right) \leqq b^{2} / u^{2} K \quad \text { for all } \gamma_{n} \leqq t \mathfrak{t} \leqq \frac{1}{4}
$$

and (2.2) follows. Since $n^{-1} w_{n}=o\left(\gamma_{n}\right)$,

$$
t^{-\frac{1}{2}} \operatorname{Lg}(t) \leqq \gamma_{n}^{-\frac{1}{2}} \operatorname{Lg}\left(\gamma_{n}\right)=o\left(\left(n w_{n}\right)^{\frac{1}{2}}\right)
$$

and

$$
(n t)^{-\frac{1}{2}} L(n t) \leqq\left(n \gamma_{n}\right)^{-\frac{1}{2}} L\left(n \gamma_{n}\right)=o(1)
$$

for all $t \geqq \gamma_{n}$, so

$$
K t^{-\frac{1}{2}} L(n \tilde{a}(t)) \leqq K t^{-\frac{1}{2}} L(n t)+K t^{-\frac{1}{2}} L g(t) \leqq \delta R_{\delta}\left(n w_{n}\right)^{\frac{1}{2}}
$$

for all $t \geqq \delta_{n}$, and (2.3) follows. Theorem 2.1 now tells us that, if we take u^{2} $<\delta^{2} / 512$,

$$
\begin{aligned}
\mathbb{P}_{n}^{*} \leqq & 36 \int_{\gamma_{n} / 2}^{\frac{1}{4}} t^{-1} \exp \left(-\delta^{2} R_{\delta}^{2} w_{n} / 512 u^{2}\right) d t \\
& +68 \exp \left(-\delta R_{\delta}\left(n \gamma_{n} w_{n}\right)^{\frac{1}{2}} / 256\right) \\
\leqq & 140\left(L \gamma_{n}^{-1}\right) \exp \left(-(1+\delta) R_{\delta}^{2} w_{n} / 2\right) \\
\leqq & 140 \exp \left(-(1+\delta)\left(c_{3}+\delta\right) w_{n}\right) \\
\leqq & 140 \exp (-(1+\delta) L L n)
\end{aligned}
$$

With (7.20) and (7.21) this proves (7.17), and (A) (i) follows.
Proof of (A) (ii). Here we take $u_{n} \equiv u$ for some $0<u<\delta$ to be specified later, and $R_{\delta}=\max \left(R_{\delta 1}, R_{\delta 2}\right)$ with $R_{\delta 1}=\left(2\left((\varrho+\delta)\left(c_{1}+\delta\right)+c_{2}+c_{3}+2 \delta\right)\right)^{\frac{1}{2}}$ and $R_{\delta 2}=\tau^{\frac{1}{2}}\left(\beta_{\theta(\delta) \tau}-1\right)$, where $\theta(\delta)=\left((\varrho+\delta)\left(c_{1}+\delta\right)+c_{3}+\delta\right)^{-1}$. We take $\alpha_{n} \downarrow 0$ with

$$
\begin{equation*}
\gamma_{n}=o\left(\alpha_{n}\right) \quad \text { and } \quad L\left(\gamma_{n}^{-1} \alpha_{n}\right)=o\left(w_{n}\right) \tag{7.22}
\end{equation*}
$$

Set $\tilde{w}_{n}=L g\left(\alpha_{n}\right) \vee L L n$. Since

$$
L g\left(\alpha_{n}\right) \leqq L g\left(\gamma_{n}\right) \leqq L\left(\alpha_{n}^{-1} a\left(\alpha_{n}\right)\right)+L\left(\gamma_{n}^{-1} \alpha_{n}\right)=L g\left(\alpha_{n}\right)+o\left(w_{n}\right)
$$

we have $w_{n} \sim \tilde{w}_{n}$ and $n^{-1} \tilde{w}_{n}=o\left(\alpha_{n}\right)$. It is easily then verified that the constants c_{1}, c_{2}, c_{3} are unchanged if γ_{n} is replaced by α_{n} in (3.2). Hence by the above proof of part (A) (i) of the theorem,

$$
\begin{align*}
\mathbb{P}^{*}\left[\left|v_{n}(C)\right|>\right. & \left.(1+8 \delta) R_{\delta 1} w_{n}^{\frac{1}{2}} \sigma(C) \quad \text { for some } C \in \mathscr{C} \text { with } \sigma^{2}(C) \geqq \alpha_{n}\right] \\
& =O\left((L n)^{-(1+\delta)}\right) . \tag{7.23}
\end{align*}
$$

Hence to obtain (7.17) it suffices to bound the left side (or therefore the right side) of (7.20) by $O\left((L n)^{-(1+\delta)}\right)$.

Define $\lambda_{t}=(1+4 \delta) R_{\delta 2} w_{n}^{\frac{1}{2}} /(n t)^{\frac{1}{2}}$. Then by (6.5) and (6.1), since $\sigma^{2}(C) \leqq t_{j}$ for $C \in \mathscr{F}(j)$,

$$
\begin{align*}
\mathbb{P}_{j} & \leqq \mathbb{P}\left[\left|v_{n}(C)\right|>(1+4 \delta) R_{\delta 2} w_{n}^{\frac{1}{2}} t_{j}^{\frac{1}{2}} \quad \text { for some } C \in \mathscr{F}(j)\right] \\
& \leqq 2|\mathscr{F}(j)| \exp \left(-(1+4 \delta)^{2} R_{\delta 2}^{2} w_{n} \lambda_{i_{j}}^{-1} h_{1}\left(\lambda_{t_{j}}\right)\right) \\
& \leqq 2|\mathscr{F}(j)| \exp \left(-(1+4 \delta)^{2} R_{\delta 2}^{2} w_{n} \lambda_{\gamma_{n}}{ }^{1} h_{1}\left(\lambda_{\gamma_{n}}\right)\right) . \tag{7.24}
\end{align*}
$$

Set $\tau_{n}=n \gamma_{n} w_{n}^{-1}$ and $\xi=\beta_{\theta(\delta) \tau}-1$. Since $\tau_{n} \rightarrow \tau$, we have $\lambda_{\gamma_{n}}^{-1}=(1+4 \delta)$ $R_{\delta 2} \tau_{n}^{-\frac{1}{2}} \geqq(1+3 \delta) \xi$. From (1.11) we know that $\xi h_{1}(\xi)=(\theta(\delta) \tau)^{-1}$. It follows that

$$
\begin{aligned}
\lambda_{\gamma_{n}}^{-1} h_{1}\left(\lambda_{\gamma_{n}}\right) & \geqq \lambda_{\gamma_{n}}^{-2}(1+3 \delta) \xi h_{1}(\xi) \\
& =(1+3 \delta) \tau_{n} /(1+4 \delta)^{2} R_{\delta 2}^{2} \theta(\delta) \tau \\
& \geqq(1+2 \delta) /(1+4 \delta)^{2} R_{\delta 2}^{2} \theta(\delta)
\end{aligned}
$$

so by (7.24) and (7.18),

$$
\begin{align*}
\sum_{j=0}^{N_{n}} \mathbb{P}_{j} & \leqq \sum_{j=0}^{N_{n}} 2|\mathscr{F}(j)| \exp \left(-(1+2 \delta) \theta(\delta)^{-1} w_{n}\right) \\
& \leqq 2 \mathrm{Au}^{-\eta} N_{n} \exp \left(-(1+2 \delta)\left(c_{3}+\delta\right) w_{n}\right) \\
& \leqq \exp \left(-(1+\delta)\left(c_{3}+\delta\right) w_{n}\right) \\
& \leqq \exp (-(1+\delta) L L n) \tag{7.25}
\end{align*}
$$

since $L N_{n}=O\left(L L\left(\gamma_{n}^{-1} \alpha_{n}\right)\right)=o\left(w_{n}\right)$ by (7.22).
To bound \mathbb{P}_{n}^{*} we use Theorem 2.1, as in the proof of (A) (i), with $\zeta(t)=u^{2} t$, $b=\delta R_{\delta 2} w_{n}^{\frac{1}{2}}, \gamma=\gamma_{n}, \alpha=\alpha_{n}, q(t)=t^{\frac{1}{2}}$, and $\mathscr{C}(t)$ from (7.19). Again $\tilde{a}(t)$ is at $\operatorname{most} a(t), \hat{g}(t)$ is $u^{-2} g(t), z(t)=u^{-2} t^{-\frac{1}{2}}, r$ is γ_{n}, and s is $s_{n}=\delta^{2} R_{\delta 2}^{2} w_{n} / 4 u^{4} n \sim \delta^{2}$ $R_{\delta 2}^{2} \gamma_{n} / 4 u^{4} \tau>2 \gamma_{n}$ provided we take $u<\left(\delta^{2} R_{\delta 2}^{2} / 8 \tau\right)^{\frac{1}{4}}$. Thus $r \vee s=s_{n}$. If we take $u<\delta R_{\dot{\delta} 2} K^{-\frac{1}{2}}$ then

$$
L \tilde{g}(t) \leqq L\left(u^{-2} g\left(\gamma_{n}\right)\right) \leqq b^{2} / u^{2} K \quad \text { for all } t \geqq s_{n}
$$

and (2.2) follows. Also

$$
t^{-\frac{1}{2}} L g(t) \leqq s_{n}^{-\frac{1}{2}} L g\left(s_{n}\right) \leqq\left(2 u^{2} / \delta R_{\delta 2}\right)\left(n w_{n}\right)^{\frac{1}{2}}
$$

and

$$
\begin{equation*}
(n t)^{-\frac{1}{2}} L(n t) \leqq\left(n \gamma_{n}\right)^{-\frac{1}{2}} L\left(n \gamma_{n}\right)=o(1) \tag{7.26}
\end{equation*}
$$

for all $t \geqq s_{n}$, so if $u^{2}<\delta^{2} R_{\delta 2}^{2} / 4 K$,

$$
\begin{align*}
K t^{-\frac{1}{2}} L(n \tilde{a}(t)) & \leqq K t^{-\frac{1}{2}} L(n t)+K t^{-\frac{1}{2}} \operatorname{Lg}(t) \\
& \leqq\left(4 K u^{2} / \delta R_{\delta 2}\right)\left(n w_{n}\right)^{\frac{1}{2}} \leqq \delta R_{\delta 2}\left(n w_{n}\right)^{\frac{1}{2}} \tag{7.27}
\end{align*}
$$

and (2.3) follows. (2.4) and (2.8) follow from the fact that $n \gamma_{n} w_{n} \sim \tau w_{n}^{2} \rightarrow \infty$. To establish (2.5), by the first inequality in (7.27) it suffices to show

$$
\begin{equation*}
2 K L(n t)+2 K L g(t) \leqq \delta R_{\delta 2}\left(n w_{n} t\right)^{\frac{1}{2}} L\left(\delta^{2} R_{\delta 2}^{2} w_{n} / n u^{4} t\right), t \geqq \gamma_{n} \tag{7.28}
\end{equation*}
$$

The first term on the left of (7.28) is handled using (7.26); for the second it suffices to consider $t=\gamma_{n}$ only, since $L g(t)$ decreases and the right side of (7.28) increases in t. If we take u small enough so $L\left(\delta^{2} R_{\delta 2}^{2} / 2 u^{4} \tau\right) \geqq 8 K / \delta R_{\delta 2} \tau^{\frac{1}{2}}$, then

$$
\delta R_{\delta 2}\left(n w_{n} \gamma_{n}\right)^{\frac{1}{2}} L\left(\delta^{2} R_{\delta 2}^{2} w_{n} / n u^{4} \gamma_{n}\right) \geqq \frac{1}{2} \delta R_{\delta 2} \frac{}{\frac{1}{2}}^{2} w_{n} L\left(\delta^{2} R_{\delta 2}^{2} / 2 u^{4} \tau\right) \geqq 4 K L g\left(\gamma_{n}\right)
$$

and (7.28), and then (2.5), follow. Since $g(t)$ and $t^{-\beta / 2} L t$ decrease and $a(t)$ increases, we have $t^{\beta / 2} L \tilde{g}(t)=u^{-\beta} a(t)^{\beta / 2}\left(u^{-2} g(t)\right)^{-\beta / 2} L\left(u^{-2} g(t)\right)$ increasing, and (2.7) follows. Theorem 2.1 and (7.22) can now be applied, and the result is that

$$
\begin{aligned}
\mathbb{P}_{n}^{*} \leqq & 36 \int_{\gamma_{n} / 2}^{\alpha_{n}} t^{-1} \exp \left(-\delta^{2} R_{\delta 2}^{2} w_{n} / 512 u^{2}\right) d t \\
& +68 \exp \left(-2^{-9} \tau^{\frac{1}{2}} \delta R_{\delta 2} w_{n} L u^{-2}\right) \\
& +36 \exp \left(-2^{-9} \tau^{\frac{1}{2}} \delta R_{\delta 2} w_{n} L\left(\delta R_{\delta 2} / 2 \tau^{\frac{1}{2}} u^{2}\right)\right) \\
\leqq & 140 L\left(2 \gamma_{n}^{-1} \alpha_{n}\right) \exp \left(-(1+2 \delta)\left(c_{3}+\delta\right) w_{n}\right) \\
\leqq & 140 \exp \left(-(1+\delta)\left(c_{3}+\delta\right) w_{n}\right) \\
\leqq & 140 \exp (-(1+\delta) L L \mathfrak{n})
\end{aligned}
$$

provided $u \leqq u_{0}$ for some $u_{0}(\tau, \delta)>0$. In combination with (7.20) and (7.25) this proves (7.17), and (A) (ii) is proved.
Proof of (A) (iii). This time we take $u_{n}=\left(n \gamma_{n} / w_{n}\right)^{\mu}$ for some (large) $\mu>0$ to be specified later, and take $\alpha_{n}=n^{-1} w_{n}$ and

$$
R_{\delta}=(\varrho+\delta)\left(c_{1}+\delta\right)+c_{3}+\delta
$$

Set $\tilde{w}_{n}=L g\left(\alpha_{n}\right) \vee L L n$. Since $\alpha_{n} \geqq \gamma_{n}$, we have $n^{-1} \tilde{w}_{n} \leqq n^{-1} w_{n}=\alpha_{n}$. Since $\tilde{w}_{n}^{\frac{1}{2}}=o\left(y_{n}\right)$, it follows from the proofs of parts (A) (i) and (A) (ii) that

$$
\begin{gathered}
\mathbb{P}^{*}\left[\left|v_{n}(C)\right|>(1+8 \delta) R_{\delta} y_{n} \sigma(C) \quad \text { for some } C \in \mathscr{C} \text { with } \sigma^{2}(C) \geqq \alpha_{n}\right] \\
=O\left((L n)^{-(1+\delta)}\right) .
\end{gathered}
$$

Hence as in the proof of part (A) (ii) it suffices to bound the right side of (7.20) by $O\left((L n)^{-(1+\delta)}\right)$.

Analogously to (7.24), setting $\lambda_{n}=(1+4 \delta) R_{\delta} y_{n} /\left(n \gamma_{n}\right)^{\frac{1}{2}}$, we get

$$
\begin{align*}
\mathbb{P}_{j} & \leqq 2|\mathscr{F}(j)| \exp \left(-(1+4 \delta)^{2} R_{\delta}^{2} y_{n}^{2} \lambda_{n}^{-1} h_{1}\left(\lambda_{n}\right)\right) \\
& \leqq 2|\mathscr{F}(j)| \exp \left(-(1+3 \delta) R_{\delta} y_{n}\left(n \gamma_{n}\right)^{\frac{1}{2}} L\left(w_{n} / n \gamma_{n}\right)\right) \\
& =2|\mathscr{F}(j)| \exp \left(-(1+3 \delta) R_{\delta} w_{n}\right) \tag{7.29}
\end{align*}
$$

since $h_{1}\left(\lambda_{n}\right) \sim L \lambda_{n} \sim L\left(w_{n} / n \gamma_{n}\right)$ by (6.2). Now $L u_{n}^{-1}=o\left(w_{n}\right)$ and $N_{n}=O\left(L u_{n}^{-2}\right.$ $\left.+L L\left(\gamma_{n}^{-1} \alpha_{n}\right)\right)=o\left(w_{n}\right)$ by (3.5), so as in (7.25), (7.29) and (7.18) give

$$
\sum_{j=0}^{N_{n}} \mathbb{P}_{j} \leqq \exp (-(1+\delta) L L n)
$$

Once again Theorem 2.1 will provide the needed bound on \mathbb{P}_{n}^{*}. As before we take $\zeta(t)=u_{n}^{2} t, b=\delta R_{\delta} y_{n}, \gamma=\gamma_{n}, \alpha=\alpha_{n}, q(t)=t^{\frac{1}{2}}$, and $\mathscr{C}(t)$ as in (7.19), so $\tilde{a}(t) \leqq a(t), \tilde{g}(t)=u_{n}^{-2} g(t), z(t)=u_{n}^{-2} t^{-\frac{1}{2}}, r$ is γ_{n}, and s is $s_{n}=\delta^{2} R_{\delta}^{2} y_{n}^{2} / 4 u_{n}^{4}>\alpha_{n}$, so (2.2) and (2.3) are vacuous. (2.4) and (2.8) follow from (3.5). As in the proof of (A) (ii), to establish (2.5) it suffices to show

$$
\begin{equation*}
2 K L(n t)+2 K L g(t) \leqq \delta R_{\delta}(n t)^{\frac{1}{2}} y_{n} L\left(w_{n} / n u_{n}^{4} t\right), \alpha_{n} \geqq t \geqq \gamma_{n} \tag{7.30}
\end{equation*}
$$

The first term in (7.30) is handled by noting that, since $\gamma_{n} \leqq t \leqq \alpha_{n}=n^{-1} w_{n}$,

$$
\begin{aligned}
(n t)^{-\frac{1}{2}} L(n t) & \leqq\left(n \gamma_{n}\right)^{-\frac{1}{2}} L\left(n \gamma_{n}\right)=y_{n} w_{n}^{-1} L\left(w_{n} / n \gamma_{n}\right) L\left(n \gamma_{n}\right) \\
& \leqq y_{n} w_{n}^{-1}(4 \mu)^{-1} L\left(u_{n}^{-4}\right) L w_{n} \leqq(4 \mu)^{-1} y_{n} L\left(w_{n} / n u_{n}^{4} t\right) .
\end{aligned}
$$

For the second term,

$$
\begin{aligned}
(n t)^{-\frac{1}{2}} L g(t) & \leqq\left(n \gamma_{n}\right)^{-\frac{1}{2}} \operatorname{Lg}\left(\gamma_{n}\right) \leqq y_{n} L\left(w_{n} / n \gamma_{n}\right) \\
& \leqq(4 \mu)^{-1} y_{n} L\left(w_{n} / n u_{n}^{4} t\right)
\end{aligned}
$$

Thus (7.30) holds if μ is large enough. (2.7) is established as in the proof of (A) (ii). We now apply Theorem 2.1 and use the fact that by (3.5), $L L\left(2 \gamma_{n}^{-1} \alpha_{n}\right)=L L\left(2 \gamma_{n}^{-1} n^{-1} w_{n}\right)=o\left(w_{n}\right)$, to obtain, if μ is large enough,

$$
\begin{aligned}
\mathbb{P}_{n}^{*} \leqq & 36 \int_{n / 2}^{\alpha_{n}} t^{-1} \exp \left(-\delta^{2} R_{\delta}^{2} y_{n}^{2} / 512 u_{n}^{2}\right) d t \\
& +68 \exp \left(-2^{-8} \delta R_{\delta} y_{n}\left(n \gamma_{n}\right)^{\frac{1}{2}} L\left(u_{n}^{-2}\right)\right) \\
& +36 \exp \left(-2^{-8} \delta R_{\delta} y_{n}\left(n \gamma_{n} \frac{1}{2} L\left(\delta R_{\delta} y_{n} /\left(n \gamma_{n}\right)^{\frac{1}{2}} u_{n}^{2}\right)\right)\right. \\
\leqq & 140 L\left(2 \gamma_{n}^{-1} \alpha_{n}\right) \exp \left(-2^{-7} \delta R_{\delta} \mu y_{n}\left(n \gamma_{n}\right)^{\frac{1}{2}} L\left(w_{n} / n \gamma_{n}\right)\right) \\
\leqq & 140 \exp \left(-(1+\delta)\left(c_{3}+\delta\right) w_{n}\right) \\
\leqq & 140 \exp (-(1+\delta) L L n) .
\end{aligned}
$$

The result now follows as in the proof of (A) (ii).
We introduce now some notation and do preliminary calculations for use in the proofs of the next three propositions. Let $R>0$ and $\delta, \lambda, \mu \in(0,1)$ be constants to be specified later. Let \mathscr{C} be a full VC class. For each $t \in\left(0, \frac{1}{4}\right]$ let

$$
\begin{gathered}
\mathscr{D}_{t} \subset \mathscr{C} \text { with } \varepsilon_{\lambda} g(t)^{1-\lambda} \leqq\left|\mathscr{D}_{t}\right| \leqq \varepsilon_{\lambda} g(t)^{1-\lambda}+1, \text { and } \\
\sigma^{2}(C)=t, P(C) \leqq \frac{1}{2}, \text { and } P\left(C \cap\left(\bigcup_{D \in \mathscr{\mathscr { R }}, D \neq C} D\right)\right) \leqq \lambda P(C) \text { for all } C \in \mathscr{D}_{t},
\end{gathered}
$$

where $\varepsilon_{\lambda} \leqq \frac{1}{8}$ is the constant in the definition of "full". Let $\left(\gamma_{n}\right)$, $\left(\alpha_{n}\right)$, and $\left(b_{n}\right)$ be nonnegative sequences with $\gamma_{n} \leqq \alpha_{n} \leqq \frac{1}{4}$ and

$$
\begin{equation*}
n^{\frac{1}{2}} b_{n} q\left(\gamma_{n}\right) \rightarrow \infty . \tag{7.31}
\end{equation*}
$$

Let $(n(k), k \geqq 0)$ be a strictly increasing sequence of integers with $n(0)=0$, and set

$$
\begin{aligned}
m(k) & =n(k)-n(k-1) \\
Y_{k}(C) & =\sum_{i=n(k-1)+1}^{n(k)} 1_{C}\left(X_{i}\right) \\
S_{k}(C) & =Y_{k}(C)-m(k) P(C)=n(k)^{\frac{1}{2}} v_{n(k)}(C)-n(k-1)^{\frac{1}{2}} v_{n(k-1)}(C) \\
t_{k j} & =\alpha_{n(k)} \mu^{j}, \\
N_{k} & =\min \left\{j \geqq 0: t_{k, j+1}<\gamma_{n(k)}\right\}, \\
N_{k}^{\prime} & =\min \left\{j \geqq 0: t_{k j} \leqq \gamma_{n(k)}^{1-\delta / 16}\right\}, \\
I_{k} & =\left\{(j, i): N_{k}^{\prime} \leqq j \leqq N_{k}, 1 \leqq i \leqq\left|\mathscr{D}_{t_{k j}}\right|\right\}, \\
r(k, j) & =\left|\mathscr{D}_{t_{k j}}\right|
\end{aligned}
$$

and observe that

$$
\mathscr{D}_{t_{k j}}=\left\{C_{k j i}: 1 \leqq i \leqq r(k, j)\right\}
$$

for some sets $C_{k j i}$. Note the k indexes the number of sample points, j indexes the sizes of the sets, and i indexes the collection of sets corresponding to each k and j. The $C_{k j i}$ are nearly disjoint for fixed k and j; we wish to replace them with fully disjoint sets $D_{k j i}$. Define

$$
\begin{aligned}
G_{k j i}^{\prime} & =C_{k j i} \cap\left(\bigcup_{m \neq i} C_{k j m}\right), \\
D_{k j i}^{\prime} & =C_{k j i} \backslash G_{k j i}^{\prime}, \\
G_{k j i}^{\prime \prime} & =D_{k j i}^{\prime} \cap\left(\bigcup_{l>j} \bigcup_{m \leqq r(k, l)} C_{k l m}\right), \\
G_{k j i} & =G_{k j i}^{\prime} \cup G_{k j i}^{\prime \prime}, \\
D_{k j i} & =C_{k j i} \backslash G_{k j i}, \quad \text { and } \\
H_{k j} & =\bigcup_{i \leqq r(k, j)} D_{k j i} .
\end{aligned}
$$

Thus for fixed $k, D_{k j i}$ is obtained from $C_{k j i}$ by throwing out any intersection $G_{k j i}$ with other sets of equal or smaller size. Since \mathscr{C} is full, $P\left(D_{k j i}^{\prime}\right) \geqq(1-\lambda) P\left(C_{k j i}\right)$. $\left\{D_{k j i}: j \geqq 0, i \leqq r(k, j)\right\}$ and $\left\{D_{k j i}^{\prime}: i \leqq r(k, j)\right\}$ are each disjoint collections, so

$$
P\left(\bigcup_{i} D_{k j i}^{\prime}\right) \geqq r(k, j)(1-\lambda) t_{k j} \geqq \varepsilon_{\lambda}(1-\lambda) a\left(t_{k j}\right)^{1-\lambda} t_{k j}^{\lambda}
$$

while

$$
\begin{aligned}
P\left(\bigcup_{i} G_{k j i}^{\prime \prime}\right) & \leqq \sum_{l>j} 2 t_{k l} r(k, l) \\
& \leqq \sum_{l>j}\left(2 \varepsilon_{\lambda} a\left(t_{k l}\right)^{1-\lambda} t_{k l}^{\lambda}+2 t_{k l}\right) \\
& \leqq \sum_{l>j}\left(2 \varepsilon_{\lambda} a\left(t_{k j}\right)^{1-\lambda} t_{k j}^{\lambda} \mu^{\lambda(l-j)}+2 t_{k j} \mu^{\lambda(l-j)}\right) \\
& \leqq 2\left(\varepsilon_{\lambda}+1\right) \mu^{\lambda}\left(1-\mu^{\lambda}\right)^{-1} a\left(t_{k j}\right)^{1-\lambda} t_{k j}^{\lambda}
\end{aligned}
$$

If, as we henceforth assume, μ is chosen small enouth so $2 /\left(\varepsilon_{\lambda}+1\right) \mu^{\lambda}\left(1-\mu^{\lambda}\right)^{-1}$ $\leqq \lambda \varepsilon_{\lambda}(1-\lambda) / 2$, it follows that $P\left(\bigcup_{i} G_{k j i}^{\prime \prime}\right) \leqq \lambda P\left(\bigcup_{i} D_{k j i}^{\prime \prime}\right) / 2$. Hence for fixed k, j, for at least half the values of i we have $P\left(G_{k j i}^{\prime \prime}\right) \leqq \lambda P\left(D_{k j i}^{\prime}\right)$. By reducing ε_{λ} and $\left|\mathscr{D}_{t_{k j}}\right|$ by half if necessary, we may assume this is valid for all i; it then follows from \mathscr{C} being full that

$$
\begin{align*}
P\left(D_{k j i}\right) \geqq(1-\lambda) P\left(C_{k j i}\right)-\lambda P\left(D_{k j i}^{\prime}\right) \geqq(1-2 \lambda) P\left(C_{k j i}\right), \quad \text { so } \\
\sigma^{2}\left(D_{k j i}\right) \geqq(1-2 \lambda) \sigma^{2}\left(C_{k j i}\right), \quad \text { and } \quad P\left(G_{k j i}\right) \leqq 2 \lambda P\left(C_{k j i}\right) . \tag{7.32}
\end{align*}
$$

Observe also that

$$
\begin{align*}
& C_{k j i}=D_{k j i} \cup G_{k j i} \quad \text { as a disjoint union, and } \\
& G_{k j i} \cap\left(\bigcup_{l \leqq j \quad} \bigcup_{m \leqq r(k, j)} D_{k l m}\right)=\phi \tag{7.33}
\end{align*}
$$

We now define events

$$
\begin{aligned}
A_{k j i} & =\left[S_{k}\left(C_{k j i}\right) \geqq(1-2 \delta) R n(k)^{\frac{2}{2}} b_{n(k)} q\left(\sigma^{2}\left(C_{k j i}\right)\right)\right] \\
A_{k j i}^{\prime} & =\left[S_{k}\left(D_{k j i}\right) \geqq(1-\delta) R n(k)^{\frac{1}{2}} b_{n(k)} q\left(\sigma^{2}\left(C_{k j j}\right)\right)\right] \\
A_{k j i}^{\prime \prime} & =\left[S_{k}\left(G_{k j j}\right) \geqq-\delta R n(k)^{\frac{1}{2}} b_{n(k)} q\left(\sigma^{2}\left(C_{k j i}\right)\right)\right] \\
E_{k j i} & =\left[v_{n(k-1)}\left(C_{k j i}\right) \geqq-\delta R(n(k) / n(k-1))^{\frac{2}{2}} b_{n(k)} q\left(\sigma^{2}\left(C_{k j i}\right)\right)\right] \\
F_{k} & =\bigcup_{(j, i) \in I_{k}} E_{k j i}^{c} \\
B_{k} & =\bigcup_{(j, i) \in I_{k}} A_{k j i} \\
B_{k}^{\prime} & =\bigcup_{(j, i) \in I_{k}} A_{k j i}^{\prime} .
\end{aligned}
$$

Note that $A_{k j i}^{\prime}$ and $A_{k j i}^{\prime \prime}$ together imply $A_{k j i}$, and that $A_{k j i}$ and $E_{k j i}$ together imply that $v_{n(k)}\left(C_{k j i}\right) \geqq(1-3 \delta) R b_{n(k)} q\left(\sigma^{2}\left(C_{k j i}\right)\right)$. Thus
$\limsup _{n} \sup \left\{v_{n}(C) / b_{n(k)} q\left(\sigma^{2}(C)\right): C \in \mathscr{C}, \gamma_{n} \leqq \sigma^{2}(C) \leqq \alpha_{n}\right\} \geqq(1-3 \delta) R \quad$ a.s.
provided

$$
\begin{equation*}
\mathbb{P}\left(B_{k} \text { i.o. }\right)=1, \quad \mathbb{P}\left(F_{k} \text { i.o. }\right)=0 \tag{7.34}
\end{equation*}
$$

Since the S_{k} are independent, (7.35) will follow if

$$
\begin{equation*}
\sum \mathbb{P}\left(B_{k}\right)=\infty, \quad \sum \mathbb{P}\left(F_{k}\right)<\infty, \tag{7.36}
\end{equation*}
$$

so we wish to bound $\mathbb{P}\left(B_{k}\right)$ from below. Define events

$$
U_{k j}=\left[Y_{k}\left(H_{k j}\right) \leqq z_{k j}\right]
$$

where $z_{k j}$ is given by

$$
\begin{equation*}
16 \lambda t_{k j}\left(z_{k j}-m(k) P\left(H_{k j}\right)\right)=\delta R n(k)^{\frac{1}{2}} b_{n(k)} q\left(t_{k j}\right) / 2 \tag{7.37}
\end{equation*}
$$

Fix k and define stopping times for $\omega \in B_{k}^{\prime}$ by

$$
\begin{aligned}
& T_{1}(\omega)=\min \left\{j: \omega \in A_{k j i}^{\prime} \quad \text { for some } i\right\}, \\
& T_{2}(\omega)=\min \left\{i: \omega \in A_{k T_{1}(\omega) i}^{\prime}\right\},
\end{aligned}
$$

and let $T_{1}=T_{2}=\infty$ off B_{k}^{\prime}. If S_{k} is large on $D_{k j i}$, it is probably also large on $C_{k j i}$, because $D_{k j i}$ is most of $C_{k j i}$ by (7.32). To make this precise, we will show that

$$
\begin{equation*}
\mathbb{P}\left(B_{k} \mid B_{k}^{\prime}, U_{k j},\left(T_{1}, T_{2}\right)=(j, i)\right) \geqq \mathbb{P}\left(A_{k j i}^{\prime \prime} \mid B_{k}^{\prime}, U_{k j},\left(T_{1}, T_{2}\right)=(j, i)\right) \geqq \frac{1}{2} \tag{7.38}
\end{equation*}
$$

Once (7.38) is established, we have
so that

$$
\begin{aligned}
2 \mathbb{P}\left(B_{k}, T_{1}=j\right) & \geqq 2 \mathbb{P}\left(B_{k}, U_{k j}, T_{1}-j\right) \geqq \mathbb{P}\left(B_{k}^{\prime}, U_{k j}, T_{1}=j\right) \\
& \geqq \mathbb{P}\left(B_{k}^{\prime}, T_{1}=j\right)-\mathbb{P}\left(U_{k j}^{c}\right)
\end{aligned}
$$

$$
\begin{equation*}
2 \mathbb{P}\left(B_{k}\right) \geqq \mathbb{P}\left(B_{k}^{\prime}\right)-\sum_{j=N_{k}^{\prime}}^{N_{k}} \mathbb{P}\left(U_{k j}^{c}\right) \tag{7.39}
\end{equation*}
$$

The first inequality in (7.38) follows directly from the definitions. To prove the second, observe that by (7.33), $S_{k}\left(G_{k j i}\right)$ is conditionally independent of $\left(S_{k}\left(D_{k j m}\right)\right.$,
$m \leqq r(k, j)$) given $S_{k}\left(H_{k j}\right)$ (or equivalently, given $Y_{k}\left(H_{k j}\right)$). It follows that

$$
\begin{align*}
& \mathbb{P}\left(A_{k j i}^{\prime \prime} \mid B_{k}^{\prime}, U_{k j},\left(T_{1}, T_{2}\right)=(j, i)\right) \\
& \quad=\sum_{l \leqq z_{k j}} \mathbb{P}\left(A_{k j i}^{\prime \prime} \mid T_{1} \geqq j, Y_{k}\left(H_{k j}\right)=l\right) \mathbb{P}\left(Y_{k}\left(H_{k j}\right)=l \mid B_{k}^{\prime}, U_{k j},\left(T_{1}, T_{2}\right)=(j, i)\right) \\
& \quad \geqq \sum_{l \leqq z_{k j}} \mathbb{P}\left(A_{k j i}^{\prime \prime} \mid Y_{k}\left(H_{k j}\right)=l\right) \mathbb{P}\left(Y_{k}\left(H_{k j}\right)=l \mid B_{k}^{\prime}, U_{k j},\left(T_{1}, T_{2}\right)=(j, i)\right) \\
& \quad \geqq \min _{l \leqq z_{k j}} \mathbb{P}\left(A_{k j i}^{\prime \prime} \mid Y_{k}\left(H_{k j}\right)=l\right) . \tag{7.40}
\end{align*}
$$

Fix i, j, k, and $l, l \leqq z_{k j}$. Given $Y_{k}\left(H_{k j}\right)=l, Y_{k}\left(G_{k j i}\right)$ has a binomial distribution with parameters (N, p), where $N=m(k)$ - land $p=P\left(G_{k j i}\right) / P\left(H_{k j}^{c}\right)$. Since the median of a binomial distribution is within one of the mean (Uhlmann 1966; Jogdeo and Samuels 1968), it follows that

$$
\mathbb{P}\left[Y_{k}\left(G_{k j i}\right) \geqq N p-1 \mid Y_{k}\left(H_{k j}\right)=l\right] \geqq \frac{1}{2}
$$

Thus (7.38) will follow from (7.40) once we establish that

$$
\begin{equation*}
N p-1 \geqq m(k) P\left(G_{k j i}\right)-\delta R n(k)^{\frac{1}{2}} b_{n(k)} q\left(\sigma^{2}\left(C_{k j i}\right)\right) \tag{7.41}
\end{equation*}
$$

whenever the right side of (7.41) is positive. (Note that $\left(A_{k j i}^{\prime \prime}\right)^{c}=\phi$ if it is not positive.) Now recalling we took $\varepsilon_{\lambda} \leqq \frac{1}{8}$, we get $P\left(H_{k j}\right) \leqq r(k, j) \max _{i} P\left(D_{k j i}\right)$ $\leqq 2\left(\varepsilon_{\lambda} g\left(t_{k j}\right)+1\right) t_{k j} \leqq 2 \varepsilon_{\lambda}+2 \alpha_{n(k)} \leqq \frac{3}{4}$, so by (7.33), 7.37), and (7.31), on the event $\left[Y_{k}\left(H_{k j}\right)=l\right]$,

$$
\begin{aligned}
m(k) P\left(G_{k j i}\right)-N p & =P\left(H_{k j}^{c}\right)^{-1} P\left(G_{k j i}\right) S_{k}\left(H_{k j}\right) \\
& \leqq 16 \lambda \sigma^{2}\left(C_{k j i}\right)\left(z_{k j}-m(k) P\left(H_{k j}\right)\right) \\
& \leqq \delta R n(k)^{\frac{1}{2}} b_{n(k)} q\left(t_{k j}\right) / 2 \\
& \leqq-1+\delta R n(k)^{\frac{1}{2}} b_{n(k)} q\left(\sigma^{2}\left(C_{k j i}\right)\right)
\end{aligned}
$$

(7.41), then (7.38) and (7.39), now follow.

It is clear that for any m and M and any collection J_{o}, \ldots, J_{m} of disjoint sets, $\mathbb{P}\left[Y_{k}\left(J_{o}\right) \leqq M \mid Y_{k}\left(J_{i}\right)=l_{i}\right.$ for all $\left.1 \leqq i \leqq m\right]$ is monotone increasing in each l_{i}. From this "negative dependence" of Y_{k} on disjoint sets, it follows that

$$
\begin{equation*}
\mathbb{P}\left(\left(B_{k}^{\prime}\right)^{c}\right) \leqq \prod_{(i, i) \in I_{k}} \mathbb{P}\left(\left(A_{k j i}^{\prime}\right)^{c}\right) \leqq \prod_{j=N_{k}^{\prime}}^{N_{k}}\left(1-\min _{i \leqq r(k, j)} \mathbb{P}\left(A_{k j j}^{\prime}\right)\right)^{r(k, j)} \tag{7.42}
\end{equation*}
$$

For the remainder of the proof it is necessary to split into cases. We state each of these as a separate proposition. In each proof we will specify $(n k)$), R, δ, and λ, then continue the present calculation.

Proposition 7.9. Let \mathscr{C} be a full VC class and $q \in Q$, and suppose

$$
\begin{equation*}
q(t) / t^{\frac{1}{2}} \downarrow, q(t) /\left(t L t^{-1}\right)^{\frac{1}{2} \uparrow} \uparrow L g(t) / L t^{-1} \uparrow \tag{7.43}
\end{equation*}
$$

Let $\left(\gamma_{n}\right),\left(\alpha_{n}\right),\left(b_{n}\right)$ be nonnegative sequences satisfying

$$
\gamma_{n} \leqq \alpha_{n}
$$

and

$$
\begin{equation*}
b_{n} q\left(\gamma_{n}\right) / n^{\frac{1}{2}} \gamma_{n} \rightarrow 0 \tag{7.44}
\end{equation*}
$$

Suppose the following limits exist and are finite:

$$
\begin{align*}
& c_{1}=\lim _{n} \gamma_{n} L g\left(\gamma_{n}\right) / b_{n}^{2} q^{2}\left(\gamma_{n}\right) \\
& c_{2}=\lim _{n} \gamma_{n} L L\left(\gamma_{n}^{-1} \alpha_{n}\right) / b_{n}^{2} q^{2}\left(\gamma_{n}\right) \\
& c_{3}=\lim _{n} \gamma_{n} L L n / b_{n}^{2} q^{2}\left(\gamma_{n}\right) \tag{7.45}
\end{align*}
$$

Then

$$
\begin{align*}
& \limsup _{n} \sup \left\{\left|\nu_{n}(C)\right| / b_{n} q\left(\sigma^{2}(C)\right): C \in \mathscr{C}, \gamma_{n} \leqq \sigma^{2}(C) \leqq \alpha_{n}\right\} \\
& \geqq\left(2\left(c_{1}+c_{2}+c_{3}\right)\right)^{\frac{1}{2}} \quad \text { a.s. } \quad \tag{7.46}
\end{align*}
$$

Proof. Let $0<\delta<1$ and $V=16 \delta^{-2}$; we continue our calculation taking

$$
R=\left(2\left(c_{1}+c_{2}+c_{3}\right)\right)^{\frac{1}{2}}, \lambda=\delta / 16, \quad \text { and } \quad n(k)=\left[V^{k}\right] .
$$

We may assume $R>0$. By (7.44), Lemma 7.5, (7.32), and (7.43),

$$
\begin{align*}
\mathbb{P}\left(A_{k j i}^{\prime}\right) & \geqq \mathbb{P}\left[v_{m(k)}\left(D_{k j j}\right) \geqq(1-\delta)\left(1+2 V^{-1}\right)^{\frac{1}{2}} R b_{n(k)} q\left(\sigma^{2}\left(C_{k j i}\right)\right)\right] \\
& \geqq \exp \left(-(1-\delta / 2) R^{2} b_{n(k)}^{2} q^{2}\left(\sigma^{2}\left(C_{k j i}\right)\right) / 2(1-2 \lambda) \sigma^{2}\left(C_{k j i}\right)\right) \\
& \geqq \exp \left(-(1-\delta / 4) R^{2} b_{n(k)}^{2} q^{2}\left(\gamma_{n(k)}\right) / 2 \gamma_{n(k)}\right) \\
& \equiv p_{k} \tag{7.47}
\end{align*}
$$

Set

$$
u(k)=\varepsilon_{\lambda} g\left(\gamma_{n(k)}\right)^{1-\delta / 8}, N(k)=N_{k}-N_{k}^{\prime}+1
$$

Since $\operatorname{tg}(t)$ and $L g(t) / L t^{-1}$ increase, for $j \geqq N_{k}^{\prime}$ we have

$$
r(k, j) \geqq \varepsilon_{\lambda} g\left(t_{k j}\right)^{1-\lambda} \geqq \varepsilon_{\lambda} g\left(\gamma_{n(k)}^{1-\delta / 16}\right)^{1-\delta / 16} \geqq u(k)
$$

Hence by (7.42) and (7.47),

$$
\mathbb{P}\left(\left(B_{k}^{\prime}\right)^{c}\right) \leqq\left(1-p_{k}\right)^{u(k) N(k)} \leqq\left(1-N(k) u(k) p_{k} / 2\right) \vee \frac{1}{2}
$$

so

$$
\begin{equation*}
\mathbb{P}\left(B_{k}^{\prime}\right) \geqq\left(N(k) u(k) p_{k} / 2\right) \wedge\left(\frac{1}{2}\right) \tag{7.48}
\end{equation*}
$$

If $N_{k}^{\prime}>0$ then

$$
\gamma_{n(k)}^{1-\delta / 16}<t_{k, N_{k}^{\prime}-1}=\alpha_{n(k)} \mu^{N_{k}^{\prime}-1}
$$

so

$$
N_{k}^{\prime} \leqq 1+\left(\log \mu^{-1}\right)^{-1}(1-\delta / 16) \log \left(\gamma_{n(k)}^{-1} \alpha_{n(k)}\right)
$$

while similarly

$$
N_{k}>-1+\left(\log \mu^{-1}\right)^{-1} \log \left(\gamma_{n(k)}^{-1} \alpha_{n(k)}\right) .
$$

Hence

$$
N(k) \geqq\left(-1+\left(\delta / 16 \log \mu^{-1}\right) \log \left(\gamma_{n(k)}^{-1} \alpha_{n(k)}\right)\right) \vee 1
$$

Since $\gamma_{n(k)}^{-1} \alpha_{n(k)} \rightarrow \infty$ if $c_{2}>0$, it follows that

$$
\begin{equation*}
L N(k) \geqq c_{2}(1-\delta / 4) b_{n(k)}^{2} q^{2}\left(\gamma_{n(k)}\right) / \gamma_{n(k)} . \tag{7.49}
\end{equation*}
$$

Similarly, since $c_{2} \leqq R^{2} / 2<(1-\delta / 4) R^{2}$,

$$
\begin{equation*}
L N(k) \leqq(1-\delta / 4) R^{2} b_{n(k)}^{2} q^{2}\left(\gamma_{n(k)}\right) / \gamma_{n(k)}=\log p_{k}^{-2} \tag{7.50}
\end{equation*}
$$

For $j \geqq N_{k}^{\prime}$ we have $t_{k j} \leqq \gamma_{n(k)}^{1-\delta / 16} \leqq \gamma_{n(k)}^{\frac{1}{2}} / 2$. Using this and Theorem 1 of Hoeffding (1963) we get for $N_{k}^{\prime} \leqq j \leqq N_{k}$:

$$
\begin{align*}
\mathbb{P}\left(U_{k j}^{c}\right) & \leqq \mathbb{P}\left[v_{m(k)}\left(H_{k j}\right) \geqq R b_{n(k)} q\left(t_{k j}\right) / 2 t_{k j}\right] \\
& \leqq \exp \left(-R^{2} b_{n(k)}^{2} q^{2}\left(t_{k j}\right) / 2 t_{k j}^{2}\right) \\
& \leqq \exp \left(-2 R^{2} b_{n(k)}^{2} q^{2}\left(\gamma_{n(k)}\right) / \gamma_{n(k)}\right) \\
& \leqq p_{k}^{4} . \tag{7.51}
\end{align*}
$$

Hence by (7.50),

$$
\sum_{j=N_{k}^{\prime}}^{N_{k}} \mathbb{P}\left(U_{k j}^{c}\right) \leqq N(k) p_{k}^{4} \leqq p_{k}^{2} \leqq\left(N(k) u(k) p_{k} / 4\right) \wedge\left(\frac{1}{4}\right)
$$

Combining this with (7.48) and (7.39) we see that

$$
\begin{equation*}
8 \mathbb{P}\left(B_{k}\right) \geqq N(k) u(k) p_{k} \wedge 1 \tag{7.52}
\end{equation*}
$$

Using (7.49) we obtain

$$
\begin{align*}
N(k) u(k) p_{k} & =\varepsilon_{\lambda} N(k) g\left(\gamma_{n(k)}\right)^{1-\delta / 8} \exp \left(-(1-\delta / 4) R^{2} b_{n(k)}^{2} q^{2}\left(\gamma_{n(k)}\right) / 2 \gamma_{n(k)}\right) \\
& \geqq \varepsilon_{\lambda} \exp \left(-(1-\delta / 4) c_{3} b_{n(k)}^{2} q^{2}\left(\gamma_{n(k)}\right) / \gamma_{n(k)}\right) \\
& \geqq \varepsilon_{\lambda} \exp (-(1-\delta / 8) \operatorname{Lnn}(k)) \\
& \geqq \varepsilon_{\lambda} k^{-(1-\delta / 16)} \tag{7.53}
\end{align*}
$$

With (7.52) this shows $\sum \mathbb{P}\left(B_{k}\right)=\infty$.
To establish (7.36) it remains to bound $\mathbb{P}\left(F_{k}\right)$. By (7.43), for $\gamma_{n(k)} \leqq t \leqq \varepsilon_{k}$ $\equiv \gamma_{n(k)}^{1-\delta / 16}$,

$$
\begin{aligned}
\frac{q^{2}(t)}{\operatorname{tLg}(t)} & \geqq \frac{q^{2}\left(\gamma_{n(k)}\right)}{\gamma_{n(k)}} \operatorname{L\gamma _{n(k)}^{-1}} \frac{L \varepsilon_{k}^{-1}}{\operatorname{Lg}\left(\varepsilon_{k}\right)} \geqq \frac{q^{2}\left(\gamma_{n(k)}\right)}{\gamma_{n(k)}} \operatorname{Lg}\left(\gamma_{n(k)}\right) \\
& \geqq\left(c_{1}+R^{2} / 2\right)^{-1}(1-\delta / 16) b_{n(k)}^{-2} \geqq\left(2 c_{1}+R^{2}\right)^{-1} b_{n(k)}^{-2}
\end{aligned}
$$

and

$$
\frac{q^{2}(t)}{t} \geqq \frac{q^{2}\left(\gamma_{n(k)}\right)}{\gamma_{n(k)}} \frac{L \varepsilon_{k}^{-1}}{L \gamma_{n(k)}^{-1}} \geqq \frac{q^{2}\left(\gamma_{n(k)}\right)}{2 \gamma_{n(k)}} .
$$

Also

$$
N(k) \leqq N_{k}+1 \leqq\left(\log \mu^{-1}\right)^{-1} \log \left(\gamma_{n(k)}^{-1} \alpha_{n(k)}\right)+1
$$

Combining these facts with (6.5), (6.4), (7.44), and (7.43) we obtain

$$
\begin{aligned}
\mathbb{P}\left(F_{k}\right) & \leqq \sum_{(j, i) \in I_{k}} 2 \exp \left(-\delta^{2} V R^{2} b_{n(k)}^{2} q^{2}\left(\sigma^{2}\left(C_{k j i}\right)\right) / 4 \sigma^{2}\left(C_{k j j}\right)\right) \\
& \leqq \sum_{j=N_{k}^{\prime}}^{N_{k}} 4 g\left(t_{k j}\right) \exp \left(-4 R^{2} b_{n(k)}^{2} q^{2}\left(t_{k j}\right) / t_{k j}\right) \\
& \leqq \sum_{j=N_{k}^{\prime}}^{N_{k}} 4 \exp \left(-\left(R^{2}+2 c_{2}+2 c_{3}\right) b_{n(k)}^{2} q^{2}\left(t_{k j}\right) / t_{k j}\right) \\
& \leqq 4 N(k) \exp \left(-\left(R^{2} / 2+c_{2}+c_{3}\right) b_{n(k)}^{2} q^{2}\left(\gamma_{n(k)}\right) / \gamma_{n(k)}\right) \\
& \leqq 4 \exp \left(-\left(R^{2} / 4+c_{3}\right) b_{n(k)}^{2} q^{2}\left(\gamma_{n(k)}\right) / \gamma_{n(k)}\right) \\
& \leqq 4 \exp \left(-\left(\frac{5}{4}\right) L L n(k)\right)
\end{aligned}
$$

and (7.36), and then (7.34), follow. Since δ may be arbitrarily small, this proves the proposition.

Remark 7.10. From the above proof it is apparent that the assumption that the limits in (7.45) exist is stronger than needed. In fact we have shown that if the \lim sup of each sequence in (7.45) is finite, then the lim sup in (7.46) is at least $\left(2 c_{4}\right)^{\frac{1}{2}}$, where

$$
c_{4}=\liminf _{n} \gamma_{n}\left(L g\left(\gamma_{n}\right)+L L\left(\gamma_{n}^{-1} \alpha_{n}\right)+L L n\right) / b_{n}^{2} q^{2}\left(\gamma_{n}\right)
$$

Similar considerations apply in the next two propositions; it follows (see the proof of Theorem 3.1 (B) below) that the limits of the sequences in (3.2) need not exist, and ϱ need not be at most one, for us to obtain some lower bound on the R in (3.4). As long as the lim sups c_{i} exist, the corresponding liminfs, say c_{i}^{\prime}, provide the lower bound ($2\left(c_{1}^{\prime}+c_{2}^{\prime}+c_{3}^{\prime}\right)$) for R.

Proposition 7.11. Let \mathscr{C} be a full VC class. Let γ_{n}, w_{n}, c_{1}, and c_{3} be as in Theorem 3.1 and $\theta=\left(c_{1}+c_{3}\right)^{-1}$, and suppose $\gamma_{n} \sim \tau n^{-1} w_{n}$ for some $\tau>0$. Suppose the $l i m$ sups in (3.2) are actually limits. Then

$$
\begin{gather*}
\limsup _{n} \sup \left\{\left|v_{n}(C)\right| / w_{n}^{\frac{1}{2}} \sigma(C): C \in \mathscr{C}, \sigma^{2}(C)=\gamma_{n}\right\} \\
\geqq \tau^{\frac{1}{2}}\left(\beta_{\theta_{\tau}}-1\right) \quad \text { a.s. } \tag{7.54}
\end{gather*}
$$

Proof. Let $0<\delta<1$ and take $n(k)=\left[V^{k}\right], b_{n}=w_{n}^{\frac{1}{2}}, \alpha_{n}=\gamma_{n}, R=\tau^{\frac{1}{2}}\left(\beta_{\theta \mathrm{r}}-1\right)$, $\lambda=\delta / 16, q(t)=t^{\frac{1}{2}}$ where $V \geqq 8 \delta^{-1}$ is large enough so

$$
\begin{equation*}
\delta R \tau^{\frac{1}{2}} h_{1}\left(\delta V R / 2 \tau^{\frac{1}{2}}\right) \geqq 6\left(c_{1}+c_{3}\right) . \tag{7.55}
\end{equation*}
$$

We may assume $R>0$, so $c_{1}+c_{3}=\theta^{-1}>0$. Note that $N_{k}=N_{k}^{\prime}=0$, so j is always 0 . By Lemma 7.4 and (1.11), similarly to (7.47),

$$
\begin{aligned}
\mathbb{P}\left(A_{k j i}^{\prime}\right) & \geqq \mathbb{P}\left[v_{m(k)}\left(D_{k j j}\right) \geqq(1-\delta / 2) R\left(w_{n(k)} \gamma_{n(k)}\right)^{\frac{1}{2}}\right] \\
& \geqq \exp \left(-(1-\delta / 4) w_{n(k)} R \tau^{\frac{1}{2}} h_{1}\left(R \tau^{-\frac{1}{2}}\right)\right) \\
& =\exp \left(-(1-\delta / 4)\left(c_{1}+c_{3}\right) w_{n(k)}\right) \\
& \equiv p_{k} .
\end{aligned}
$$

As in Proposition 7.9 (cf. (7.48)) it follows that

$$
\mathbb{P}\left(B_{k}^{\prime}\right) \geqq\left(u(k) p_{k} / 2\right) \wedge\left(\frac{1}{2}\right)
$$

for $u(k)=\varepsilon_{\lambda} g\left(\gamma_{n(k)}\right)^{1-\lambda}$. Analogously to (7.51)-(7.53), we obtain $\mathbb{P}\left(U_{k j}^{c}\right) \leqq p_{k}^{4}$ and then

$$
8 \mathbb{P}\left(B_{k}\right) \geqq u(k) p_{k} \wedge 1 \geqq \varepsilon_{\lambda} k^{-(1-\delta / 8)}
$$

so $\sum \mathbb{P}\left(B_{k}\right)=\infty$. By (6.5) and (7.55),

$$
\begin{aligned}
\mathbb{P}\left(F_{k}\right) & \leqq 2 r(k, 0) \exp \left(-\delta R\left(n(k) w_{n(k)} \gamma_{n(k)}\right)^{\frac{1}{2}} h_{1}\left(\delta V R / 2 \tau^{\frac{1}{2}}\right)\right) \\
& \leqq 4 g\left(\gamma_{n(k)}\right) \exp \left(-5\left(c_{1}+c_{3}\right) w_{n(k)}\right) \\
& \geqq 4 \exp \left(-3\left(c_{1}+c_{3}\right) w_{n(k)}\right) \\
& \leqq 4 \exp (-2 L L n(k))
\end{aligned}
$$

and, as in Proposition 7.9, the desired result follows.
Proposition 7.12. Let \mathscr{C} be a full VC class. Let $\gamma_{n}, w_{n}, y_{n}, c_{1}$, and c_{3} be as in Theorem 3.1, and suppose

$$
\begin{gather*}
\gamma_{n}=o\left(n^{-1} w_{n}\right) \quad \text { and } \tag{7.56}\\
L\left(w_{n} / n \gamma_{n}\right)=o\left(w_{n}\right) \tag{7.57}
\end{gather*}
$$

Then

$$
\limsup _{n} \sup \left\{\left|v_{n}(C)\right| / y_{n} \sigma(C): C \in \mathscr{C}, \sigma^{2}(C)=\gamma_{n}\right\} \geqq c_{1}+c_{3} \quad \text { a.s. } \quad \square
$$

Proof. Let $0<\delta<1$ and this time continue the calculation preceding (7.42) taking $b_{n}=y_{n}, \alpha_{n}=\gamma_{n}, R=c_{1}+c_{3}, \lambda=\delta / 16$, and $q(t)=t^{\frac{1}{2}}$. If $c_{3}>0$, take $n(k)=\exp (k L k)$. If $c_{3}=0$, then since $w_{n(k)} \leqq L \gamma_{n(k)}^{-1} \operatorname{LLn}(k) \leqq 2 \operatorname{Ln}(k)$, by (7.56) and (7.57) we can inductively take $n(k)$ large enough so

$$
\begin{align*}
L(n(k) / n(k-1)) \geqq & w_{n(k)} / 4 \geqq 3 \delta^{-2} L\left(w_{n(k)} / n(k) \gamma_{n(k)}\right) \\
& w_{n(k)} \geqq 4 L k . \tag{7.58}
\end{align*}
$$

and
Again we may assume $R>0$, and j is always 0 . By Lemma 7.4, (6.2), and (7.56),

$$
\begin{aligned}
\mathbb{P}\left(A_{k j i}^{\prime}\right) & \geqq \mathbb{P}\left[v_{m(k)}\left(D_{k j i}\right) \geqq(1-\delta / 2) R y_{n(k)}\left(\gamma_{n(k)} n(k) / m(k)\right)^{\frac{1}{2}}\right] \\
& \geqq \exp \left(-(1-\delta / 2) R y_{n(k)}\left(n(k) \gamma_{n(k)}\right)^{\frac{1}{2}} L\left(R y_{n(k)} /\left(n(k) \gamma_{n(k)}\right)^{\frac{1}{2}}\right)\right) \\
& \geqq \exp \left(-(1-\delta / 4)\left(c_{1}+c_{3}\right) w_{n(k)}\right) \\
& \equiv p_{k}
\end{aligned}
$$

As in Proposition 7.11 it follows from this that

$$
8 \mathbb{P}\left(B_{k}\right) \geqq u(k) p_{k} \wedge 1
$$

where $u(k)=\varepsilon_{\lambda} g\left(\gamma_{n(k)}\right)^{1-\lambda}$. If $c_{3}=0$ then $u(k) p_{k} \geqq 1$ so $\sum \mathbb{P}\left(B_{k}\right)=\infty$. If $c_{3}>0$ then

$$
\begin{aligned}
& u(k) p_{k} \geqq \varepsilon_{\lambda} \exp \left(-(1-\delta / 4) c_{3} w_{n(k)}\right) \geqq \exp (-(1-\delta / 8) L L n(k)) \\
& \geqq \exp (-(1-\delta / 16) L k)
\end{aligned}
$$

and again $\sum \mathbb{P}\left(B_{k}\right)=\infty$.

By (6.5), (6.2), and (7.56),

$$
\begin{align*}
\mathbb{P}\left(F_{k}\right) & \leqq 2 r(k, 0) \exp \left(-\delta R y_{n(k)}\left(n(k) \gamma_{n(k)}\right)^{\frac{1}{2}} h_{1}\left(\delta R y_{n(k)} n(k)^{\frac{1}{2}} / n(k-1) \gamma_{n(k)}^{\frac{1}{2}}\right)\right) \tag{7.59}\\
& \leqq 4 g\left(\gamma_{n(k)}\right) \exp \left(-\delta^{2} R y_{n(k)}\left(n(k) \gamma_{n(k)}\right)^{\frac{1}{2}} L(n(k) / n(k-1))\right)
\end{align*}
$$

If $c_{3}>0$ then $c_{3} w_{n(k)} \sim \operatorname{LLn}(k)$ so using (7.57),

$$
\begin{aligned}
L(n(k) / n(k-1))) & \geqq L k \geqq(L L n(k)) / 2 \geqq c_{3} w_{n(k)} / 4 \\
& \geqq 4 \delta^{-2} L\left(w_{n(k)} / n(k) \gamma_{n(k)}\right)
\end{aligned}
$$

Then by (7.59),

$$
\begin{aligned}
\mathbb{P}\left(F_{k}\right) & \leqq 4 g\left(\gamma_{n(k)}\right) \exp \left(-4\left(c_{1}+c_{3}\right) w_{n(k)}\right) \\
& \leqq 4 \exp \left(-3 c_{3} w_{n(k)}\right) \leqq 4 \exp (-2 \operatorname{Ln}(k)) \leqq 4 k^{-2}
\end{aligned}
$$

so $\sum \operatorname{PP}\left(F_{k}\right)<\infty$. If $c_{3}=0$ then by (7.58) and (7.59),

$$
\begin{aligned}
\mathbb{P}\left(F_{k}\right) & \leqq 4 g\left(\gamma_{n(k)}\right) \exp \left(-3 R w_{n(k)}\right) \\
& \leqq 4 \exp \left(-w_{n(k)}\right) \leqq 4 k^{-2}
\end{aligned}
$$

so once more $\sum \mathbb{P}\left(F_{k}\right)<\infty$. As in the previous two propositions, the desired result now follows.

Proof of Theorem 3.1 (B). For (i) and (iii) the result is immediate from Propositions 7.9 and 7.12 respectively. For (ii) we have $R \geqq \tau^{\frac{1}{2}}\left(\beta_{\theta \tau}-1\right)$ by Proposition 7.11; to get $R \geqq\left(2\left(c_{1}+c_{2}+c_{3}\right)\right)^{\frac{1}{2}}$ we can take a sequence $\left(\alpha_{n}\right)$ as in the proof of Theorem 3.1 (A) (ii). That is, $\gamma_{n} \leqq \alpha_{n}$, and the c_{i} in (3.2) are unchanged but (i) applies, if γ_{n} is replaced by α_{n}.

Proof of Theorem 3.1 (C). We return now to the notation of the calculation preceding Propositions 7.9, 7.11, and 7.12, but with the following changes: now $S_{k} \equiv k^{\frac{1}{2}} v_{k}$ and $D_{k j i} \equiv C_{k j i}$.

We specify

$$
\alpha_{n} \equiv \gamma_{n}, n(k) \equiv k, \lambda=\delta / 8
$$

so that $N_{k}^{\prime}=N_{k}=0$. Observe that c_{1} must be 1 and c_{2} must be 0 . Since \mathscr{C} is spatially full, we take the $C_{k 0 i}$ to be disjoint for distinct i and fixed k. To prove the theorem it suffices to show that, whatever δ may be, $\mathbb{P}\left(B_{k}^{c}\right.$ i.o. $)=0$. As in (7.42), since the $C_{k 0 i}$ are disjoint,

$$
\begin{equation*}
\mathbb{P}\left(B_{k}^{c}\right) \leqq\left(1-\min _{i \leqq r(k, 0)} \mathbb{P}\left(A_{k 0 i}\right)\right)^{r(k, 0)} \tag{7.60}
\end{equation*}
$$

while as in the proofs of Propositions 7.9, 7.11, and 7.12,

$$
\begin{aligned}
\min _{i \leqq r(k, 0)} \mathbb{P}\left(A_{k 0 i}\right) & \geqq \exp \left(-(1-\delta / 4) w_{k}\right) \\
& =\exp \left(-(1-\delta / 4) L g\left(\gamma_{k}\right)\right) \equiv p_{k}
\end{aligned}
$$

Since $c_{3}=0$,

$$
\begin{aligned}
r(k, 0) p_{k} & \geqq \varepsilon_{\lambda} g\left(\gamma_{k}\right)^{1-\lambda} \exp \left(-(1-\delta / 4) \operatorname{Lg}\left(\gamma_{k}\right)\right) \\
& \geqq \varepsilon_{\lambda} \exp \left((\delta / 8) \operatorname{Lg}\left(\gamma_{k}\right)\right) \geqq 4 L k
\end{aligned}
$$

so since $p_{k} \rightarrow 0,(7.60)$ gives

$$
\mathbb{P}\left(B_{k}^{c}\right) \leqq\left(1-p_{k}\right)^{r(k, 0)} \leqq \exp \left(-p_{k} r(k, 0) / 2\right) \leqq k^{-2}
$$

and the theorem follows.
Theorem 4.1 will be proved after Theorem 4.2, and Corollaries 3.5, 3.7, and 3.9 will be proved in Sect. VIII.

Proof of Theorem 4.2. The proof of (i) is like that of Theorem 3.1 (A) (i), so we will omit details which are similar. Recall that $q_{1}(t)=\psi_{1}\left(t^{\frac{1}{2}}\right)$. If $\lambda<1$ and $g(t) \geqq e$ then $\lambda t L g(\lambda t) \leqq \lambda t L\left(\lambda^{-1} g(t)\right) \leqq t L g(t)$; it follows that ψ_{1} is increasing (at least for small t, which is clearly all that matters) so we may assume $q_{1} \in Q$. By Lemma 7.2, to prove (i) it suffices to show that for each $\delta>0$,

$$
\begin{gather*}
\mathbb{P}^{*}\left[\left|v_{n}(C)\right|>(1+8 \delta) R_{\delta} q_{1}\left(\sigma^{2}(C)\right) \quad \text { for some } C \in \mathscr{C}\right. \\
\text { with } \left.\quad \gamma_{n} \leqq \sigma^{2}(C) \leqq \alpha_{n}\right]=0\left((L n)^{-(1+\delta)}\right), \tag{7.61}
\end{gather*}
$$

where $R_{\delta}=\left(2\left((\varrho+\delta)\left(c_{1}+\delta\right)+c_{2}+c_{3}+2 \delta\right)\right)^{\frac{1}{2}}$.
Fix n and $0<\delta<\frac{1}{8}$, then $0<u<\delta$ small enough so

$$
\begin{equation*}
\delta^{2} R_{\delta}^{2} / 512 u^{2} \geqq 2\left(c_{3}+2\right) . \tag{7.62}
\end{equation*}
$$

Let $t_{j}=(1-u)^{j} \alpha_{n}$ and let $\mathscr{E}(j), \mathscr{F}(j), N_{n}$, and $\mathscr{C}(t)$ be as in the proof of Theorem 3.1 (A). As in (7.20),

$$
\begin{aligned}
\mathbb{P}^{*} & {\left[\left|v_{n}(C)\right|>(1+8 \delta) R_{\delta} q_{1}\left(\sigma^{2}(C)\right) \text { for some } C \in \mathscr{C} \text { with } \gamma_{n} \leqq \sigma^{2}(C) \in \alpha_{n}\right] } \\
\leqq & \sum_{j=0}^{N_{n}} \mathbb{P}\left[\left|v_{n}(C)\right|>(1+4 \delta) R_{\delta} q_{1}\left(t_{j}\right) \text { for some } C \in \mathscr{F}(j)\right] \\
& +\mathbb{P}^{*}\left[\left|v_{n}(C)\right|>\delta R_{\delta} q_{1}(t) \quad \text { for some } \gamma_{n} \leqq t \leqq \alpha_{n} \quad \text { and } C \in \mathscr{C}(t)\right] \\
\equiv & \sum_{j=0}^{N_{n}} \mathbb{P}_{j}+\mathbb{P}_{n}^{*} .
\end{aligned}
$$

By (3.3), we can take

$$
|\mathscr{F}(j)| \leqq K g\left(t_{j}\right)^{e+\delta}
$$

for some $K=K(\delta, u)<\infty$. Since $q_{1}\left(t_{j}\right) / n^{\frac{1}{2}} t_{j} \leqq\left(\left(L g_{1}\left(\gamma_{n}\right)\right) / n \gamma_{n}\right)^{\frac{1}{2}} \rightarrow 0$, we obtain using (6.5) and (6.2) that

$$
\begin{align*}
\mathbb{P}_{j} & \leqq 2|\mathscr{F}(j)| \exp \left(-(1+4 \delta) R_{\delta}^{2}\left(L g_{1}\left(t_{j}\right)\right) / 2\right. \\
& \leqq 2 K \exp \left(-(1+4 \delta)\left(c_{2}+c_{3}+2 \delta\right) L g_{1}\left(t_{j}\right)\right) \\
& \leqq 2 K \exp \left(-(1+4 \delta)\left(c_{2}+\delta\right) L g_{1}\left(t_{j}\right)-(1+4 \delta) L L n\right) \tag{7.63}
\end{align*}
$$

If $c_{2}=c_{2}^{\prime}$ then

$$
\begin{aligned}
& \sum_{j=0}^{N_{n}} \exp \left(-(1+4 \delta)\left(c_{2}+\delta\right) L g_{1}\left(t_{j}\right)\right) \\
& \quad \leqq \sum_{j=0}^{\infty} \exp \left(-(1+4 \delta) L L t_{j}^{-1}\right) \\
& \quad \leqq \sum_{j=0}^{\infty}\left(j \log (1-u)^{-1}+L \alpha_{n}^{-1}\right)^{-(1+4 \delta)} \\
& \quad=o(1) \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

so by (7.63),

$$
\begin{equation*}
\sum_{j=0}^{N_{n}} \mathbb{P}_{j}=O\left((L n)^{-(1+4 \delta)}\right) \tag{7.64}
\end{equation*}
$$

If $c_{2}=c_{2}^{\prime \prime}$ then since $N_{n}=O\left(L\left(\gamma_{n}^{-1} \alpha_{n}\right)\right)$,

$$
\begin{aligned}
& \sum_{j=0}^{N_{n}} \exp \left(-(1+4 \delta)\left(c_{2}+\delta\right) L g_{1}\left(t_{j}\right)\right) \\
& \quad \leqq N_{n} \exp \left(-(1+4 \delta)\left(c_{2}+\delta\right) L g_{1}\left(\alpha_{n}\right)\right)=o(1)
\end{aligned}
$$

so again (7.64) holds.
As in the proof of Theorem 3.1 (A) (i), we obtain from Theorem 2.1, (7.62), and (4.7) that

$$
\begin{aligned}
\mathbb{P}_{n}^{*} \leqq & 36 \int_{\gamma_{n} / 2}^{\alpha_{n}} t^{-1} \exp \left(-\delta^{2} R_{\delta}^{2} L g_{1}(t) / 512 u^{2}\right) d t \\
& +68 \exp \left(-\delta R_{\delta}\left(n \gamma_{n} L g_{1}\left(\gamma_{n}\right)\right)^{\frac{1}{2}} / 256\right) \\
\leqq & 36 \int_{\gamma_{n} / 2}^{\alpha_{n}} t^{-1} \exp \left(-2 L L t^{-1}-2\left(c_{3}+1\right) L g_{1}\left(\alpha_{n}\right)\right) d t \\
& +68 \exp \left(-2\left(c_{3}+1\right) L g_{1}\left(\gamma_{n}\right)\right) \\
= & O(\exp (-2 L L n))
\end{aligned}
$$

and (7.61), and then (i), follow.
For (ii), fix $\delta>0$ and set $\gamma_{n}^{*}=\gamma_{n} \vee \alpha_{n}^{1+\delta}$. We wish to apply Proposition 7.9. Consider the sequences in (7.45): since $L g(t) / L t^{-1}$ increases, $L g_{1}\left(\gamma_{n}^{*}\right) \leqq(1+\delta) L g_{1}\left(\alpha_{n}\right)$ so

$$
\begin{aligned}
& \lim _{n} \gamma_{n}^{*} L g\left(\gamma_{n}^{*}\right) / q_{1}^{2}\left(\gamma_{n}^{*}\right)=c_{1} \\
& \liminf _{n} \gamma_{n}^{*} L L\left(\left(\gamma_{n}^{*}\right)^{-1} \alpha_{n}\right) / q_{1}^{2}\left(\gamma_{n}^{*}\right) \geqq(1+\delta)^{-1} c_{2} \\
& \liminf _{n} \gamma_{n}^{*} L L n / q_{1}^{2}\left(\gamma_{n}^{*}\right) \geqq(1+\delta)^{-1} c_{3} .
\end{aligned}
$$

Since δ is arbitrary, Proposition 7.9 and Remark 7.10 prove (ii).
For (iii), by increasing γ_{n} we may assume $\gamma_{n}=\alpha_{n}$. The proof is then just like that of Theorem $3.1(\mathrm{C})$, since $c_{2}=0$ and $c_{1}=1$ whenever $c_{3}=0$.

Proof of Theorem 4.1. It follows readily from Theorem 4.2 that ψ_{1} is a local asymptotic modulus at ϕ for $\left(v_{n}\right)$.

To show ψ_{0} is an asymptotic modulus of continuity, let $\gamma_{n}, \alpha_{n} \downarrow 0$ with $n \alpha_{n} \uparrow, \gamma_{n}$ $\leqq \alpha_{n}, n^{-1} L n=o\left(\gamma_{n}\right)$, and $L L n=O\left(L \alpha_{n}^{-1}\right)$. It suffices in (4.5) to consider C, D satisfying $P(C \backslash D) \geqq P(C \Delta D) / 2$. Let $\mathscr{D}=\left\{C \backslash D: C, D \in \mathscr{C}, \gamma_{n} / 2 \leqq \sigma^{2}(C \backslash D) \leqq \alpha_{n}\right\}$ and $\mathscr{E}=\left\{C \Delta D: C, D \in \mathscr{C}, \gamma_{n} \leqq \sigma^{2}(C \Delta D) \leqq \alpha_{n}\right\}$. We may take the capacity function of \mathscr{D} or \mathscr{E} to be $\hat{g}(t)=t^{-1}$ (see Remark 2.2). Since $\left|v_{n}(C)-v_{n}(D)\right|$ $\leqq\left|v_{n}(C \Delta D)\right|+2\left|v_{n}(C \backslash D)\right|$, we have

$$
\begin{aligned}
\sup & \left\{\frac{\left|v_{n}(C)-v_{n}(D)\right|}{\psi_{0}(\sigma(C \Delta D))}: C, D \in \mathscr{C}, P(C \Delta D) \leqq \frac{1}{2}, \gamma_{n} \leqq \sigma^{2}(C \Delta D) \leqq \alpha_{n}\right\} \\
\leqq & \sup \left\{\left|v_{n}(C)\right| / \psi_{0}(\sigma(C)): C \in \mathscr{E}, \gamma_{n} \leqq \sigma^{2}(C) \leqq \alpha_{n}\right\} \\
& +2 \sup \left\{\left|v_{n}(C)\right| / \psi_{0}(\sigma(C)): C \in \mathscr{D}, \gamma_{n} / 2 \leqq \sigma^{2}(C) \leqq \alpha_{n}\right\}
\end{aligned}
$$

so the result follows from Theorem 4.2.

Proof of Theorem 4.4. We use Theorem 2.1, with $\mathscr{C}(t)=\mathscr{C}_{t}, \zeta(t)=t, q(t)=\psi_{1}\left(t^{\frac{1}{2}}\right)$, $\gamma=\gamma_{n}$, and $\alpha=\frac{1}{4}$. (As always, we use $p=0$.) Then $r=\gamma_{n}>s$ in (2.1), since $n^{-1} \operatorname{Lg}\left(\gamma_{n}\right)=o\left(\gamma_{n}\right)$. If b is large enough then (2.2) is clear, (2.3) follows easily from the observation that

$$
\begin{equation*}
L(n a(t)) \leqq L(n t)+L g(t) \tag{7.65}
\end{equation*}
$$

and (2.4) and (2.5) are vacuous. Hence (2.6) holds. If b is large then $\exp \left(-b^{2} q^{2}(t) / 512 t\right) \leqq b^{-1}\left(L t^{-1}\right)^{2}$, so the second term on the right side of (2.6) can be made small. Since $q\left(\gamma_{n}\right) n^{\frac{1}{2}} \geqq\left(n \gamma_{n}\right)^{\frac{1}{2}} \rightarrow \infty$ as $n \rightarrow \infty$, the third term is small for large n, and the theorem follows.

Proof of Theorems 5.1 and 5.2. For simplicity we assume $P(C) \leqq \frac{1}{2}$ for all C; Proposition 6.1 easily handles any larger sets. Observe that for $M>0$,

$$
\begin{gather*}
\mathbb{P}\left[\sup \left\{\left|\frac{P_{n}(C)}{P(C)}-1\right|: C \in \mathscr{C}, P(C) \geqq \gamma_{n}\right\}>M\right] \tag{7.66}\\
\leqq \mathbb{P}\left[\left|v_{n}(C)\right|>M n^{\frac{1}{2}} \sigma^{2}(C) \text { for some } C \in \mathscr{C} \text { with } \sigma^{2}(C) \geqq \gamma_{n} / 2\right] .
\end{gather*}
$$

Thus to prove the desired results we use Theorem 2.1 with $\mathscr{C}(t)=\mathscr{C}_{t}, \zeta(t)=t$, $\gamma=\gamma_{n} / 2, \alpha=\frac{1}{4}, q(t)=t$, and $b=M n^{\frac{1}{2}}$. If (2.2)-(2.5) hold then (2.6) bounds the right side of (7.66) by

$$
\begin{align*}
& 36 \int_{\gamma_{n} / 2}^{\alpha} t^{-1} \exp \left(-M^{2} n t / 512\right) d t+68 \exp \left(-M n \gamma_{n} / 256\right) \\
& =O\left(\exp \left(-M^{2} n \gamma_{n} / 1024\right)\right)+O\left(\exp \left(-M n \gamma_{n} / 256\right)\right) \tag{7.67}
\end{align*}
$$

In (2.1) the values are

$$
r=\gamma_{n}, \quad s=\left\{\begin{array}{lll}
0 & \text { if } & M \leqq 2 \tag{7.68}\\
\infty & \text { if } & M>2
\end{array}\right.
$$

To prove (5.2), we take M fixed but arbitrarily small in (7.66). Then (5.1), (7.65), and the fact that $n \gamma_{n} \rightarrow \infty$ establish (2.2) and (2.3). (2.4) and (2.5) are vacuous by (7.68), so (5.2) follows from (7.66) and (7.67). If (5.3) holds, then this same proof shows the right side of (7.66) is $O\left((L n)^{-2}\right)$, and a.s. convergence in (5.2) follows from Lemma 7.2.

To prove (5.6), observe that if $R \geqq 2$, since $P_{n}(C) \geqq n^{-1}$ whenever $P_{n}(C) \neq 0$,

$$
\begin{align*}
\mathbb{P}\left[P_{n}(C)\right. & \left.\leqq\left(R L g\left(\gamma_{n}^{*}\right)\right)^{-1} P(C) \quad \text { for some } C \in \mathscr{C} \text { with } P_{n}(C) \neq 0\right] \tag{7.69}\\
& \leqq \mathbb{P}\left[\sup \left\{\left|\frac{P_{n}(C)}{P(C)}-1\right|: C \in \mathscr{C}, P(C) \geqq R \gamma_{n}^{*}\right\}>\frac{1}{2}\right]
\end{align*}
$$

so we use $M=\frac{1}{2}$ and $\gamma_{n}=R \gamma_{n}^{*}$ this time in (7.65). If R is large enough then (2.2) and (2.3) follow from (7.65), (7.68), and the observations that $n \gamma_{n}^{*} \geqq 1$ and ($\left.n t\right)^{-1}$ $L g(t) \leqq 2 R^{-1}$ for $t \geqq R \gamma_{n}^{*} / 2$. (2.4) and (2.5) are vacuous. Hence (7.69), (7.66), and (7.67) bound the left side of (5.6) by $O\left(\exp \left(-2^{-13} R L g\left(\gamma_{n}^{*}\right)\right)\right.$, and (5.6) follows. (5.7) is proved similarly, except that now it is (2.2) and (2.3) that are vacuous.

If g is bounded, say $g(t) \leqq \lambda$ for all t, then $\sup \left\{P_{n}(C) / P(C): C \in \mathscr{C}, P(C) \geqq \varepsilon \gamma_{n}^{*}\right\}$ is bounded in probability for all $\varepsilon>0$ by (5.7), while for $R>0$,

$$
\begin{aligned}
& \mathbb{P}\left[\sup \left\{P_{n}(C) / P(C): C \in \mathscr{C}, P(C)<\varepsilon \gamma_{n}^{*}\right\}>R\right] \\
& \quad \leqq \mathbb{P}\left[\sup \left\{P_{n}(C): C \in \mathscr{C}, P(C)<\varepsilon \gamma_{n}^{*}\right\}>0\right] \\
& \quad \leqq n a\left(\varepsilon \gamma_{n}^{*}\right) \leqq n \lambda \varepsilon \gamma_{n}^{*} \leqq \lambda \varepsilon L \lambda \rightarrow 0 \quad \text { as } \quad \varepsilon \rightarrow 0,
\end{aligned}
$$

and the last statement in Theorem 5.2 follows.
It remains to prove (5.5) when \mathscr{C} is full and (5.4) holds. By (5.4) we have $\gamma_{n} \leqq \tau \mathrm{n}^{-1}\left(\operatorname{Lg}\left(\gamma_{n}\right) \vee L L n\right)$ for all n for some $\tau>0$, so if we define γ_{n}^{\prime} to be the solution γ of

$$
\gamma=\tau n^{-1}(L g(\gamma) \vee L L n),
$$

then $\gamma_{n} \leqq \gamma_{n}^{\prime}$. Set $w_{n}^{\prime}=L g\left(\gamma_{n}^{\prime}\right) \vee L L n$. By Proposition 7.11 and Remark 7.10, for some $0<\theta<1$ we have infinitely often

$$
\begin{aligned}
& \sup \left\{\left|\frac{P_{n}(C)}{P(C)}-1\right|: C \in \mathscr{C}, P(C) \leqq \frac{1}{2}, \sigma^{2}(C) \geqq \gamma_{n}\right\} \\
& \geqq \sup \left\{\left|v_{n}(C)\right| / 2\left(n \gamma_{n}^{\prime}\right)^{\frac{1}{2}} \sigma(C): C \in \mathscr{C}, \sigma^{2}(C)=\gamma_{n}^{\prime}\right\} \\
& \geqq\left(\beta_{\theta_{\tau}}-1\right) / 4 .
\end{aligned}
$$

VIII. Proofs for Examples

Define $f(t) \leqq \frac{1}{2}$ by $f(t)(1-f(t))=t$, so $f\left(\sigma^{2}(C)\right)=P(C)$ if $P(C) \leqq \frac{1}{2}$. Observe that by (3.1) it suffices to prove (3.3) for small t, say $t \leqq \frac{1}{8}$, to prove it for all $t>0$.
Proof of Corollary 3.5. From Example 3.4 we see that if suffices to prove (3.3) for $\mathscr{C}=\mathscr{D}_{d}, \varrho=1$, and some $\eta<\infty$. Fix $u \in(0,1)$ and $t \in\left(0, \frac{1}{8}\right]$, and set

$$
\begin{aligned}
\mathscr{C}^{\prime} & =\left\{C \in \mathscr{D}_{d}:\left(1-u^{2} / 4\right) t<\sigma^{2}(C) \leqq t, P(C) \leqq \frac{1}{2}\right\} \\
\mathscr{C}^{\prime \prime} & =\left\{C^{c}: C \in \mathscr{D}_{d},\left(1-u^{2} / 4\right) t<\sigma^{2}(C) \leqq t, P(C)>\frac{1}{2}\right\}
\end{aligned}
$$

so $\mathscr{C}_{t} \backslash \mathscr{C}_{\left(1-u^{2} \mid 4\right) t}=\mathscr{C}^{\prime} \cup \mathscr{C}^{\prime \prime}$; we will consider \mathscr{C}^{\prime} and $\mathscr{C}^{\prime \prime}$ separately.
For \mathscr{C}^{\prime}, let $\mu=1-u^{2} / 8 d$ and let \mathscr{F} be as in (3.7). We have (cf. (3.8))

$$
|\mathscr{F}| \leqq K_{1}\left(\log \mu^{-1}\right)^{-(d-1)}\left(L t^{-1}\right)^{d-1} \leqq K_{2} u^{-2(d-1)} g(t)
$$

where K_{1} and K_{2} depend only on d.
Fix $C \in \mathscr{C}^{\prime}$. There exists $C_{1}=[0, y]$ with $C \in C_{1}, \sigma^{2}\left(C_{1}\right)=t, C_{1}^{c} \in \mathscr{C} \mathscr{C}^{\prime \prime}$, and $P\left(C_{1} \backslash C\right)=f(t)-f\left(\sigma^{2}(C)\right) \leqq 2\left(t-\sigma^{2}(C)\right) \leqq u^{2} t / 2$. Clearly there then exists $C_{2}=[0, x] \in \mathscr{F}$ with $\mu x_{i} \leqq y_{i} \leqq \mu^{-1} x_{i}$ for all $i \leqq d$, so $P\left(C_{1} \Delta C_{2}\right) \leqq 2 d\left(\mu^{-1}-1\right)$ $P\left(C_{1}\right) \leqq u^{2} t / 2$. Hence $P\left(C \Delta C_{2}\right) \leqq u^{2} t$ and \mathscr{C}^{\prime} is taken care of.

For $\mathscr{C}^{\prime \prime}$ the proof is somewhat similar. Let N be an integer between $20 d u^{-2}$ and $21 d u^{-2}$ and set

$$
\begin{aligned}
\mathscr{G}= & \left\{[0, x]: x_{i}=1-n_{i} f(t) / N \quad \text { for some } n_{i} \leqq N\right. \\
& \text { for each } \left.i \leqq d-1, \prod_{i=1}^{d} x_{i}=1-f(t)\right\} .
\end{aligned}
$$

Fix C with $C^{c} \in \mathscr{C}^{\prime \prime}$. There exists $C_{1}=[0, y]$ with $C \supset C_{1}, C_{1}^{c} \in \mathscr{C}^{\prime \prime}, \sigma^{2}\left(C_{1}\right)=t$, and $P\left(C \backslash C_{1}\right) \leqq u^{2} t / 2$. Then we can find $C_{2}=[0, x] \in \mathscr{G}$ with $x_{i}-f(t) / N \leqq y_{i} \leqq x_{i}$ for

$$
\begin{aligned}
P\left(C^{c} \Delta C_{2}^{c}\right)=P\left(C \Delta C_{2}\right) & \leqq P\left(C \backslash C_{1}\right)+P\left(C_{1} \Delta C_{2}\right) \\
& \leqq u^{2} t / 2+\sum_{i=1}^{d}\left|x_{d}-y_{d}\right| \\
& \leqq u^{2} t / 2+5 d f(t) / N \leqq u^{2} t
\end{aligned}
$$

Since

$$
|\mathscr{G}| \leqq(N+1)^{d-1} \leqq(22 d)^{d-1} u^{-2(d-1)} g(t),
$$

$\mathscr{C}^{\prime \prime}$ is now taken care of, and (3.3) follows.
Proof of Corollary 3.7. We need to show that \mathscr{C} is full and that (3.3) holds with $\varrho=1$. Example 3.6 shows we may assume $P=N(0, I)$. We use the notation of Example 3.6.

Fix $u \in(0,1)$ and $t \in\left(0, \frac{1}{8}\right]$, set

$$
r=\Phi^{-1}(1-f(t)), r^{*}=\Phi^{-1}\left(1-f\left(\left(1-u^{2} / 4\right) t\right)\right)
$$

and fix $\theta>0$ to be specified later. Then

$$
\begin{equation*}
\mathscr{C}_{t} \backslash \mathscr{C}_{\left(1-u^{2} / 4\right) t}=\left\{C_{b v}: r \leqq b<r^{*}, v \in S^{d-1}\right\} \cup\left\{C_{b v}^{c}:-r^{*}<b \leqq-r, v \in S^{d-1}\right\} \tag{8.1}
\end{equation*}
$$

Let V be a maximal subset of S^{d-1} such that the angle between any two vectors in V is at least θ, and $\mathscr{F}=\left\{C_{r v}: v \in V\right\}$. Then

$$
\begin{equation*}
\delta \theta^{-(d-1)} \leqq|V|=|\mathscr{F}| \leqq M \theta^{-(d-1)} \tag{8.2}
\end{equation*}
$$

for some δ, M depending only on d.
We now prove (3.3). Let us specify $\theta=u^{2} / 16 r$. Let $C \in \mathscr{C}_{t} \backslash \mathscr{C}_{\left(1-u^{2} / 4\right) t}$. It is clear that there is a $w \in S^{d-1}$ for which $C \subset C_{r w}$ and

$$
\begin{equation*}
P\left(C \Delta C_{r w}\right) \leqq P\left(C_{r w}\right)-P\left(C_{r * w}\right)=f(t)-f\left(\left(1-u^{2} / 4\right) \mathrm{t}\right) \leqq u^{2} t / 2 \tag{8.3}
\end{equation*}
$$

Since V is maximal, there is a $v \in V$ making an angle $\alpha \leqq \theta$ with w. Suppose we can show that

$$
\begin{equation*}
P\left(C_{r v} \Delta C_{r w}\right)=2 P\left(C_{r v} \backslash C_{r w}\right) \leqq u^{2} t / 2 \tag{8.4}
\end{equation*}
$$

With (8.3) and (8.2) this shows that

$$
N_{2}\left(u t^{\frac{1}{2}}, \mathscr{C}_{t} \backslash \mathscr{C}_{\left(1-u^{2} / 4\right) t}, P\right) \leqq M \theta^{-(d-1)} \leqq 16^{d-1} M u^{-2(d-1)} r^{d-1}
$$

Since $\Phi^{-1}(1-f(t)) \sim\left(2 L f(t)^{-1}\right)^{\frac{1}{2}}$ as $t \rightarrow 0$, there exists $K=K(d)$ such that

$$
\begin{equation*}
K^{-1} g(t) \leqq r^{d-1} \leqq K g(t) \tag{8.5}
\end{equation*}
$$

and (3.3) follows.
The equality in (8.4) is clear. Since $P\left(C_{r v} \backslash C_{r w}\right)$ depends only on r and the angle α, we may assume $d=2, v=(0,1)$, and $w=(-\sin \alpha, \cos \alpha)$ in proving the inequality in (8.4). Let l_{1} be the boundary of $C_{r w}, l_{2}=\{x: x \cdot w=r \cos \alpha\}$ the line parallel to l_{1} through $r v, T$ the strip between l_{1} and $l_{2}, \mathrm{H}=\{x: x \cdot w \leqq r \cos \alpha\}$ the closed half plane bounded by l_{2} and disjoint from $C_{r w}$, and W the wedge $H \cap C_{r v}$ with vertex at $r v$. Then

$$
\begin{equation*}
P\left(C_{r v} \backslash C_{r w}\right) \leqq P(T)+P(W) \tag{8.6}
\end{equation*}
$$

Let t_{0} satisfy $\Phi^{-1}\left(1-f\left(t_{0}\right)\right)=1$. For t bounded away from 0 , (3.3) follows from Lemma 7.13 of Dudley (1978), so we may assume $t<t_{0}$. Then $r>1$ and

$$
\begin{aligned}
P(T) & =\Phi(r)-\Phi(r \cos \alpha) \\
& \leqq r(1-\cos \alpha) \exp \left(-r^{2}\left(\cos ^{2} \alpha\right) / 2\right) \\
& \leqq r \theta^{2} \exp \left(r^{2} \theta^{2} / 2\right) \exp \left(-r^{2} / 2\right) / 2 \\
& \leqq u^{2} r^{-1} \exp \left(-r^{2} / 2\right) / 16 \leqq u^{2}(1-\Phi(r)) / 8 \leqq u^{2} t / 4
\end{aligned}
$$

Using polar coordinates centered at $r v$ we obtain

$$
\begin{align*}
P(W) & =\int_{0}^{\infty} \int_{0}^{\alpha}(2 \pi)^{-1} \exp \left(-\left(r^{2}+s^{2}+2 r s \sin \beta\right) / 2\right) s d \beta d s \\
& \leqq \alpha \exp \left(-r^{2} / 2\right) \int_{0}^{\infty}(2 \pi)^{-1} \exp \left(-s^{2} / 2\right) s d s \\
& \leqq u^{2} r^{-1} \exp \left(-r^{2} / 2\right) / 16 \leqq u^{2}(1-\Phi(r)) / 8 \leqq u^{2} t / 4 \tag{8.8}
\end{align*}
$$

Combining (8.6), (8.7), and (8.8) proves (8.4), and (3.3) follows.
To show \mathscr{C} is full we use similar ideas, but change θ to $(16 d L r)^{\frac{1}{2}} / r$. Fix $\lambda \in(0,1)$ and take $b=b(d)$ large enough so

$$
\begin{equation*}
P[\{x:\|x\|>r\}] \leqq b r^{d-2} \exp \left(-r^{2} / 2\right) \quad \text { for all } r \geqq 1 . \tag{8.9}
\end{equation*}
$$

We may assume t is small enough (i.e, r large enough) so

$$
\begin{equation*}
r \geqq 1 \quad \text { and } \quad 1 \geqq \theta^{2} \geqq 16 r^{-2} L\left(\lambda^{-1}(2 r)^{d-1}\right) \tag{8.10}
\end{equation*}
$$

If $x \in C_{r v} \cap C_{r w}$ for some distinct vectors $v, w \in V$, then since the angle between v and w is at least θ, we have $\|x\|^{2} \geqq r^{2}+r^{2} \tan ^{2}(\theta / 2)$, so $\|x\| \geqq r\left(1+\theta^{2} / 16\right)$. It follows using (8.9) and (8.10) that

$$
\begin{aligned}
P\left(C_{r v}\right. & \left.\cap\left(\bigcup_{w \in V, w \neq v} C_{r w}\right)\right) \\
& \leqq P\left(\left\{x:\|x\| \geqq r\left(1+\theta^{2} / 16\right)\right\}\right) \\
& \leqq b(2 r)^{d-2} \exp \left(-r^{2} \theta^{2} / 16\right) \exp \left(-r^{2} / 2\right) \\
& \leqq \lambda(2 r)^{-1} \exp \left(-r^{2} / 2\right) \\
& \leqq \lambda P\left(C_{r v}\right)
\end{aligned}
$$

Since by (8.2) and (8.5),

$$
|\mathscr{F}|=|V| \geqq \delta \theta^{-(d-1)} \geqq \delta r^{d-1} /(16 d L r)^{(d-1) / 2} \geqq \varepsilon g(t)^{1-\lambda}
$$

for some constant $\varepsilon=\varepsilon(\lambda, d)$, it follows that \mathscr{C} is full.
Proof of Corollary 3.9. We must verify (3.3) with $\varrho=1$. Fix $u \in(0,1)$ and $t \in\left(0, \frac{1}{8}\right]$ and set $\tau=\log \left(2 t^{-1}\right)$ and $r=20 d u^{-2}$. Let \mathbb{Z}_{+}denote the nonnegative integers. For each $j, k \in \mathbb{Z}^{d}+$ with $k_{i} \leqq r e^{j_{i} / r}$ for all $i \leqq d$ and $\sum j_{i} \leqq \tau r$, define $a^{j k}, b^{j k} \in[0,1]^{d}$ by

$$
a_{i}^{j k}=\frac{k_{i}}{r} e^{-j_{j} / r}, \quad b_{i}^{j k}=\left[\frac{k_{i}+1}{r} e^{-j_{i} / r}+e^{-j_{i} / r}\right] \wedge 1 .
$$

The number of rectangles $\left[a^{j k}, b^{j k}\right]$ is at most

$$
\begin{gathered}
\sum_{j: \sum j_{i} \leqq \tau r}(r+1)^{d} \exp \left(\sum j_{i} / r\right) \\
\leqq(\tau r)^{d}(r+1)^{d} e^{\tau} \leqq K_{1} u^{-4 d} t^{-1}\left(L t^{-1}\right)^{d} \leqq K_{2} u^{-4 d} g(t)^{1+\delta}
\end{gathered}
$$

for some constants $K_{i}=K_{i}(d, \delta)$.
Fix $[v, w] \in \mathscr{I}_{d}$ with $P([v, w])=\frac{1}{2}$ and $\left(1-u^{2} / 4\right) t<\sigma^{2}([v, w]) \leqq t$, and let

$$
j_{i}=\max \left\{j: e^{-j / r} \geqq w_{i}-v_{i}\right\}, k_{i}=\max \left\{k: \frac{k}{r} e^{-j, / r} \leqq v_{i}\right\}
$$

for each $i \leqq d$. Then

$$
\sum j_{i} \leqq r \log P([v, w])^{-1} \leqq r \tau \quad \text { and } \quad k_{i} \leqq r e^{j_{i} / r} .
$$

Now

$$
v_{i}-2 r^{-1}\left(v_{i}-w_{i}\right) \leqq a_{i}^{j k} \leqq v_{i} \quad \text { and } \quad w_{i} \leqq b_{i}^{j k} \leqq w_{i}+3 r^{-1}\left(w_{i}-v_{i}\right),
$$

so $[v, w] \subset\left[a^{j k}, b^{j k}\right]$ and

$$
P\left(\left[a^{j k}, b^{j k}\right]\right) \leqq\left(1+5 r^{-1}\right)^{d} P([v, w]) \leqq P([v, w])+u^{2} t
$$

(3.3) now follows.

References

Alexander, K.S.: Probability inequalities for empirical processes and a law of the iterated logarithm. Ann. Probab. 12, 1041-1067 (1984)
Alexander, K.S. Rates of growth for weighted empirical processes. In: LeCam, L., Olshen, R. (eds.) Proceedings of the Berkeley Conference in honor of Jerzy Neyman and Jack Kiefer, vol. 2. Belmont, CA: Wadsworth 1985
Alexander, K.S.: Sample moduli for set-indexed Gaussian processes. Ann. Probab. 14, 598-611 (1986)
Bennett, G.: Probability inequalities for the sum of independent random variables. J. Am. Statist. Assoc. 57, 33-45 (1962)
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees. Belmont, CA: Wadsworth 1984
Csáki, E.: The law of the iterated logarithm for normalized empirical distribution function. Z. Wahrscheinlichkeitstheor. Verw. Geb. 38, 147-167 (1977)
Diaconis, P., Freedman, D.: Asymptotics of graphical projection pursuit. Ann. Statist. 12, 793-815 (1984)

Dudley, R.M.: Sample functions of the Gaussian process. Ann. Probab. 1, 66-103 (1973)
Dudley, R.M.: Central limit theorems for empirical measures. Ann. Probab. 6, 899-929 (1978)
Dudley, R.M.: A course on empirical processes. Ecole d'été de probabilités de St.-Flour, 1982. Lect. Notes Math. 1097, 1-142. Berlin Heidelberg New York: Springer, 1982
Gaenssler, P.: Empirical processes. IMS Lecture Notes - Monograph Series 3 (1983)
Giné, E., Zinn, J.: Some limit theorems for empirical processes. Ann. Probab. 12, 929-989 (1984)
Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Statist. Assoc. 58, 13-30 (1963).
Huber, P.: Projection pursuit. Ann. Statist. 13, 435-475 (1985)
Jogdeo, K., Samuels, S.M.: Monotone convergence of binomial probabilities and a generalization of Ramanujan's equation. Ann. Math. Statist. 39, 1191-1195 (1968)
Kiefer, J.: Iterated logarithm analogues for sample quantiles when $p_{n} \downarrow 0$. Proc. 6th Berkeley Sympos. Math. Statist. Probab. 1, 227-244. Berkeley: Univ. of Calif. Press (1972)
LeCam, L.: A remark on empirical measures. In: A Festschrift for Erich L. Lehmann in Honor of His 65th Birthday (Bickel, P., Doksum, K., Hodges, J. (eds). Belmont, CA: Wadsworth (1983)

Mason, D.M., Shorack, G.R., Wellner, J.A.: Strong limit theorems for oscilation moduli of the uniform empirical process. Z. Wahrscheinlichkeitstheor. Verw. Geb. 65, 83-97 (1983)
Orey, S., Pruitt, W.E.: Sample functions of the N-parameter Wiener process. Ann. Probab. 1, 138-163 (1973)

Pollard, D.: A central limit theorem for empirical processes. J. Austral. Math. Soc. (Ser. A) 33, 235-248 (1982)

Pollard, D.: Convergence of stochastic processes, New York Heidelberg Berlin: Springer 1984
Shorack, G.R., Wellner, J.A.: Limit theorems and inequalities for the uniform empirical process indexed by intervals. Ann. Probab. 10, 639-652 (1982)
Stout, W.: Almost sure convergence. New York: Academic Press 1974
Stute, W.: The oscillation behavior of empirical processes. Ann. Probab. 10, 86-107 (1982a)
Stute, W.: A law of the logarithm for kernel density estimators. Ann. Probab. 10, 414422 (1982b)
Stute, W.: The oscillation behavior of empirical processes: the multivariate case. Ann. Probab. 12, 361-379 (1984)
Uhlmann, W.: Vergleich der hypergeometrischen mit der Binomial-Verteilung. Metrika 10, 145-158 (1966)

Vapnik, V.N., Červonenkis, A.Ya.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16, 264-280 (Teor. Verojatnost. i Primenen 16, 264-297) (1971)

Vapnik, V.N., Červonenkis, A.Ya.: Necessary and sufficient conditions for the uniform convergence of means of their expectations. Theor. Probab. Appl. 26, 532-553 (1981)
Wellner, J.A: Limit theorems for the ratio of the empirical distribution function to the true distribution function. Z. Wahrscheinlichkeitstheor. Verw. Geb. 45, 73-88 (1978)
Yukich, J.: Laws of large numbers for classes of functions. J. Multivar. Analysis 17, 245-260 (1985)
Zuijlen, M.C.A. van: Properties of the empirical distribution function for independent non-identically distributed random vectors. Ann. Probab. 10, 108-123 (1982)

Received March 16, 1984; in revised form September 12, 1986

[^0]: * Research supported under an NSF Postdoctoral Fellowship grant No. MCS 83-11686, and in part by NSF grant No. DMS-8301807
 ** Current address: Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA

