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Abstract. Minghua Qu and Vanstone [2] have proposed a public-key cryp- 
tosystem (FGM) which is based on factorizations of a binary vector space (i.e., 
transversal logarithmic signatures of an elementary abelian 2-group). In this 
paper a generalized (basis-independent) decryption algorithm is given, which 
shows that there are many equivalent private keys, and a method of efficiently 
obtaining such an equivalent private key is given. The FGM cryptosystem is 
thus rendered insecure. Although the FGM cryptosystem is defined in terms of 
linear algebra, the attack given here is essentially group-theoretic in nature. 
Thus this attack throws doubt on any cryptosystem which relies on the security 
of transversal logarithmic signatures. 

Key words. Public-key cryptosystems, Finite group mappings, Permutation 
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1. Introduction 

The paper is organized as follows. Section 2 gives a description of the Finite 
Group Mappings (FGM) public-key cryptosystem proposed by Minghua Qu and 
Vanstone [2] and a generalized decryption algorithm for FGM which shows that 
there are many equivalent private keys. Section 3 constructs part of such an 
equivalent private key from the public key. The next two sections show how to 
decrypt with this information and construct the rest of an equivalent private key. 
The final section gives some conclusions. 

*This author was supported by S.E.R.C. Research Grant GR/H23719. 
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2. The FGM Public-Key Cryptosystem 

Let n be an integer such that n > 4  and n = 0  mod 4. We describe the 
public-key system given in [2], which encrypts (n - 4)-bit messages into n-bit 
ciphertexts. 

Let G .'= Z~ be a vector space over Z 2 of dimension n and let 

{al,  (~2,.. ", (xn} 

be an arbitrary basis for G. Define a chain of subspaces 

G = G O > G 1 > ".. > Gn/2 = {0}, (1) 

where 

Gi := <(~2i+1, 012i+2 . . . . .  Otn) 

when i is such that 1 < i < n / 2  - 1 and where Gn/2 = {0}. 
For all integers i such that 1 <_ i < n / 4  - 1, define Ai by 

v~ := {~[i ,0] ,  ~[ i ,  1], ~[ i ,2 ] ,  ~[i ,3]},  

where the elements ~[i, j]  are arbitrary elements of G subject to the condition 
that, for any t 1 , t 2 E {0, 1}, 

~ [ i , t  1 + 2t 2] --- t10~2(i_1)+1 -1- t20 t2( i_ l )+2  mod G i . (2) 

Then A~ is a complete set of coset representatives of G i in G~_ 1. 
For all integers i and h such that n / 4  <_ i <_ n / 2  - 2 and 0 _< h _< 3, define 

"~,h := {~[i,0]h, a [ i ,  1]h, ~[i ,2]h,  ~[i,3]h}, 

where the elements ~[i, Jib a r e  arbitrary elements of G subject to the condition 
that, for any t 1 , t 2 E {0, 1}, 

~t[i , t  1 + 2t2] h -= tlO~2(i_1)+1 q- t2o~2(i_1)+2 mod G i. (3) 

Clearly, for any h ~ {0, 1, 2, 3}, .~, h is a complete set of coset representatives of 
G i in Gi_ 1. 

Define f to be any one-to-one function such that ( n ) ( n  n )  
f :  1,2 . . . . .  4 1 ~ ~- . . . . .  2 2 .  

Finally, when i is an integer such that 1 < i < n / 4  - 1, we define 

3 

A i : =  U { ~ [ i , h ] + ~ ( i ) . h }  = { a [ i , j ] l O < j <  15}, 
h=0 

where 

or[i, s + 4h] := ~ [ i , h ]  + ~ [ f ( i ) ,S ]h  

for any h, s E {0, 1, 2, 3}. 

(4) 
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The  public key is the collection of blocks 

n 
A i where 1 < i < ~ - - 1 .  

In [2] the private key is given as the collection of blocks 

n 
.~  where 1 < i < ~ - - 1 ,  

the collection of blocks 

n n 
" ~ h  where ~ < i < - - - 2  and 

' - - 2 
0 ~ h ~ 3 ,  

the function f ,  and the basis {al . . . . .  a,}. In fact, we haay reduce the amount  of 
information contained in the private key_and still decrypt efficiently. We take 
the private key to be the blocks A i and Ai, h, the function f ,  and, instead of the 
basis {a l . . . .  , an}, the chain of subspaces (1). 

We now give a description of the encryption process. An (n - 4)-bit message 
may be regarded as an integer m such that 0 < m _< 2 n - 4  -- 1. To encrypt, we 
first express m in hexadecimal as (Pl  . . . .  , Pn/6-1) ,  so 0 < Pi < 15, where 

m = Pl + 16p2 + "'" + 16n/4- l p n / 4 -  1 " 

We define an element g ~ G by 

g : =  a[1,  p l ] + a [ 2 ,  p z ] + " "  + a [ (  4 - 1 ) , p , / 4 _ l ] .  (5)  

N o w ,  we can write g as a binary n-tuple (ql . . . . .  qn) which we may regard as a 
number between 0 and 2 n - 1. We take the ciphertext c to be 

c := ql + 2q2 + "'" + 2n-lqn. (6) 

Following [2], we decrypt as follows. Let c be the ciphertext, so we can express 
c in the form (6) to obtain 

g = ( q l , - - - ,  qn) .  

We find Pl . . . . .  P~/4-1 satisfying (5) by applying the following algorithm: 

n 
f o r i =  l t o - - - l d o :  

4 
Set h i = f indcoset(g,  i) 
Set g = g - ~[i, h i] 
Return " h : '  

n n 
For  i = - to - - 2 do: 

4 2 

Set h i = findcoset(g,  i) 

Set g = g - 5[i,  hi]hf_lo ) 
Set p/-l~0 h i + 4hs 
Return "p/-~.)"  
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Here the function findcoset(g, i) returns the value t 1 + 2t 2 where 

g = t l  ~ 1)+ 1 + t2 ~ 1)+ 2 m o d  G i. 

The decryption algorithm presented here differs from that given in [2] by our 
drawing together that part of the algorithm concerning itself with finding the h i 
into a separate subroutine findcoset. That part of the algorithm in [2] which 
corresponds to findcoset uses knowledge of the elements a 1 . . . . .  a n to calculate 
h i. We give a generalized algorithm which implements findcoset which only uses 
knowledge of the chain of subgroups (1). This decryption algorithm is of 
comparable speed to the decryption algorithm presented in [2]. 

/'/ 

findcoset(g, i) [i'< -~ - l] 

For j = 0 to 3 do: 
If g - ~[i, j]  ~ Gi 

Set h i = j .  

findcoset(g,i) [i >- 4 ] 

For j = 0 to 3 do: 
If g - ~[i, J]0 ~ Gi 

Set h i = j. 

The justification for this algorithm is (2) when i < n / 4  - 1 and (3) otherwise. 
Examining the first half of the decryption algorithm, we find that the only 
properties of the subspaces Gk, 1 < k < n / 4  - 1, that the algorithm uses are: 

(P1) ~ [ i , s ]  ~ G  k , w h e r e k +  1 < i <_ n / 4  - 1. ] 
(P2) ~[i,S]h ~ G k ,where n / 4  <_ i < n / 2  - 2, 0 <_ h, s < 3. 
(P3) The cosets ~[k,  s] + G k (s = 0, 1, 2, 3) are distinct. 

(7) 

Hence any subspaces satisfying (P1)-(P3) may replace subspaces G1, . . . ,  an/4_ 1 
in the deeryption algorithm. Note that an analogous list of properties exists for 
subspaces Gn/4, . . . ,  Gn/2_ 2, but we defer considering this list until later. 

We are now ready to begin cryptanalysis of the system. 

3. An Equivalent Set of Private-Key Blocks 

Let K be a private key. We may, of course, assume that we know the public key 
associated with K. Suppose that we also know the function f. This section 
describes the construction of the blocks of a private key K* which decrypts 
messages encrypted using the public key associated with K. Thus the private key 
K* is equivalent to the private key K. 

For integers i and h such that 1 <_ i <_ n / 4  - 1 and 0 < h _< 3, define the 
vector ~*[i, h] by 

~*[i, h] .'= a[i ,4h] .  (8) 

We also define, for integers i, s, and h such that 1 < i < n / 4  - 1, 0 < h <_ 3, 
and 0 < s _< 3, the vector ~*[f(i), s] h by 

~*[ f ( i ) ,  s]h := a[ i ,  s + 4hl + a[i ,  4h]. (9) 
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Finally, we define blocks AT, *. by 

AT := {5"[ i ,0 ] ,  ~*[ i ,1 ] ,  ~*[ i ,2] ,  5" [ i ,3 ]} ,  

where i is such that 1 < i < n / 4  - 1, and blocks -~,h by 

hi,h'X'. := {~*[i,0]h, ~*[i ,  1]h, R*[i, 2]h, ~*[i,3]h}, 

where i and h are such that n / 4  < i < n / 2  - 2 and 0 < h < 3. We can now 
construct a key K* defined by { . ~  I i < k < n / 4  - 1}, {Ai--* ' h I ( n / 4 )  < i < n / 2  
- -  2, 0 __< h < 3}, f ,  and the chain (1). We show that K* is a valid private key 
and furthermore that the public key associated with K* is the same as the 
public key associated with K. 

T h e o r e m .  The key K *  defined by { ~ I 1 < i < n / 4 1}, ~-* _ _ - {Ai, h I ( n / 4 )  < i < 
n / 2  - 2, 0 < h < 3}, f ,  and  the chain (1) is a valid private key. 

Proof. Let i be an integer such that 1 < i < n / 4 - 1 .  Then, for any 
tl, t 2 ~ {0, 1}, 

~*[ i ,  t I + 2t 2] = a [ i , 4 t  I + 8t 2] 

= ~[ i ,  t I + 2t 2 ] + ~ [ f ( i ) ,  0]h. 

2tz] =- tlCt2(i_l)+l + t20~2(i_D+ 2 mod G i since 

If i, s, and h are integers such that n / 4  < i < n / 2  - 2, 0 < s, h < 3, then 

~*[i ,  S]h = a [ f - t ( i ) ,  S + 4h] + t ~ [ f - l ( i ) , 4 h ]  

= ~ [ f - l ( i ) ,  h] + 5[ i ,  S]h + ~ [ f - l ( i ) ,  h] + 5[ i ,  0]h 

= ~[ i ,  S]h + ~[ i ,0]h .  

SO since ~[i, 0] h ~ G i, for t~, t 2 ~ {0, 1} such that s = t~ + 2t 2, 

~*[ i ,  S]h =-- -6[i, S]h - t la2( i_ l )+l  + t20t2(i_l)+2 mod air 

Hence the elements ~*[i, s] satisfy (2) and the elements ~*[i, s] h satisfy (3). So 
K* is a valid private key. [] 

Corollary. The private keys K and K *  are equivalent. 

Proof. Consider the public key {A*} associated with K*. For all i, s, and h 
such t h a t l  < i <_ n / 4  - 1 ,  O < s _< 3, and O < h < 3 ,  

ot*[i, s + 4h] = ~*[i ,  h] + ~ * [ f ( i ) ,  s]h 

Hence ~*[i, t 1 + 2t z] = ~[i, t I + 
~[f(i), 0]h ~ a/(i) < a i. 

= o t [ i ,  4 h ]  

= a [ i ,  s + 

Hence the public keys associated with 
private keys K and K* are equivalent. 

+ a[ i ,  s + 4h] + a [ i , 4 h ]  

4h]. 

K and K* are identical. Therefore the 
[] 
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We now discuss how much information we have about the blocks of K* if we 
have no knowledge of f .  Since (8) does not depend on f ,  we may still construct 
the blocks z ~  where i is such that 1 < i < n / 4  - 1. If we set 

fl[i, S]h := or[i, S + 4h] + a[ i ,4h]  (10) 

and define Bi. h by 

Bi ,  h :=  { f l [ i ,  0]h, f l [ i ,  1]h, f l [ i ,  2 ] h f l [ i ,  3]h}, 

then we know that, for a fixed h, the blocks BCh where 1 < i < n / 4  - 1 are 
some rearrangement of the blocks ~z~* h where n / 4  < i < n / 2  - 2. Indeed, for 
fixed h and s such that 0 < h < 3 and 0 < s < 3 we may assert that the vectors 

[3[i, S ]h where 

are some rearrangement of the vectors 

~*[ i ,  S]h where 

In particular, the subspace H defined by 

n 
1 < i < ~ - - 1  

n n 
- - < i <  - 2 .  
4 -  - 2  

( n n ) 
H-'= -ff*[i,s]hl~ < i  < ~ - -  2 , 0 < s , h  < 3  

( f l [  n ) = i , s ] h l l < _ i < - ~ - - l , O < s , h < 3  

can be constructed using only our knowledge of the public key. 

(11) 

4. The Beginning of the Decryption Process 

In this section we analyse the top half of the chain of subgroups (1) and show 
how to construct the top half of an equivalent chain of subgroups, which can be 
used to decrypt half of any ciphertext. 

Any ciphertext block c can be expressed as 

c = ql + 2qe + "'" +2n- lqn ,  

where ql . . . . .  qn ~ Z 2. We set g .'= (ql . . . . .  q~) c G. Our goal is to find 

such that 

Pl . . . . .  Pn/4-1 ~ {0, 1 . . . . .  15} 

g = a[1,  Pl]  + "'" +or - 1 , P n / 4 - 1  �9 

If we write Pi := si + 4hi, then an equivalent problem is to find 

S1, �9 �9 ",  $ n / 4 - 1 ,  h l ,  �9 " ",  h n / 4 - 1  
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such that [(n) ] 
g = ~[1, h i ]  4- " "  q - ~  "~- -- 1 , hn/4_ 1 

+ ~[f(1) ,  S 1 ] h ,  "1- "'" "[-'~ f - -  1 , S n / 4 _  

By the previous section, we may write 

n / 4  - l n / 4  - 1 

g = ~ ~[i ,  h i] q- ~ ~[ f ( i ) ,  Si]hi 
i=1 i=1 

n / 4 -  1 n / 4  - 1 

= ~ ~ * [ i , h  i ] + ~_, fl[i,  Silh. 
i = l  i = l  

163 

X]hnj,_l" 

(12) 

The construction of the top half of an equivalent chain of subgroups enables us 
to find the integers h I . . . . .  hn/4_ 1 in expression (12). 

From Section 2 we know that the only properties of the subgroups Gk, where 
1 <_ k < n / 4 -  1, that the algorithm uses when decrypting using key K are 
(P1)-(P3) given in (7). Analogously, the algorithm decrypting using key K* uses 
only the properties: 

(Q1) ~[i, s] ~ Gk, where k + 1 <_ i <_ n / 4  - 1. 
(Q2) ~*[i, s] h ~ G k, where n / 4  <_ i <_ n / 2  - 2, 0 _< s, and h _< 3. 
(Q3) The cosets ~*[k, s] + Gk (s = 0, 1, 2, 3) are distinct. 

Using definition (11) of H in Section 2, we may write (Q2) more succinctly as 
property (Q2'): 

(Q2') H <_ G k. 

We define subspaces G~ where 1 <_ k <_ n / 4  - 1 by 

G~:= ~*[i ,  s l l k + l < i < - ~ - l , O < s < 3  + H .  

Note that the definition of G~ depends only on knowledge of the public key. 
Clearly, G~ satisfies properties (Q1) and (Q2'). To see that G~ also satisfies 
property (Q3), observe that G~ < G k (since G k satisfies (Q1) and (Q2')). Then, 
for any s, s' ~ {0, 1, 2, 3} such that 

~*[k, s] --- ~*[k ,  s'] rood G~, 

we have 

N*[k, s] -- -~*[k, s'] rood G k, 

hence that s = s'. So G~ satisfies (Q3). 
In consequence of subspaces G~ satisfying properties (Q1), (Q2'), and (Q3), 

we may use them in place of subspaces G k in the first half of the decryption 
algorithm. Since the definitions of G~ and ~*[i, s] depend only on the public 
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key, we may use the first half of the decryption algorithm as presented in 
Section 1 to find the correct values of h a . . . . .  hn/4_ 1 o 

Hence we have already recovered half the bits of the message. We recover the 
remainder in the next section. 

5. The End of the Decryption Process 

Using the methods of the previous section, we have reduced the problem of 
decryption to determining the decomposition 

[4 ] g =/311, Sa]h~ + "" +/3 -- 1, S , /4_ a h./,-L' (13) 

where the vector g and the integers ha , . . . ,  h n / 4 _  a a r e  known. 
We first give, and justify, an algorithm for finding a one-to-one function 

( n / (  n )  
f*:  1,2 . . . .  ' 4  1 ---> 1,2 . . . .  ' 4  1 , 

and subspaces H a . . . .  , Hn/4-a  with the following properties 

(R1) /3[f*(i) ,  s] h ~ Hk where k + 1 < i <_ n / 4  - 1, 0 < s, h < 3. 
(R2) /3[ f* (k ) ,  s] 0 + /3 [ f* (k ) ,  s] h E H k where 0 < s, h < 3. 
(R3) The cosets of H k containing the elements/3[f*(k) ,  J]0, where 0 _< j < 3, 

are distinct. 

We then show that once f*  and H a . . . . .  Hn/4-1  have been constructed, we may 
decompose g into the sum (13). The algorithm for finding f*  and H 1 . . . . .  H n / 4 -  a 
findsubspaces say, can be written in the following manner: 

f indsubspaces 
n 

Set S = { 1 , 2  . . . . .  ~ - 1} 
n 

F o r k =  1 to  ~ - - l d o :  

Find i 0 ~ S such that the cosets /3[i0, s] 0 + W~0 (s = 0, 1, 2, 3) are 
distinct, where 

W/0:= ( /3 [ i , s ]  h , /3 [ i  0,s]  0 + / 3 [ i  0,s]  h l i ~ S \ { i o } , O < s , h _ < 3 ) .  
Set f * ( k )  = i o, H k = W~o, S = S \ {i0}. 

This algorithm clearly produces f * ,  H a . . . . .  H , / 4 - a  satisfying properties 
(R1)-(R3), provided that at every stage an integer i0 can always be found which 
satisfies the conditions of the algorithm findsubspaces. We now show in the 
following lemma that this is indeed the case. 

Lemma. A t  every iteration o f  k between 1 and n / 4 - 1, the algorithm findsub- 
spaces produces a value i o . 
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Proof. Suppose that O :/: S _c {1,. . . ,  n / 4  - 1}. Set i 0 ~ S to be the unique 
element such that 

f ( i  o) = min {f(i)}. 
i ~ S  

Now, W/0 _< Gi~io ), since firstly 

~[i ,  S]h = ~ * [ f ( i ) ,  S]h ~ Gfti)-i < Gf~io) 

for all i ~ S \ {i0} and 0 < s, h < 3, and secondly 

/3[i0, s ]0+ /3 [ io ,  S]h~Gfti0) for all 0 < s < 3 ,  0 < h < 3 .  

However, now we may deduce that, for all s, s' ~ {0, 1, 2, 3}, 

/3[i0, s] o -= B[io, s'] 0 mod W/0 

implies that 

/3[i0, s] o - fl[io, s'] 0 mod Gf~io), 

and hence that s = s'. Therefore W~0 satisfies property (R3). Since clearly W~0 
satisfies properties (R1) and (R2), we deduce that i 0 is a valid choice for f * (k ) ,  
as required. [] 

Once we have obtained f* ,  H 1 . . . . .  H~/4-1 ,  our decryption algorithm is as 
follows: 

n 
F o r k =  l t o ~  1do: 

Find s1.~k ) such tha t /3 [ f*(k) ,  Sl.Ck)] o = g rood H k 
Set g = g - / 3 [ f * ( k ) ,  Sf.~k)]hi.,~) 
Set Pf'~k) = Sf*~k) + 4hf*~k) 
Return "p/.tg)" 

At each stage of the algorithm, g is of the form 

n / 4  ~ 1 

i=k+l  

Hence 

g --- 13[f*(k) ,  sr.~k)] o mod Hk 

by properties (R1) and (R2). Since property (R3) is satisfied, we can determine 
sf.tk ~ uniquely by finding the coset of H k containing g. 

We have found blocks z~  and /T*h subspaces G~ . . . . .  G*/4_ 1, 
H 1 , . . . , n n / 4 _ l ,  and a function f*  entirely from the public key. Since these 
objects form a private key equivalent to the original private key, we are now able 
to decrypt an arbitrary cryptogram. 
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6. Conclusions 

In this paper we have shown Minghua Qu and Vanstone's FGM public-key 
cryptosystem [2] to be insecure. We were able to do this by noting that a 
generalized decryption algorithm exists that does not depend directly on the 
basis chosen. Thus there is redundant information in the private key given in [2] 
and there are many equivalent private keys. We have given a method to 
construct one of these equivalent private keys from the public key that is 
computationally similar to the original decryption algorithm, that is essentially 
calculating linear dependences of sets of vectors. We also note that even as a 
private-key cryptosystem, FGM is insecure against a chosen plaintext attack 
since the vector sums of cryptograms of a few suitably chosen plaintexts will give 
us much of the information we used to attack the public-key cryptosystem. 

The construction at the heart of FGM can be generalized to an arbitrary 
group. This generalization is known as a logarithmic signature and has been 
proposed as the basis of cryptosystems in arbitrary groups, for example the 
Permutation Group Mappings (PGM) cryptosystem [1]. However, all general 
families of logarithmic signatures so far proposed for use in these systems are in 
fact transversal logarithmic signatures or simple modifications of them. A 
transversal logarithmic signature is based on the unique decomposition of an 
element of a group into a product of coset representatives associated with a 
tower of subgroups. In a cryptosystem based on a transversal logarithmic 
signature, the security of the system is based on the secrecy of this tower of 
subgroups. In the FGM cryptosystem the chain of vector subspaces (1) is 
nothing more than this tower. Our method for finding an equivalent private key 
does not use any of the linearity inherent in Z~, but instead treats Z~ as an 
abstract group and so is really a method of finding a suitable tower of subgroups. 
Thus our analysis is applicable to a transversal logarithmic signature in an 
arbitrary group and so throws doubt on the security of any cryptosystem which 
relies on transversal logarithmic signatures. 
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