Skip to main content
Log in

The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I. Comparison of methods for extracting protein

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The spectrophotometric evaluation of micro-algal protein needs a prior extraction from cells in order to liberate protein for measurement. The conditions of extraction (temperature, duration, normality of sodium hydroxide, pretreatment) which yield optimal protein content are tested with three algal cultures (Scenedesmus, Synechococcus, Asterionella). A standard method of extraction is presented. Comparison of this method with nine published methods reveals markedly lower protein yields for easy extractable (43–100%) and hard extractable (5–75%) algal species, relative to this method, depending on ease of cell wall breakage. The application of this standard method to field investigations is demonstrated and compared to other biochemical parameters. The advantages of this method over other protein extraction methods, with respect to field material, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Antia, N. J., Mc Allister, C. D., Parsons, T. R., Stephens, K. & Strickland, J. D. H., 1963. Further measurements of primary production using a large-volume plastic sphere - Limnol. Oceanogr. 8, 166–183.

    Google Scholar 

  • Barras, D. R. & Stone, B. A., 1965: The chemical composition of the pellicle of Euglena gracilis var. bacillaris - Biochem. J. 97, 14–15.

    Google Scholar 

  • Bennet, T. P., 1967: Membrane filtration for determining protein in the presence of interfering substances - Nature 213, 1131–1132.

    PubMed  Google Scholar 

  • Berland, B. R., Bonin, D. J., Daumas, R. A., Laborde, P. L. & Maestrini, S. Y., 1970: Variations du comportement physiologique de l'algue Monallantus salina (Xanthophyceae) en culture - Mar. Biol. 7, 82–92.

    Article  Google Scholar 

  • Blazka, P., 1966: Bestimmung der Proteine im Material aus Binnengewässern - Limnologica 4, 387–396.

    Google Scholar 

  • Boje, R., 1966: Proteine - Limnologica 4, 383–386.

    Google Scholar 

  • Brock, T. D. & Brock, M. L., 1967: The measurement of chlorophyll, primary productivity, photophosphorylation, and macromolecules in benthic algal mats - Limnol. Oceanogr. 12, 600–605.

    Google Scholar 

  • Coombs, J., Darley, W. M., Holm-Hansen, O. & Volcani, B. E., 1967: Studies of the biochemistry and fine structure of silica shell formation in diatoms. Chemical composition of Navicula pelliculosa during silicon starvation synchrony - Plant. Physiol. 42, 1601–1606.

    PubMed  Google Scholar 

  • Devulder, K., 1969: Jahreszeitliche, tiefenabhängige und örtliche Veränderungen im wechselseitigen Verhältnis von Nucleinsäuren, Eiweiss und Chlorophyll in Netzplankton - Ber. Dt. Wiss. Komn. Meeresforsch. 20, 216–255.

    Google Scholar 

  • Dorsey, T. E., McDonald, P. & Roebs, O. A., 1978: Measurements of phytoplankton-protein content with the heated Biuret-Folin assay - J. Phycol. 14, 167–171.

    Google Scholar 

  • Flaak, A. R. & Epifanio, C. E., 1978: Dietary protein levels and growth of the oyster Crassostrea virginica - Mar. Biol. 45: 157–163.

    Article  Google Scholar 

  • Gibson, C. E., 1978: Field and laboratory observations on the temporal and spatial variation of carbohydrate content in planktonic blue-green algae in Lough Neagh, Northern Ireland - J. Ecol. 66, 97–115.

    Google Scholar 

  • Halmann, H., 1972: Chemical ecology. Evidence for phosphorus as the only factor limiting algal growth in Lake Kinneret - Israel. J. Chem. 10, 841–855.

    Google Scholar 

  • Haug, A., Myklestad, S. & Sakshaug, E., 1973: Studies on the phytoplankton ecology of the Trondheimsfjord. 1. The chemical composition of phytoplankton population - J. Exp. Mar. Biol. Ecol. 11, 15–26.

    Article  Google Scholar 

  • Healey, F. P. & hendzel, L. L., 1976: Physiological changes during the course of blooms of Aphanizomenon flos-aquae - J. Fish. Res. Board Can. 33, 36–41.

    Google Scholar 

  • Hedenskog, G., 1978: Properties and composition of single-cell protein, influence of processing, pp 73–88 - In: Adler-Nissen, J., Eggum, B. O., Munck, L. & Olsen, H. S. (Eds.): Biochemical aspects of new protein food — FEBS, 11th meeting, Copenhagen, 1977, Vol. 44, 218 pp - Pergamon Press, Oxford.

    Google Scholar 

  • Hedenskog, G., Mogren, H. & Enebo, L., 1970: A method for obtaining protein concentrates from microorganisms - Biotechnol. Bioeng. 12, 947–959.

    Article  PubMed  Google Scholar 

  • Herbert, D., Phipps, P. J. & Strange, R. E., 1971: Chemical analysis of microbial cells, pp 209–344 - In: Norris, J. R. & Ribbons, D. W. (Eds.): Methods in microbiology, Vol. 5B, Academic Press, London, 695 pp.

    Google Scholar 

  • Hindák, F. & Přibil, S., 1968: Chemical composition, protein digestibility and heat of combustion of filamentous green algae - Biol. Plant. 10, 234–243.

    Google Scholar 

  • Itzhaki, R. F. & Gill, D. M., 1964: A micro-biuret method for estimating proteins - Anal. Biochem. 9, 401–410.

    Article  Google Scholar 

  • Iwamura, T., Nagai, H. & Ichimura, S., 1970: Improved methods for determining contents of chlorophyll, protein, ribonucleic acid, and deoxyribonucleic acid in plankton populations - Int. Revue ges. Hydrobiol. 60, 131–147.

    Google Scholar 

  • Iwamura, T., Nagai, H. & Yamaguchi, Y., 1975: Seasonal variation of the planktonic population in Lake Yunoko, as followed by the assay of chlorophyll, protein, RNA, and DNA in the total harvested samples - Int. Revue ges. Hydrobiol. 60, 97–113.

    Google Scholar 

  • Karl, D. M. & Holm-Hansen, O., 1978: Methodology and measurement of adenylate energy charge ratios in environmental samples - Mar. Biol. 48, 185–197.

    Article  Google Scholar 

  • Komárek, J. & Ludvík, J., 1971: Die Zellwandstruktur als taxonomisches Merkmal in der Gattung Scenedesmus 1. Die Ultrastrukturelemente - Arch. Hydrobiol./Suppl. 39, 301–333.

    Google Scholar 

  • Konopka, A. & Brock, T. D. (1978): Changes in photosynthetic rate and pigment content of blue-green algae in Lake Mendota - Appl. Environ. Microbiol. 35, 527–532.

    PubMed  Google Scholar 

  • Krey, J., 1951: Quantitative Bestimmung von Eiweiß im Plankton mittels der Biuretreaktion - Kiel. Meeresforsch. 8, 16–29.

    Google Scholar 

  • Krey, J., Banse, K. & Hagmeier, E., 1957: Über die Bestimmung von Eiweiß im Plankton mittels der Biuretreaktion - Kiel. Meeresforsch. 13, 35–40.

    Google Scholar 

  • Kuno, H. & Kihara, H. K., 1967: Simple microassay of protein with membrane filter - Nature 215, 974–975.

    PubMed  Google Scholar 

  • Layne, E., 1957: Spectrophotometric and turbidimetric methods for measuring proteins, pp 447–454 - In: Colowick, S. P. & Kaplan, N. O. (Eds.): Methods in enzymology, Vol. 3, Academic Press, N.Y.

    Google Scholar 

  • Lowry, O., Rosebrough, N. J., Farr, A. L. & Randall, H. J., 1951: Protein measurement with the Folin phenol reagent - J. Biol. Chem. 193, 265–275.

    PubMed  Google Scholar 

  • Maier, D., 1973: Eine verbesserte Methode zur Bestimmung des Chemischen Sauerstoffbedarfs mit Kaliumdichromat - GWF-Wasser/Abwasser 114, 366–370.

    Google Scholar 

  • Maita, Y. & Yanada, M., 1978: Particulate protein in coastal waters, with special reference to seasonal variation - Mar. Biol. 44, 329–336.

    Article  Google Scholar 

  • Malara, G. & Charra, R., 1972: Dosage des protéines particulaires selon la méthode de Lowry — Notes de Travail, Univ. de Paris, Station Zoologique — Villefranche-sur-mer.

  • Mc Allister, C. D., Parsons, T. R., Stephens, K. & Strickland, J. D. H., 1961: Measurements of primary production in coastal sea water using a large volume plastic sphere - Limnol. Oceanogr. 6, 237–336.

    Google Scholar 

  • Müller, H., 1972: Wachstum und Phosphatbedarf von Nitzschia actinastroides (LEMM.) v. Goor in statischer und homokontinuierlicher Kultur unter Phosphatlimitierung - Arch. Hydrobiol. Suppl. 38, 399–484.

    Google Scholar 

  • Nival, P., Gostan, J., Malara, G. & Charra, R., 1976: Évolution du plancton dans la baie de Villefranche-sur-mer a la fin du printemps (Mai et Juin 1971) II. Biomasse de phytoplancton, production primaire - Vie Milieu 26, 47–76.

    Google Scholar 

  • Packard, T. T. & Dortch, O., 1975: Particulate protein-nitrogen in North Atlantic surface waters - Mar. Biol. 33, 347–354.

    Article  Google Scholar 

  • Parsons, T. R., Stephens, K. & Strickland, J. D. H., 1961: On the chemical composition of eleven species of marine phytoplankters - J. Fish. Res. Bd. Canada 18, 1001–1016.

    Google Scholar 

  • Platt, T. & Irwin, B., 1973: Caloric content of phytoplankton - Limnol. Oceanogr. 18, 306–310.

    Google Scholar 

  • Price, C. A., 1965: A membrane method for determination of total protein in dilute algal suspensions - Analyt. Biochem. 12, 213–218.

    Article  PubMed  Google Scholar 

  • Pugh, P. R., 1975: Variations in the biochemical composition of the diatom Coscinodiscus eccentricus with culture age and salinity - Mar. Biol. 33, 195–205.

    Article  Google Scholar 

  • Reimann, B., Lewin, J. C. & Volcani, B. E., 1966: Studies on the biochemistry and fine structure of silica shell formation in diatoms II. The structure of the cell wall of Navicula pelliculosa (BRÉB.) HILSE - J. Phycol. 2, 74–84.

    Google Scholar 

  • Rhee, G. Y., 1978: Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake - Limnol. Oceanogr. 23, 10–25.

    Google Scholar 

  • Ricketts, T. R., 1966: On the chemical composition of some unicellular algae - Phytochem. 5, 67–76.

    Article  Google Scholar 

  • Schaffner, W. & Weissmann, C., 1973: A rapid, sensitive, and specific method for the determination of protein in dilute solution - Analyt. Biochem. 56, 502–514.

    Article  PubMed  Google Scholar 

  • Šmarda, J., Čáslavská, J. & Komárek, J., 1979: Cell wall structure of Synechocystis aquatilis (Cyanophyceae) - Arch. Hydrobiol./Suppl. 56, 154–165.

    Google Scholar 

  • Strickland, J. D. H. & Parsons, T. R., 1968: A practical handbook of seawater analysis — Fish. Res. Bd. Canada, Bull. 167, 311 pp, Ottawa

  • Venkataraman, L. V. & Shivashankar, S., 1979: Studies on the extractibility of proteins from the alga Scenedesmus acutus - Arch. Hydrobiol./Suppl. 56: 114–126.

    Google Scholar 

  • Wallen, D. G. & G. H. Geen, 1971: Light quality and concentrations of proteins, RNA, DNA and photosynthetic pigments in two species of marine plankton algae - Mar. Biol. 10, 44–51.

    Article  Google Scholar 

  • Werner, D., 1966: Die Kieselsäure im Stoffwechsel von Cyclotella cryptica Reimann, Lewin & Guillard - Arch. Mikrobiol. 55, 278–308.

    Article  Google Scholar 

  • Zöllner, N. & Kirsch, K., 1962: Über die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen natürlichen Lipoiden (allen bekannten Plasmalipoiden) gemeinsamen Sulphophosphovanillin-Reaktion - Z. ges. Exp. Med. 135, 545–561.

    Article  Google Scholar 

  • Zygmuntowa, J., 1977: The content of protein and other ninhydrin-positive compounds dissolved in the water of a pond with beet sugar factory wastes - Acta Hydrobiol. 19, 423–438.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rausch, T. The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I. Comparison of methods for extracting protein. Hydrobiologia 78, 237–251 (1981). https://doi.org/10.1007/BF00008520

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008520

Keywords

Navigation