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Abstract. Prentice (1978a) in his modem Laplacian theory of the origin of the solar system has established 
the scenario of the formation of the solar system on the basis of the usual laws of conservation of mass 
and angular momentum and the concept of supersonic turbulent convection that he has developed. In this, 
he finds the ratio of the orbital radii of successively disposed gaseous rings to be a constant N 1.69. This 
serves to provide a physical understanding of the Titius-Bode law of planetary distances. In an attempt to 
understand the law in an alternative way, Rawal (1984) starts with the concept of Roche limit. He assumes 
that during the collapse of the solar nebula, the halts at various radii are brought about by the supersonic 
turbulent convection developed by Prentice and arrives at the relation: Rp = R,aP, where R, are the radii 
of the solar nebula at various halts during the collapse, R, the radius of the present Sun and a = 1.442. 
‘a’ is referred here as the Roche constant. In this context, it is shown here that Kepler’s third law of 
planetary system assumes the form: T, = To(a3’2)p, where T, are the orbital periods at the radii R,, 
T, N 0.1216d N 3 h, and II the Roche constant. We are inclined to interpret ‘T,’ to be the rotation period 
of the Sun at the time of its formation when it attained the present radius. It is also shown that the oribital 
periods Tp corresponding to the radii R, submit themselves to the Laplace’s resonance relation. 

1. Introduction 

Since the time Copernicus discovered that the planets revolve around the Sun, 
astronomers have been trying to understand the origin of the solar system. Numerous 
theories for the origin of the solar system have so far been advanced (ter Haar and 
Cameron, 1963; ter Haar, 1967; Williams and Cremine, 1968; Woolfson, 1969; AlfvCn 
and Arrhenius, 1970a,b; Nieto, 1972; Reeves, 1978; and Prentice, 1978a, b). Among 
all these theories of the formation of the solar system, Laplace’s nebular hypothesis 
is favoured (see Reeves, 1978; Rawal, 1984). However, it faces few problems (for full 
details, see above mentioned references). The difficulties faced by Laplacian hypo- 
thesis are considered by Prentice (1978a, b). He presents an outline of the Laplacian 
theory, which he calls ‘modern Laplacian theory’ for the origin of the solar system. 
He considers the influence of a supersonic turbulent stress on the cloud and shows 
how this stress leads to the formation and detachment of a discrete system of gaseous 
rings, the ratio of the orbital radii R, of successively disposed gaseous rings being a 
constant forming a geometric progression similar to the Titius-Bode law of planetary 
distances (ter Haar, 1950; Dermott, 1968; Nieto, 1972; and Rawal, 1978). To be more 
precise, on the basis of supersonic turbulent convection and the usual laws of con- 
servation of mass and angular momentum, Prentice, in his modern Laplacian theory, 
gets the ratio of the orbital radii R, of successively disposed gaseous rings to be a 
constant given by 
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RJR,,, = 1 + ?- [ 1 
2 

Ml?- 
= const. N 1.69, (1.1) 

where m is the mass of a disposed ring, M the remaining mass of protosolar nebula 
and, f, the moment-of-inertia coefficient. 

In an attempt to understand the Titius-Bode law in an alternative way, Rawal 
(1984) starts with the concept of Roche limit. He assumes that during the collapse of 
the solar nebula the halts at various radii are brought about by the supersonsic 
turbulent convection developed by Prentice and arrives at the relation 

Rp = R,aP, (1.2) 

where R, are the radii of the solar nebula at various halts during the collapse, R, the 
radius of the present Sun and a = 1.442 is referred here as the Roche constant. Rawal 
(1984) tabulates all Rp (see Table I). He points out that the ring-structure-feature is 
a common and natural feature of the heavenly bodies, in particular, of the major 
members of the solar system (also see Rawal, 1981, 1982). He then reconciles his work 
with that of Prentice and finds that 

RpIR,,, = 1 + 2 [ 1 
2 

MY- 
= 1.442 = a. (1.3) 

His discussion supports modern Laplacian theory of Prentice, and in turn, modern 
Laplacian theory provides an understanding between supersonic turbulent convection 
and Roche limit, in that, the rotational instability at the equator of the protosolar 
nebula arises at various stages of its contraction precisely by the step of Roche 
constant which is the same as Bode’s constant of modern Laplacian theory leading to 
the formation and detachment of a discrete system of gaseous rings, the whole process 
being controlled by the phenomenon of supersonic turbulent convection. The useful- 
ness of the work being that once the radius of the primary is known, the relation can 
be set up very simply and uniquely. The discussion could be considered as an 
alternative way of deriving the Titius-Bode law. 

In the present paper, it is proposed to derive and discuss the Kepler’s third law of 
planetary system in relation to this concept. It is also proposed to discuss the resonant 
structure in the solar system in this context. 

2. Kepler’s Third Law 

A systematic search for regularity in the major satellite systems by Dermott (1968) has 
revealed that the orbital periods of the regular satellites are closely approximated by 
the relation 

T,, = ToA”, (2-l) 

where T, is the orbital period of the nth satellite. It must be allowed, though, that in 
any one system, there are a small number of vacancies. For all systems A is the square 
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root of a small integer and it is suggested that T, is related to the rotational period 
of the primary. The relation can be applied to the planetary system but there are some 
anomalies. It is also suggested that this regularity, which is related to the preference 
for near commensurability among pairs of mean motions in the solar system, is a 
condition of formation rather than the result of evolution and thus could be of 
considerable cosmogonic importance. 

In order that Equation (1.2) derived by Rawal (1984) reconciles with Kepler’s third 
law we have 

Tp = To(a3’2)p, (2.2) 

where T, are the orbital periods at the radii Rp, To N 0.1216 d N 3 hours and ‘a’ the 
Roche constant. We are inclined to interpret ‘To’ to be the rotation period of the Sun 
at the time of its formation at the present radius for the reasons given below. 

Hoyle (1978) considers the slow spin of the Sun as the most remarkable character 
of the formation process of the solar system and tries to get an estimate of the final 
period of rotation of the solar nebula when it has attained the diameter of the present 
Sun by giving the following order of magnitude condition: 

Initial period of rotation 

-( 

Initial diameter 
Final period of rotation - Final diameter (2.3) 

He estimates the initial diameter of the solar nebula to be of the order 10” cm and the 
initial period of rotation to be about 3 x 10’yr and arrives at the final period of 
rotation to be 0.0212 days. He then points out that this rotation period corresponds 
to the rotation speed of 2.4 x lo3 km s-l which is 1200 times the actual rotation speed 
of the present Sun at the equator and remarks that the Sun could not in fact spin as 
fast as that. If the actual Sun were made to spin faster and faster, it would become 
unstable at a rotational speed of about 400 km SC’. His calculations indicated a speed 
about six times faster than this, which means that the solar nebula could not shrink 
to its present diameter, rotational forces would become dominant at a much larger 
diameter, in fact, at 62 times the present diameter of the Sun, 

Larson (1969) in his study of collapse of the solar nebula estimates the initial period 
of rotation of the cloud to be N 1O’yr and its initial diameter to be - 3.2 x 10”cm 
and arrives at the final period of rotation to be -0.07 days. Other authors (for 
example, Bok and Reilly, 1947; Prentice and ter Haar, 1971; Mestel, 1977; Prentice, 
1978b) in their study of star formation and stellar clouds arrive at more or less the 
same value for the dimension of a star-forming cloud (solar nebula) but differ in the 
value of its initial rotation period by an order of magnitude one or two. If we take 
the initial period of rotation of the solar nebula to be - 3 x 108yr and its initial 
diameter to be - 10” cm and recalculate the final period of rotation, then it turns out 
to be - 0.1216 d as against Hoyle’s value of 0.0212 d and Larson’s value of 0.07 d. The 
value of the final rotation period calculated by us corresponds to the rotational speed 
of about 416 km s-’ which is just the critical rotational speed. Alternatively, we may 
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employ Kepler’s third law to calculate the orbital period of a particle moving around 
the centre of the nebula at a distance equal to the radius of the Sun and find it to be 
- 0.1175 d. We, therefore, make an assumption here that the Sun at the time of its 
formation when it attained the present radius was rotating almost at the critical 
break-up speed of 400 kms-’ and interpret T0 N 0.1216d N 3 h to be its rotation 
period at the time. 

TABLE II 

This table shows various T, obtained from relation (2.2) of the text. Corresponding R, 
are shown in Table I. 

Its period in 
days or years 

0.1175d 
0.2032 d 
0.3524d 
0.6102d 
1.057d 
1.8300d 
3.1700d 
5.4870 d 
9.5060 d 

16.4600 d 
28.5100d 
49.3800d 
85.5100d 

148.1000d 

Its period in 
days or years 

261.1 d 
444. Id 
169.1 d 

3.735 yr 
6.320 yr 

10.9400 yr 
18.9500 yr 
32.8200 yr 
56.8400 yr 
98.4500 yr 

170.5000 yr 
295.2000 yr 

In Table II are shown various T, at the corresponding Rp shown in Table I. 
Babinet (1861) pointed out that the Sun is spinning far too slowly with a period of 

some 25 days instead of few hours expected for the Laplacian theory. Present work 
shows that he was right. At present, there is a growing group of theorists who believe 
that the interior of the Sun may still be rotating quite rapidly (Dicke, 1970, 1983). 

Thus, A - a constant of Dermott having the property that it is the square root of 
a small integer is replaced by 3/2 power of the Roche constant, and the opinion of 
Dermott that To is related to the rotational period of primary is replaced by the period 
of rotation of the primary at the time of its formation. 

3. Resonant Structure in the Solar System 

Resonant theory in the planetary system states that if n, , n2, n3 (n, = 27c/T., q being 
the corresponding orbital period n, > n2 > n,), denote the mean motions of three 
secondaries going around a primary (orbits assumed circular and coplanar), then a 
necessary condition for the frequent occurrence of mirror configuration (Dermott, 
1973; Rawal, 1981; 1982) is of the form 

c-1 - (a + p>n* + pnj = 0, (3.1) 
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TABLE III 
Resonance in the triads of successive Rp shown in Table I. Corresponding T, are found 

from the relation (2.2) of the text and shown in Table II. 

Triad 
RMMR 
BIGS + 4 Triad 

RMMR 
B/V + 4 

Ro 
4 
R2 

4 
R2 
R3 

4 
R3 
R4 

R3 
R4 
4 

R4 
4 
4 

4 
4 
4 

% 
4 
4 

R, 

2 

4 
R9 
40 

% 
40 
4, 

40 
RI, 
42 

4, 
42 
43 

42 
4, 
44 

~213 

-213 

~213 

~213 

-213 

-213 

~213 

~213 

~213 

-213 

~213 

~213 

~213 

R13 

44 
4, 

R,4 

4, 
46 

RI5 
46 
4, 

46 
47 
4, 

47 
4, 
R19 

48 
49 
R20 

RI, 

R20 
4, 

R20 

R2, 

R22 

R2, 

R22 

R23 

R22 

R23 

R24 

R23 

44 
R25 
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where CI and p are small positive integers. It follows from Equations (3.1) that in a 
reference frame revolving with the mean motion of any one of the three secondaries, 
the relative mean motions ~$of the other two are commensurate and that in a frame 
I (that of the innermost secondary), we haven; = n, - n2 and n; = n, - n3 and the 
ratio of these relative mean motions is given as follows 

n;/n$ = h - nd/(s - 4 = P/V + 4. 

In terms of revolution periods, Equation (3.2) becomes 

(3.2) 

r&/n; = K - ~dT3/cG - ~*)T, = MB + 4. (3.3) 

For a stable three-body resonance, the relative mean motion ratio (RMMR), 
Equation (3.3), has the value 2/3. This case is called Laplace’s resonance relation and 
three successive orbits following this relation represent stable motion. 

Here we apply the resonance theory among R,. Results are shown in Table III. 
From Table III, we see that Rp submit themselves to the Laplace’s resonance relation 
without any exception. Rawal (198 1) has discussed the resonance theory among all 
the members of the solar system and concluded that all the planets of the solar system 
follow the Laplace’s resonance relation. Here it is found that all R, of the Equation 
(1.2) are.in agreement with his aforesaid conclusion regarding planets. 
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