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Abstract. In this note we study the behaviour of hydromagnetic oscillations along the field lines of 
Jupiter's magnetosphere crossing the Io plasma ring. We compare the shape and period of these 
oscillations, as found by a direct numerical calculation, with those obtained with the WKB method, 
in order to show the unaccuracy of this approximation. 

1. Introduction 

Asymptotic solutions for the equations of Mathematical Physics usually work much 
better  than one has a right to expect; although one may cunningly choose the 
coefficients to show the limitations of these methods, the fact remains that in most 
cases the difference between the true and the approximated solutions is much 
smaller than the a priori bounds given in the books. The purpose of this note is 
to study and actual and up-to-date phenomenon where the WKB approximation 
fails completely in its predictions. We think examples of this sort are a useful 
companion to the more numerous ones where everything works beautifully, to 
avoid the student being misguided into blind confidence. Low-frequency pulsations 
of the Earth 's  magnetosphere were observed as early as 1859 and identified later 
by Dungey (1954) as standing modes of the linearized magnetohydrodynamic 
equations along a field line anchored in the ionosphere. Later  work confirmed 
and clarified this model (cf. Chen and Hasegawa, 1974; Lanzerotti  and Southwood, 
1979; Warner  and Orr,  1979; Kivelson et al., 1984). In Warner  and Orr (1979) or 
Kivelson et al. (1984), for instance, a simplified model and the WKB apt?roximation 
were used to obtain satisfactory values for the periods of the pulsations. Thanks 
to the Voyager spacecraft measurements,  this interpretation has been extended to 
other  magnetospheres,  notably to Jupiter's (cf. Glassmeier et al., 1989). A special 
feature of Jupiter is the plasma ring which surrounds the planet around the 
orbit of Io, where material density is roughly 700 times greater than elsewhere. 
Hydromagnetic pulsations associated to field lines crossing this torus are strongly 
influenced by it, making, as we shall see, useless the WKB method to obtain their 
periods. 
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2. The Physical Background 

Instead of discussing at length how the linearized magnetohydrodynamic equations 
apply to magnetospheric oscillations, we start from the equations in Singer et al. 

(1981) and refer the reader to the already mentioned papers for full details. For  
small perturbations b of the magnetic field orthogonal to the equilibrium B0, the 
component  (~ of the material displacement in the direction of the vector field o~ 
satisfies the second-order equation 

0 2 ~ + 0 (log(h]Bo)) = 0 (1) 
Os 2 Os Os \ h J  B 2 ' 

where p is the density, w the time frequency, s the arc length along the field line 
and ha a geometrical factor measuring the separation between adjacent field lines 
in the o~-direction. The perturbed field b~ may be obtained from the formula 

Os \ h J  

and the plasma velocity, from 

us = io~:~. 

We shall use a dipole field as a model for the field lines crossing the Io plasma 
toms. Therefore  (cf. Jackson, 1975), we have 

Bo = M (2 cos 0, sin 0) 
\ r 3 r 3 / '  

where M is Jupiter's magnetic moment and 0 the colatitude. The field lines satisfy 
r = L sin 2 0, r being the radial distance from the dipole, L the distance at the 
Equator.  In this case the factor h~ for the lines in the same magnetic shell, 
corresponding to the so-called toroidal oscillations, is r sin 0, whereas for lines in 
the same meridian plane (poloidal oscillations) its value is 

1 

rBo sin 0 

The field lines are anchored in the ionosphere of Jupiter at an angle 0 such that 

sin 0 = ~ / 1 .  

Since the conductivity of the ionosphere is practically infinite in comparison with 
the outer regions, the natural boundary condition is to set there the displacement 
as zero. The plasma ring of Io lies at a distance of 6 Jovian radii from the planet; 
the density along a field line with L = 6 has a Gaussian distribution which drops 
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Fig, 1, Density along a field line with L = 6. 

to (1/3700) of  its value at the E q u a t o r  at a lat i tude of  20 °, and remains practically 

constant  in the remaining  field line. A n  adequa te  mode l  for  the density is therefore  

p =  - -  1 _]_ e 2 0 ( s i n 6 0  - t )  

3700 

(see Fig. 1). 

3. Discussion of the Problem 

Substituting z = cos 0 in Equa t ion  (1), and taking the above  given values for ha 

and B0, we obtain  that  

h~ 

satisfies the equat ions  

d2u 6z du 

dz 2 1 + 3z 2 dz 
+ A2p(1 - -  Z 2 ) 6 U  = 0 (2) 

for  the poloidal  oscillations, and 
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First eigenmode. The dotted line is the WKB approximation. 
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Fig. 3. Second eigenmode. 
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Fig. 4. Third eigenmode. 
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Fig. 5. Twenty-first eigenmode. 
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d2u  
- -  + - z 2 ) %  = 0 ( 3 )  
dz 2 

for the toroidal ones, where 

A _  °)L4 ~ 0 .  
M 

The WKB approximation (see for example,  Olver, 1974 or Bender  and Orszag, 
1984) to the displacement ~ is the same for both (2) and (3): i.e., 

, c  ) 
~ ~@/4 COS A (1 -- Z2) 3 G dz)  + 2 . z2)3 pl/4 s m  A (1 - G d z  ; 

(4) 

and so the eigenvalues for the solution vanishing in 

are 

cos 0 = + X/1 - 1/L  

//7/" 
A,,= , n=_+1 ,_+2  . . . .  

2 f~(1 - z2)3 G dz 

The first eigenvalues are given by 

At = 9.849917135883, 

A2 = 19.699834271767, 

A3 = 29.549751407650. 

On the other hand, Equations (2) and (3) have been solved numerically by an 
adaptative Runge-Kut ta  7 -8  method,  combined with the Mtiller algorithm to find 
the solutions vanishing at the boundaries.  The first eigenvalues are, for the poloidal 
case 

A] ~ = 2.426700796652, 

A p = 13.982085660047, 

A p = 24.330132731001; 

and for the toroidal one 

A~I = 3.336848012754, 

A~ = 14.274714553018, 

A~ = 24.524602360100; 

whereas the graphics of the real eigenmodes,  as compared  with the WKB ones, 
are given in Figures 2 to 4. Both the eigenvalues and the eigenmodes agree bet ter  
as A grows, as it should be; for instance Aal =206.84825985355, APl = 
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204.12738958705 (see Fig. 5); but in most natural phenomena only the first har- 
monics are recognizable, and the same happens in this case (cf. Glassmeier et al . ,  
1989). The  most spectacular disagreement lies in the fundamental mode: the WKB 
approximation gives an artifically low-period (high frequency) oscillation, whereas 
the real one has a period almost four times higher. Also the WKB eigen-oscillations 
are more closely confined to the plasma torus, and an apparent inflexion occurs 
near its boundary, which, however, is totally spurious. The approximation is worse 
at the areas of high density gradient, as one could guess beforehand: there the 
coefficients differ more markedly from constants. Obviously an experimenter trust- 
ing the WKB model would be driven to false expectations. 
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