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Abstract. BEXA is a new covering algorithm for inducing propositional concept descriptions. Existing covering 
algorithms such as AQ15 and CN2 place rigid constraints on the search process to reduce the learning time. These 
restrictions may allow useless specializations while at the same time ignoring potentially useful specializations. 
In contrast BEXA employs three dynamic search constraints that enable it to find simple and accurate concept 
descriptions efficiently. This paper describes the BEXA algorithm and its relationship to the covering algorithms 
AQ15, CN2, GREEDY3, PRISM, and an algorithm proposed by Gray. The specialization models of these 
algorithms are described in the uniform framework of specialization by exclusion of values. BEXA is compared 
empirically to state-of-the-art concept learners CN2 and C4.5. It produces rules of comparable accuracy, but with 
greater simplicity. 
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1. Introduction 

The goal of a concept learning algorithm is to induce a concept description when provided 
with a set of positive and negative instances of the concept. Covering algorithms are a class of 
learning algorithms that construct concept descriptions by repeatedly generating conjunctive 
expressions until all the positive instances of a concept are covered (i.e. matched). This 
paper describes BEXA (for Basic EXclusion Algorithm), a new covering algorithm for 
learning concept descriptions. BEXA represents its concept descriptions as expressions 
in VL1, Michalski's multiple-valued extension to propositional logic. Table 1 contains a 
sample learning problem and examples of VL1 concept descriptions. Empirical evidence 
is given for ten test databases that BEXA generates concept descriptions of comparable 
or better accuracy, but with greater simplicity, than well-known state-of-the-art concept 
learners. BEXA's richer description language, specialization method and search restrictions 
prefer more general descriptions, while its stop-growth test prevents overfitting. Its bias 
towards generality can be adjusted by suitable settings of its parameters. 

The main problem faced by a covering algorithm is to construct accurate and simple 
conjunctions. BEXA is one of a family of propositional covering algorithms that construct 
conjunctions using a general-to-specific search. In this approach, the algorithms start with 
a general concept description and specialize it in steps until some stop-growth criterion 
is met. The key problem is to determine which specializations must be constructed at 
each specialization step. On the one hand, too many specializations should not be con- 
sidered since this may require too much computation time. On the other hand, too few 
specializations should not be considered since this will reduce the chance of finding a good 
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conjunction. Covering algorithms such as AQ15 and CN2 approach this problem by plac- 
ing rigid constraints on the number of specializations that are constructed. For example, 
AQ15 constructs at most a (the number of attributes) specializations per step, while CN2 
constructs only pure conjunctions (as opposed to internally disjunctive ones). The main 
goat of these restrictions is to reduce the learning time by forcefully reducing the number of 
specializations that can be constructed. The main problem with these types of restrictions 
is that they can ignore potentially good specializations of a conjunction, while at the same 
time allowing potentially useless specializations. In contrast, BEXA allows a more general 
description language and employs dynamic restrictions that exploit general properties of 
the search problem to avoid useless specializations without excluding potentially useful 
specializations. These restrictions make it possible for BEXA to find accurate and simple 
concept descriptions efficiently. 

The main ideas presented for covering algorithms are thus: (1) A uniform framework 
for comparing the specialization models of various covering algorithms, (2) efficiency 
improvements and search restrictions during the specialization process, and, (3) criteria for 
terminating specialization. This paper proposes that the specialization of a conjunction can 
be viewed as a process of excluding values rather than appending atoms, i.e. instead of 
appending an atom to a conjunction (initially the constant true) to make it more specific, a 
value is removed from the most general conjunction (the conjunction that initially covers all 
training instances). This view has two advantages. Firstly, it leads to a simple and uniform 
framework for comparison of the similarities and differences between BEXA and five related 
covering algorithms, namely AQ15 (Michalski et al., 1986), CN2 (Clark & Boswell, 1991), 
PRISM (Cendrowska, 1987), GREEDY3 (Pagallo & Haussler, 1990) and an algorithm 
proposed by Gray (1990). The latter algorithm will be called GALG. We will show that the 
appending atoms approach followed by algorithms like AQ15 and CN2 can also be viewed 
as one of implicitly excluding values. The algorithms then differ mainly with respect to the 
number of values that they exclude when constructing a specialization, and the number of 
different specializations that are constructed. Secondly, it leads to a precise characterization 
of the set CM of most general and consistent conjunctions. All the covering algorithms 
discussed in this paper construct conjunctions by following a general-to-specific search, 
thus intentionally being biased towards generality. BEXA allows the option of making 
this bias explicit by restricting the search for a conjunction so that an element in CM is 
generated. The exclusion view of specialization makes it possible to show that conjunctions 
in CM correspond to irredundant set covers of the set N of negative instances of a concept. 
This characaterization of CM led to an important search restriction (uncover-new-negatives) 
which both improves the accuracy of conjunctions and the efficiency of the search process. 

Section 2 defines the VL1 language and other basic concepts used in this paper. Section 3 
describes the role that CM plays in the search for good concept descriptions and introduces 
the exclusion view of specialization. BEXA is described and illustrated with an example 
in Section 4. Section 5 describes the similarities and differences between BEXA and the 
five covering algorithms mentioned above. This discussion focuses on the differences 
regarding the algorithms' control structures, evaluation functions and pruning schemes. 
Section 5.2.1 presents a complexity analysis of the specialization models of the above- 
mentioned algorithms in terms of the number of specialization steps required to reach a 
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consistent conjunction and the different specializations considered. It exploits the exclusion 
view of specialization to describe how these algorithms specialize a conjunction and how 
they restrict the number of specializations. Section 6 presents empirical evidence that 
BEXNs search restrictions actually reduce its learning time without degrading description 
accuracy or complexity. This section also presents a detailed empirical comparison between 
BEXA and CN2, a closely related covering algorithm. BEXA is also empirically compared 
to C4.5 to evaluate its performance. C4.5 serves as a good performance yard-stick, even 
though C4.5's specialization process (a decision tree generator) differs substantially from 
the set covering approach. We close with a summary. 

2. Basic concepts and definitions 

The propositional concept learning problem is defined as follows. Let A1,...,An denote 
attributes with domains D1 ..... D,~. Nominal attributes take a finite set of unordered values, 
e.g. o u t l o o k  can take the values {sunny, o v e r c a s t ,  r a in} .  A boolean attribute has the 
domain { t r u e ,  f a l s e } .  Linear (integer or real) attributes have linearly ordered domains. 
For example, the integer attribute affe can take any value between 0 and 120. 

The instance space I defined by A1, ...,A,~ is the cross-product Dt x ... × D,~. An 
instance is denoted by <x,c> where x E I and c E Concepts. The training set T presented 
to a concept learner is a subset of IxConcepts. Instances in the set P _C T that belong 
to a specific concept are called its positive instances (examples) and instances in the set 
N = T - P are called its negative instances. Table 1 contains a sample learning problem. 
TS will be used to denote the training set in this table throughout the paper. 

VL1 (Michalski, 1975) is a multiple-valued extension to propositional logic. We follow 
Haussler (1988) and describe the relevant subset of VL1 using standard logic terminology. 
Attributes are related to values via atoms (selectors in Michalski's terminology). Elemen- 

Table 1. A sample  learn ing  p rob lem and examples  o f  VL1 concept  descr ip t ions  

The training set TS 
Concept to learn # outlook autumn temp class 

It will stop raining tomorrow 1 sunny yes 17 -- 
2 overcast no 18 -- 
3 rain yes 16 -- 
4 sunny yes 22 -- 

Attributes 5 sunny no 29 -- 
Name Type Domain 6 overcast yes 30 - 
outlook nominal (sunny, overcast,rain } 7 overcast no 35 - 
autumn nominal {yes,no} 8 rain yes 23 - 
temp linear {15..35} 9 rain no 27 - 

10 sunny yes 28 + 
11 overcast no 23 + 
12 sunny no 27 + 
13 rain no 23 -r- 

Examples of VL 1 concept descriptions 

1. [outlook 6 {overcast,sunny}l[22 < letup _< 28] v [autumn : no][temp = 23] ~ + 
2. [outlook = sunnyl[22 < temp <_ 28] V [autumn = no][temp = 23] ~- + 
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tary atoms take the form [Ai : ai] for nominal attributes, e.g., [ s e x  = m a l e ] .  For 
linear attributes elementary atoms take the form [Ai#ai] with # E {=,  <,  _<, >,  >} or 
[ai#A{#bi] with # E {<, <}, e.g., [age < i0] and [20 < weight _< i00]. Com- 
pound nominal atoms take the form [A~ = ai V ... V al]. Such atoms will be denoted as 
[Ai E Si], where Si = {ai , . . . , a t} ,  e.g. [ o u t l o o k  E {sunny ,  r a i n } ] .  This conven- 
tion is introduced because it will help to explain BEXA's specialization model. Compound 
linear atoms consist of any disjunction of  elementary linear atoms, e.g. [ ( temp = 10) 
V (20 _< temp < 30) V (temp > 50)]. 

VL1 expressions are defined as follows. (1) An atom is an expression. (2) A conjunctive 
expression is the conjunction of one or more atoms. (Michalski calls a conjunction a 
complex). Adjacent atoms have an implicit A (and) between them. (3) A disjunctive 
expression is the disjunction of one or more conjunctions. An expression containing only 
elementary atoms is said to be pure (Haussler, 1988), otherwise it is internally disjunctive. 
(4) An expression that implies a concept is called a rule or a concept description. For 
example, Rule 1 in Table 1 is internally disjunctive and Rule 2 is pure. A set of  disjunctive 
rules can always be written as an equivalent set of production rules and vice versa. For 
example, Rule 1 in Table 1 is equivalent to the two production rules 

[outlook E {overcast,sunny}] [22 < temp _ 28] ~ ~- 

[autumn = no] [temp : 23] ~ +. 

Instances and expressions are related as follows. Let h denote an expression and let B _C I 
denote a set of instances. Then the extension of h in B, denoted by XB(h), is defined as 
all those instances in B that match h. We say that h covers a subset of instances in B.  For 
example, 

XTs([outlook E {overcast,sunny}] [22 < temp _< 2 8 ] ) = { 1 0 , 1 1 , 1 2 }  

where 10, 11 and 12 denote the numbers of  the instances in Table 1. The extension of a 
single attribute value ai E D{ in a set B C_ I is defined as the extension of the expression 
[Ai = ai] in B and is denoted by XB(a{). For example, 

XTs(sunny ) = XTS ([outlook = sunny]) = {1,4,5,10,12}. 

The extension of a value or expression in the set P and the set N is called its positive extension 
and its negative extension respectively. A set cover of a set B is a set C = {C1, ..., C,~} 
of subsets of B such that their union equals B. C is an irredundant set cover of B if the 
deletion of any set C{ from C will cause the union of the remaining sets in C to be a proper 
subset of B. For example, the first conjunction of rule 1 in Table 1 has as its positive 
extension the set {10,11,12} while its second conjunction covers {11,13}. Rule 1 thus 
corresponds to the set cover {{10,11,12},{11,13}} of P = {10, 11, 12, 13} in TS. This is 
also an irredundant set cover of P .  An expression E is said to be consistent if it covers none 
of a concept 's  negative instances, and it is complete if it covers all the concept 's  positive 
instances. For example, both conjunctions in rule ( t )  are consistent because they cover no 
negative instances in TS, and the rule itself is complete because it covers all the positive 
instances in T s .  
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3. Searching for good concept descriptions 

This section presents a uniform framework for the analysis of the various algorithms' 
specialization models in Section 5.2.1. This analysis provides the basis for BEXA's most 
important search restriction and leads to the specialization method of excluding values 
rather than appending atoms. 

Assume the goal of a concept learning algorithm is to find accurate and simple concept 
descriptions, with accuracy being the primary concern, followed by simplicity. All the 
covering algorithms considered in this paper can generate disjunctive concept descriptions 
or an equivalent set of production rules. The quality of these descriptions is determined by 
the quality of their conjunctions. The main problem is therefore to find accurate and simple 
conjunctions. All the covering algorithms employ an evaluation function that estimates 
the accuracy of a conjunction. All of these evaluation functions (see Table 4 in Section 5) 
prefer conjunctions that cover many positive instances and few negative instances, thus 
being biased to find general rather than more specific conjunctions. These evaluation 
functions thus have high values for consistent conjunctions, i.e. conjunctions that cover no 
negative instances, and higher values for most general consistent conjunctions. Assume for 
the moment, therefore, that an appropriate bias (Schaffer, 1993) is to find most general and 
consistent conjunctions. (We will show later that BEXA's parameters allow the selection 
of a bias more appropriate to a domain of application.) 

Table 2. A smal l  art if icial  l ea rn ing  p rob lem 

Training set 
Attributes # A B Class # A B Class 
A C {a,b,c} 1 a x + 4 b y + 
B C {x,y} 2 a y - 5 c x - 

3 b x + 6 c y + 

Let C denote the set of all VL1 conjunctions that exist for a given learning problem, and 
let c and d denote two of these conjunctions. Then c is defined to be 'more specific than 
or equal to' d, denoted by c < d, if and only if X~.(c) C Xi(d) (Mitchell, 1982). Recall 
that I denotes the instance space of all possible instances for a given learning problem. 
The conjunctions c and d are considered equal, denoted by c = d, when XI(c) = Xi(d). 
Conjunction e is strictly more specific than d, denoted by e < d, if e _< d and c ~ d .  
The set C is partially ordered under the _< relation. For the problems that we consider, 
C is bounded from above by the most general conjunction and from below by the NULL 
conjunction defined as that conjunction for which XI(NULL) = ~3. The most general 
conjunction that exists for a given learning problem will henceforth be denoted by rage. 
The expressions in C thus form a lattice under the partial ordering _<. Table 2 contains a 
small artificial learning problem, and Figure 1 contains the lattice of the conjunctions that 
can be constructed for this learning problem. 
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Elements of CO are underlined, while elements of CM also have a line above them. 
Attribute names (A and B) have been dropped to save space. 

[a,b,c][x,y] 

Xp:{1,3,4,6},XN:{2,5} 

[a,b][x,y] [a,c][x,y] [b,c][x,y] [a,b,c][x] [a,b,c][y] 

Xp:{1,3,4} Xp:{1,6} Xp:{3,4,6} Xp:{1,3} Xp:{4,6} 

[al[x,y] [b l[x, y] [c][x.y] [a, b][x] [a,cl[x] [b,cl[x] [a,b][y] [a.c][y] [b, c] [y] 

X p : { 1 }  X p  :{3,4} X p : { 6 }  X p : { 1 , 3 }  X p : { 1 }  X p : { 3 }  X p : { 4 }  X p : { 6 }  X p : { 4 , 6  

' v ~  ° 

[a][x] [b][x] [c][x] [aJ[y] [b][y] [c][y] 

Xt, :{1) Xp:{3} Xp:{~ Xe:(~ Xp:{4} Xp:{6} 
XN :0 XN :0 XN :{5} XN : {2} XN :0 XN :~a 

null 

X p  :O,XN :O 

Figure 1. The sets CC and CM in the lattice of conjunctions for the problem in Table 2 

Let C c  denote the subset of consistent conjunctions in C. Conjunctions in C c  are 
underlined in Figure 1. Let CM denote the set of most general consistent conjunctions. 
Formally 

CM = { m  E C c  [ there is no element c C C c  such that ,rn < c}. 
The elements of CM in Figure 1 also have a line above them. Under the assumption 
that consistent conjunctions are sought, the goal is to find conjunctions in C c  that cover 
many positive instances and contain few atoms. Elements of CM thus have the highest 
values for these evaluation functions, since a conjunction in C c  can only be improved by 
generalizing it until it becomes an element of CM, while any further generalization will 
cause the conjunction to become inconsistent. 

The secondary goal is to find the simplest conjunctions among those with a high value 
for the evaluation function. The most common measure for description complexity is the 
total number of atoms in a concept description (Michalski et al., 1986; Clark & Niblett, 
1989; Clark & Boswell, 1991; Lavrac et aI., 1986; Pagallo & Haussler, 1990). To make 
the partial ordering among conjunctions clear, all the conjunctions in Figure 1 were written 
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such that they contain all the attributes. However, the usual convention is to discard all those 
attributes that take all their possible values. The number of atoms in a conjunction can thus 
be reduced by generalizing it to such an extent that one or more of its attributes take all 
their values and hence can be discarded. No conjunction in CM can thus be simplified any 
further without causing it to become inconsistent. Therefore conjunctions in CM contain a 
least number of atoms. 

We now present a characterization of conjunctions in CM based on the exclusion view 
of specialization. Construct conjunctions as follows. Specialize the rage by excluding 
one attribute value at a time. Each excluded value uncovers a subset of positive and a 
subset of negative instances. The conjunction becomes consistent when enough values 
have been excluded to uncover all the negative instances, i.e. the negative extensions of 
the excluded values form a set cover of N. However, the problem is that merely excluding 
values until all the negative instances are uncovered does not guarantee that the conjunction 
is an element of CM. The following key property distinguishes between conjunctions in 
C M and those in Cc - CM. Let c denote a conjunction and let R = {rl, ..., rn} denote 
the subset of attribute values excluded from the mgc to obtain c. Then 

c E C2v~ if and only if the set {XN(r l ) ,  ..., XN(rn)}  is an irredundant set cover of N. 

For example, the rage for the problem in Table 2 is 
g :  EA Cs C 

The conjunction [A 6 {b, c}] [B = y] can be obtained by excluding the values 
value XN(value) XR(value) 
EA = {2}  {1}  
[B = xl {5} {1,3} 

from 9. The specialization process proceeds as follows: 

conjunction XN(conjunction) Xp (conjunction) 
[A < {a ,b ,c} l [B  E {x,y}] {2,5} {1,3.4.6} themgc 
[A E {b,c}][B C {x.y}] {5} {3,4,6} exclude [A = a] 
m : [a C {b,c}l [B = y? {} {4,6} exclude IS = x] 

Now m ~ CM because the negative extensions of the excluded values [A = a] and [s 
= x] form the irredundant set cover {{2},{5}} of the set N = {2, 5}. 

Specialization by excluding values thus steps through the lattice level by level. Enforcing 
irredundancy implies that each excluded value uncovers at least one new negative example. 
tn addition fewer specialization steps may be required when at least one new negative 
example is uncovered at each step, while terminating when an element of CM is found. This 
characterization of CM forms the basis for two of BEXA's search restrictions. In contrast, 
Section 5.2.1 will show that AQ15, CN2, PRISM, GREEDY3 and GALG all specialize a 
conjunction by appending atoms to it. Appending an atom may cause the specialization 
process to move erratically through the levels of the lattice rendering the characterization of 
CM no longer valid. Subsets of negative instances uncovered by appended atoms may form 
an irredundant set cover of N even though the corresponding conjunction is not in CM. For 
example, CN2 may construct the conjunction [A :- c] [B = y] by appending the atoms 
[A = c] and Is  = y] to true. These two atoms respectively uncover the subsets {2} and 
{5} of negative instances. These two sets form an irredundant set cover of N even though 
[A = c] [B = ¥] i sno t inCM.  
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At the beginning of this section we assumed that the goal is to find consistent conjunctions. 
However, this condition can be relaxed and a different bias implemented by pre-pruning 
tests, such as BEXA's stop-growth test, which may terminate the specialization process 
before a conjunction becomes consistent. Pruning is discussed in Sections 4.2, 5.2.6 and 
5.3. 

4. BEXA 

4.1. BEXA's top-level loops 

Table 3 contains the BEXA algorithm. Procedure COVER-P generates conjunctions until 
all the positive instances of a concept are covered, or until a NULL conjunction is returned 
due to pruning. Procedure Find-Best-Conjunction finds the subsequent best conjunction 
to add to the concept description. It is described in general terms because it will also 
serve as a framework for describing some of the differences among the covering algorithms 
in Section 5. A beam search (Steps (2) and (7) in Table 3) is employed to find the best 
conjunction. Starting with the mgc (Step (1) in Table 3), the current set of conjunctions 
is specialized in steps (Step (3) in Table 3). The Laplace accuracy estimate (defined in 
Table 4) is used to select the best specialization after each step (Step (5) in Table 3). This 
estimate was borrowed from CN2 (Clark & Boswell, 1991). 

BEXA can employ CN2's significance test (Step (4) in Table 3). This test compares the 
distribution of instances covered by a conjunction to that of a conjunction covering instances 
in the same proportions as they occur in the complete training set. Only conjunctions that are 
significant according to the log-likelihood ratio test (described in Clark & Niblett (1989)) are 
compared to the current best conjunction. The significance test thus weeds out conjunctions 
that do not capture significant patterns in the complete training set. 

BEXA employs two stop-growth tests (Step (6) in Table 3). The first is the usual test 
that discards specializations that cover no negative instances. Tile reason is that any further 
specialization can only decrease the number of positive instances covered by these conjunc- 
tions. The second stop-growth test is related to the stop-growth tests of TDIDT 1 methods, 
e.g. the chi-square test employed in early versions ofID3 (Quinlan, 1986). It compares the 
distribution of instances covered by a specialization to that of its direct predecessor using 
the log-likelihood ratio test. If this difference is insignificant, the specialization is discarded 
from further consideration. The stop-growth test thus insists that each specialization step 
changes a conjunction significantly, while the significance test ensures that a complete 
conjunction captures a significant pattern in the training set. Another difference is that 
the significance test simply ignores insignificant conjunctions, while the stop-growth test 
discards insignificant specializations from the process. We thank a reviewer who pointed 
out that Meta-DENDRAL's RULEGEN (Lindsay et aI., 1980) had two criteria similar in 
spirit to the significance and stop-growth tests, i.e. RULEGEN had more task-specific re- 
quirements that a specialization ought to be "significant" and that a specialization should 
be an "improvement" over its parent. 
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Table 3. B E X A  

PROCEDURE COVER-P(T,beam_width) 
role.set := empty; 
FOR each concept C~ in 7" DO 

P := instances in T belonging to concept C i  ; N := T - P ;  
REPEAT 

best_conj := Pind-Best-Conjunction(P,N,beam_width);  
IF best_conj NOT NULL THEN 

Add the rule 'IF best_conj THEN concept = C~'  to rule.set; 
P := P - X p  ( b e s t _ c o n j )  

UNTIL ( P  = ~) OR (best_conj = NULL); 
RETURN rule.set 

PROCEDURE Find-Best-Conjunction (P ,N,beam_width)  
best_conj := NULL; 
specializations := {the rage for BEXA or the constant t rue  with X p  = P and X N  = N } ;  
WHILE specializations # (3 DO 

specializations := Generate-Specializations(P,N,specializations,beam_width);  
FOR each conjunction c E specializations DO 

IF c is significant according to the significance test AND 
e is better than best_conj according to the evaluation function 

THEN best_conj := c 
Remove from specializations all the conjunctions that cover no negative instances or 

that satisfy the additional stop-growth test; 
Retain in specializations only the beam_width best conjunctions according to the 

evaluation function 
ENDWHILE; 
IF the evaluation function value for best_conj is the same as or worse than that of the 

complete training set THEN 
RETURN NULL 

ELSE 
RETURN best_conj 

PROCEDURE Generate-Special izat ions(P,N: instance_set; conjunctions : set_of_conjunclions; 
k : beam_width) 

speciatizations := 0; 
FOR each conjunction e C conjunctions DO 

{First remove from c.usable all the values that will lead to unnecessary specializations. } 
FOR each value or interval ai C e.usable DO 

IF X p ( c )  C_ X e ( a i )  OR {Prevents conjunctions for which X p  = (3} 
X N  (e) ~ X N  ( a l )  = (3 OR {Ensures one more negative instance will be uncovered) 
{ X u (h i )  ] b~ E e.excludedvalues L) { a l  ) }  is a redundant partial cover of N 

THEN c.usable := c.usable - {a~ } 
{Next generate all useful specializations of the conjunction} 
FOR each value ui E c.usable DO 

e'  := n specialized by removing a i  from it; 
Xp(c') := Xp(c) - Xp(a,); 
Xlv(e') := XN(e) - XN(ad: 
c ' .usable  := a.usable - { a / } ;  
c ' .excludedvalues := e.excludedvalues O { a i  }; 
specializations := specializations tO { e ' }  

ENDFOR; 
IF k > 1 THEN Remove f rom specializations all duplicate conjunctions; 
RETURN specializations 

(1) 
(2) 
(3) 

(4) 
O) 

(6) 

(7) 

(8) 

(9) 
0o) 

The last step (Step (8)) in procedure Find-Best-Conjunction, borrowed from CN2 (Clark 
& Boswell, 1991), ensures that the newly generated conjunction conveys more information 
than the default rule that matches all the training instances. A NULL conjunction is returned 
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if the best conjunction's Laplace estimate is lower than that of the complete training set. 
This terminates the generation of further conjunctions. 

4.2. BEXA's specialization model 

Procedure Generate-Specializations employs BEXA's specialization model. Given a set of 
conjunctions, it returns the subset of their specializations that must be evaluated. Conjunc- 
tions are specialized by excluding single values from them as described in the previous 
section. One difference is that for linear attributes, intervals of the form [Ai > ai] and 
[Ai _< a~] are excluded from a conjunction instead of the single value [A~ : ai]. The 
reason is that excluding single values may lead to conjunctions that contain linear atoms of 
the form 
[outlook = sunny] [(15<_temp<17) V (17<temp<22) V (22<temp<29) V 

( 29<temp_<35 ) ]. 

This conjunction is obtained by excluding the values 17, 22, and 29 for attribute temp from 
the mgc. These conjunctions tend to have a very low accuracy on unseen instances. For 
example, if temp has a real-valued domain, then only those instances that take the values 17, 
22, and 29 will not match the above conjunction. Excluding intervals of the form [Ai > ai] 
and [Ai < ai], instead of single values, leads to linear atoms of the form [ai < A~ _< b~]. 
These atoms can exclude many negative instances, and are also simpler to understand than 
the one given above. 

Some efficiency improvements implemented in BEXA are mentioned below. (1) Ex- 
tensions of values for each concept are computed once only and stored in memory for 
subsequent use during specialization. (2) Generating intervals for linear values instead of 
excluding only the single value doubles the number of values to consider for each linear 
attribute. In some domains only a subset of these intervals are considered. Firstly, all the 
observed values of a linear attribute are sorted from small to large. Then the extension in T 
of each value is determined. If the instances in the extensions of two or more consecutive 
values all belong to the same concept, then intervals need only be created for the largest 
such value and the predecessor of the smallest value. The reason is that intervals in between 
do not provide any additional information for distinguishing among different concepts. For 
example, for TS no intervals involving values of temp less than 22 or greater than 28 need 
be considered, reducing the number of intervals from twenty to eight. A similar result was 
proved by Fayyad and Irani (1992) for TDIDT methods employing the entropy function. 
(3) Intervals are deleted from the u s a b l e  set (discussed in the next section) at the earliest 
possible moment, i.e. when an interval is selected, other intervals not included by it are 
deleted to prevent subsequent useless specialization effort. 

4.3. B EXA 's search restrictions 

BEXA imposes three restrictions on the search process, i.e. on the number of specializa- 
tions that are constructed at each specialization step. The search restrictions are employed 
by maintaining a u s a b l e  and e x c l u d e d v a l u e s  set for each specialization. Initially, the 
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usable set contains all the nominal attribute values and all the intervals that are created 
for linear attribute values, while the e x c l u d e d v a l u e s  set is empty. A conjunction is only 
specialized by excluding values and intervals in its u s a b l e  set. Each value or interval that is 
excluded from a conjunction is removed from its u s a b l e  set and then added to its e x c l u d -  
e d v a l u e s  set. Values and intervals that satisfy any of the search restrictions are deleted 
from the u s a b l e  set to prevent the unnecessary construction of useless specializations at 
subsequent specialization steps. 

4.3.1. The prevent-empO,-conjunctions restriction 

The prevent-empty-conjunctions restriction (Step (9) in Table 3) prevents the generation 
of empty conjunctions, that is conjunctions that cover no positive instances. Such conjunc- 
tions are useless since the goal is to find conjunctions that cover all the positive instances. 
The prevent-empty-conjunctions restriction thus avoids the unnecessary generation of spe- 
cializations that are known to be useless. This restriction requires almost no additional 
overhead to employ since the number of positive instances covered by a conjunction must 
in any case be determined to calculate its Laplace estimate. The same holds for the eval- 
uation functions employed by the other covering algorithms described in this paper (see 
Table 4). Section 6.1 gives empirical evidence that this restriction reduces BEXA's learning 
time without decreasing the accuracy of its descriptions. 

4.3.2. The irredundancy restriction 

The purpose of the irredundancy restriction (Step (11) in Table 3) is to guide BEXA 
to construct conjunctions in CM. The reason, as explained in Section 3, is that these 
conjunctions are likely to contain only a few atoms and to have a high value for the evaluation 
function. This restriction thus reduces the number of possible specializations that must be 
constructed while at the same time increasing the chance of finding conjunctions with only a 
few atoms that cover many positive instances. The irredundancy restriction may also reduce 
the number of specializations steps that are required to find a consistent conjunction. The 
reason is that BEXA starts with the rage and then specializes a conjunction by excluding 
values and intervals, Fewer values thus need to be excluded to find a conjunction c E CM 
than to find a conjunction e' < c, e' C (Co - CM) because e' is "lower down" in the lattice 
than c. 

Irredundancy is ensured using the scheme described in Wells (1971) for generating the 
irredundant covers of a set. The basic idea is to maintain for each conjunction an additional 
dupl  i c a r e s  set that contains all those negative instances that are matched by more than one 
value or interval in a conjunction's e x c Z u d e d v a l u e s  set. A value or interval is discarded 
from a conjunction's u s a b l e  set if its exclusion will cause the negative extension of any 
value or interval in the new e x c l u d e d v a l u e s  set to be contained in the d u p l i c a t e s  set. 
Performing the irredundancy test then requires a set intersection and a set union operation 
to determine the new d u p l i c a t e s  set, and one subset test for each value in a conjunction's 
new e × e l u d e d v a l u e s  set. The number of subset tests that must be performed increases 
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by one with each additional value that is excluded from a conjunction. If many values 
must be excluded before a consistent conjunction is found, or before the stop-growth test 
terminates further specialization, then it may be suspected that the additional overhead 
required by this restriction may outweigh the savings obtained by reducing the number of 
specializations that must be evaluated. However, Section 6.1 presents empirical evidence 
that the irredundancy restriction improves the quality of BEXA's concept descriptions and 
even reduces the learning time. 

4.3.3. The uncover-new-negatives restriction 

The uncover-new-negatives restriction (Step (10) in Table 3) is a necessary requirement for 
the irredundancy restriction as explained in Section 3. It ensures that each newly excluded 
value or interval uncovers at least one new negative instance. It is employed as a separate 
restriction because it is more efficient to implement than the irredundancy test. As is the case 
for the prevent-empty-conjunctions test, no additional overhead is required to employ this 
test since the number of negative instances covered by a conjunction must be determined for 
all the evaluation functions described in Table 4. For this reason the uncover-new-negatives 
restriction should always be enforced before the irredundancy restriction to reduce the 
number of more expensive irredundancy tests. Section 6.1 presents empirical evidence that 
the uncover-new-negatives restriction improves the quality of BEXA's concept descriptions 
substantially and reduces its learning time. 

4.4. A practical example 

For the illustration of BEXA assume a beam width of one, and that only consistent con- 
junctions are discarded from the set of specializations (i.e. the log-likelihood ratio test is 
not employed as an additional stop-growth test). A description for the concept in TS is 
constructed as follows. 

Constructing the first conjunction: 

The relevant data for selecting the first value to exclude from the conjunction is: 
conjunction = [outlook 6 {sunny,overcast,rain}][autumn 6 {yes,no}I[15 <_ temp _< 35] 
X p  (conjunction) = {10,11,12,13} 
XN (conjunction) = { 1,2,3,4,5,6,7,8,9} 
excludedvalues = 
usable = {the values listed below} 

In the following new_conj denotes the new conjunction obtained by excluding the listed 
value from the current conjunction. Laplace denotes the Laplace accuracy estimate of this 
new conjunction. 
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Value X p  (value) X N (value) X p  (new_con j) X N (new_conj) Laplace 
[outlook = overcast] {11} {2,6,7} {10,12,13} {1,3,4,5,8,9} 0.364 
[outlook=sunny] {10,12} {1.4,5} {11,13} {2,3,6,7,8,9} 0.300 
[outlook = rain] {13} {3,8,9} {10,11,12} {1,2,4,5,6,7} 0.364 
[autumn=yes] {10} { 1,3,4,6,8} {11,12,13) {2,5,7,9} 0.444 
[autunm = no] {11,12,13} {2,5,7,9} {10} {1,3,4,6,8} 0.250 
[temp < 221 0 {1,2,3,4} {10,11,12,13} {5,6,7,8,9} 0.455 
[temp <_ 23] {11,13} {1,2,3,4,8) {10,12) {5,6,7,9} 0.429 
[temp > 231 {10,12} {5,6,7,9) {11,13} {1,2,3.4,8) 0.375 
[temp _< 27] {11,12,13} {1,2,3,4,8,9} (10} {5,6,7} 0.333 
[temp > 27] {I0} {5,6,7} {11,12,13} {1.2,3,4,8,9} 0.364 
[temp > 281 0 {5,6,7} {10,11,12,13} {1,2,3,4,8,9} 0.417 

Intervals like [temp _< 21] and [temp > 29] are not considered as explained in Section 4.2. 
Intervals [temp > 22] and [temp _< 28] are discarded with the prevent-empty-conjunctions 
test. Excluding [temp < 22] leads to the conjunction with the highest Laplace value. 

The relevant data for selecting the second value to exclude from the conjunction is: 
= [outlook C {sunny, overcast,rain}l[autumn C {yes,no}][22 < temp _< 35] 
= {10,11,12,13) 
= {5,6,7,8,9} 
= {[temp _< 22]} 
= {the values listed below} 

The values [temp _< 23] and [temp _< 27] are discarded with the irredundancy test. The 
value [temp > 28] is selected because it leads to the new conjunction with the highest 
Laplace value. This conjunction is better than its predecessor and becomes the new best 
conjunction. 

The relevant data for selecting the third value to exclude from the conjunction is: 
conjunction = [outlook E {sunny, overcast,rain}][autumn E {yes,no}][22 < temp < 28] 
X p ( c o n j u n c t i o n )  = {10,11,12,13} 
XN (conjunction) = {8,9} 
excludedvalues = {[temp _< 221, [temp > 281} 
usable = {the values listed below} 

V a l u e  Xp(value) XN (value) Xp  (new_conj) XN (new.conj) Laplace 
[outlook = rainl {13} {8,9} {10,11,12} 0 0.800 
[autumn = yes] {10} {8} {11,12,13} {9} 0.667 
[autumn = no] {11,12,13} {9} {10} {8} 0.500 

Values like [outlook = sunny] that would lead to a redundant cover of N have been 
discarded. The value [outlook = rain] is selected, and the new conjunction 

[outlook c {overcast,sunny}][autumn E {yes,no}][22 < temp < 28] 
is again better than the current best conjunction. At this stage, the conjunction has become 
consistent because it covers no negative instances. It is simplified by deleting all the atoms 
where attributes take all their possible values to yield 

[outlook E {overcast, sunny}][22 < temp _< 28] 
This conjunction is then returned as the best conjunction that could be found. This 

conjunction covers the positive instances 10, 11, and 12. The same process is now repeated 

conjunction 
X p  (conjunction) 
X N  (conjunction) 
excludedvalnes 
usable 

Value X.o (value) XN (value) X p  (new_conj) XN (new-con j) Laplace 
[outlook=overcast] {11} {6,7) {10,12,13) {5,8,9} 0.500 
[outlook = sunny] {10,12} {5} {11,13} {6,7,8,9} 0.375 
[outlook=rain] {13) {8.9) {10.11.12) {5,6,7) 0500 
[autumn =yes] (10} {6,8} {11,12,13} {5,7,9} 0500 
[autumn=no] {11,12,13) {5,7,9} {10} {6,8) 0.400 
[temp > 23] {10,12} {5,6,7,9} {11,13} {8) 0600 
[temp > 27] {10} {5,6,7) {11.12,13} {8,9} 0.571 
[temp > 281 ~ {5,6,7} {10,11,12,13) {8,9} 0.625 
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to obtain the next consistent conjunction covering the remaining positive instance 13. This 
yields the two rules 

[outlook E {overcast,sunny}][22 < temp _< 28] ~ + 
[autumn = no][22 < temp _< 23] ~ + 

If temp has an integer domain, then the atom [22 < temp < 23], obtained by excluding the 
values [temp _< 22] and [romp > 23], can be replaced with [ temp= 23]. 

5. Differences among the covering algorithms 

This section describes the differences among the set covering algorithms BEXA, AQ15, 
CN2, PRISM, GREEDY3, and GALG; showing that they all fit into the same general set 
covering framework. Table 4 summarizes the differences, while the following sections 
discuss the differences in more detail where necessary. 

5.1. The top-level loop 

All the covering algorithms discussed in this paper employ the top-level loop given in 
procedure COVER-P for BEXA (Table 3). This is not surprising since this loop embodies 
the covering nature of these algorithms: Conjunctions are constructed until all the positive 
instances of a concept are covered. 

The first version of CN2 (Clark & Niblett, 1989) generated an ordered list (or decision list). 
Clark & Boswell (1991) modified CN2 to generate either ordered or unordered (production) 
rules merely by changing its top-level loop and evaluation function. Theron (1994) showed 
that the same holds for the other algorithms. 

5.2. Controlling the generation of conjunctions 

All the covering algorithms construct conjunctions by following a general-to-specific search. 
BEXA starts with the mgc (Step (1) in Table 3) and specializes it by excluding values. The 
remaining algorithms start with the constant true and specialize a conjunction by appending 
atoms. The next four subsections discuss the most important issues regarding the generation 
of conjunctions. Procedure Find-Best-Conjunction in Table 3 serves as a general control 
structure for this discussion. 

5.2.1. Specialization models 

A covering algorithm's specialization model determines which specializations are con- 
structed for a conjunction at each specialization step. It can be viewed as a separate proce- 
dure that, given a conjunction or set of conjunctions, returns all the specializations of these 
conjunctions that must be evaluated (Step (3) in Table 3). In the actual implementations of 
the different algorithms, aspects of the model and the control structure may be interwoven 
for the sake of efficiency. The algorithms restrict the search effort for a good conjunction by 
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Table 4. Simi la r i t i e s  and  d i f f e r ences  a m o n g  B E X A ,  C N 2 ,  A Q t S ,  P R I S M ,  G R E E D Y 3  a n d  G A L G  

L a n g u a g e  restr ict ions 

BEXA AQ15 CN2 PRISM GREEDY3 GALG 
nominal attributes ~/  ~/1 x/ x/  x/2 x/  
linear attributes -,/ ~/ ~/ - - 
internal disjunction x/ ~/ - - - -,./ 

I. AQ15 also allows tree-structured attributes (Hoff et aL, 1983) 
2. GREEDY3 allows only binary attributes. 

Opt iona l  features  in the control  s t ruc ture  (c denotes a conjunction) 

BEXA AQ15 CN2 PRISM GREEDY3 GALG 
Beam widths > 1 ~/ x/  x/  
Significance test log-likelihood log-likelihood - - 
Stop-growth test a log-likelihood cannot improve I X N  (e) l <  T 

best conjunction 
Post-pruning x/  x/  - x /  -,/ 

3. Only stop-growth thresholds that are applied in addition to the standard I X N  (c) 1= 0 test are given. T denotes a threshold. 

Evaluation functions (c denotes a conjunction) 

Algor i thm 

CN21 

AQ15 2 

BEXA 

Evaluation funct ion 

maximize IX p (c)1 + 1 IX p (c)l 4- IX N (c)14- : /#concepts where #concepts is the total number 
of concepts in the training set. 

< ( m i n i m i z e  I X N ( c )  I, t l ) ,  ( m a x i m i z e  I X,~,(c) l, t2 )  > 

same as CN2's  

PRISM < ( m a x i m i z e  Ix6'(c)l . 0 ) .  ( m a x i r n i z e ]  X p ( o )  l, 0)  > 
IXp(c)l+lXN(c)l, , 

GREEDY3 maximize Ix p (c)[ 
IXp (c)l 4-INN (c)l 

GALG Gray (1988) states that attributes are scored according to the number of positive 
instances that they might be expected to predict after allowance for pure chance 
occurrences. The chance occurrences are computed using the chi-square test. 

1. The first version of CN2 that generated only ordered rules employed the entropy function. 
2. This is a typical Lexicographic Evaluation Function (LEF) that can be applied at both Steps (5) and (7) in Table 3 since 
I X N  (c) I-- 0 at Step (5). A LEF is an ordered list < ( f a ,  t 1 ) . . . .  , (fT,, t , )  > where each f i  is an evaluation function with 
an associated tolerance t~. 

restricting the representation language (summarized in Table 4) and by constructing only a 
subset of all possible specializations at each step. 

For nominal attributes BEXA constructs all the useful specializations of a conjunction at 
the next lower level in the lattice. For linear attributes, BEXA constructs specializations 



20 H. T H E R O N  A N D  I. C L O E T E  

Table 5. AQ15 ' s  specialization model  

PROCEDURE Generate-Specializations (P,N: instance-set; conjunctions : set_of_conjunctions; 
k : beam_width) 

IF conjunctions contains only true THEN select a seed instance s from P;  
n e  := any instance in N covered by any one of the conjunctions in conjunctions; 
atoms := 0; 
FOR each attribute Ai  that takes a different value in s and nc  DO 

atoms := atoms tJ {[Ai E (Di  - {al  }]} where Di  is the domain of Ai  and a l  is its value in n~ 
specializations := {x A y [ x 6 conjunctions, y 6 atoms); 
Remove from specializations all conjunctions subsumed by others in specializations; 
RETURN specializations 

by excluding single intervals. This amounts to constructing all useful specializations that 
can be formed by increasing the lower bound of an interval, or by decreasing the upper 
bound of an interval, while at the same time removing the resulting useless specializations 
to improve efficiency. 

All the AQ algorithms use the same basic specialization model (Michalski et al., 1986), 
given in Table 5 according to Clark & Niblett (1989) and Hoff et al. (1983). This table 
contains only the specialization model which is called repeatedly by procedure Find-Best- 
Conjunction given in Table 3 until all the conjunctions in the current set of specializations 
(the star) become consistent. AQ15 specializes a conjunction by appending the most 
general atoms that cover the seed but not a negative instance. Such atoms contain all the 
possible values for an attribute except those that occur in the negative instance. AQI5 
restricts the number of specializations at each step by constructing at most a specializations 
of a conjunction, given that there are a attributes, since a seed and negative instance can 
take a different value for at most a attributes. In contrast, BEXA may construct up to v 
specializations for a conjunction at the first specialization step, where v is the number of 
nominal attribute values plus twice the number of linear attribute values. Remember that 
BEXA creates two intervals for each linear attribute value. For example, v = 2a for a 
learning problem with only binary nominal attributes, otherwise (v > 2a). The number of 
specializations that BEXA constructs decreases with each specialization step as its optional 
search restrictions weed out useless specializations. 

CN2 was designed to extend the number of specializations considered by AQ15 and to 
rid AQ15 of its dependence on a seed and negative instances (Clark & Niblett, 1989). It 
therefore generates all possible specializations of a conjunction, but restricts its description 
language to pure concept descriptions. Table 6 contains CN2's specialization model< For 
each nominal attribute, elementary atoms of the form [Ai = ai] are created for each one 
of its values. One new specialization is then created for each such atom by appending the 
atom to the current conjunction, provided that the attribute does not already appear in it. 
This prevents the construction of NULL conjunctions such as [b ig  = yes]  [b ig  = no].  
CN2 thus excludes all but a single value from a nominal attribute. Each specialization step 
of CN2 is thus equivalent to a number of specialization steps in AQ15 and BEXA. For a 
linear attribute, all the values for that attribute that occur in the instances covered by the 
current conjunction are determined. The values are sorted from small to large. For each 
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Table 6. C N 2 ' s  specialization model  

PROCEDURE Generate-Specializations (P,N: instance_set; conjunctions : set_of_conjunctions; 
k : beam_width) 

specializations := empty; 
FOR each conjunction c in conjunctions DO 

FOR each nominal attribute Ai that does not appear in c DO 
FOR each value ei of Ai DO 

Add the conjunction c A [Ai ~ ai] to specializations; 
FOR each linear attribute A~ that does not have both bounds set in e DO 

Sort the values of A~ that occur in X T  (c) from small to large; 
FOR each value, from small to large, DO 

Specialize cby  appending the atom [Ai < e i ] ;  
Add to specializations if the cut-point is a local maximum; 
Do the same for intervals of the form [Ai > ai]; 

Remove duplicate conjunctions from specializations; 
RETURN specializations 

such value, the intervals [A~ < a~] and [Ai > a i ]  are created, where ai is midway in between 
the value and its successor. All the specializations that can be formed by appending the 
atoms of the form [Ai < ai] to the current conjunction are then evaluated, and those that are 
local maxima (according to the evaluation function) are added to the set of specializations. 
The same is done for the atoms of the form [Ai > ai]. CN2 determines at most one lower 
and one upper bound for a linear interval. As soon as both bounds have been determined, 
no further specializations are considered that involve that particular linear attribute. CN2 
and BEXA thus handle linear attributes in almost the same way. The algorithms differ 
in that CN2 may discard some of the specializations as they are constructed (those that 
are not local maxima), while BEXA adds all the possibilities to the set of specializations. 
Lastly, CN2 adds a check to prevent duplicate conjunctions from being added to the set of 
specializations. 

CN2 requires at most a specialization steps to construct a consistent conjunction when 
all the attributes are nominal because all but one value is excluded for an attribute when 
specializing a conjunction. In contrast to CN2, AQ15 and BEXA may require up to v - a 
steps for a conjunction that covers exactly one instance (at least one value per attribute is 
required at the lowest level of the lattice). 

PRISM generates pure descriptions allowing only nominal attributes. Starting with true, 
it appends single nominal values to the current conjunction until it covers only positive 
instances. GALG's specialization model is almost identical to that of PRISM. The only 
difference is that it also appends the complements of attribute values to conjunctions, 
thus implicitly allowing internally disjunctive expressions. Thus GALG can exclude single 
values as do BEXA and AQ 15. For example, a conjunction may be specialized by appending 
either the value sunny or the value ~sunny (not sunny). GREEDY3 only allows binary 
attributes. It specializes a conjunction by appending literals to it (i.e. an attribute or its 
complement). 

Below examples are given of the search paths of BEXA, AQ15 and CN2 through the 
lattice of conjunctions in Figure 1 (see Table 2), and the relationship between excluding 
values versus appending atoms is illustrated. 
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The conjunctions constructed by BEXA are underlined. 

~,[a,b,c][x,y] 

[a,b][x,y] [a,c][x,y] • [b,c][x,y] [a,b,c][x] [a,b,c] [y] 

al[x,y ] .[b][x,y] [c][x,y I [a,b][x] [a,c][x I [b,c][x I [a,b][y] [a,c] [y] e[b,c][y] 

[a][x] [b][x] [c][x] [a][y] [b][y] [c][y] 

null 

Figure 2. BEXA's path through the lattice of  conjunctions 

BEXA does not construct the specialization obtained by excluding [ i  = b] because it 
does not uncover new negative instances. It is removed from the u s a b l e  set. Arbitrar- 
ily select [ i  6 {b, e}] [B E { × , y } ]  from the specializations with the highest Laplace 

estimates obtained by excluding [h = a] or [ i  = c ] ,  and delete [h = a] from its 

u s a b l e  set. Next the three specializations formed by excluding [ i  = c ] ,  [B = ×] 
or [B = y]  are considered. The value [ i  = b]  is not considered because it had been 

removed from the u s a b l e  set, while [B = Y] is deleted because excluding it does not 
uncover new negative instances. The best conjunction is any one of the remaining two spe- 
cializations, [A : h ]  [B E { x , y } ]  or [A E { b , c } ]  [B = y ] ,  obtained by excluding 

either [A = c] or [B = x ] .  
In Figure 3 assume that AQ15 selected instance 3 as seed and instance 2 as the first 

negative instance. The most general atom for A that covers 3 and not 2 is [A 6 {b,  c} ] .  

Similarly, the most general atom for s that covers 3 and not 2 is [B = x ] .  Appending 
[A 6 {b, c} ] to t rue  is equivalent to excluding the value [A = a ] ,  taken by the negative 

instance, from the rage to yield [A 6 {b, c}] [B 6 { × , y } ] .  Similarly, appending 
[B = x] to t rue  is equivalent to implicitly excluding the value [B = y] from the 

mge to obtain [A C { a , b , c } ]  [B = x ] .  The former specialization is the best and 
must be further specialized to uncover the negative instance 5. Instances 3 and 5 differ 

for attribute A, leading to the atom [A 6 { a , b } ] .  Appending this atom to the current 
conjunction (equivalent to excluding the value [A = c] ) yields the consistent conjunction 
[A = b ] [ B  6 { x , y } ]  wri t tenas  [A = b ] .  

Figure 4 illustrates CN2's  search for the second conjunction, because CN2's  first special- 
ization step selects [A = b] trivially from the created conjunctions [A = a ] ,  [A = b ] ,  
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Conjunctions constructed by AQ15 are underlined. The one selected at each level is marked by 0. 

,[a,b,e][x,y] 

[a,b][x,y] [a,c][x,y] ,[b,c][x,y] [a,b,c][x] [a,b,c][y] 

b ~ ]  

[a][xl [b][x] [c][x] [a][y] [bl[Yl [c][y] 

null  

Figure 3. AQI5's path through the lattice of conjunctions 

[A = e l ,  [B = x ] ,  and [B = y] .  The two positive instances that it covers are dis- 
carded. For the second conjunction, the first specializations considered are again [A = a ] ,  
[A = b ] ,  [A = e] ,  [U = y l , a n d  [B = x] (underlined on the second and third row). Any 

one except [A = b] can be selected as the best since they cover one positive and one neg- 
ative instance. Select [B = y] arbitrarily. The next step considers the non-null specializa- 
tions [A = a] [B = y], [A = b] [B : y], and [A = c] [B : y]. [A = el [B = y] 

is selected because it covers a positive instance. 

CN2 may skip levels in the lattice because it implicitly excludes a nominal attribute's 
complement. For example, [A = a] (shorthand for [A = a] [g 6 {× ,y} ] ) imp l i c i t l y  
excludes [A C {b, c}] from the mgc. In contrast, BEXA can consider all specializations 
at a level and AQ15 at most one per attribute. 

Rymon (1993) also describes a general learning framework, but with emphasis on a 
particular data structure, i.e. an SE-tree which "shares many features of  decision tree 
based algorithms" (p.268) and "generalizes decision trees" (p.274). We describe a general 
framework for set covering, as opposed to the recursive partitioning framework (divide- 
and-conquer used by the Top Down Induction of Decision Trees approach to learning), and 
show how five other algorithms fit into such a framework. (It can be argued lhat using set 
covering, which does not repeatedly split the training set, has "more evidence" available 
at each specialization step because only the covered positive examples are removed.) Spe- 
cialization in an SE-tree occurs by appending, not by excluding values. SE-tree rules are 
interpreted conjunctively, while the mgc has a conjunctive interpretation but with internal 
disjunction; however, it seems that disjunction cannot be represented directly, but has to 
be resolved during the classification phase (see the OR example with a resolution criterion 
based on voting, p.274). The remarks on "hypothesis expressibility" (p.273) seem to sug- 
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Conjunctions considered by CN2 are underlined. The one selected at each level is marked by 0. 

*[a,b,c][x,y] 

b , c ] [ y ]  

[a ,[I [b,c][yl 
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n u l l  

Figure 4. CN2's path through the lattice of conjunctions (when constructing the second conjunction) 

gest that some hypotheses cannot be expressed as succinctly as with internal disjunction (the 
same problem that CN2 has with its restriction to pure descriptions). Impotent expansion 1 
(p.270) corresponds to BEXA's prevent-empty-conjunctions. Rymon (1993) does not give 
an empirical evaluation of this restriction; we presen t empirical results in Section 6. Impo- 
tent expansion 2 (p.270) for rules with the same extension corresponds to BEXA's equality 
test for duplicate conjunctions. BEXA does not require an expensive subsumption test due 
to its specialization method, while "procedure expand" (p.271) needs to test for subsump- 
tion. We share the bias of finding maximal general solutions, which BEXA can also adjust 
to the learning problem as elaborated on again later ((Rymon, 1993) (p.269): "Intuitively, 
while learning, we adopt most general principles"). BEXA can (optionally) guarantee that 
a conjunction in CM (a "kernel" element) will be found. Selection of conjunctions are 
prioritized in the SE-tree representation, while BEXA does so in the lattice, selecting sets 
in CM. BEXA already has a stop-growth criterion (see Future research directions) and 
makes provision for intervals. 

5.2.2. Complexity of specialization 

In this section the worst case complexity of specialization is summarized, assuming that 
consistent and complete'conjunctions are required, using a beam width of one. Assume 
there are p positive and n negative examples and the a attributes take v possible values in 
total: Then all the covering algorithms generate conjunctions until all the positive examples 
are covered, i.e. at least one and at most p conjunctions will be generated. Now consider 
the generation of a single conjunction. AQ requires at most n specialization steps for a 
consistent conjunction if only one negative example is excluded per step. CN2 performs at 
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most a steps since only one attribute value is retained at each step, while BEXA requires at 
most v - a steps because only a single value is excluded from the conjunction per step. Now 
consider the total number of specializations constructed to obtain a consistent conjunction: 
AQ thus generates at most an specializations to obtain a consistent conjunction; BEXA 
generates v specializations at the first step, then v - 1 for the next, and so on until all 
attributes take only a single value; and CN2 generates v specializations at the first step, then 
the sum of the number of values in the remaining attributes, and so on until all attributes 
take only a single value. 

To compare CN2 and BEXA in more detail, assume a learning problem with only nominal 
attributes, each taking k values, then v = ka. CN2 generates at most k a + k ( a - 1 ) + . . . + k  ,~ 
ka2/2  specializations, while BEXA generates at most ka + ka - 1 + . . .  ~ k2a2/2; thus 
BEXA constructs a factor k more specializations. 

If BEXA applies Test 2, then the number of steps to obtain a consistent conjunction is at 
most the minimum of v - a and n (since, like AQ, at least one negative example must be 
excluded at each specialization step). 

The complexity analysis above, however, cannot quantify the number of specializations 
not considered due to BEXA's optional search restrictions because it is highly dependent 
on the training data. We provide empirical evidence in Section 6 that BEXA's search 
restrictions is very effective in weeding out unnecessary specialization effort, even though 
BEXA allows internal disjunction. 

5.2.3. Employing a beam search 

When generating conjunctions the beam width number of best alternative specializations 
are retained for the next step (Step (7) in Table 3). Further specialization ceases when the 
set of alternative best conjunctions becomes empty (Step (2)) due to the stop-growth tests 
(discussed in Section 5.2.5). Only BEXA, AQ15 and CN2 allow a user-specified beam 
width (Table 4). 

The motivation for using beam widths greater than one is that it increases the chance 
of finding a simple conjunction covering many positive instances. However, large beam 
widths can increase the computational requirements substantially. Theron & Cloete (1993) 
and Theron (1994) presented empirical evidence for ten test databases that beam widths of 
ten or twenty usually do not produce significantly better rules than a beam width of one 
for BEXA. Since AQ15 limits the number of specializations considered (see Section 5.2.1) 
a large beam width is more likely to improve the descriptions found because it increases 
the total number of different specializations that are considered. Similarly, the experiments 
reported in Section 6.2.1 suggest that CN2's restriction to pure conjunctions a/so benefits 
from using beam widths larger than one. 

5.2.4. Selecting the best specializations 

Covering algorithms employ evaluation functions to select the best conjunction (Step (5) in 
Table 3) and to retain the beam width number of best specializations (Step (7) in Table 3) after 
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each specialization step. AQ15 employs a combination of different evaluation functions 
called a Lexicographic Evaluation Function (LEF) (Michalski, 1983). A LEF is an ordered 
list < (f t ,  tl),  ..., (f~, t~) > where each fi is an evaluation function with an associated 
tolerance ti. The functions are applied in the order in which they are specified. When two 
conjunctions do not differ more than the specified tolerance for fi, they are evaluated with 
respect to fi+l. AQ15 typically employs two different LEEs at Steps (5) and (7). For 
example, let c denote a conjunction. Then the LEF <(minimize IXN(c)I, h), (maximize 
I X p ( c ) I , t j >  can be applied at Step (7) and the LEF <(maximize I Xp(c) I, h ) ,  (minimize 
the number of atoms in c,t2)> at Step (5). All the other covering algorithms, including 
BEXA, employ the same evaluation function or LEF at both Steps (5) and (7). The different 
evaluation functions are listed in Table 4. 

5.2.5. Stopping further specialization 

An important question to address is when to terminate further specialization of a conjunction. 
This decision is employed in the form of a stop-growth test (Step (6) in Table 3). When all 
conjunctions in the current set of specializations satisfy this test, the set becomes empty. This 
terminates the search for the best conjunction (Step (2) in Table 3). Further specialization of 
a conjunction can be stopped the moment it becomes clear that additional specialization will 
not improve the conjunction's value for the evaluation function. The standard criterion is to 
terminate further specialization when a conjunction becomes consistent, i.e. I XN (c) l= 0. 
See Table 4 for a summary. 

AQ15 employs a slightly weaker version of this standard stop-growth test: It stops further 
specialization when all the conjunctions in the current set become consistent. The best 
conjunction in this set is returned. Some conjunctions may become consistent before others 
do. These conjunctions will be specialized further by AQ15 until all the conjunctions in the 
current set are consistent. This unnecessary specialization effort can be avoided by removing 
a conjunction from the set of specializations the moment that it becomes consistent (Step (6) 
in Table 3). The best overall conjunction will still be returned because the best conjunction 
is retained after each specialization step. 

CN2 employs both a weaker and a stronger version of the standard stop-growth test. 
The weaker version terminates further specialization only when a conjunction covers no 
negative and no positive instances. The stronger version terminates further specialization of 
a conjunction when it cannot improve on the current best conjunction. This is determined by 
calculating a conjunction's Laplace estimate under the assumption that it covers no negative 
instances. If this estimate is lower than the current best estimate, further specialization is 
terminated because none of the conjunction's specializations can improve on the current best 
conjunction. This second test also implicitly stops further specialization when a conjunction 
becomes consistent, since its specializations can only cover fewer positive instances and 
therefore have a lower Laplace estimate than the current conjunction. 
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5.2.6. Pre-pruning 

It is well known that pruning concept descriptions in the presence of noise leads to consid- 
erably simpler descriptions that usually have higher accuracy on unseen instances than the 
unpruned descriptions (Quinlan, 1987a; Michalski et al., 1986). Two types of pruning are 
distinguished (Breiman et aI., 1984). Pre-pruning tests are applied during the specialization 
process, while post-pruning is applied to a complete set of rules, i.e. as a post-processor. 
This section discusses pre-pruning and the next post-pruning. 

Only BEXA, CN2 and GALG employ pre-pruning schemes. GALG can stop further 
specialization when the number of negative instances covered by a conjunction is below a 
user-specified level. CN2 uses a significance test (Step (4) in Table 3 to ignore conjunctions 
that do not capture significant patterns in the training data. BEXA performs pre-pruning 
with an additional stop-growth test (Step (6) in Table 3) that discards all the insignificant 
specializations of a conjunction. The differences between the latter two approaches were 
discussed in Section 4.1. 

CN2 performs another check that can also be viewed as a form of pre-pruning. It checks 
whether the Laplace estimate of the best conjunction is greater than that of the default 
rule (Clark & Boswell, 1991). If this is not the case, then the new conjunction does not 
contribute any new information and the NULL conjunction is returned (Step (8) in Table 3), 
terminating the generation of conjunctions for the current concept. BEXA borrowed this 
test from CN2. 

5.3. Post-pruning 

BEXA employs the post-pruning scheme described by Quinlan ( 1987a, 1987b). This scheme 
prunes rules in two phases. The first phase simplifies individual rules by deleting atoms 
that are insignificant according to Fisher's exact test. The second phase simplifies the set of 
rules by deleting those rules that will not reduce the accuracy of the collection as a whole 
on the training instances. A detailed description of this pruning scheme can be found in 
Quinlan (1987a, 1987b). 

CN2 and PRISM do not employ any post-pruning scheme. GALG only post-prunes 
individual rules by deleting those atoms that will not reduce the accuracy of the rule on 
the training set (Gray, 1988). This ensures that no conjunction contains any redundant 
tests. GREEDY3 follows an approach opposite to that of GALG. It simplifies a rule by first 
discarding all its atoms. A process analogous to the specialization process is then followed 
by returning atoms to the conjunction while this will increase its accuracy on a separate test 
set (Pagallo & Haussler, 1990). 

AQ15 post-prunes a set of rules in one of two ways (Michalski et al., 1986). The first 
approach is to discard all the conjunctions describing a particular concept that cover fewer 
than two positive instances uniquely. The alternative approach is to discard all the conjunc- 
tions for a particular concept except the one covering the most positive instances. AQ15 
thus does not simplify individual rutes 3. 



28 H. T H E R O N  A N D  I. C L O E T E  

Table 7. The ten test databases 

Database Ref. Description #Inst., Attr., Class References 
lymphography lyrn identify disease 148, 18, 4 (Michalski et al., 1986) 
breast cancer bcr predict recurrence 286,9, 2 (Michalski et al., 1986) 
primary turn. pt predict tumour type 339, I7, 21 (Michalski et aL, 1986) 
iris irs identify iris type 150, 4, 3 (Mingers, 1989) 
voting vot predict democrat or 435, 16, 2 (Clark & Boswell, 1991) 

republican senator 
digit dgt identify led digit 500, 7, 10 (Mingers, 1989) 
soybean soy identify disease 307, 35, 19 (Michalski & Chii., 1980) 
tictactoe ttt predict win or loose 958, 9, 2 (Wirth & Catlett, 1988) 
internal disj. id predict class or not 500, 5, 2 
cleveland cle predict presence of 303, 13, 2 (Clark & Boswell, 1991) 

heart disease 

6. Empirical evaluation of BEXA 

This section presents an empirical evaluation of BEXA's three search restrictions. Experi- 
ments are reported where search restrictions are added one by one to show that they reduce 
the learning time and usually improve description quality. BEXA is also compared to the 
state-of-the-art concept learners CN2 and C4.5. A detailed comparison with CN2 is pre- 
sented because both BEXA and CN2 employ the covering approach to concept learning. 
C4.5 is compared to BEXA since it serves as a yard-stick for rule quality. 

It has become common practice to compare learning algorithms on a number of different 
test databases (Clark & Boswell, 1991; Quinlan, 1987b; Buntine & Niblett, 1992) because 
comparisons on a small number of databases do not yield conclusive results. We report 
results for ten test databases (see Table 7) that were selected because they are representative 
of many different types of learning problems. They differ regarding the number of training 
instances that are available, the degree of noise in these instances, the number of concepts 
to learn and the proportion of instances belonging to each concept, the number of nominal, 
integer and real-valued attributes used to describe the instances, and the application domain 
from which the data was obtained. For each database an abbreviation is given to denote it in 
tables and graphs. All the databases, except internal disjunction (id), have been used by other 
authors. References are given where the interested reader can find more detail about these 
databases. We constructed the internal disjunction database to illustrate the advantage of 
generating internally disjunctive instead of pure descriptions for some databases. Instances 
in this database are described with five attributes, A to E, where each attribute takes five 
possible values, e.g. al to as. There is only one concept with the disjunctive description 

[A E {al, a2, aa}][B E {b3, b4}] V [B E {b2, b4, bs}][C E {c3, c4, c5}] 

Five hundred random instances were generated and classified as positive or negative, de- 
pending on whether they matched this description or not. Noise was then introduced in 
each instance by replacing each on of its five attribute values with a probability of 10% 
with another, and by flipping the instance's classification with a probability of 10%. This 
database thus contains noisy instances and two irrelevant attributes, D and E. 
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Ten random training and test sets were generated for each of the ten databases. In each 
case, the training set contained 70% of the available instances while the remaining 30% 
constituted the test set. Rules were induced from the training set and the accuracy of the 
rule set was then determined on the corresponding test set. Each experiment was repeated 
ten times, once for each training and test set, and the average rule complexity, learning time, 
and classification accuracy are reported. The same ten training and test sets were used for 
all the experiments on a particular database. 

6.1. An evaluation of BEXA's search restrictions 

Four experiments were performed for each database to evaluate the individual search restric- 
tions: (1) No restrictions to serve as a yard-stick for measuring improvements, (2) Employ 
only the prevent-empty-conjunctions restriction (Test 1), (3) Apply Test 1 and then the 
uncover-new-negatives restriction (Test 2), (4) Use all three restrictions in the order ad- 
vocated in Section 4.3.3 and below. No results are reported for the cleveland database 
because it required an impractical amount of time to perform the ten experiments when no 
restriction was employed. The order in which the first two restrictions are applied is largely 
immaterial; both require very little overhead because the positive and negative extensions 
of a conjunction are computed in any case. We prefer Test 1 first though, because it is more 
efficient to test for non-zero than for new negatives uncovered, and because it is of no use to 
waste effort first on the more time consuming Tests 2 and 3 for a conjunction that will then 
be eliminated by Test I. Section 4.3.3 explained that the uncover-new-negatives restriction 
should always be employed before the irredundancy restriction so that the latter, more time 
consuming restriction, is executed as few times as possible. 

All the experiments were performed using a beam width of ten and no pre-pruning was 
performed, i.e. consistent conjunctions were generated with the significance and stop- 
growth thresholds set to 0. Section 5.2.1 showed that the specialization models of BEXA, 
AQ15 and CN2 are closely related, and if BEXA benefits from the search restrictions, it 
can be suspected that this may also be the case for AQ15 and CN2. The best results for 
CN2 were obtained with beam widths larger than one in all but two cases. Consequently, 
BEXA was executed with a beam width of ten to provide stronger evidence that AQ15 and 
CN2 may also benefit from its search restrictions. 

When comparing complexity and accuracy of rules, post-pruned rules usually yield better 
quality rules than pre-pruned rules. For these experiments BEXA therefore did not post- 
prune its rules to isolate the effects of the search restrictions, reported in Figures 7 and 
8. 

Figure 5 gives the number of specializations considered with each combination of re- 
strictions, expressed as a percentage of the number of specializations considered when no 
restriction was applied. The actual number of specializations that were evaluated is given 
above each bar. Each additional restriction reduced the number of specializations to eval- 
uate for all nine databases. In some cases, the reduction was quite dramatic. For example, 
for the breast cancer database, the total number of specializations that were constructed 
dropped from 238815 to 12875 when all three the restrictions were employed. The small 
additional reduction caused by the irredundancy restriction is not surprising. The reason is 



30 It. THERON AND I. CLOETE 

11614 236815 

lOO 

8o- 

g 
60- 

4O- no 

20- 

0- 

26740 6502 2616 3674 74344 6677 11903 
9030 124725 15180 4911 1983 2480 49839 8666 11142 

2046 13681 7581 1139 1124 2349 7319 4463 9093 
1965 12875 7185 891 1057 2254 6979 4230 8931 

tym bcr pt irs vot dgt soy ttt 

[ ]  No test [ ]  Test I [ ]  Test 1-2 • Test 1-3 

Figure 5. The total number of specializations constructed with each additional restriction 
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Figure 6. The learning times required with each additional restriction 

that the uncover-new-negatives restriction also discards values that will lead to redundant 
conjunctions. Recall that this restriction is a necessary requirement for irredundancy. The 
irredundancy restriction therefore discards only the few remaining values and intervals that 
may lead to redundant conjunctions. 

Figure 6 plots the learning time in seconds of each combination of restrictions as a 
percentage of the time required to learn the concept descriptions with no restrictions. The 
runtimes in seconds are given above each bar. For all the databases except tic-tac-toe and 
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internal disjunction, each additional restriction reduced the learning time. For the tic-tac-toe 
and internal disjunction databases the learning time increased by 3% and 2% respectively 
with the introduction of the irredundancy restriction, despite a reduction in the number of 
specializations to evaluate. The reason is that these databases are fairly large and only a 
relatively small percentage of values can be discarded during the specialization process. 
Consequently, the irredundancy restriction had to be applied frequently. The overhead due 
to so many subset tests on large bitsets slightly exceeded the savings obtained by evaluating 
fewer specializations. 

The prevent-empty-conjunctions restriction (Test 1) usually led to a large reduction in 
the number of specializations that were evaluated, but this reduction was not always ac- 
companied by a similar reduction in the learning time. For example, for the lymphography 
database the number of specializations dropped by 22% from 11614 to 9030, while the 
learning time decreased by only 1% from 242 seconds to 239 seconds. The reason is that a 
conjunction covers the fewest positive instances towards the end of the specialization pro- 
cess. Consequently, the prevent-empty-conjunctions restriction discards most values and 
intervals from the u s a b l e  set towards the end of the specialization process. It thus avoids 
only a small number of unnecessary evaluation steps. When the uncover-new-negatives 
restriction (Test 2) was applied, a reduction in the number of specializations was accom- 
panied by a similar reduction in learning time. The reason is that values and intervals that 
exclude many negative instances are likely to be excluded from a conjunction right from the 
start of the specialization process. Consequently, a large number of negative instances are 
excluded after only a few specialization steps. The uncover-new-negatives restriction will 
therefore discard many values from the u s a b l e  set after only a few specialization steps. 
None of these values will be excluded subsequently, resulting in the large drop in learning 
time when this restriction is activated. 
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Figure 8. The description accuracy obtained with each additional restriction 

Figure 7 expresses the complexity of the concept descriptions generated with each combi- 
nation of restrictions as a percentage of the complexity of the descriptions generated when 
no restrictions were applied. The actual number of atoms obtained with each experiment 
is given above each bar. Figure 8 plots the accuracies obtained with each combination of 
restrictions for each of the databases. The prevent-empty-conjunctions restriction (Test 1) 
did not change the accuracy or complexity of any of the concept descriptions. The reason 
is that BEXA's Laplace estimate, and the evaluation functions of the other covering algo- 
rithms, has a higher value for a conjunction that covers at least one positive instance than 
one covering no positive instances. The prevent-empty-conjunctions restriction therefore 
simply prevents the evaluation of conjunctions that will in any case not be selected as the 
new best one. 

The uncover-new-negatives restriction (Test 2) caused a large reduction in description 
complexity without reducing description accuracy. It even improved description accuracy 
in some cases. We explain this with an example, assuming two classes, abeam width of one, 
and that Test 2 is not applied. A conjunction's u s a b l e  set consists of two disjoint subsets: 
Let W0 denote those elements that when excluded from the conjunction do not uncover any 
new negative instances, and let W1 denote those whose exclusion uncover new negatives 
(i.e. W0 will be deleted from u s a b t e  by Test 2). Consider a conjunction w covering 30 
positive and 2 negative instances (Laplace accuracy estimate 0.912). Assume that the best 
specialization of w by excluding a single value chosen from W0 leads to a conjunction 
excluding 2 positive instances (Laplace 0.906), while the best specialization from W1 
excludes 12 positive and 1 negative instances (Laplace 0.905). Then the specialization 
due to W0 is preferred and thus retained for the next specialization step. Note that to's 
Laplace estimate cannot be improved unless a value from W1 is chosen and that w has 
a better estimate than any of its one-step specializations. Further specialization steps are 
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thus required. These steps are useless when values are chosen from W0 because either 
they exclude positive instances only (which cannot improve on w's Laplace estimate), or 
they keep the extension of the specialized conjunction unchanged. This continuing process 
makes the conjunction more specific and may increase its complexity, until eventually a 
value from W1 is chosen, leading to a conjunction covering, say, 10 positive instances 
(Laplace 0.917). If, instead, Test 2 forced the choice of a value from W1 from the outset, 
a much more general conjunction might be found. The uncover-new-negatives restriction 
therefore leads to more general conjunctions, obtained by excluding fewer values and 
intervals from the most general conjunction. Such general conjunctions tend to cover more 
positive instances. This increases their accuracy estimate and reduces their complexity. 

The irredundancy restriction (Test 3) yielded a slight additional reduction in description 
complexity and usually slightly improved accuracy or kept it unchanged. In two cases a 
reduction in accuracy not exceeding 1.2% was observed. The drop in accuracy was due to 
slightly more general conjunctions containing fewer atoms than those found without this 
restriction. 

Finally, all the algorithms except BEXA restrict the number of specializations that are 
considered, and then leave it to the evaluation function to select the best specialization. The 
experiments in this section showed that the evaluation function alone cannot be trusted to 
find the best descriptions because the quality of the descriptions improved when the uncover- 
new-negatives and irredundancy restrictions were applied. The reason is that the evaluation 
function may select specializations that increase the complexity of a conjunction as was 
explained above. BEXA's search restrictions therefore "override" the short-sightedness of 
the evaluation function. 

6.2. BEXA versus CN2 and C4.5 

BEXA, CN2 and C4.5 each has a number of parameters whose values determine the quality 
of their induced concept descriptions. The parameter values that give the best results also 
differ from one database to another. In an attempt to find the best possible results for each 
algorithm, a number of different parameter combinations were evaluated for each database. 

BEXA requires four different parameters. The first, the beam width, was kept at one 
as motivated in Section 5.2.3. The second parameter is a significance threshold. Recall 
that BEXA can employ the log-likelihood ratio criterion as a significance test, just like 
CN2. This criterion has a chi-square distribution, and thus requires the specification of a 
confidence level. For example, a confidence level of 90% may lead to fairly mild pruning, 
while a confidence level of 99.9% may lead to severe pruning. For all the experiments 
reported here for BEXA, the confidence level for the significance test was set to 0%, i.e. 
the significance test was effectively ignored. The reason is that Theron (1994) found that 
the stop-growth test usually produced similar or better results than CN2's significance test 
for most of the test databases. The third parameter is the confidence level for BEXA's stop- 
growth test. Recall from Section 4.1 that BEXA can also employ the log-likelihood ratio 
criterion as a stop-growth test. Usually, there is no way of knowing which threshold will 
produce the best results for a particular database. Consequently four stop-growth thresholds 
were evaluated for each database, namely 0% (no pruning), 90%, 99% and 99.9%. The 
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last parameter specifies whether the unpruned rules (generated with stop-growth of 0%) 
must be post-pruned or not. Theron (1994) found that the stop-growth test produced better 
quality rules than Quinlan's (1987a) post-pruning technique for three of the test databases; 
post-pruning produced better rules for three other databases, while rules of similar quality 
were obtained by either technique for the remaining four databases. Both pruning and no 
pruning must thus be evaluated to find the best set of rules. A total of five experiments 
were thus performed for BEXA for each database, namely (1) generating unpruned rules, 
(2-4) generating rules with stop-growth thresholds of 90%, 99%, 99.9%, and (5) post- 
pruning the unpruned rules. All these experiments were performed with a beam width of 
one, and with a significance threshold of 0%. BEXA can easily be extended to perform 
these five experiments automatically and then return the best of the five sets of results. 
Thus employed, no parameters need to be specified for BEXA. These five experiments 
were not excessively time-consuming since it required a maximum of ninety seconds to 
perform (using a 33MHz 80486SX PC) and amounts to selecting an appropriate bias (from 
this limited set of possibilities) for a particular learning problem. Thus in spite of BEXA's 
greater computational complexity, its search restrictions limit the search effort so that its 
average case behavior is comparable to that of the other algorithms. 

Since a number of experiments were performed for each database with each learning 
algorithm, the problem becomes to select the best results for that algorithm for comparison 
with the other algorithms. The best rules found with a particular algorithm for a given 
database was selected to be the simplest set of those sets whose accuracy did not differ 
significantly from the most accurate set found. The significance of differences in accuracy 
and complexity was determined using the two-tailed paired t-test to compare the results for 
the ten random training and test sets that were selected for each database. The best results 
obtained with each algorithm were then compared as follows. If the significance of the 
difference in description accuracy was 95% or higher, the most accurate rule set was the 
best. Otherwise the accuracies were deemed equivalent and description complexity was 
compared similarly. The most common measure for description complexity is the total 
number of atoms in a concept description (Michalski et al., 1986; Clark & Niblett, 1989; 
Clark & Boswell, 1991; Lavrac et al., 1986; Pagallo & Haussler, 1990), but the number of 
values or intervals mentioned in a rule is given as well for databases with nominal attributes 
taking more than three values. (Since BEXA writes out the complement of an atom if the 
atom contains more than half of its domain, counting values instead of atoms only influences 
the count for these attributes.) 

6.2.1. BEXA versus CN2 

There are a number of parameters that determine the quality of the rules generated by CN2. 
Firstly, CN2 can generate either ordered or unordered rules. Unordered rules were generated 
for all the databases because Clark & Boswell (1991) found that unordered rules have higher 
accuracy than ordered rules and because BEXA generates only unordered rules. Secondly, 
CN2 can use either the Laplacian or the naive (plain percentage correct) accuracy estimate. 
The Laplace accuracy estimate was selected because Clark & Boswell (1991) used it in their 
experiments. The Laplace estimate is also better than the naive estimate because it will 
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Table 8. BEXA versus C N 2  

%Correct 
lyre bcr pt its rot dgt soy ttt id cle 

BEXA 80.2 76.9 42.3 93.9 95.3 73.2 79.5 97.1 82,0 78.2 
CN2 79.6 74.3 39.8 92.6 94A 72.3 82.6 98,9 75.5 77.5 
T-test 19% 89% 89% 63% 97% 82% 75% 98% 100% 39% 

#Atoms (#Values) 
lym bcr pt irs vot dgt soy ttt id cle 

BEXA 7(8) 2(2) 11 3 3 41 59(60) 48 6(11) 12(12) 
CN2 27 3 117 5 22 208 84 68 262 31 
T-test 100% 90% 100% 100% 100% 100% 100% 100% 100% 100% 

Parameters that gave the best results 
lyre bcr pt irs vet dgt soy tit id cle 

BEXA: 
Post-pr. x/ ",,/ ~/ ~/ x/ x/ x/ 
Stop-gr. 99% 99.9% 99% 99,9% 99.9% 90% 90% 90% 

CN2: 
Beam W 10 1 20 10 10 10 20 20 1 20 
Signif. 90% 99,9% 99.9% 99% 99% 90% 0% 0% 0% 99% 

prefer a conjunction covering twenty positive and no negative instances to one covering two 
positive and no negative instances, while the naive estimate has the same value (100%) for 
both. The remaining two important parameters were the beam width and the significance 
threshold. CN2 does not employ post-pruning or a stop-growth test. For the experiments 
reported in Clark & Boswell (1991), CN2's beam width was set to twenty. BEXA's results 
suggest that CN2 may also give good results with small beam widths. Consequently, three 
beam widths were evaluated, namely one, ten and twenty. Clark & Boswell (1991) also 
evaluated only two significance thresholds for CN2, namely 0% (no pruning) and 99.5%. 
We evaluated four thresholds, namely 0%, 90%, 99% and 99.9% for each of the three beam 
widths, giving a total of twelve experiments for each database. The best of these twelve 
rule sets were selected as described in the previous section. 

Table 8 contains the best results obtained with CN2's twelve experiments and with BEXA's 
five experiments. Results in bold indicate significant differences. For two databases, voting 
and internal disjunction, BEXA's rules were significantly more accurate than those of CN2. 
For six other databases where accuracy differences were not significant BEXA produced 
significantly simpler rules than CN2. CN2 produced the best results for the tic-tac-toe 
database where its rules were significantly more accurate. To determine the reasons for dif- 
ferences in performance, the differences between BEXA and CN2 are briefly noted. BEXA 
allows (1) a richer description language (internal disjunction and the complement ("not") 
of an atom) implemented by excluding values instead of appending atoms, (2) optional 
search restrictions (Tests 1-3), (3) a stop-growth test, and (4) post-pruning of rules. Other 
minor differences affect the efficiency of BEXA and not its performance, as explained in 
Section 4.2. When the voting database is considered, the only causes for performance 
differences are Tests 1-3 and the stop-growth test, since voting contains only binary at- 
tributes and the best results were obtained without post-pruning. We therefore performed 
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four additional experiments (for the same stop-growth threshold of 99.9%) in which Tests 
1-3 were first omitted and then included one by one, and in all cases the same rule set was 
found. When relaxing the stop-growth threshold to 99%, description complexity increased 
to nine and accuracy dropped by 0.6%, illustrating that the stop-growth test terminated 
specialization early enough. 

The id database contains only nominal attributes, each taking five values. In this case 
the possible causes for performance differences are BEXA's specialization method and 
accompanying richer description language, Tests 1-3 and the stop-growth test. For the best 
results given in Table 8 BEXA found the exact concept description. When repeating the 
experiment with a 95 % stop-growth threshold, pre-pruning was too strict; accuracy dropped 
to 78.1% with only three atoms in the description. At the 90% stop-growth threshold, several 
experiments were performed with combinations of Tests 1-3. Test 1 had no effect on the 
generated descriptions; Tests 2 and 3 did not affect the accuracy, but performing only 
Test 2 caused, for the first time, a description containing the irrelevant attribute E (i.e. a 
more complex description than necessary). For the id database CN2's restriction to pure 
descriptions does not allow such a succinct description of the target concept as is possible 
with descriptions containing internal disjunction, but there is in principle no reason why CN2 
cannot generate the equivalent 15 pure rules describing the target concept. However, CN2 
generated very specific conjunctions usually containing three atoms and covering one to 
three examples. BEXA's specialization method of excluding one value at a time biases it to 
find descriptions such as [x E { 1 ,2 ,3  } ] more easily than CN2, since CN2 must construct 
three rules, one for each value of X. In the presence of noise where attributes other than 
X are contenders for selection, CN2 has no bias to select attribute X again to construct a 
subsequent rule (i.e. to lead to three pure conjunctions equivalent to [x E {1,2 ,3}1);  
instead other attributes may be taken. In this way CN2's language restriction may break up a 
natural concept description into an accurate and highly specific, but difficult to understand, 
description (this is also one of Gray's (1990) criticisms of decision trees). For the id database, 
therefore, BEXA's specialization method biased it to prefer most general descriptions, Tests 
2 and 3 prevented specialization of irrelevant attributes (causing them to be eliminated), 
and its stop-growth test terminated specialization before the description fits the noise. 

CN2's better results for tic-tac-toe are not surprising since this database has inherently 
pure concept descriptions (e.g. [top-left-square = 'X'][top-middle-square = 'X'][top-right- 
square = 'X'] or ...). BEXA thus over-generalized for this database where its accuracy was 
1.8% less. The internal disjunction database on the other hand illustrates the advantages of 
being able to generate internally disjunctive expressions where BEXA's rules were markedly 

more accurate. 

6.2.2. BEXA versus C4.5 

BEXA was compared to C4.5 to present a yard-stick for rule quality, not with the intention 
of comparing their specialization methods. C4.5 has a facility to generate a set of pruned 
production rules from a decision tree. Quinlan (1987a,1987b) found that these rules are 
much simpler and also more accurate than pruned decision trees. We thus compared BEXA's 
results to the best rules generated by C4.5. The tree pruning defaults were used because 
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Table 9. B E X A v e r s u s C 4 . 5  

%Correct 
lyre bcr pt irs vot dgl soy ttt id cle 

BEXA 80.2 76.9 42.3 93.9 95.3 73.2 79.5 97.1 82.0 78.2 
C4.5 77.1 74.9 393 94.0 95.1 72.9 85.0 98.3 83.3 75.9 
Signif. (T-lest) 74% 80% 97% 1% 37% 53% 87% 76% 69% 81% 

#Atoms 
lym bcr pt irs vot dgt soy tit id cle 

BEXA 7 2 11 3 3 41 59 48 6 12 
C4.5 13 7 23 5 7 79 44 35 8 12 
Signif. (T-test) 100% 100% 100% 100% 99% 100% 100% 100% 100% 0% 

Parameters that gave the best results 
lym bcr pt irs vot dgt soy ttt id cle 

BEXA: 
Post-pr. rules ~/ x/  ",/ ~/ x/ ~/ ~/ 
Stop-gr. Thresh. 99.9% 90% 90% 
C4.5: 
Subsets (-s) x x/ , J  x x x ~/ x ~/ , /  
Confidence (-c) 1% 25% 25% 40% 1% 1% 1% 25% 1% 1% 
Redundancy (-r) 2 0.5 0.5 0. ! 0.5 2 0.5 O. 1 O.l 0,5 

C4.5 always generates rules from unpruned trees. Pruning the trees therefore would have 
no influence on the quality of the generated rules. No windowing was required since all 
the datasets were small enough to fit into memory. Furthermore, Wirth & Catlett (1988) 
found that windowing rarely improves the quality of decision trees. The initial trees were 
generated using the default gain ratio criterion as the evaluation function because Quinlan 
(1986) found it to be superior to the older gain criterion. Secondly, C4.5 can combine 
branches in a tree so that some branches are labelled with subsets of values instead of single 
values, providing the option of internally disjunctive rules. Trees were generating using 
both settings of this parameter. Three parameters control C4.5's rule pruning process. The 
confidence level is used to determine which atoms to drop from a rule during the pruning 
process (default 25%). A lower confidence level leads to more severe pruning and a higher 
confidence level prunes less severely. We evaluated confidence levels of 40%, 25%, 5% 
and 1%. The second parameter specifies the confidence level that must be used if the older 
Fisher's exact test must also be used to prune rules. Theron (1994) found that this test 
makes no difference, i.e. the primary pruning test for which the confidence level must be 
specified succeeds in weeding out all insignificant atoms. The last rule pruning parameter 
is a redundancy factor that determines which rules must be retained when the collection of 
rules is simplified by deleting complete rules. The default redundancy factor is 1.0. Lower 
values lead to more severe pruning, and higher values lead to less severe pruning. We 
evaluated redundancy factors of 2.0, 1.0, 0.5 and 0.1. A total of 32 experiments were thus 
performed for each database to evaluate all possible combinations of the four confidence 
thresholds and redundancy factors, both with and without the subset construction feature 
during tree generation. 

Table 9 contains the best results obtained with BEXA and C4.5 for each database in the 
same format as that of Table 8. BEXA produced significantly more accurate rules (3%) 
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than C4.5 for the pt database. C4.5 produced the simplest rules for only two databases 
(soybean and tic-tac-toe); both algorithms produced equivalent rules for cle, while BEXA 
had significantly simpler rules for the remaining six databases. C4.5 generated simpler rules 
than BEXA for tic-tac-toe for the same reason as CN2: both generated pure descriptions 
(C4.5 gave the best results when the subset construction parameter was not set). 

For soy both algorithms generated internally disjunctive rules; BEXA's rules were not 
post-pruned, instead pre-pruning with the application of Tests 1-3 produced the best results. 
This database contains 17 binary and 18 other nominal attributes with three or more values 
per domain. When comparing the soy results, we note that BEXA's rules were more general 
than C4.5's; BEXA used the "not" operator which caused many atoms to cover a larger 
subset of the domain than C4.5's atoms. BEXA's rules had 60 values, compared to the 
55 of C4.5; thus having reasonably similar complexity. For id, containing only non-binary 
nominal attributes, similar results were obtained with identical parameter settings for BEXA 
(the only difference for C4.5 compared to the soy experiment was the redundancy factor). 
Here BEXA had slightly less complex rules than C4.5. As illustrated by the additional 
experiments for BEXA (when compared to CN2 on the voting database in Section 6.2.1), 
Tests 2 and 3 weeded out irrelevant attribute values, while the stop-growth test prevented 
overfitting. 

When comparing the soy and id experiments to pt, we note that pt contains 14 binary 
and three other nominal attributes (the linear attribute is converted to nominal with three 
intervals; thus each attribute takes three values). With the "not" operator, the number of 
values and atoms for BEXA's rules is therefore the same. When the "not" operator is 
not taken into account, BEXA generated internally disjunctive rules for four of the ten 
experiments which produced the best results, while C4.5's rules were pure (even though the 
subset option was used). BEXA's stop-growth test was not used. When Tests 2 and 3 were 
not used the rules before post-pruning contained 15 more atoms. These tests, therefore, 
caused BEXA to generate maximally general rules, making it possible for the post-pruning 
process to spot the really informative atoms because it evaluates the rule-set as a whole. 

The main reason for BEXA's success is its ability to generate very simple rules. BEXA's 
richer description language, specialization method and search restrictions prefer more gen- 
eral descriptions, while its stop-growth test prevents overfitting. This bias towards generality 
can be adjusted by suitable settings of its parameters. 

7. Summary 

This paper presented a uniform framework of excluding of values, instead of appending 
atoms, for specialization models employed by AQ15, CN2, GREEDY3, PRISM, and GALG. 
This view of the specialization process led to BEXA, which has two novel features. Firstly, 
it specializes a conjunction by explicitly excluding single values or intervals instead of 
appending atoms to it as is done by the other covering algorithms. Secondly, BEXA does 
not restrict the number and type of specializations that are constructed for a conjunction 
at each specialization step. However, it keeps the search effort manageable by employing 
three dynamic search restrictions that avoid the construction of useless specializations. 
The key search restriction is the irredundancy test and its special case, the uncover-new- 
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negatives test, which biases BEXA towards general conjunctions. These conjunctions 
contain few atoms and have high values for the evaluation function because they cover many 
positive instances. We also provided a theoretical foundation for BEXA's search constraints 
and compared it empirically to CN2 and C4.5. BEXA generates concept descriptions of 
comparable accuracy, but with greater simplicity, than these well-known state-of-the-art 
concept learners. 
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Notes 

1. Top Down Induction of Decision Trees 

2. This discussion is based on the code of CN2, version 5.1, that was obtained from the Turing Institute. 

3. AQ15 was recently modified to employ post-pruning that simplifies individual rules. The new system is called 
POSEIDON (Bergadano et al., 1992). 
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