Skip to main content
Log in

Associations between lake phytoplankton community and growth factors — a canonical correlation analysis

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Canonical correlation analysis was used to study the associations between the most prevalent phytoplankton species and nine physical and chemical growth factors in a polyhumic Finnish lake. The analysis was made (a) to the ten species with the greatest mean biomass in the data over one growth season and (b) to the ten species providing the greatest canonical correlation with the growth factors. The latter species were detected using an exchange type procedure. The analysis showed strong associations within phyla. Especially the most problematic phylum with respect to the use of the lake, the cyanobacteria, had a pronounced mutual association, as they correlated negatively with the N/P ratio as positively with phosphorus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arvola, L., 1983. Primary production and phytoplankton in two small, polyhumic lakes in southern Finland. Hydrobiologia 101: 105–110.

    Google Scholar 

  • Arvola, L., 1984. Diel variation in primary production and the vertical distribution of phytoplankton in a polyhumic lake. Arch. Hydrobiol. 101: 503–519.

    Google Scholar 

  • Barica, J., H. Kling & J. Gibson, 1980. Experimental manipulation of algal bloom composition by nitrogen addition. Can. J. Fish. aquat. Sci. 37: 1175–1183.

    Google Scholar 

  • Crome, F. H. J. & S. M. Carpenter, 1988. Plankton community cycling and recovery after drought — dynamics in a basin on a flood plain. Hydrobiologia 164: 193–211.

    Google Scholar 

  • Fängström, I. & E. Willén, 1987. Clustering and canonical correspondence analysis of phytoplankton and environmental variables in Swedish lakes. Vegetatio 71: 87–95.

    Google Scholar 

  • Giri, N. C., 1977. Multivariate statistical inference. Academic Press, New York.

    Google Scholar 

  • Gnanadesikan, R., 1977. Methods for Statistical Data Analysis of Multivariate Observations. Wiley, New York.

    Google Scholar 

  • Ilmavirta, V., 1988. Acidic lake Lakeenjärvi, eastern Finland: Phytoplankton succession and water chemistry. Verh. int. Ver. Limnol. 23: 693–698.

    Google Scholar 

  • Jordan, I. T., P. E. Ross & B. Pinel-Alloul, 1988. Seasonal variations in phytoplankton size structure in Lake Cromwell (Laurentian Shield), Quebec. Hydrobiologia 169: 167–182.

    Google Scholar 

  • Keefe, A. M., 1926. A preserving fluid for green plants. Science 64: 331–332.

    Google Scholar 

  • Kshirsagar, A. M., 1972. Multivariate Analysis. Marcel Dekker, New York.

    Google Scholar 

  • Legendre, L. & P. Legendre, 1983. Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Morrison, D. F., 1978. Multivariate Statistical Methods. 2nd ed. McGraw-Hill, Tokyo.

    Google Scholar 

  • Padisák, J., L. G.-Tóth & M. Rajczy, 1988. The role of storms in the summer succession of the phytoplankton community in a shallow lake (Lake Balaton, Hungary). J. Plankton Res. 10: 249–265.

    Google Scholar 

  • Rask, M., A. Heinänen, K. Salonen, L. Arvola, I. Bergström, M. Liukkonen & A. Ojala, 1986. The limnology of a small, naturally acidic, highly humic forest lake. Arch. Hydrobiol. 106: 351–371.

    Google Scholar 

  • Ravichandran, S. & P. S. Ramanibai, 1988. Plankton and related parameters of Buckingham canal at Madras, India — A canonical correlation analysis. Arch. Hydrobiol. 114: 117–132.

    Google Scholar 

  • Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.

    Google Scholar 

  • Siver, P. A. & J. S. Hamer, 1989. Multivariate statistical analysis of the factors controlling the distribution of scaled chrysophytes. Limnol. Oceanogr. 34: 368–381.

    Google Scholar 

  • Smith, V. H., 1983. Low nitrogen to phosphorus ratio favor dominance by blue-green algae. Science 221: 669–671.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG model for seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 433–471.

  • Stenmark, M., 1982. Nutrient cycle in Lake Kuortaneenjärvi (in Finnish, with English summary). MSc. Thesis. Division of Water Engineering, Helsinki University of Technology.

  • Ter Braak, C. J. F., 1986. Canonical correspondence analysis: A new eigenvalue technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Google Scholar 

  • Tilman, D., S. Kilham & P. Kilham, 1982. Phytoplankton community ecology. The role of limiting nutrients. Ann. Rev. Ecol. Syst. 13: 349–382.

    Article  Google Scholar 

  • Varis, O., 1988. Temporal sensitivity of Aphanizomenon flosaquae dominance — A whole-lake simulation study with input perturbations. Ecol. Modelling 43: 137–153.

    Article  Google Scholar 

  • Varis, O., 1989. Simulated impacts of flow regulation on blue-green algae in a short retention time lake. Arch. Hydrobiol., Beih. Ergebn. Limnol. 33: 181–189.

    Google Scholar 

  • Varis, O. & A. Peltola, 1988. Phytoplankton data — Kuortaneenjärvi 1980. Helsinki University of Technology, Laboratory of Hydrology and Water Resources Management, Research Report 3/1988.

  • Varis, O., H. Sirviö & J. Kettunen, 1989. Multivariate analysis of lake phytoplankton and environmental factors. Arch. Hydrobiol. 117: 163–175.

    Google Scholar 

  • Vincent, W. F. & S. J. Dryden, 1989. Phytoplankton succession and cyanobacterial dominance in a eutrophic lake of the mid-temperate zone (Lake Okaro, New Zealand). Arch. Hydrobiol. Beih. Ergebn. Limnol. 32: 137–163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varis, O. Associations between lake phytoplankton community and growth factors — a canonical correlation analysis. Hydrobiologia 210, 209–216 (1991). https://doi.org/10.1007/BF00034679

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00034679

Key words

Navigation