Skip to main content

Clinical Application of Real-Time fMRI-Based Neurofeedback for Depression

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1305))

Abstract

Real-time functional magnetic resonance imaging-based neurofeedback (rt-fMRI NF) is a recent technique used to train self-regulation of circumscribed brain areas or networks. For clinical applications in depression, NF training targets brain areas with disturbed activation patterns, such as heightened reactivity of amygdala in response to negative stimuli, in order to normalize the neurophysiology and their behavioral correlates. Recent studies have targeted emotion processing areas such as the amygdala, the salience network, and top-down control areas such as the lateral prefrontal cortex. Different methods of rt-fMRI-based NF in depression, their potential for clinical improvement, and most recent advancements of this technology are discussed considering their role for future clinical applications. Initial findings of randomized controlled trials show promising results. However, for lasting treatment effects, clinical efficiency and optimal target regions, tasks, control conditions, and duration of training need to be established.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cox RW, Jesmanowicz A, Hyde JS (1995) Real-time functional magnetic resonance imaging. Magn Reson Med 33(2):230–236

    Article  CAS  PubMed  Google Scholar 

  2. Weiskopf N, Mathiak K, Bock SW, Scharnowski F, Veit R, Grodd W et al (2004) Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans Biomed Eng 51(6):966–970

    Article  PubMed  Google Scholar 

  3. Weiskopf N, Scharnowski F, Veit R, Goebel R, Birbaumer N, Mathiak K (2004) Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). J Physiol Paris 98(4–6):357–373

    Article  PubMed  Google Scholar 

  4. Weiskopf N, Klose U, Birbaumer N, Mathiak K (2005) Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI. NeuroImage 24(4):1068–1079

    Article  PubMed  Google Scholar 

  5. Sulzer J, Haller S, Scharnowski F, Weiskopf N, Birbaumer N, Blefari ML et al (2013) Real-time fMRI neurofeedback: progress and challenges. NeuroImage 76:386–399

    Article  CAS  PubMed  Google Scholar 

  6. Weiskopf N, Sitaram R, Josephs O, Veit R, Scharnowski F, Goebel R et al (2007) Real-time functional magnetic resonance imaging: methods and applications. Magn Reson Imaging 25(6):989–1003

    Article  PubMed  Google Scholar 

  7. Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23(10):3963–3971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mathiak K, Posse S (2001) Evaluation of motion and realignment for functional magnetic resonance imaging in real time. Magn Reson Med 45(1):167–171

    Article  CAS  PubMed  Google Scholar 

  9. Mathiak KA, Koush Y, Dyck M, Gaber TJ, Alawi E, Zepf FD et al (2010) Social reinforcement can regulate localized brain activity. Eur Arch Psychiatry Clin Neurosci 260(2):132–136

    Article  Google Scholar 

  10. Cordes JS, Mathiak KA, Dyck M, Alawi EM, Gaber TJ, Zepf FD et al (2015) Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia. Front Behav Neurosci 9:169

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sorger B, Scharnowski F, Linden DE, Hampson M, Young KD (2019) Control freaks: towards optimal selection of control conditions for fMRI neurofeedback studies. NeuroImage 186:256–265

    Article  PubMed  Google Scholar 

  12. Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R et al (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. NeuroImage 19(3):577–586

    Article  PubMed  Google Scholar 

  13. Gröne M, Dyck M, Koush Y, Bergert S, Mathiak K, Alawi E et al (2015) Upregulation of the rostral anterior cingulate cortex can alter the perception of emotions: fMRI-based neurofeedback at 3 and 7 T. Brain Topogr 28(2):197–207

    Article  PubMed  Google Scholar 

  14. Sarkheil P, Zilverstand A, Kilian-Hütten N, Schneider F, Goebel R, Mathiak K (2015) fMRI feedback enhances emotion regulation as evidenced by a reduced amygdala response. Behav Brain Res 281:326–332

    Article  PubMed  Google Scholar 

  15. Zweerings J, Pflieger EM, Mathiak KA, Zvyagintsev M, Kacela A, Flatten G et al (2018) Impaired voluntary control in PTSD: probing self-regulation of the ACC with real-time fMRI. Front Psych 9:219

    Article  Google Scholar 

  16. Mathiak KA, Alawi EM, Koush Y, Dyck M, Cordes JS, Gaber TJ et al (2015) Social reward improves the voluntary control over localized brain activity in fMRI-based neurofeedback training. Front Behav Neurosci 9:136

    Article  PubMed  PubMed Central  Google Scholar 

  17. Young KD, Zotev V, Phillips R, Misaki M, Yuan H, Drevets WC et al (2014) Real-time FMRI neurofeedback training of amygdala activity in patients with major depressive disorder. PLoS One 9(2):e88785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Young KD, Siegle GJ, Zotev V, Phillips R, Misaki M, Yuan H et al (2017) Randomized clinical trial of real-time fMRI amygdala neurofeedback for major depressive disorder: effects on symptoms and autobiographical memory recall. Am J Psychiatr 174(8):748–755

    Article  PubMed  Google Scholar 

  19. Linden DE, Habes I, Johnston SJ, Linden S, Tatineni R, Subramanian L et al (2012) Real-time self-regulation of emotion networks in patients with depression. PLoS One 7(6)

    Google Scholar 

  20. Mehler DM, Sokunbi MO, Habes I, Barawi K, Subramanian L, Range M et al (2018) Targeting the affective brain—a randomized controlled trial of real-time fMRI neurofeedback in patients with depression. Neuropsychopharmacology 43(13):2578–2585

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hamilton JP, Glover GH, Bagarinao E, Chang C, Mackey S, Sacchet MD et al (2016) Effects of salience-network-node neurofeedback training on affective biases in major depressive disorder. Psychiatry Res Neuroimaging 249:91–96

    Article  PubMed  Google Scholar 

  22. MacDuffie KE, MacInnes J, Dickerson KC, Eddington KM, Strauman TJ, Adcock RA (2018) Single session real-time fMRI neurofeedback has a lasting impact on cognitive behavioral therapy strategies. NeuroImage Clin 19:868–875

    Article  PubMed  PubMed Central  Google Scholar 

  23. Barb S, Huppert T, Siegle G, Young K (2018) T155. augmenting CBT with real-time fMRI amygdala neurofeedback training increases early response to therapy. Biol Psychiatry 83(9):S188

    Article  Google Scholar 

  24. Liao C, Feng Z, Zhou D, Dai Q, Xie B, Ji B et al (2012) Dysfunction of fronto-limbic brain circuitry in depression. Neuroscience 201:231–238

    Article  CAS  PubMed  Google Scholar 

  25. Zweerings J, Zvyagintsev M, Turetsky BI, Klasen M, König AA, Roecher E et al (2019) Fronto-parietal and temporal brain dysfunction in depression: a fMRI investigation of auditory mismatch processing. Hum Brain Mapp 40(12):3657–3668

    PubMed  PubMed Central  Google Scholar 

  26. Dyck MS, Mathiak KA, Bergert S, Sarkheil P, Koush Y, Alawi EM et al (2016) Targeting treatment-resistant auditory verbal hallucinations in schizophrenia with fMRI-based neurofeedback–exploring different cases of schizophrenia. Front Psych 7:37

    Google Scholar 

  27. Kohn N, Eickhoff SB, Scheller M, Laird AR, Fox PT, Habel U (2014) Neural network of cognitive emotion regulation—an ALE meta-analysis and MACM analysis. NeuroImage 87:345–355

    Article  CAS  PubMed  Google Scholar 

  28. Mennen AC, Norman KA, Turk-Browne NB (2019) Attentional bias in depression: understanding mechanisms to improve training and treatment. Curr Opin Psychol

    Google Scholar 

  29. Linhartová P, Látalová A, Kóša B, Kašpárek T, Schmahl C, Paret C (2019) fMRI neurofeedback in emotion regulation: a literature review. NeuroImage 193:75–92

    Article  PubMed  Google Scholar 

  30. Hellrung L, Dietrich A, Hollmann M, Pleger B, Kalberlah C, Roggenhofer E et al (2018) Intermittent compared to continuous real-time fMRI neurofeedback boosts control over amygdala activation. NeuroImage 166:198–208

    Article  PubMed  Google Scholar 

  31. Paret C, Zähringer J, Ruf M, Gerchen MF, Mall S, Hendler T et al (2018) Monitoring and control of amygdala neurofeedback involves distributed information processing in the human brain. Hum Brain Mapp 39(7):3018–3031

    Article  PubMed  PubMed Central  Google Scholar 

  32. Paret C, Kluetsch R, Ruf M, Demirakca T, Hoesterey S, Ende G et al (2014) Down-regulation of amygdala activation with real-time fMRI neurofeedback in a healthy female sample. Front Behav Neurosci 8:299

    Article  PubMed  PubMed Central  Google Scholar 

  33. Brühl AB, Scherpiet S, Sulzer J, Stämpfli P, Seifritz E, Herwig U (2014) Real-time neurofeedback using functional MRI could improve down-regulation of amygdala activity during emotional stimulation: a proof-of-concept study. Brain Topogr 27(1):138–148

    Article  PubMed  Google Scholar 

  34. Herwig U, Lutz J, Scherpiet S, Scheerer H, Kohlberg J, Opialla S et al (2019) Training emotion regulation through real-time fMRI neurofeedback of amygdala activity. NeuroImage 184:687–696

    Article  CAS  PubMed  Google Scholar 

  35. Kadosh KC, Luo Q, de Burca C, Sokunbi MO, Feng J, Linden DE et al (2016) Using real-time fMRI to influence effective connectivity in the developing emotion regulation network. NeuroImage 125:616–626

    Article  Google Scholar 

  36. Veit R, Singh V, Sitaram R, Caria A, Rauss K, Birbaumer N (2012) Using real-time fMRI to learn voluntary regulation of the anterior insula in the presence of threat-related stimuli. Soc Cogn Affect Neurosci 7(6):623–634

    Article  PubMed  Google Scholar 

  37. Yao S, Becker B, Geng Y, Zhao Z, Xu X, Zhao W et al (2016) Voluntary control of anterior insula and its functional connections is feedback-independent and increases pain empathy. NeuroImage 130:230–240

    Article  PubMed  Google Scholar 

  38. Hamilton JP, Glover GH, Hsu JJ, Johnson RF, Gotlib IH (2011) Modulation of subgenual anterior cingulate cortex activity with real-time neurofeedback. Hum Brain Mapp 32(1):22–31

    Article  PubMed  Google Scholar 

  39. Zotev V, Mayeli A, Misaki M, Bodurka J (2019) Emotion self-regulation training in major depressive disorder using simultaneous real-time fMRI and EEG neurofeedback. In: arXiv preprint arXiv:190905764

    Google Scholar 

  40. Keller M, Zweerings J, Klasen M, Röcher E, Mathiak K (2019) Cognitive reappraisal-based real-time fMRI neurofeedback in patients with depression. Poster session presented at the Real-Time Functional Imaging and Neurofeedback Conference in Maastricht, NL

    Google Scholar 

  41. Melnikov MY, Bezmaternykh DD, Savelov AA, Kozlova LI, Shtark MB, Pokrovskiy MA, et al. 2019 Depression treatment with medial prefrontal real-time fMRI neurofeedback (rt-fMRI NFB): pilot data from non-randomized controlled study. Poster session presented at the real-time functional imaging and neurofeedback conference in Maastricht, NL

    Google Scholar 

  42. Zahn R, Weingartner JH, Basilio R, Bado P, Mattos P, Sato JR et al (2019) Blame-rebalance fMRI neurofeedback in major depressive disorder: a randomised proof-of-concept trial. NeuroImage Clin 24:101992

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lorenzetti V, Melo B, Basílio R, Suo C, Yücel M, Tierra-Criollo CJ et al (2018) Emotion regulation using virtual environments and real-time fMRI neurofeedback. Front Neurol 9:390

    Article  PubMed  PubMed Central  Google Scholar 

  44. Roes LD, Baqapuri HI, Zvyagintsev M, Keller M, Röcher E, Zweerings J, et al. (2019) Lack of motivation in patients with major depressive disorder: behavioral effects of functional MRI neurofeedback-training. Poster session presented at the real-time functional imaging and neurofeedback conference in Maastricht, NL

    Google Scholar 

  45. Baqapuri, H. I., Roes, L. D., Zvyagintsev, M., Ramadan, S., Keller, M., Röcher, E., ... & Mathiak, K. (in press). A novel brain-computer interface virtual environment for neurofeedback during functional MRI. Frontiers in Neuroscience, 14, 1367

    Google Scholar 

  46. Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6(1):13–34

    Article  CAS  PubMed  Google Scholar 

  47. Victor TA, Furey ML, Fromm SJ, Öhman A, Drevets WC (2010) Relationship between amygdala responses to masked faces and mood state and treatment in major depressive disorder. Arch Gen Psychiatry 67(11):1128–1138

    Article  PubMed  PubMed Central  Google Scholar 

  48. Young KD, Siegle GJ, Misaki M, Zotev V, Phillips R, Drevets WC et al (2018) Altered task-based and resting-state amygdala functional connectivity following real-time fMRI amygdala neurofeedback training in major depressive disorder. NeuroImage Clin 17:691–703

    Article  PubMed  Google Scholar 

  49. Young KD, Misaki M, Harmer CJ, Victor T, Zotev V, Phillips R et al (2017) Real-time functional magnetic resonance imaging amygdala neurofeedback changes positive information processing in major depressive disorder. Biol Psychiatry 82(8):578–586

    Article  PubMed  PubMed Central  Google Scholar 

  50. Koush Y, Elliott MA, Scharnowski F, Mathiak K (2013) Real-time automated spectral assessment of the BOLD response for neurofeedback at 3 and 7 T. J Neurosci Methods 218(2):148–160

    Article  PubMed  Google Scholar 

  51. Koush Y, Elliott MA, Scharnowski F, Mathiak K (2014) Comparison of real-time water proton spectroscopy and echo-planar imaging sensitivity to the BOLD effect at 3 T and at 7 T. PLoS One 9(3)

    Google Scholar 

  52. Watanabe T, Sasaki Y, Shibata K, Kawato M (2017) Advances in fMRI real-time neurofeedback. Trends Cogn Sci 21(12):997–1010

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yamada T, Hashimoto R-I, Yahata N, Ichikawa N, Yoshihara Y, Okamoto Y et al (2017) Resting-state functional connectivity-based biomarkers and functional MRI-based neurofeedback for psychiatric disorders: a challenge for developing theranostic biomarkers. Int J Neuropsychopharmacol 20(10):769–781

    Article  PubMed  PubMed Central  Google Scholar 

  54. Power JD, Lynch CJ, Dubin MJ, Silver BM, Martin A, Jones RM (2020) Characteristics of respiratory measures in young adults scanned at rest, including systematic changes and “missed” deep breaths. NeuroImage 204:116234

    Article  PubMed  Google Scholar 

  55. Weiss F, Zamoscik V, Schmidt SN, Halli P, Kirsch P, Gerchen MF (2020) Just a very expensive breathing training? Risk of respiratory artefacts in functional connectivity-based real-time fMRI neurofeedback. NeuroImage:116580

    Google Scholar 

  56. Pereira J, Ray A, Rana M, Opazo P, Brett C, Takar I, et al. (2019) A brain-computer Interface system based on pattern classification of emotional brain states for depression. Poster session presented at the real-time functional imaging and neurofeedback conference in Maastricht, NL

    Google Scholar 

  57. Shibata K, Lisi G, Cortese A, Watanabe T, Sasaki Y, Kawato M (2019) Toward a comprehensive understanding of the neural mechanisms of decoded neurofeedback. NeuroImage 188:539–556

    Article  PubMed  Google Scholar 

  58. Koizumi A, Amano K, Cortese A, Shibata K, Yoshida W, Seymour B et al (2016) Fear reduction without fear through reinforcement of neural activity that bypasses conscious exposure. Nat Hum Behav 1(1):1–7

    Google Scholar 

  59. Sakai Y (2017) Possible clinical application of decoded neurofeedback to treatment of obsessive-compulsive disorder. Poster session presented at the Real-Time Functional Imaging and Neurofeedback Conference in Nara, Japan

    Google Scholar 

  60. Zeng N, Pope Z, Lee JE, Gao Z (2018) Virtual reality exercise for anxiety and depression: a preliminary review of current research in an emerging field. J Clin Med 7(3):42

    Article  PubMed Central  Google Scholar 

  61. Falconer CJ, Rovira A, King JA, Gilbert P, Antley A, Fearon P et al (2016) Embodying self-compassion within virtual reality and its effects on patients with depression. BJPsych open 2(1):74–80

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ros T, Enriquez-Geppert S, Zotev V, Young K, Wood G, Whitfield-Gabrieli S, et al. (2019) Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist)

    Google Scholar 

  63. Thibault RT, MacPherson A, Lifshitz M, Roth RR, Raz A (2018) Neurofeedback with fMRI: a critical systematic review. NeuroImage 172:786–807

    Article  PubMed  Google Scholar 

  64. Rance M, Walsh C, Sukhodolsky DG, Pittman B, Qiu M, Kichuk SA et al (2018) Time course of clinical change following neurofeedback. NeuroImage 181:807–813

    Article  PubMed  Google Scholar 

  65. Zotev V, Yuan H, Misaki M, Phillips R, Young KD, Feldner MT et al (2016) Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression. NeuroImage Clin 11:224–238

    Article  PubMed  PubMed Central  Google Scholar 

  66. Meir-Hasson Y, Kinreich S, Podlipsky I, Hendler T, Intrator N (2014) An EEG finger-print of fMRI deep regional activation. NeuroImage 102:128–141

    Article  PubMed  Google Scholar 

  67. Keynan JN, Meir-Hasson Y, Gilam G, Cohen A, Jackont G, Kinreich S et al (2016) Limbic activity modulation guided by functional magnetic resonance imaging–inspired electroencephalography improves implicit emotion regulation. Biol Psychiatry 80(6):490–496

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Mathiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mathiak, K., Keller, M. (2021). Clinical Application of Real-Time fMRI-Based Neurofeedback for Depression. In: Kim, YK. (eds) Major Depressive Disorder. Advances in Experimental Medicine and Biology, vol 1305. Springer, Singapore. https://doi.org/10.1007/978-981-33-6044-0_15

Download citation

Publish with us

Policies and ethics