Skip to main content
Log in

Sperm motility in turbot, Scophthalmus marimus: initiation of movement and changes with time of swimming characteristics

  • Full paper
  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Turbot sperm motility is observed using dark field microscopy and stroboscopic illumination combined with video recording. Sperm motility is triggered by dilution of spermatozoa in sea water or in non ionic media (glucose or saccharose), presenting osmotic pressure ranging from 300 to 2100 mOsmol. The percentage of motile spermatozoa reaches 100% under conditions of osmotic pressure of 300 to 1100 mOsmol and pH close to 8.0. In full sea water, glucose or saccharose solutions an agglutination of spermatozoa is observed; this is prevented by addition of bovine serum albumin (5 mg ml−1). Immediately after transfer in activation solutions, 100% spermatozoa are motile in most samples freshly stripped. This percentage drops suddenly between 15 and 30% after 70 to 100 sec. The beat frequency remains at a constant value of 50 Hz during 40 s post activation and then drops suddenly between 15 and 30 Hz. The spermatozoa velocity is about 200 micrometers s−1 during 30 to 40 s and then declines to a stable value of 100 micrometers s−1 at 50 s post activation. After 1.20 mn, more and more spermatozoa become motionless. The minimum calculated and averaged distance covered during 1.20 min, is about 12 mm. The high performances of turbot spermatozoa motility are interpreted as a compensatory mechanism for the low sperm production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References cited

  • Billard, R. 1983. Effects of coelomic and seminal fluids and various saline diluents on the fertilizing ability of spermatozoa in the rainbow trout, Salmo gairdneri. J. Reprod. Fertil. 68: 77–84.

    Google Scholar 

  • Billard, R. 1986. Spermatogenesis and spermatology of some teleost fish species. Reprod. Nutr. Develop. 26: 877–920.

    Google Scholar 

  • Billard, R. 1988. Artificial insemination and gamete management in fish. Mar. Behav. Physiol. 14: 3–21.

    Google Scholar 

  • Billard, R. & M.P. Cosson. 1992. Some problems related to the assessement of sperm motility in freshwater fish. J. Exp. Zool. 261: 122–131.

    Google Scholar 

  • Billard, R., J. Dupont & G. Barnabé. 1977. Diminution de la motilité et de la durée de conservation du sperme de Dicentrarchus labrax L. (Poisson, Téléostéen) pendant la période de spermiation. Aquaculture 11: 363–367.

    Google Scholar 

  • Billard, R., J. Cosson & L.W. Crim. 1993. Motility of fresh and aged halibut sperm. Aquat. Living Resour. 6: 67–75.

    Google Scholar 

  • Chambeyron, F. & Y. Zohar. 1990. A diluent for sperm cryopreservation of gilthead seabream, Sparus aurata. Aquaculture 90: 345–352.

    Google Scholar 

  • Cosson, M.P., R. Billard, J.L. Gatty & R. Christen. 1985. Rapid and quantitative assessment of trout spermatozoa motility using stroboscopy. Aquaculture 46: 71–75.

    Google Scholar 

  • Deniel, C. 1981. Les poissons plats (Téléostéens, Pleuronectiformes) en baie de Douarnenez. Reproduction croissance et migration des Bothidae, Scophthalmidae, Pleuronectidae et Soleidae. Thèse, Université Bretagne Occidentale, Brest. 476 pp.

  • Doi, M., T. Hoshino, Y. Taki & Y. Ogasawara. 1982. Activity of the sperm of the bluefin tuna Thunnus thynnus under fresh and preserved conditions. Bull. Japan. Soc. Sci. Fish. 48: 495–498.

    Google Scholar 

  • Ellis, W.G. & J.W. Jones. 1939. The activity of the spermatozoa of Salmo salar in relation to osmotic pressure. J. Exp. Biol. 16: 530–534.

    Google Scholar 

  • Fauvel, C., M.H. Omnes, C. Mugnier, Y. Normant, G. Dorange & M. Suquet. 1993. La reproduction du turbot: aspects biologiques et gestion des reproducteurs. La Pisciculture Française 112: 23–39.

    Google Scholar 

  • Geffen, A.J. & O. Frayer. 1993. Retention of sperm motility in turbot, Scophthalmus maximus L.: the effects of time from activation, thermal shock and adenosine triphosphate levels. Aquac. Fish. Manag. 24: 203–209.

    Google Scholar 

  • Goodall, J.A., A.W. Blackshaw & M.F. Capra. 1989. Factors affecting the activation and duration of motility of the spermatozoa of the summer whiting (Sillago ciliata). Aquaculture 77: 243–250.

    Google Scholar 

  • Harrison, R.A.P., H.M. Dott & G.C. Foster. 1978. Effect of ionic strength, serum albumin and other macromolecules on the maintenance of motility and the surface of mammalian spermatozoa in a simple medium. J. Reprod. Fertil. 52: 65–73.

    Google Scholar 

  • Hines, R. & A. Yashouv. 1971. Some environmental factors influencing the activity of spermatozoa of Mugil capito Cuvier, a grey mullet. J. Fish Biol. 3: 123–127.

    Google Scholar 

  • Kruger, J.C.W., G.L. Smit, J.H.J. Van Vuren & J.T. Ferreira. 1984. Some chemical and physical characteristics of the semen of Cyprinus carpio L. and Oreochromis mossambicus (Peters). J. Fish Biol. 24: 263–272.

    Google Scholar 

  • Lee, C.S., C.S. Tamaru, C.D. Kelley, A. Moriwake & G.T. Miyamoto. 1992. The effect of salinity on the induction of spawning and fertilization in the stripped mullet, Mugil cephalus. Aquaculture 102: 289–296.

    Google Scholar 

  • Methven, D.A. & L.W. Crim. 1991. Seasonal changes in spermatocrit, plasma sex steroids and motility of sperm from Atlantic halibut (Hippoglossus hippoglossus), pp. 170. In: A.P. Scott, J.P. Sumpter, D.E. Kime & M.S. Rolfe (ed.) Proc. Fourth Int. Symp. Reprod. Physiol. Fish., Univ. East Anglia, Norwich, U.K., 7–12 July 1991 (Abstract).

  • Morisawa, M. 1985. Initiation mechanism of sperm motility at spawning in teleosts. Zool. Sci. 2: 605–615.

    Google Scholar 

  • Oda, S. & M. Morisawa. 1993. Rises of intracellular Ca2+ and pH mediate the initiation of sperm motility by hyperosmolality in marine teleosts. Cell Motil. Cytoskeleton 25: 171–178.

    Google Scholar 

  • Omnes, M.H., Y. Normant, M. Suquet & C. Fauvel. 1991. Analysis of turbot (Scophthalmus maximus) broodstock pilot scale production. pp. 245–246. In: N. de Pauw & J. Joyce (Ed.) Aquaculture and the Environment, European Aquaculture Society, Dublin, Spec. Publ.14.

    Google Scholar 

  • Perchec, G., J. Cosson, F. André & R. Billard. 1993. La motilité des spermatozoïdes de truite (Oncorhynchus mykiss) et de carpe (Cyprinus carpio) J. Appl. Ichthyiol. 9: 129–149.

    Google Scholar 

  • Stoss, J.1983. Fish gamete preservation and spermatozoan physiology. pp. 305–350. In: WS. Hoar, D.J. Randall & E.M. Donaldson (ed.) Fish Physiology, Volume 9b, Academic Press, London.

  • Suquet, M., M.H. Omnes, Y. Normant & C. Fauvel. 1992. Assessment of sperm concentration and motility in turbot (Scophthalmus maximus). Aquaculture 101: 177–185.

    Google Scholar 

  • Suquet, M., G. Dorange, M.H. Omnes, Y. Normant, A. Le Roux & C. Fauvel. 1993. Composition of the seminal fluid and ultrastructure of the spermatozoon of turbot (Scophthalmus maximus). J. Fish Biol. 42: 509–516.

    Google Scholar 

  • Suquet, M., R. Billard, J. Cosson, G. Dorange, L. Chauvaud, C. Mugnier & C. Fauvel. 1994. Sperm features in turbot (Scophthalmus maximus): a comparison with other freshwater and marine fish species. Aquat. Living Resour. 7: 283–294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauvaud, L., Cosson, J., Suquet, M. et al. Sperm motility in turbot, Scophthalmus marimus: initiation of movement and changes with time of swimming characteristics. Environ Biol Fish 43, 341–349 (1995). https://doi.org/10.1007/BF00001167

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00001167

Key words

Navigation