Skip to main content
Log in

Biodiversity and function of bacteria in the Southern Ocean

  • Papers
  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

A short overview of the biodiversity of Antarctic marine bacteria is given with respect to morphology and metabolic activity. The importance of spatial and temporal variability is described. The physiological adaptation and ecological function of Antarctic marine bacterioplankton are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammerman, J.W., Fuhrman, J.A., Hagstrom, A. and Azam, F. (1984) Bacterioplankton growth in seawater. Growth kinetics and cellular characteristics in seawater cultures. Mar. Ecol. Prog. Ser. 18, 31–9.

    Google Scholar 

  • Amy, P.S. and Morita, R.Y. (1983) Starvation-survival patterns of sixteen freshly isolated open-ocean bacteria. Appl. Environ. Microbiol. 45, 1109–15.

    Google Scholar 

  • Azam, F., Beers, R.J., Campbell, L., Carlucci, A.F., Holm-Hansen, O., Reid, M.H. and Karl, D.M. (1979) Occurrence and metabolic activity of organisms under the Ross Ice Shelf, Antarctica, at Station J9. The ecological role of watercolumn microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–63.

    Google Scholar 

  • Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A. and Thingstad, F. (1983) The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–63.

    Google Scholar 

  • Berman, T., Nawrocki, M., Taylor, G.T. and Karl, D.M. (1987) Nutrient flux between bacteria, bacterivorous nanoplanktonic protists and algae. Mar. Microb. Food Webs 2, 69–82.

    Google Scholar 

  • Bhakoo, M. and Herbert, R.A. (1980) Fatty acid and phospholipid composition of five psychrotrophic Pseudomonas spp grown at different temperatures. Arch. Microbiol. 126, 51–5.

    Google Scholar 

  • Bird, D.F. and Kalff, J. (1983) Empirical relationships between bacterial abundance and chlorophyll concentration in fresh and marine waters. Can. J. Fish. Aquat. Sci. 41, 1015–23.

    Google Scholar 

  • Bird, D.F. and Karl, D.M. (1991) Spatial pattern of glutamate and thymidine assimilation in Bransfield Strait, Antarctica during and following the austral spring bloom. Deep Sea Res. 38, 1057–75.

    Google Scholar 

  • Bölter, M. and Dawson, R. (1982) Heterotrophic utilisation of biochemical compounds in Antarctic waters. Neth. J. Sea Res. 16, 315–32.

    Google Scholar 

  • Bouvy, M. and Delille, D. (1987) Numerical taxonomy of bacterial communities associated with a subantarctic mussel bed. Helgol. Meeres. 41, 415–24.

    Google Scholar 

  • Bouvy, M. and Delille, D. (1988) Spatial and temporal variations of Antarctic and Subantarctic bacterioplankton. Neth. J. Sea Res. 22, 139–47.

    Google Scholar 

  • Bouvy, M., Le Romancer, M. and Delille, D. (1986) Significance of microheterotrophs in relation to the degradation process of subantarctic kelp beds (M. pyrifera). Polar Biol. 5, 249–53.

    Google Scholar 

  • Boyd, W.L. and Boyd, J.W. (1963) Soil microorganisms of the McMurdo Sound area, Antarctica. Appl. Microbiol. 11, 116–21.

    Google Scholar 

  • Buck, K.R. and Garrison, D.L. (1983) Protists from the ice-edge region of the Weddell Sea. Deep-Sea Res. 30, 1261–77.

    Google Scholar 

  • Cameron, R.E. (1971) Antarctic soil microbial and ecological investigations. In Research in the Antarctic., Am. Assoc. Adv. Sci. No. 93 (L.O. Quam, ed.) pp. 137–69. Washington DC: American Association for the Advancement of Science.

    Google Scholar 

  • Cho, B.C. and Azam, F. (1990) Biogeochemical significance of bacterial biomass in the ocean's euphotic zone. Mar. Ecol. Prog. Ser. 63, 253–9.

    Google Scholar 

  • Coffin, R.B. and Sharp, J.H. (1987) Microbial trophodynamics in the Delaware Estuary. Mar. Ecol. Prog. Ser. 41, 253–66.

    Google Scholar 

  • Cole, J.J., Findlay, S. and Pace, M.L. (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43, 1–10.

    Google Scholar 

  • Cota, G.F., Kottmeier, S.T., Robinson, D.H., Smith, W.O.Jr and Sullivan, C.W. (1990) Bacterioplankton in the marginal ice zone of the Weddell Sea: biomass, production and metabolic activities during austral autumn. Deep Sea Res. 37, 1145–67.

    Google Scholar 

  • Dahle, A.B. and Laake, M. (1982) Diversity dynamics of marine bacteria studied by immunofluorescent staining on membrane filters. Appl. Env. Microbiol. 43, 169–76.

    Google Scholar 

  • Davis, C.L. (1989) Uptake and incorporation of thymidine by bacterial isolates from an upwelling environment. Appl. Env. Microbiol. 55, 1267–72.

    Google Scholar 

  • Delille, D. (1977a) Cycles bactériens du soufre et de l'azote dans les dépots sédimentaires du Fjord Bossière. In Adaptation within Antarctic ecosystems (G.A. Llano, ed.) pp. 159–80. Houston: Gulf Publishing Co.

    Google Scholar 

  • Delille, D. (1977b) Contribution a l'étude du role des populations bactériennes dans les principaux cycles biologiques (C, N, S, P) établis en milieu sédimentaire subantarctique (Archipel de Kerguelen). These Doct. Etat. Université Claude Bernard Lyon 1, 354 pp.

  • Delille, D. (1987) Spatial distribution of coastal Antarctic seawater bacteria: relationship with avifauna. Polar Biol. 8 55–60.

    Google Scholar 

  • Delille, D. (1990) Seasonal changes of subantarctic heterotrophic bacterioplankton. Arch. Hydrobiol. 119, 267–77.

    Google Scholar 

  • Delille, D. (1992) Marine bacterioplankton at the Weddell Sea ice edge, distribution of psychrophilic and psychrotrophic populations. Polar Biol. 12, 205–10.

    Google Scholar 

  • Delille, D. (1993) Seasonal changes in the abundance and composition of marine heterotrophic bacterial communities in an Antarctic coastal area. Polar Biol. 13, 463–70.

    Google Scholar 

  • Delille, D. (1995) Seasonal changes of subantarctic benthic bacterial communities. Hydrobiologia 310, 47–57.

    Google Scholar 

  • Delille, D. and Bouvy, M. (1986) Microflores sulfatoreductrices en milieu subantarctique. Relations avec quelques paramètres physicochimiques et biologiques (Microflores totales et hétérotrophes). Actes Colloq. IFREMER 3, 265–72.

    Google Scholar 

  • Delille, D. and Bouvy, M. (1989) Bacterial responses to natural organic inputs in a marine subantarctic area. Hydrobiologia 182, 225–38.

    Google Scholar 

  • Delille, D. and Cahet, G. (1985) Heterotrophic processes in a Kerguelen Mussel-bed In Antarctic Nutrient Cycles and Food Webs (W.R. Siegfried, P.R. Condy and R.M. Laws, eds) pp. 128–35. Berlin: Springer Verlag.

    Google Scholar 

  • Delille, D. and Perret, E. (1989) Influence of temperature on the growth potential of southern polar marine area. Microb. Ecol. 18, 117–23.

    Google Scholar 

  • Delille, D. and Perret, E. (1991) The influence of giant kelp Macrocystis pyrifera on the growth of subantarctic marine bacteria. J. Exp. Mar. Biol. Ecol. 153, 227–39.

    Google Scholar 

  • Delille, D., Bouvy, M. and Cahet, G. (1988) Short term variations of bacterio-plankton in Antarctic zone: Terre Adélie area. Microb. Ecol. 15, 293–309.

    Google Scholar 

  • Delille, D., Fiala, M., and Rosiers, C. (1995) Seasonal changes in phytoplankton and bacterioplankton distribution at the ice-water interface in the Antarctic neritic area. Mar. Ecol. Prog. Ser. 123, 225–33.

    Google Scholar 

  • DeLong, E.F., Wickham, G.S. and Pace, N.R. (1989) Phylogenetic strains: ribosomal RNA-based probes for the identification of single cells. Science 234, 1360–3.

    Google Scholar 

  • DeLong, E.F., Wu, K.Y., Prézelin, B.B. and Jovine, R.V.M. (1994) High abundance of Archaea in Antarctic marine picoplankton. Nature 371, 659–7.

    Google Scholar 

  • Ducklow, H.W., Purdie, D.A., Williams, P.J.LeB and Davies, J.M. (1986) Bacterioplankton: a sink for carbon in a coastal marine plankton community. Science 232, 865–7.

    Google Scholar 

  • El-Sayed, S.Z. (1984) Productivity of Antarctic waters—a reappraisal. In Marine Phytoplankton and Productivity (O. Holm-Hansen, L. Bolis and R. Gilles, eds) pp. 19–34. Berlin: Springer-Verlag.

    Google Scholar 

  • Fiala, M. and Delille, D. (1993) Variability and interactions of phytoplankton and bacterioplankton in the Antarctic neritic area. Mar. Ecol. Prog. Ser. 89, 135–46.

    Google Scholar 

  • Franzmann, P.D. and Dobson, S.J. (1993) The phylogeny of bacteria from a modern Antarctic refuge. Antarctic Sci. 5, 267–70.

    Google Scholar 

  • Franzmann, P.D., Springer, N., Ludwig, W, Conway de Macario, E. and Rohde, M. (1992) A methanogenic Archaeon from Ace lake, Antarctica: Methanococcoides burtonii sp. nov. System. Appl. Microbiol. 15, 573–81.

    Google Scholar 

  • Fahrman, J.A. and Azam, F. (1980) Bacterioplankton secondary production estimates for coastal waters of British Colubia, Antarctica, and California. Appl. Environ. Microbiol. 39, 1085–95.

    Google Scholar 

  • Fuhrman, J.A., Sleeter, T.D., Carlson, C.A. and Proctor, L.M. (1989) Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Mar. Ecol. Prog. Ser. 57, 207–17.

    Google Scholar 

  • Fuhrman, J.A., Lee, S.H., Masuchi, Y. Davis, A.A. and Wilcox, R.M. (1994) Characterization of marine prokaryotic communities via DNA. Microb. Ecol. 28, 133–45.

    Google Scholar 

  • Fukunaga, N. and Russell, N.J. (1990) Membrane lipid composition and glucose uptake in two psychrotolerant bacteria from Antarctica. J. Gen. Microbiol. 136, 1699–73.

    Google Scholar 

  • Gillespie, P.A., Morita, R.Y. and Jones, L.P. (1976) The heterotrophic activity for amino-acids, glucose and acetate in Antarctic waters. J. Oceanog. Soc. Jap. 32, 74–82.

    Google Scholar 

  • Giovannoni, S.J., Britschgi, T.B., Moyer, C.L. and Field, K.G. (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 344, 60–3.

    Google Scholar 

  • Griffith, P.C., Douglas, D.J. and Wainwright, S.C. (1990) Metabolic activity of size-fractionated microbial plankton in estuarine, nearshore, and continental shelf waters of Georgia. Mar. Ecol. Prog. Ser. 59, 263–70.

    Google Scholar 

  • Haack, S.K., Garchow, H., Odelson, D.A., Forney, L.J. and Klug, M.J. (1994) Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl. Environ. Microbiol. 60, 2483–93.

    Google Scholar 

  • Hanson, R.B. and Lowery, H.K. (1985) Spatial distribution, structure, biomass and physiology of microbial assemblages across the Southern Ocean frontal zones during the late austral winter. Appl. Environ. Microbiol. 49, 1029–39.

    Google Scholar 

  • Hanson, R.B. and Pope, D.H. (1981) Bacterioplankton adaptation and growth in different zones of the Southern Ocean. Antarct. J. US 16, 130–2.

    Google Scholar 

  • Hanson, R.B., Lowery, H.K., Shafer, D., Sorocco, R. and Pope, D.H. (1983a) Microbes in Antarctic waters of the Drake Passage: vertical patterns of substrate uptake, productivity and biomass in January 1980. Polar Biol. 2, 179–88.

    Google Scholar 

  • Hanson, R.B., Schafer, D., Ryan, T., Pope, D.H. and Lowery, H.K. (1983b) Bacterioplankton in Antarctic ocean waters during late austral winter: abundances, F.D.C., and estimates of production. Appl. Environ. Microbiol. 45, 1622–32.

    Google Scholar 

  • Herbert, R.A. and Bell, C.R. (1974) Nutrient cycling in the Antarctic marine environment. Br. Antarct. Surv. Bull. 39, 7–11.

    Google Scholar 

  • Herbert, R.A. and Tanner, A.C. (1977) The isolation and some characteristics of photosynthetic bacteria (Chromatiaceae and Chlorobiaceae) from Antarctic marine sediments. J. Appl. Bacteriol. 43, 437–45.

    Google Scholar 

  • Hobbie, R.E. and Cole, J.J. (1984) Response of a detrital foodweb to eutrophication. Bull. Mar. Sci. 35, 357–63.

    Google Scholar 

  • Hodson, R.E., Azam, A.F., Carlucci, A.F., Fuhrman, J.A., Karl, D.M. and Holm-Hansen, O. (1981) Microbial uptake of dissolved organic matter in McMurdo Sound, Antarctica. Mar. Biol. 61, 89–94.

    Google Scholar 

  • Holm-Hansen, O., Azam, F., Campbell, L., Carlucci, A.F. and Karl, D.M. (1978) Microbial life beneath the Ross Ice Shelf. Antarct. J. US 13, 129–30.

    Google Scholar 

  • Hopkinson, C.S. (1985) Shallow-water benthic and pelagic metabolism: evidence of heterotrophy in the nearshore Georgia Bight. Mar. Biol. 87, 19–32.

    Google Scholar 

  • Horowitz, A., Krichevsky, M.I. and Atlas, R.M. (1983) Characteristics and diversity of subarctic marine oligotrophic, stenoheterotrophic, and euryheterotrophic bacterial populations. Can. J. Microbiol. 29, 527–35.

    Google Scholar 

  • Howard-Williams, C., Vincent, C.L., Broady, P.A. and Vincent, W.F. (1986) Antarctic stream ecosystems: Variability in environmental properties and algal community structure. Int. Revue Ges. Hydrobiol. 71, 511–44.

    Google Scholar 

  • Inoué, K. and Komagata, K. (1976) Taxonomic study on obligately psychrophilic bacteria isolated from Antarctica. J. Gen. Appl. Microbiol. 22, 165–78.

    Google Scholar 

  • Jarrel, K.F. and Kalmokoff, M.L. (1988) Nutritional requirements of the methanogenic archaebacteria. Can. J. Microbiol. 41, 155–65.

    Google Scholar 

  • Joint, I.R. and Pomeroy, A.J. (1987) Activity of heterotrophic bacteria in the euphotic zone of the Celtic Sea. Mar. Ecol. Prog. Ser. 41, 155–65.

    Google Scholar 

  • Karl, D.M. (1992) The grounding of the Bahia Paraiso: microbial ecology of the 1989 Antarctic spill. Microb. Ecol. 24, 77–89.

    Google Scholar 

  • Karl, D.M. (1993) Microbial processes in the southern oceans. In Antarctic Microbiology (E.I. Friedmann, ed.) pp 1–63. New York: Wiley-Liss.

    Google Scholar 

  • Karl, D.M., Holm-Hansen, O., Taylor, G.T., Tien, G. and Bird, D.F. (1991) Microbial biomass and productivity in the western Bransfield Strait, Antarctica during the 1986–87 austral summer. Deep Sea Res. 38, 1029–55.

    Google Scholar 

  • Kemp, P.F. (1994) A philosophy of methods development: the assimilation of new methods and information into aquatic microbial ecology. Microb. Ecol. 28, 159–62.

    Google Scholar 

  • Kennicut, M.C.II, Sweet, S.T., Fraser, W.R., Stockton, W.L. and Culver, M. (1991) The grounding of the Bahia Paraiso, Arthur Harbor, Antarctica-I. Distribution and fate of oil spill related hydrocarbons. Environ. Sci. Technol. 25, 509–18.

    Google Scholar 

  • Kottmeier, S.T. and Sullivan, C.W. (1988) Sea Ice Microbial Communities 9. Effects of temperature and salinity on rates of metabolism and growth of autotrophs and heterotrophs. Polar Biol. 8, 293–304.

    Google Scholar 

  • Kottmeier, S.T., Grossi, S.W. and Sullivan, C.W. (1987) Sea ice microbial communities. VIII. Bacterial production in annual of McMurdo Sound, Antarctica. Mar. Ecol. Prog. Ser. 35, 175–86.

    Google Scholar 

  • Kuosa, H. and Kivi, K. (1989) Bacteria and heterotrophic flagellates in the pelagic carbon cycle in the northern Baltic Sea. Mar. Ecol. Prog. Ser. 53, 93–100.

    Google Scholar 

  • Laake, M., Dahle, A.B. and Hentzschel, G. (1983) Productivity and population diversity of marine organotrophic bacteria in enclosed planktonic ecosystems. Mar. Ecol. Prog. Ser. 14, 59–69.

    Google Scholar 

  • Lancelot, C. and Billen, G. (1984) Activity of heterotrophic bacteria and its coupling to primary production during the spring phytoplankton bloom in the southern bight of the north sea. Limnol. Oceanogr. 2, 721–30.

    Google Scholar 

  • Lee, S. and Fuhrman, J.A. (1991) Spatial and temporal variation of natural bacterioplankton assemblages studied by total genomic DNA cross-hybridisation. Limnol. Oceanogr. 36, 1277–87.

    Google Scholar 

  • Lindeboom, H.J. (1984) The nitrogen pathway in a penguin rookery. Ecology 65, 269–77.

    Google Scholar 

  • MacCormack, W.L. and Fraile, E.R. (1990) Bacterial flora of newly caught Antarctic fish. Notothenia neglecta. Polar Biol. 10, 413–7.

    Google Scholar 

  • McMeekin, T.A. and Franzmann, P.D. (1988) Effect of temperature on the growth rates of halotolerant and halophilic bacteria isolated from Antarctic saline lakes. Polar Biol. 8, 281–5.

    Google Scholar 

  • Meyer-Reil, L.A., Bölter, M., Dawson, R., Liebezeit, G., Szwarimki, H. and Wolter, K. (1980) Interrelationships between microbiological and chemical parameters of sandy beach sediments, a summer aspect. Appl. Environ. Microbiol. 39, 797–802.

    Google Scholar 

  • Meyer-Reil, L.A. (1987) Seasonal and spatial distribution of extracellular enzymatic activities and microbial incorporation of dissolved organic substrates in marine sediments. Appl. Environ. Microbiol. 53, 1748–55.

    Google Scholar 

  • Morita, R.Y. (1993) Bioavailability of energy and the starvation state. In Starvation of Bacteria (S. Kjelleberg, ed.) pp. 1–23, New York: Plenum Press.

    Google Scholar 

  • Morita, R.Y., Gillespie, P.A. and Jones, L.P. (1971) Microbiology of Antarctic seawater. Antarct. J. US 6, 157.

    Google Scholar 

  • Morita, R.Y., Griffiths, R.P. and Hayasaka, S.S. (1977) Heterotrophic activity of microorganisms in Antarctic water. In Adaptation within Antarctic Ecosystems (G.A. Llano, ed.) pp. 99–113. Houston: Gulf Publishing Co.

    Google Scholar 

  • Moyer, C.L. and Morita, R.Y. (1989) Effects of growth rate and starvation-survival on the viability and stability of a psychrophilic marine bacterium. Appl. Environ. Microbiol. 55, 1122–7.

    Google Scholar 

  • Mullins, B.W. and Priddle, J. (1987) Relationships between bacteria and phytoplankton in the Bransfield strait and southern Drake passage. Br. Antarct. Surv. Bull. 76, 51–64.

    Google Scholar 

  • Myrcha, A., Pietr, S.J. and Tatur, A. (1985) The role of Pygoscelid penguin rookeries in nutrient cycles at Admiralty Bay, King George Island. In Antarctic Nutrient Cycles and Food Webs (W.R. Siegfried, P.R. Condy and R.M. Laws, eds) pp. 156–62. Berlin: Springer-Verlag.

    Google Scholar 

  • Nedwell, D.B. and Rutter, M. (1994) Influence of temperature on growth rate and competition between two psychrotolerant Antarctic bacteria low temperature diminishes affinity for substrate uptake. Appl. Environ. Microbiol. 60, 1984–92.

    Google Scholar 

  • Nedwell, D.B., Walker, T.R. and Ellis-Evans, J.C. (1993) Benthic microbial activity and organic degradation in an Antarctic Coastal sediment. In Trends in Microbial Ecology (R. Guerrero and C. Pedrós-Alió, eds) pp. 41–4. Barcelona. Spanish Society for Microbiology.

    Google Scholar 

  • Nichols, D.S., Nichols, P.D. and McMeekin, T.A. (1993) Polyunsaturated fatty acids in Antarctic bacteria. Antarctic Sci. 5, 149–60.

    Google Scholar 

  • Novitsky, J.A. and Morita, R.Y. (1976) Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl. Environ. Microbiol. 32, 617–22.

    Google Scholar 

  • Orchard, V.A. and Corderoy, D.M. (1983) Influence of environmental factors on the decomposition of penguin guano in Antarctica. Polar Biol. 1, 199–204.

    Google Scholar 

  • Painting, S.J., Lucas, M.I. and Stenton-Dosey, J.M.E. (1985) The South African SIBEX I cruise to the Prydz Bay region, 1984: X. Biomass and production of bacterioplankton in Prydz Bay, Antarctica, and phytoplankton, detritus and bacterial relationships. S. Afr. T. Nav. Antarkt. Deel 15, 42–52.

    Google Scholar 

  • Parkes, R.J. (1987) Analysis of microbial communities within sediments using biomarkers. In Ecology of Microbial Communities (M. Fletcher, T.R.G. Gray and J.G. Jones, eds) pp. 147–77. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pedrós-Alió, C. and Newell, S.Y. (1989) Microautoradiographic study of thymidine uptake in brackish waters around Sapelo Island, Georgia, USA. Mar. Ecol. Prog. Ser. 55, 83–94.

    Google Scholar 

  • Pfister, R.M. and Burkholder, P.R. (1965) Numerical taxonomy of some bacteria isolated from Antarctic and tropical seawaters. J. Bacteriol. 90, 863–72.

    Google Scholar 

  • Platt, T., Sathendranath, S., Ulloa, O., Harrison, W.G., Hoepffner, N. and Goes, J. (1992) Nutrient control of phytoplankton photosynthesis in the western North Atlantic. Nature 356, 229–31.

    Google Scholar 

  • Pollard, P.C. and Moriarty, D.J.W. (1984) Validity of the tritiated thymidine method for estimating bacterial growth rates: measurements of isotope dilution during DNA synthesis. Appl. Environ. Microbiol. 48, 1076–83.

    Google Scholar 

  • Pomeroy, L.R. and Deibel, D. (1986) Temperature regulation of bacterial activity during the spring bloom in Newfoundland coastal waters. Science 233, 359–61.

    Google Scholar 

  • Preyer, J.M. and Oliver, J.D. (1993) Starvation-induced thermal tolerance as a survival mechanism in a psychrophilic marine bacterium. Appl. Environ. Microbiol. 59, 2653–6.

    Google Scholar 

  • Priscu, J.C., Downes, M.T., Priscu, L.R., Palmisano, A.C. and Sullivan, C.W. (1990) Dynamics of ammonium oxidizer activity and nitrous oxide (N2O) within and beneath Antarctic sea ice. Mar. Ecol. Prog. Ser. 62, 37–46.

    Google Scholar 

  • Ramsay, A.J. and Stannard, R.E. (1986) Numbers and viability of bacteria in ornithogenic soils in Antarctica. Polar Biol. 5, 195–8.

    Google Scholar 

  • Razouls, S., de Bovée, F., Delille, D., Fiala, M. and Mayzaud, P. (in press) Temporal variability of subantarctic bacteria, phyto- and zooplanctonassemblages in Antartic Communities: Species, Structure and Survival. (B. Battaglial, J. Valencia and D.W.H. Walton eds). Cambridge University Press.

  • Rehnstarn, A.-S., Bäckman, S., Smith, D.C., Azam, F. and Hagström, A. (1993) Blooms of sequence-specific culturable bacteria in the sea. FEMS Microbiol. Ecol. 102, 161–6.

    Google Scholar 

  • Reichardt, W. (1988) Impact of the Antarctic benthic fauna on the enrichment of biopolymer degrading psychrophilic bacteria. Microb. Ecol. 15, 311–21.

    Google Scholar 

  • Riemann, B. and Bell, R.T. (1990) Advances in estimating bacterial biomass and growth in aquatic systems. Arch. Hydrobiol. 118, 385–402.

    Google Scholar 

  • Riemann, B. and Sondergaard, G.A. (1986) Regulation of bacterial secondary production in two eutrophic lakes and in experimental enclosures. J. Plankton Res. 8, 519–36.

    Google Scholar 

  • Rivkin, R.B., Putt, M., Alexander, S.P., Meritt, D. and Gaudet, L. (1989) Biomass and production in polar planktonic and sea ice microbial communities: a comparative study. Mar. Biol. 101, 273–83.

    Google Scholar 

  • Roser, D.J., Seppelt, R.D. and Ashbolt, N. (1993) Microbiology of ornithogenic soils from the Windmill Islands, Budd Coast, continental Antarctica: microbial biomass distribution. Soil Biol. Biochem. 25, 165–75.

    Google Scholar 

  • Rüger, H.-J. (1989) Benthic studies of the northwest African upwelling region: psychrophilic and psychrotrophic bacterial communities from areas with different upwelling intensities. Mar. Ecol. Prog. Ser. 57, 45–52.

    Google Scholar 

  • Shiah, F.-K. and Ducklow, H.W. (1994) Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay. Limnol. Oceanogr. 39, 1243–58.

    Google Scholar 

  • Sieburth, J.McN. (1963) Bacterial habitats in the Antarctic environment. In Symposium on Marine Microbiology (C.H. Oppenheimer, ed.) pp. 533–48. Springfield, IL: Thomas.

    Google Scholar 

  • Smith, V.H. (1993) Applicability of resource-ratio theory to microbial ecology. Limnol. Oceanogr. 38, 239–49.

    Google Scholar 

  • Smith, S.V. and Mackenzie, F.T. (1987) The ocean as a net heterotrophic system: implication from the carbon biogeochemical cycle. Global Biogeochem. Cycles 1, 187–98.

    Google Scholar 

  • Smith, G.A., Nichols, P.D. and White, D.C. (1987) Fatty acid composition and microbial activity of benthic marine sediment from McMurdo Sound, Antarctica. FEMS Microbiol. Ecol. 38, 219–31.

    Google Scholar 

  • Smith, G.A., Davis, J.D., Muscat, A.M., Moe, R.L. and White, D.C. (1989) Lipid composition and metabolic activities of benthic near-shore microbial communities of Arthur Harbor, Antarctic Peninsula: comparisons with McMurdo Sound. Polar Biol. 9, 517–24.

    Google Scholar 

  • Speir, T.W. and Cowling, J.C. (1984) Ornithogenic soils of the Cape Bird Adelie penguin rookeries, Antarctica. I. Chemical properties. Polar Biol. 2, 199–205.

    Google Scholar 

  • Speir, T.W. and Ross, D.J. (1984) Ornithogenic soils of the Cape Bird adelie penguin rookeries, Antarctica. 2. Ammonia Evolution and enzyme activities. Polar Biol. 2, 207–12.

    Google Scholar 

  • Sugita, H., Tanaami, H. and Deguchi, Y. (1982) Measurement of the bacterial counts in the sediment with gram staining method. Bull. Jap. Soc. Sci. Fish. 48, 1469–71.

    Google Scholar 

  • Sullivan, C.W., Cota, G.F., Krempin, D.W. and Smith, W.O.Jr. (1990) Distribution and activity of bacterioplankton in the marginal ice-zone of the Weddell Sea during austral spring. Mar. Ecol. Prog. Ser. 63, 239–52.

    Google Scholar 

  • Sullivan, C.W. and Palmisano, A.C. (1984) Sea ice microbial communities: distribution, abundance and diversity of ice bacteria in McMurdo Sound. Appl. Environ. Microbiol. 47, 788–95.

    Google Scholar 

  • Sundh, I. (1992) Biochemical composition of dissolved organic carbon derived from phytoplankton and used by heterotrophic bacteria. Appl. Environ. Microbiol. 58, 2938–47.

    Google Scholar 

  • Suttle, C.A., Chan, A.M. and Fuhrman, J.A. (1991) Dissolved free amino acids in the Sargasso Sea: uptake and respiration rates, turnover times, and concentrations. Mar. Ecol. Progr. Ser. 70, 189–99.

    Google Scholar 

  • Syroechkovsky, E.E. (1959) The role of animals in primary soil formation under conditions of prepolar region of the globe (exemplified by the Antarctic). Zool. Zh. Ukr. 38, 1770–5.

    Google Scholar 

  • Tanner, A.C. and Herbert, R.A. (1981) Nutrient regeneration in Antarctic marine sediments. Kiel. Meeresforsch. Sonderh. 5, 390–5.

    Google Scholar 

  • Tanner, A.C. and Herbert, R.A. (1982) A numerical taxonomic study of Gram-negative bacteria isolated from the Antarctic marine environment. CNEXO (Actes Colloq.) 14, 31–8.

    Google Scholar 

  • Tearle, P.V. and Richard, K.J. (1987) Ecophysiological grouping of Antarctic environmental bacteria by API 20 NE and fatty acid fingerprints. J. Appl. Bacteriol. 63, 497–503.

    Google Scholar 

  • Thompson, I.P., Bayley, M.J., Ellis, R.J. and Purdy, K.J. (1993) Subgrouping of bacterial populations by cellular fatty acid composition. FEMS Microbiol. Ecol. 102, 75–84.

    Google Scholar 

  • Tilbrook, B.D. and Karl, D.M. (1994) Dissolved methane distributions, sources, and sinks in the western Bransfield Strait, Antarctica. J. Geophys. Res. 99, 16383–93.

    Google Scholar 

  • Ugolini, F.C. (1972) Ornithogenic soils of Antarctica. Antarct. Res. Ser. 20, 181–93.11.

    Google Scholar 

  • Vaqué, D., Pace, M.L., Findlay, S. and Lints, D. (1992) Fate of bacterial production in a heterotrophic ecosystem: grazing by protists and metazoans in the Hudson Estuary. Mar. Ecol. Prog. Ser. 89, 155–63.

    Google Scholar 

  • Vincent, W. (1988) Microbial Ecosystems of Antarctica. London: Cambridge University Press.

    Google Scholar 

  • Vosjan, J.H. and Olanczuk-Neyman, K.M. (1991) Influence of temperature on respiratory ETS-Activity of micro-organisms from Admiralty Bay, King George Island, Antarctica. Neth. J. Sea Res. 28, 221–5.

    Google Scholar 

  • White, D.C., Smith, G.A., Nichols, P.D., Stanton, G.R. and Palmisano, A.C. (1980) Lipid composition and microbial activity of selected recent Antarctic benthic marine sediments and organisms: a mechanism for monitoring and comparing microbial populations. Ant. J. US 15, 130–2.

    Google Scholar 

  • White, P.A., Kalff, J., Rasmussen, J.B. and Gazol, J.M. (1991) The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microb. Ecol. 21, 99–118.

    Google Scholar 

  • Wiebe, W.J. and Hendricks, C.W. (1974) Distribution of heterotrophic bacteria in a transect of the Antarctic Ocean. In Effect of Environment on Microbial Activities (R.R. Colwell and R.Y. Morita, eds) pp. 524–35. Baltimore: University Park Press.

    Google Scholar 

  • Wiebe, W.J., Sheldon, W.M. and Pomeroy, L.R. (1993) Evidence for an enhanced substrate requirement by marine mesophilic bacterial isolates at minimal growth temperatures. Microb. Ecol. 25, 151–9.

    Google Scholar 

  • Witzel, K.P. (1990) Approaches to bacterial population dynamics. In Aquatic Microbial Ecology: Biochemical and Molecular Approaches (J. Overbeck and R.J. Chróst, eds) pp. 96–128. New York: Springer Verlag.

    Google Scholar 

  • Wylie, J.L. and Currie, D.J. (1991) The relative importance of bacteria and algae as food sources for crustacean zooplankton. Limnol. Oceanogr. 36, 708–29.

    Google Scholar 

  • Zdanowski, M.K. and Donachie, S.P. (1993) Bacteria in the Sea-Ice Zone Between Elephant-Island and the South-Orkneys During the Polish Sea-Ice Zone Expedition, (December 1988 to January 1989). Polar Biol. 13, 245–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delille, D. Biodiversity and function of bacteria in the Southern Ocean. Biodivers Conserv 5, 1505–1523 (1996). https://doi.org/10.1007/BF00051989

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00051989

Keywords

Navigation