Skip to main content

Role of Oxidative Stress Induced by Cigarette Smoke in the Pathogenicity of Chronic Obstructive Pulmonary Disease

  • Chapter
  • First Online:

Abstract

Cigarette smoke (CS) exposes lungs to oxidative stress and inflammation and is a major risk factor for the development of chronic obstructive pulmonary disease (COPD). COPD is a complex lung disease characterized by chronic inflammation with limited airflow and chronic bronchitis associated with mucus hypersecretion, thickened small airway walls, and emphysema. CS-induced oxidative stress is responsible for altered cellular metabolism, including increased infiltrating immune cells, pro-inflammatory cytokine production, protease–antiprotease imbalance, lipid peroxidation, apoptosis, upregulation of unfolded protein response (UPR), and protein misfolding. This chapter reviews the current knowledge on different mechanisms through which both direct and secondhand CS-induced oxidative stress in lungs plays a significant role in the pathogenesis of COPD. Despite the presence of considerable reports recognizing the harmful effects of CS-generated oxidative stress, effective treatment for COPD is lacking. Extensive research on the immune and pathogenetic mechanisms of COPD will help in developing new treatment strategies. Clinical trials leveraging multiple antioxidants, anti-inflammatory processes, and UPR inhibitors are urgently needed to advance COPD therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. World Health Organization (2017) http://www.who.int/en/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd)

  2. Veigi G, Scognamiglio A, Baldacci S, Pistelli F, Carrozzi L (2001) Epidemiology of chronic obstructive pulmonary disease (COPD). Respiration 68(1):4–19

    Article  Google Scholar 

  3. Roth C (2010) Factsheet chronic obstructive pulmonary disease (COPD). National Institutes of Health 10. http://report.nih.gov/NIHfactsheets/Pdfs/ChronicObstructivePulmonaryDisease(NHLBI).pdf

  4. Cosio MG, Saetta M, Agusti A (2009) Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med 360(23):2445–2454

    Article  CAS  PubMed  Google Scholar 

  5. Miravitlles M, Soler-Cataluna JJ, Calle M, Soriano JB (2013) Treatment of COPD by clinical phenotypes: putting old evidence into clinical practice. Eur Respir J 41:1252–1256

    Article  PubMed  Google Scholar 

  6. Kenche H, Baty CJ, Vedagiri K, Shapiro SD, Blumental-Perry A (2013) Cigarette smoking affects oxidative protein folding in endoplasmic reticulum by modifying protein disulfide isomerase. FASEB J 27:965–977

    Article  CAS  PubMed  Google Scholar 

  7. Cavalcante AG, de Bruin PF (2009) The role of oxidative stress in COPD: current concepts and perspectives. J Bras Pneumol 35:1227–1237

    Article  PubMed  Google Scholar 

  8. World Health Organization (2015) http://www.who.int/tobacco/global_report/2015/en/

  9. Das SK (2003) Harmful effects of cigarette smoking. Mol Cell Biochem 253(1):159–165

    Article  CAS  PubMed  Google Scholar 

  10. El-Zein RA, Young RP, Hopkins RJ, Etzel CJ (2012) Genetic predisposition to chronic obstructive pulmonary disease and/or lung cancer: important considerations when evaluating risk. Cancer Prev Res (Phila) 5:522–527

    Article  Google Scholar 

  11. Mehta AJ, Miedinger D, Keidel D, Bettschart R, Bircher A, Bridevaux PO, Curjuric I, Kromhout H, Rochat T, Rothe T, Russi EW, Schikowski T, Schindler C, Schwartz J, Turk A, Vermeulen R, Probst-Hensch N, Kunzli N, Team S (2012) Occupational exposure to dusts, gases, and fumes and incidence of chronic obstructive pulmonary disease in the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults. Am J Respir Crit Care Med 185:1292–1300

    Article  PubMed  Google Scholar 

  12. Schikowski T, Adam M, Marcon A, Cai Y, Vierkotter A, Carsin AE, Jacquemin B, Al Kanani Z, Beelen R, Birk M, Bridevaux PO, Brunekeef B, Burney P, Cirach M, Cyrys J, de Hoogh K, de Marco R, de Nazelle A, Declercq C, Forsberg B, Hardy R, Heinrich J, Hoek G, Jarvis D, Keidel D, Kuh D, Kuhlbusch T, Migliore E, Mosler G, Nieuwenhuijsen MJ, Phuleria H, Rochat T, Schindler C, Villani S, Tsai MY, Zemp E, Hansell A, Kauffmann F, Sunyer J, Probst-Hensch N, Kramer U, Kunzli N (2014) Association of ambient air pollution with the prevalence and incidence of COPD. Eur Respir J 44:614–626

    Article  CAS  PubMed  Google Scholar 

  13. Stockley RA (2014) Alpha1-antitrypsin review. Clin Chest Med 35:39–50

    Article  PubMed  Google Scholar 

  14. National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US); 2014 (2007) Beyond the lungs a new view of COPD. The Lancet 370(9589):713

    Article  Google Scholar 

  15. Homa DM, Neff LJ, King BA, Caraballo RS, Bunnell RE, Babb SD, Garrett BE, Sosnoff CS, Wang L (2015) Vital signs: disparities in nonsmokers’ exposure to secondhand smoke—United States, 1999–2012. Morb Mortal Wkly Rep 64(4):103–108

    Google Scholar 

  16. Wang J, Bao L, Yu B, Liu Z, Han W, Deng C, Guo C (2015) Interleukin-1beta promotes epithelial-derived alveolar elastogenesis via αvβ6 integrin-dependent TGF-β activation. Cell Physiol Biochem 36:2198–2216

    Article  CAS  PubMed  Google Scholar 

  17. Denic V, Quan EM, Weissman JS (2006) A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126:349–359

    Article  CAS  PubMed  Google Scholar 

  18. Yamada Y, Tomaru U, Ishizu A, Ito T, Kiuchi T, Ono A, Miyajima S, Nagai K, Higashi T, Matsuno Y, Dosaka-Akita H, Nishimura M, Miwa S, Kasahara M (2015) Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice. Lab Investig 95:625–634

    Article  CAS  PubMed  Google Scholar 

  19. Brashier BB, Kodgule R (2012) Risk factors and pathophysiology of chronic obstructive pulmonary disease (COPD). J Assoc Physicians India 60(Suppl):17–21

    PubMed  Google Scholar 

  20. Barreiro E, Peinado VI, Galdiz JB, Ferrer E, Marin-Corral J, Sanchez F, Gea J, Barbera JA, Project EiC (2010) Cigarette smoke-induced oxidative stress: a role in chronic obstructive pulmonary disease skeletal muscle dysfunction. Am J Respir Crit Care Med 182:477–488

    Article  CAS  Google Scholar 

  21. Mannino DM, Buist AS (2007) Global burden of COPD: risk factors, prevalence, and future trends. Lancet 370:765–773

    Article  PubMed  Google Scholar 

  22. U.S. Department of Health and Human Services (2014) The health consequences of smoking: 50 years of progress. A report of the surgeon general. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, Atlanta, GA. https://www.ncbi.nlm.nih.gov/books/NBK179276/

  23. Pryor WA, Stone K (1993) Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci 686:12–27

    Article  CAS  PubMed  Google Scholar 

  24. Rahman I, Adcock IM (2006) Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J 28:219–242

    Article  CAS  PubMed  Google Scholar 

  25. Morrow JD, Frei B, Longmire AW, Gaziano JM, Lynch SM, Shyr Y, Strauss WE, Oates JA, Roberts LJ 2nd (1995) Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N Engl J Med 332:1198–1203

    Article  CAS  PubMed  Google Scholar 

  26. Reznick AZ, Cross CE, Hu ML, Suzuki YJ, Khwaja S, Safadi A, Motchnik PA, Packer L, Halliwell B (1992) Modification of plasma proteins by cigarette smoke as measured by protein carbonyl formation. Biochem J 286(Pt 2):607–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park EM, Park YM, Gwak YS (1998) Oxidative damage in tissues of rats exposed to cigarette smoke. Free Radic Biol Med 25:79–86

    Article  CAS  PubMed  Google Scholar 

  28. Lung function testing: selection of reference values and interpretative strategies. American Thoracic Society (1991) Am Rev Respir Dis 144:1202–1218

    Google Scholar 

  29. Rahman I (2005) The role of oxidative stress in the pathogenesis of COPD: implications for therapy. Treat Respir Med 4:175–200

    Article  PubMed  Google Scholar 

  30. Louhelainen N, Rytilä P, Haahtela T, Kinnula VL, Djukanović R (2009) Persistence of oxidant and protease burden in the airways after smoking cessation. BMC Pulm Med 9(25):1471–2466

    Google Scholar 

  31. Montano M, Cisneros J, Ramirez-Venegas A, Pedraza-Chaverri J, Mercado D, Ramos C, Sansores RH (2010) Malondialdehyde and superoxide dismutase correlate with FEV(1) in patients with COPD associated with wood smoke exposure and tobacco smoking. Inhal Toxicol 22:868–874

    Article  CAS  PubMed  Google Scholar 

  32. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rahman I, MacNee W (1996) Role of oxidants/antioxidants in smoking-induced lung diseases. Free Radic Biol Med 21:669–681

    Article  CAS  PubMed  Google Scholar 

  34. Poli G, Leonarduzzi G, Biasi F, Chiarpotto E (2004) Oxidative stress and cell signalling. Curr Med Chem 11:1163–1182

    Article  CAS  PubMed  Google Scholar 

  35. Wynder EL, Hoffman D (1971) Tobaco and tobacco smoke. Acdemic Press, New York, pp 423–424

    Google Scholar 

  36. Mǖller T, Haussmann H-J, Schepers G (1997) evidence for peroxynitrite as an oxidative stress-indocing compound of aquous cigarette smoke fractions. Carcinogenesis 18(2):295–301

    Article  PubMed  Google Scholar 

  37. Koyani CN, Flemmig J, Malle E, Arnhold J (2015) Myeloperoxidase scavenges peroxynitrite: a novel anti-inflammatory action of the heme enzyme. Arch Biochem Biophys 571:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martins AB, Ximenes VF, da Fonseca LM (2013) Serum myeloperoxidase level is increased in heavy smokers. Open J Clin Diagn 3:5–8

    Article  Google Scholar 

  39. Gorska KR, Domagala-Kulawik J, Korcznski P, Nejman-Gryz P, Kosciuch J, Hildebrand K, Chazan R (2008) Comparison of cellular and bichemical markers of airway inflammation in patients with mild -to-moderate asthma and chronic obstructive pulmonary disease: an induced sputum and bronchoalveolar lavage fluid study. J Physiol Pharmacol 59:271–283

    PubMed  Google Scholar 

  40. Louhelainen N, Stark H, Mazur W, Rytila P, Djukanovic R, Kinnula VL (2010) Elevation of sputum matrix metalloproteinase-9 persists up to 6 months after smoking cessation: a research study. BMC Pulm Med 10:13–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Merchant RK, Schwartz DA, Helmers RA, Dayton CS, Hunninghake GW (1992) Bronchoalveolar lavage cellularity. The distribution in normal volunteers. Am Rev Respir Dis 146:448–453

    Article  CAS  PubMed  Google Scholar 

  42. Ollerenshaw SL, Woolcock AJ (1992) Characteristics of the inflammation in biopsies from large airways of subjects with asthma and subjects with chronic airflow limitation. Am Rev Respir Dis 145:922–927

    Article  CAS  PubMed  Google Scholar 

  43. Eidelman D, Saetta MP, Ghezzo H, Wang NS, Hoidal JR, King M, Cosio MG (1990) Cellularity of the alveolar walls in smokers and its relation to alveolar destruction. Functional implications. Am Rev Respir Dis 141:1547–1552

    Article  CAS  PubMed  Google Scholar 

  44. Wiggs BR, Bosken C, Pare PD, James A, Hogg JC (1992) A model of airway narrowing in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis 145:1251–1258

    Article  CAS  PubMed  Google Scholar 

  45. Kaplanski G, Marin V, Fabrigoule M, Boulay V, Benoliel AM, Bongrand P, Kaplanski S, Farnarier C (1998) Thrombin-activated human endothelial cells support monocyte adhesion in vitro following expression of intercellular adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhesion molecule-1 (VCAM-1; CD106). Blood 92:1259–1267

    Article  CAS  PubMed  Google Scholar 

  46. Nordskog BK, Blixt AD, Morgan WT, Fields WR, Hellmann GM (2003) Matrix-degrading and pro-inflammatory changes in human vascular endothelial cells exposed to cigarette smoke condensate. Cardiovasc Toxicol 3:101–117

    Article  PubMed  Google Scholar 

  47. McMullen CB, Fleming E, Clarke G, Armstrong MA (2000) The role of reactive oxygen intermediates in the regulation of cytokine-induced ICAM-1 surface expression on endothelial cells. Mol Cell Biol Res Commun 3:231–237

    Article  CAS  PubMed  Google Scholar 

  48. Agusti AG (2005) Systemic effects of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2:367–370; discussion 371–362

    Google Scholar 

  49. Barnes PJ, Shapiro SD, Pauwels RA (2003) Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 22:672–688

    Article  CAS  PubMed  Google Scholar 

  50. Masubuchi T, Koyama S, Sato E, Takamizawa A, Kubo K, Sekiguchi M, Nagai S, Izumi T (1998) Smoke extract stimulates lung epithelial cells to release neutrophil and monocyte chemotactic activity. Am J Pathol 153:1903–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Palmblad J (1984) The role of granulocytes in inflammation. Scand J Rheumatol 13:163–172

    Article  CAS  PubMed  Google Scholar 

  52. Drost EM, Selby C, Lannan S, Lowe GD, MacNee W (1992) Changes in neutrophil deformability following in vitro smoke exposure: mechanism and protection. Am J Respir Cell Mol Biol 6:287–295

    Article  CAS  PubMed  Google Scholar 

  53. Di Stefano A, Maestrelli P, Roggeri A, Turato G, Calabro S, Potena A, Mapp CE, Ciaccia A, Covacev L, Fabbri LM, Saetta M (1994) Upregulation of adhesion molecules in the bronchial mucosa of subjects with chronic obstructive bronchitis. Am J Respir Crit Care Med 149:803–810

    Article  PubMed  Google Scholar 

  54. Lehr HA, Kress E, Menger MD, Friedl HP, Hubner C, Arfors KE, Messmer K (1993) Cigarette smoke elicits leukocyte adhesion to endothelium in hamsters: inhibition by CuZn-SOD. Free Radic Biol Med 14:573–581

    Article  CAS  PubMed  Google Scholar 

  55. Barnes PJ, Adcock IM, Ito K (2005) Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur Respir J 25:552–563

    Article  CAS  PubMed  Google Scholar 

  56. Rahman I, Mulier B, Gilmour PS, Watchorn T, Donaldson K, Jeffery PK, MacNee W (2001) Oxidant-mediated lung epithelial cell tolerance: the role of intracellular glutathione and nuclear factor-kappaB. Biochem Pharmacol 62:787–794

    Article  CAS  PubMed  Google Scholar 

  57. Rahman I, MacNee W (2000) Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic Biol Med 28:1405–1420

    Article  CAS  PubMed  Google Scholar 

  58. Barnes PJ (2009) Role of HDAC2 in the pathophysiology of COPD. Annu Rev Physiol 71:451–464

    Article  CAS  PubMed  Google Scholar 

  59. Rahman I, Marwick J, Kirkham P (2004) Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochem Pharmacol 68:1255–1267

    Article  CAS  PubMed  Google Scholar 

  60. Hoshimoto A, Suzuki Y, Katsuno T, Nakajima H, Saito Y (2002) Caprylic acid and medium-chain triglycerides inhibit IL-8 gene transcription in Caco-2 cells: comparison with the potent histone deacetylase inhibitor trichostatin A. Br J Pharmacol 136:280–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Adcock IM, Caramori G (2001) Cross-talk between pro-inflammatory transcription factors and glucocorticoids. Immunol Cell Biol 79:376–384

    Article  CAS  PubMed  Google Scholar 

  62. Ohno Y, Lee J, Fusunyan RD, MacDermott RP, Sanderson IR (1997) Macrophage inflammatory protein-2: chromosomal regulation in rat small intestinal epithelial cells. Proc Natl Acad Sci USA 94:10279–10284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vanden Berghe W, De Bosscher K, Boone E, Plaisance S, Haegeman G (1999) The nuclear factor-kappaB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. J Biol Chem 274:32091–32098

    Article  Google Scholar 

  64. Nam HS, Izumchenko E, Dasgupta S, Hoque MO (2017) Mitochondria in chronic obstructive pulmonary disease and lung cancer: where are we now? Biomark Med 11:475–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Repine JE, Bast A, Lankhorst I (1997) Oxidative stress in chronic obstructive pulmonary disease. Oxidative Stress Study Group. Am J Respir Crit Care Med 156:341–357

    Article  CAS  PubMed  Google Scholar 

  67. Janssen-Heininger YM, Persinger RL, Korn SH, Pantano C, McElhinney B, Reynaert NL, Langen RC, Ckless K, Shrivastava P, Poynter ME (2002) Reactive nitrogen species and cell signaling: implications for death or survival of lung epithelium. Am J Respir Crit Care Med 166:S9–S16

    Article  PubMed  Google Scholar 

  68. Lanzetti M, da Costa CA, Nesi RT, Barroso MV, Martins V, Victoni T, Lagente V, Pires KM, e Silva PM, Resende AC, Porto LC, Benjamim CF, Valenca SS (2012) Oxidative stress and nitrosative stress are involved in different stages of proteolytic pulmonary emphysema. Free Radic Biol Med 53:1993–2001

    Article  CAS  PubMed  Google Scholar 

  69. Białas AJ, Sitarek P, Miłkowska-Dymanowska J, Piotrowski WJ, Górski P (2016) The role of mitochondria and oxidative/antioxidative imbalance in pathobiology of chronic obstructive pulmonary disease. Oxidative Med Cell Longev 2016:7808576. Review

    Article  CAS  Google Scholar 

  70. McGuinness AJ, Sapey E (2017) Oxidative stress in COPD: sources, markers, and potential mechanisms. J Clin Med 6(2):21–39

    Article  PubMed Central  CAS  Google Scholar 

  71. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ahmad T, Sundar IK, Lerner CA, Gerloff J, Tormos AM, Yao H, Rahman I (2015) Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB J 29(7):2912–2929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wiegman CH, Michaeloudes C, Haji G, Narang P, Clarke CJ, Russell KE, Bao W, Pavlidis S, Barnes PJ, Kanerva J, Bittner A, Rao N, Murphy MP, Kirkham PA, Chung KF, Adcock IM, Copdmap (2015) Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 136:769–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hoffmann RF, Zarrintan S, Brandenburg SM, Kol A, de Bruin HG, Jafari S, Dijk F, Kalicharan D, Kelders M, Gosker HR, Ten Hacken NH, van der Want JJ, van Oosterhout AJ, Heijink IH (2013) Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells. Respir Res 14:97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Soulitzis N, Neofytou E, Psarrou M, Anagnostis A, Tavernarakis N, Siafakas N, Tzortzaki EG (2012) Downregulation of lung mitochondrial prohibitin in COPD. Respir Med 106:954–961

    Article  PubMed  Google Scholar 

  76. Houghton AM (2013) Mechanistic links between COPD and lung cancer. Nat Rev Cancer 13:233–245

    Article  CAS  PubMed  Google Scholar 

  77. Taivassalo T, Hussain SN (2016) Contribution of the mitochondria to locomotor muscle dysfunction in patients with COPD. Chest 149:1302–1312

    Article  PubMed  Google Scholar 

  78. Remels AH, Gosker HR, Schrauwen P, Langen RC, Schols AM (2008) Peroxisome proliferator-activated receptors: a therapeutic target in COPD? Eur Respir J 31:502–508

    Article  CAS  PubMed  Google Scholar 

  79. DeMeo DL, Mariani T, Bhattacharya S, Srisuma S, Lange C, Litonjua A, Bueno R, Pillai SG, Lomas DA, Sparrow D, Shapiro SD, Criner GJ, Kim HP, Chen Z, Choi AM, Reilly J, Silverman EK (2009) Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene. Am J Hum Genet 85:493–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cloonan SM, Glass K, Laucho-Contreras ME, Bhashyam AR, Cervo M, Pabon MA, Konrad C, Polverino F, Siempos II, Perez E, Mizumura K, Ghosh MC, Parameswaran H, Williams NC, Rooney KT, Chen ZH, Goldklang MP, Yuan GC, Moore SC, Demeo DL, Rouault TA, D'Armiento JM, Schon EA, Manfredi G, Quackenbush J, Mahmood A, Silverman EK, Owen CA, Choi AM (2016) Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med 22:163–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kang MJ, Lee CG, Lee JY, Dela Cruz CS, Chen ZJ, Enelow R, Elias JA (2008) Cigarette smoke selectively enhances viral PAMP- and virus-induced pulmonary innate immune and remodeling responses in mice. J Clin Invest 118:2771–2784

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kang MJ, Yoon CM, Kim BH, Lee CM, Zhou Y, Sauler M, Homer R, Dhamija A, Boffa D, West AP, Shadel GS, Ting JP, Tedrow JR, Kaminski N, Kim WJ, Lee CG, Oh YM, Elias JA (2015) Suppression of NLRX1 in chronic obstructive pulmonary disease. J Clin Invest 125:2458–2462

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lei Y, Wen H, Yu Y, Taxman DJ, Zhang L, Widman DG, Swanson KV, Wen KW, Damania B, Moore CB, Giguere PM, Siderovski DP, Hiscott J, Razani B, Semenkovich CF, Chen X, Ting JP (2012) The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity 36:933–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Arnoult D, Soares F, Tattoli I, Castanier C, Philpott DJ, Girardin SE (2009) An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix. J Cell Sci 122:3161–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Halliwell B (1996) Antioxidants in human health and disease. Annu Rev Nutr 16:33–50

    Article  CAS  PubMed  Google Scholar 

  86. Rahman I, MacNee W (1999) Lung glutathione and oxidative stress: implications in cigarette smoke-induced airway disease. Am J Phys 277:L1067–L1088

    CAS  Google Scholar 

  87. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  CAS  PubMed  Google Scholar 

  88. Boutten A, Goven D, Boczkowski J, Bonay M (2010) Oxidative stress targets in pulmonary emphysema: focus on the Nrf2 pathway. Expert Opin Ther Targets 14:329–346

    Article  CAS  PubMed  Google Scholar 

  89. Duthie GG, Arthur JR, James WP (1991) Effects of smoking and vitamin E on blood antioxidant status. Am J Clin Nutr 53:1061S–1063S

    Article  CAS  PubMed  Google Scholar 

  90. Cantin AM, North SL, Hubbard RC and Crystal RG (1987) Normal alveolar epithelial lining fluid contains high levels of glutathione. J Appl Physiol (1985) 63:152–157

    Article  CAS  PubMed  Google Scholar 

  91. Baskaran S, Lakshmi S, Prasad PR (1999) Effect of cigarette smoke on lipid peroxidation and antioxidant enzymes in albino rat. Indian J Exp Biol 37(12):1196–1200

    CAS  PubMed  Google Scholar 

  92. Mukherjee S, Woods L, Weston Z, Williams AB, Das SK (1993) The effect of mainstream and sidestream cigarette smoke exposure on oxygen defense mechanisms of guinea pig erythrocytes. J Biochem Toxicol 8:119–125

    Article  CAS  PubMed  Google Scholar 

  93. Chow CK, Thacker RR, Changchit C, Bridges RB, Rehm SR, Humble J, Turbek J (1986) Lower levels of vitamin C and carotenes in plasma of cigarette smokers. J Am Coll Nutr 5:305–312

    Article  CAS  PubMed  Google Scholar 

  94. Chytil F (1992) The lung and vitamin A. Am J Phys 262:J517–L527

    Article  Google Scholar 

  95. Das SK, Sinha Roy S, Mukherjee S, Ong DE (2014) Lung retinoid metabolism and signaling in chronic pulmonary disease. Indian J Biochem Biophys 51:499–505

    CAS  PubMed  Google Scholar 

  96. Nair CR, Davis MM, Das SK (1988) Effect of vitamin A deficiency on pulmonary defense systems of guinea pig lung. Int J Vitam Nutr Res 58:375–380

    CAS  PubMed  Google Scholar 

  97. Morabia A, Menkes MJ, Comstock GW, Tockman MS (1990) Serum retinol and airway obstruction. Am J Epidemiol 132:77–82

    Article  CAS  PubMed  Google Scholar 

  98. Paiva SA, Godoy I, Vannucchi H, Favaro RM, Geraldo RR, Campana AO (1996) Assessment of vitamin A status in chronic obstructive pulmonary disease patients and healthy smokers. Am J Clin Nutr 64:928–934

    Article  CAS  PubMed  Google Scholar 

  99. Mukherjee S, Nayyar T, Chytil F, Das SK (1995) Mainstream and sidestream cigarette smoke exposure increases retinol in guinea pig lungs. Free Radic Biol Med 18:507–514

    Article  CAS  PubMed  Google Scholar 

  100. Rennard SI, Togo S, Holz O (2006) Cigarette smoke inhibits alveolar repair: a mechanism for the development of emphysema. Proc Am Thorac Soc 3(8):703–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pinnock CB, Douglas RM, Martin AJ, Badcock NR (1988) Vitamin A status of children with respiratory syncytial virus infection in infancy. Aust Pediatr J 24:286–289

    CAS  Google Scholar 

  102. Edge R, McGarvey DJ, Truscott TG (1997) The carotenoids as anti-oxidants: a review. J Photochem Photobiol B 41:189–200

    Article  CAS  PubMed  Google Scholar 

  103. Agler AH, Kurth T, Gaziano JM, Buring JE, Cassano PA (2011) Randomised vitamin E supplementation and risk of chronic lung disease in the Women's Health Study. Thorax 66(4):320–325

    Article  PubMed  Google Scholar 

  104. Granado F, Olmedilla B, Blanco I (2003) Nutritional and clinical relevance of lutein in human health. Br J Nutr 90(3):487–502

    Article  CAS  PubMed  Google Scholar 

  105. Schünemann HJ, McCann S, Grant BJB, Trevisan M, Muti P, Freudenheim JL (2002) Lung function in relation to intake of carotenoids and other antioxidant vitamins in a population-based study. Am J Epidemiol 155(5):463–471

    Article  PubMed  Google Scholar 

  106. Grievink L, de Waart FG, Schouten EG, Kok FJ (2000) Serum carotenoids,α-tocopherol, and lung function among Dutch elderly. Am Respir Crit Care Med 161(3):790–795

    Article  CAS  Google Scholar 

  107. Schäffer MW, Roy SS, Mukherjee S, Das SK (2013) Vitamin A, vitamin E, lutein and β-carotene in lung tissues from subjects with chronic obstructive pulmonary disease and emphysema. Open J Respir Dis 03(02):8

    Google Scholar 

  108. Frankenberger M, Heimbeck I, Möller W, Mamidi S, Kassner G, Pukelsheim K, Wjst M, Neiswirth M, Kroneberg P, Lomas D, Halsall D, Iadarola P, Fertl A, Häussinger K, Ziegler-Heitbrock L (2009) Inhaled all-trans retinoic acid in an individual with severe emphysema. Eur Respir J 34:1487–1489

    Article  CAS  PubMed  Google Scholar 

  109. Morabia A, Sorenson A, Kumanyika SK, Abbey H (1989) Vitamin A, cigarette smoking and airway obstruction. Am Rev Resp Dis 140:1312–1316

    Article  CAS  PubMed  Google Scholar 

  110. Mata JR, Mata NL, Tsin ATC (1998) Substrate specificity of retinyl ester hydrolase activity in retinal pigment epithelium. J Lipid Res 39:604–612

    CAS  PubMed  Google Scholar 

  111. Biesalski HK, Reifen R, Fürst P, Edris M (1999) Retinyl palmitate supplementation by inhalation of an aerosol improves vitamin A status of preschool children in Gondar (Ethiopia). Br J Nutr 82:179–182

    Article  CAS  PubMed  Google Scholar 

  112. Kohlhäufl M, Häussinger K, Stanzel F, Markus A, Tritschler J, Mühlhöfer A, Morresi-Hauf A, Golly I, Scheuch G, Jany BH, Biesalski HK (2002) Inhalation of aerosolized vitamin A: reversibility of metaplasia and dysplasia of human respiratory epithelia a prospective pilot study. Eur J Med Res 7:72–78

    PubMed  Google Scholar 

  113. Mahabir S, Schendel K, Dong YQ, Barrera SL, Spitz MR, Forman MR (2008) Dietary α-, β-, γ- and δ-tocopherols in lung cancer risk. Int J Cancer 123:1173–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Napoli JL, McCormick AM, O’Meara B, Dratz EA (1988) VitaminA metabolism: alpha-tocopherol modulates tissue retinol levelsin vivo, and retinyl palmitate hydrolysis in vitro. Arch Biochem Biophys 230:194–202

    Article  Google Scholar 

  115. Melo van Lent D, Leermakers ETM, Hofman A, Stricker BH, Brusselle GG, Franco OH, Lahousse L, Kiefte-de Jong JC (2017) Association between lutein intake and lung function in adults: the Rotterdam Study. Br J Nutr 117(5):720–730

    Article  CAS  PubMed  Google Scholar 

  116. Zingg J-M (2015) Vitamin E: a role in signal transduction. Annu Rev Nutr 35:135–173

    Article  CAS  PubMed  Google Scholar 

  117. Roca-Ferrer J, Pujols L, Agusti C, Xaubet A, Mullol J, Gimferrer JM, Picado C (2011) Cyclooxigenase-2 levels are increased in the lung tissue and bronchial tumors of patients with chronic obstructive pulmonary disease. Arch Bronconeumol 47(12):584–589

    Article  PubMed  Google Scholar 

  118. Peh HY, Tan WSD, Chan TK, Pow CW, Foster PS, Wong WSF (2017) Vitamin E isoform γ-tocotrienol protects against emphysema in cigarette smoke-induced COPD. Free Radic Biol Med 110:332–344

    Article  CAS  PubMed  Google Scholar 

  119. Das SK, Chakrabarti P, Tsao FH, Nayyar T, Mukherjee S (1992) Identification of calcium-dependent phospholipid-binding proteins (annexins) from guinea pig alveolar type II cells. Mol Cell Biochem 115:79–84.129

    CAS  PubMed  Google Scholar 

  120. Whitsett JA, Manton MA, Darovec-Beckerman C, Adams K (1981) II. Beta-adrenergic receptors and catecholamine sensitive adenylate cyclase in the developing rat lung. Life Sci 28:339–345

    Article  CAS  PubMed  Google Scholar 

  121. Das SK, Mukherjee S (1999) Role of peripheral benzodiazepine receptors on secretion of surfactant in guinea pig alveolar type II cells. Biosci Rep 19(5):461–471

    Article  CAS  PubMed  Google Scholar 

  122. Das SK, Tsao FH, Mukherjee S (2002) Mainstream and sidestream cigarette smoke exposure increases Ca2+−dependent phospholipid binding proteins in guinea pig alveolar type II cells. Mol Cell Biochem 231(1–2):37–42

    Article  CAS  PubMed  Google Scholar 

  123. Mukherjee S, Das SK (1992) Effects of cigarette smoke exp111osure on the binding capacity of β-adrenergic receptors in guinea pig alveolar type II cell. FASEB J 6:259

    Google Scholar 

  124. Wang W, Li X, Xu J (2015) Exposure to cigarette smoke downregulates β2-adrenergic receptor expression and upregulates inflammation in alveolar macrophages. Inhal Toxicol 27(10):488–494

    Article  CAS  PubMed  Google Scholar 

  125. Gavish M, Cohen S, Nagler R (2016) Cigarette smoke effects on TSPO and VDAC expression in a cellular lung cancer model. Eur J Cancer Prev 25(5):361–367

    Article  CAS  PubMed  Google Scholar 

  126. Zhou Y, Zhang Y, Guo Y, Zhang Y, Xu M amd He B. (2014) β2-Adrenoceptor involved in smoking-induced airway mucus hypersecretion through β-arrestin-dependent signaling. PLoS One 9(6):e97788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Henke MO, John G, Rheineck C, Chillappagari S, Naehrlich L, Rubin BK (2011) Serine proteases degrade airway mucins in cystic fibrosis. Infect Immun 79:3438–3444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Abboud RT, Vimalanathan S (2008) Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int J Tuberc Lung Dis 12:361–367

    CAS  PubMed  Google Scholar 

  129. Crooks SW, Bayley DL, Hill SL, Stockley RA (2000) Bronchial inflammation in acute bacterial exacerbations of chronic bronchitis: the role of leukotriene B4. Eur Respir J 15:274–280

    Article  CAS  PubMed  Google Scholar 

  130. Owen CA (2005) Proteinases and oxidants as targets in the treatment of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2:373–385; discussion 394–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tuder RM, Yoshida T, Arap W, Pasqualini R, Petrache I (2006) State of the art. Cellular and molecular mechanisms of alveolar destruction in emphysema: an evolutionary perspective. Proc Am Thorac Soc 3:503–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chillappagari S, Preuss J, Licht S, Muller C, Mahavadi P, Sarode G, Vogelmeier C, Guenther A, Nahrlich L, Rubin BK, Henke MO (2015) Altered protease and antiprotease balance during a COPD exacerbation contributes to mucus obstruction. Respir Res 16:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Pandey KC, De S, Mishra PK (2017) Role of proteases in chronic obstructive pulmonary disease. Front Pharmacol 8:512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. MacNee W (2005) Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2:50–60

    Article  CAS  PubMed  Google Scholar 

  135. Sidhar SK, Lomas DA, Carrell RW, Foreman RC (1995) Mutations which impede loop/sheet polymerization enhance the secretion of human alpha 1-antitrypsin deficiency variants. J Biol Chem 270:8393–8396

    Article  CAS  PubMed  Google Scholar 

  136. Jonigk D, Al-Omari M, Maegel L, Muller M, Izykowski N, Hong J, Hong K, Kim SH, Dorsch M, Mahadeva R, Laenger F, Kreipe H, Braun A, Shahaf G, Lewis EC, Welte T, Dinarello CA, Janciauskiene S (2013) Anti-inflammatory and immunomodulatory properties of alpha1-antitrypsin without inhibition of elastase. Proc Natl Acad Sci USA 110:15007–15012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lee KH, Lee CH, Jeong J, Jang AH, Yoo CG (2015) Neutrophil elastase differentially regulates interleukin 8 (IL-8) and vascular endothelial growth factor (VEGF) production by cigarette smoke extract. J Biol Chem 290:28438–28445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Damrich-Grampp B, Seidl A, Weigt A, Lang M, Hummer B, Hahn HL (1990) [Elastase-induced hyperfunction of submucous glands develops independent of elastase-induced emphysema]. Pneumologie 44(Suppl 1):420–421

    Google Scholar 

  139. An JK, Blomenkamp K, Lindblad D, Teckman JH (2005) Quantitative isolation of alphalAT mutant Z protein polymers from human and mouse livers and the effect of heat. Hepatology 41:160–167

    Article  CAS  PubMed  Google Scholar 

  140. Dahl M, Tybjaerg-Hansen A, Lange P, Vestbo J, Nordestgaard BG (2002) Change in lung function and morbidity from chronic obstructive pulmonary disease in alpha1-antitrypsin MZ heterozygotes: a longitudinal study of the general population. Ann Intern Med 136:270–279

    Article  CAS  PubMed  Google Scholar 

  141. Hersh CP, Dahl M, Ly NP, Berkey CS, Nordestgaard BG, Silverman EK (2004) Chronic obstructive pulmonary disease in alpha1-antitrypsin PI MZ heterozygotes: a meta-analysis. Thorax 59:843–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Demedts IK, Demoor T, Bracke KR, Joos GF, Brusselle GG (2006) Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res 7:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Hirata H, Takahashi A, Kobayashi S, Yonehara S, Sawai H, Okazaki T, Yamamoto K, Sasada M (1998) Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J Exp Med 187:587–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tesfaigzi Y, Myers OB, Stidley CA, Schwalm K, Picchi M, Crowell RE, Gilliland FD, Belinsky SA (2006) Genotypes in matrix metalloproteinase 9 are a risk factor for COPD. Int J Chron Obstruct Pulmon Dis 1:267–278

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhou M, Huang SG, Wan HY, Li B, Deng WW, Li M (2004) Genetic polymorphism in matrix metalloproteinase-9 and the susceptibility to chronic obstructive pulmonary disease in Han population of south China. Chin Med J (Engl) 117:1481–1484

    CAS  Google Scholar 

  146. Joos L, He JQ, Shepherdson MB, Connett JE, Anthonisen NR, Pare PD, Sandford AJ (2002) The role of matrix metalloproteinase polymorphisms in the rate of decline in lung function. Hum Mol Genet 11:569–576

    Article  CAS  PubMed  Google Scholar 

  147. Haq I, Lowrey GE, Kalsheker N, Johnson SR (2011) Matrix metalloproteinase-12 (MMP-12) SNP affects MMP activity, lung macrophage infiltration and protects against emphysema in COPD. Thorax 66:970–976

    Article  PubMed  Google Scholar 

  148. Linder R, Ronmark E, Pourazar J, Behndig A, Blomberg A, Lindberg A (2015) Serum metalloproteinase-9 is related to COPD severity and symptoms - cross-sectional data from a population based cohort-study. Respir Res 16:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kelsen SG (2016) The unfolded protein response in chronic obstructive pulmonary disease. Ann Am Thorac Soc 13(Suppl 2):S138–S145

    PubMed  PubMed Central  Google Scholar 

  150. Min T, Bodas M, Mazur S, Vij N (2011) Critical role of proteostasis-imbalance in pathogenesis of COPD and severe emphysema. J Mol Med (Berl) 89:577–593

    Article  CAS  Google Scholar 

  151. Tran I, Ji C, Ni I, Min T, Tang D, Vij N (2015) Role of cigarette smoke-induced aggresome formation in chronic obstructive pulmonary disease-emphysema pathogenesis. Am J Respir Cell Mol Biol 53:159–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hassan T, Carroll TP, Buckley PG, Cummins R, O'Neill SJ, McElvaney NG, Greene CM (2014) miR-199a-5p silencing regulates the unfolded protein response in chronic obstructive pulmonary disease and alpha1-antitrypsin deficiency. Am J Respir Crit Care Med 189:263–273

    Article  CAS  PubMed  Google Scholar 

  153. Geraghty P, Wallace A, D'Armiento JM (2011) Induction of the unfolded protein response by cigarette smoke is primarily an activating transcription factor 4-C/EBP homologous protein mediated process. Int J Chron Obstruct Pulmon Dis 6:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kenche H, Ye ZW, Vedagiri K, Richards DM, Gao XH, Tew KD, Townsend DM, Blumental-Perry A (2016) Adverse outcomes associated with cigarette smoke radicals related to damage to protein-disulfide isomerase. J Biol Chem 291:4763–4778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tagawa Y, Hiramatsu N, Kato H, Sakoh T, Nakajima S, Hayakawa K, Saito Y, Johno H, Takahashi S, Gu L, Yao J, Kitamura M (2011) Induction of CCAAT/enhancer-binding protein-homologous protein by cigarette smoke through the superoxide anion-triggered PERK-eIF2alpha pathway. Toxicology 287:105–112

    Article  CAS  PubMed  Google Scholar 

  156. Kelsen SG, Duan X, Ji R, Perez O, Liu C, Merali S (2008) Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach. Am J Respir Cell Mol Biol 38:541–550

    Article  CAS  PubMed  Google Scholar 

  157. Jorgensen E, Stinson A, Shan L, Yang J, Gietl D, Albino AP (2008) Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer 8:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. van Rijt SH, Keller IE, John G, Kohse K, Yildirim AO, Eickelberg O, Meiners S (2012) Acute cigarette smoke exposure impairs proteasome function in the lung. Am J Physiol Lung Cell Mol Physiol 303:L814–L823

    Article  PubMed  CAS  Google Scholar 

  159. Monick MM, Powers LS, Walters K, Lovan N, Zhang M, Gerke A, Hansdottir S, Hunninghake GW (2010) Identification of an autophagy defect in smokers’ alveolar macrophages. J Immunol 185:5425–5435

    Article  CAS  PubMed  Google Scholar 

  160. Chen ZH, Kim HP, Sciurba FC, Lee SJ, Feghali-Bostwick C, Stolz DB, Dhir R, Landreneau RJ, Schuchert MJ, Yousem SA, Nakahira K, Pilewski JM, Lee JS, Zhang Y, Ryter SW, Choi AM (2008) Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS One 3:e3316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Kim HP, Wang X, Chen ZH, Lee SJ, Huang MH, Wang Y, Ryter SW, Choi AM (2008) Autophagic proteins regulate cigarette smoke-induced apoptosis: protective role of heme oxygenase-1. Autophagy 4:887–895

    Article  CAS  PubMed  Google Scholar 

  162. Toraldo DM, De Nuccio F, Scoditti E (2013) Systemic inflammation in chronic obstructive pulmonary disease: may diet play a therapeutic role? J Allergy Ther 2013:S2

    Google Scholar 

  163. Fujita M (2015) New therapies for chronic obstructive pulmonary disease, lung regeneration. World J Respirol 5(1):34–39

    Article  Google Scholar 

  164. Guan S, Xu W, Han F, Gu W, Song L, Ye W, Liu Q, Guo X (2017) Ginsenoside Rg1 attenuates cigarette smoke-induced pulmonary epithelial-mesenchymal transition via inhibition of the TGF-β1/Smad pathway. Biomed Res Int 2017:7171404

    PubMed  PubMed Central  Google Scholar 

  165. Vézina FA, Cantin AM (2018) Antioxidants and chronic obstructive pulmonary disease. Chronic Obstruct Pulmon Dis 5(4):277–288

    Article  Google Scholar 

  166. Gao W, Guo Y, Yang H (2017) Platycodin D protects against cigarette smoke-induced lung inflammation in mice. Int Immunopharmacol 47:53–58

    Article  CAS  PubMed  Google Scholar 

  167. Rahman I (2006) Antioxidant therapies in COPD. Int J COPD 1(1):15–29

    Article  CAS  Google Scholar 

  168. Selim AO, Gouda ZA, Selim SA (2017) An experimental study of a rat model of emphysema induced by cigarette smoke exposure and the effect of Survanta therapy. Ann Anat 211:69–77

    Article  PubMed  Google Scholar 

  169. Zeng Z, Yang D, Huang X, Xiao Z (2017) Effect of carbocisteine on patients with COPD: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis 12:2277–2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lin L, Yin Y, Hou G, Han D, Kang J, Wang Q (2017) Ursolic acid attenuates cigarette smoke-induced emphysema in rats by regulating PERK and Nrf2 pathways. Pulm Pharmacol Ther 44:111–121

    Article  CAS  PubMed  Google Scholar 

  171. Uray IP, Dmitrovsky E, Brown PW (2016) Retinoids and rexinoids in cancer prevention: from laboratory to clinic. Semin Oncol 43(1):49–64

    Article  CAS  PubMed  Google Scholar 

  172. Nan H, Qu-Bei LI, Shan-Ye Z (2018) Effect of vitamin A as an adjuvant therapy for pneumonia in children: a Meta analysis. Chin J Contemp Ped 20(2):146–153

    Google Scholar 

  173. Abdoulhossein D, Taheri I, Saba MA, Akbari H, Shafagh S, Asemi Zataollah A (2018) Effect of vitamin C and vitamin E on lung contusion: a randomized clinical trial study. Ann Med Surg (Lond) 36:152–157

    Article  Google Scholar 

  174. Pirabbasi E, Shahar S, Manaf ZA, Rajab NF, Manap RA (2016) Efficacy of ascorbic acid (Vitamin C) and/N-acetylcysteine (NAC) supplementation on nutritional and antioxidant status of male chronic obstructive pulmonary disease (COPD) patients. J Nutr Sci Vitaminol (Tokyo) 62(1):54–61

    Article  CAS  Google Scholar 

  175. Rautalahti M, Virtamo J, Haukka J, Heinonen OP, Sundvall J, Albanes D, Huttunen JK (1997) The effect of alpha-tocopherol and beta-carotene supplementation on COPD symptoms. Am J Respir Crit Care Med 156(5):1447–1452

    Article  CAS  PubMed  Google Scholar 

  176. Kentson M, Leanderson P, Jacobson P, Persson HL (2018) Oxidant status, iron homeostasis, and carotenoid levels of COPD patients with advanced disease and LTOT. Eur Clin Respir J 5(1):1447221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Biswas S, Hwang JW, Kirkham PA, Rahman I (2013) Pharmacological and dietary antioxidant therapies for chronic obstructive pulmonary disease. Curr Med Chem 20(12):1496–1530

    Article  CAS  PubMed  Google Scholar 

  178. Kaluza J, Larsson SC, Orsini N, Linden A, Wolk A (2017) Fruit and vegetable consumption and risk of COPD: a prospective cohort study of men. Thorax 22(6):500–509

    Article  Google Scholar 

  179. Neurohr C, Lenz AG, Ding I, Leuchte H, Kolbe T, Behr J (2003) Glutamate-cysteine ligase modulatory su.bunit in BAL alveolar macrophages of healthy smokers. Eur Respir J 22(1):82–87

    Article  CAS  PubMed  Google Scholar 

  180. Lamson DW (2000) The use of nebulized glutathione in the treatment of emphysema: a case report. Altern Med Rev 5(5):429–431

    CAS  PubMed  Google Scholar 

  181. Zuin R, Palamidese A, Negrin R, Catozzo L, Scarda A, Balbinot M (2005) High dose N–acetylcysteine in patients with exacerbations of chronic obstructive pulmonary disease. Clin Drug Investig 5(6):401–408

    Article  Google Scholar 

  182. Cazzola M, Calzetta L, Page C, Jardim J, Chuchalin AG, Rogliani P, Matera MG (2015) Influence of N-acetylcysteine on chronic bronchitis or COPD exacerbations: a meta-analysis. Eur Respir Rev 24(137):451–461

    Article  PubMed  Google Scholar 

  183. Gillissen A, Jaworska M, Orth M, Coffiner M, Maes P, App EM, Cantin AM, Schultze-Werninghaus G (1997) Nacystelyn, a novel lysine salt of N-acetylcysteine, to augment cellular antioxidant defence in vitro. Respir Med 91(3):159–168

    Article  CAS  PubMed  Google Scholar 

  184. Ekberg-Jansson A, Larson M, MacNee W, Tunek A, Wahlgren L, Wouters EF, Larsson S (1999) N-isobutyrylcysteine, a donor of systemic thiols, does not reduce the exacerbation rate in chronic bronchitis. Eur Respir J 13(4):829–834

    Article  CAS  PubMed  Google Scholar 

  185. Cazzola M, Rogliani P, Calzetta L, Hanania NA, Matera MG (2017) Impact of mucolytic agents on COPD exacerbations: a pair-wise and network meta-analysis. COPD 14(5):552–563

    Article  PubMed  Google Scholar 

  186. Wang W, Guan WJ, Huang RQ, Xie YQ, Zheng JP, Zhu SX, Chen M, Zhong NS (2016) Carbocisteine attenuates TNF-α-induced inflammation in human alveolar epithelial cells in vitro through suppressing NF-κB and ERK1/2 MAPK signaling pathways. Acta Pharmacol Sin 37(5):629–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Dal Negro RW, Wedzicha JA, Iversen M, Fontana G, Page C, Cicero AF, Pozzi E, Calverley PMA on behalf of the RESTORE group (2017) Effect of erdosteine on the rate and duration of COPD exacerbations: the RESTORE study. Eur Respir J 50(4):1700711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Calverley PMA, Page C, Dal Negro RW, Fontana G, Iversen M, Cicero AF, Pozz E, Wedzicha JA (2018) Effect of erdosteine in moderately severe COPD patients. Eur Respir J 52:PA776

    Google Scholar 

  189. Oostwoud LC, Gunasinghe P, Seow HJ, Ye JM, Selemidis S, Bozinovski S, Vlahos R (2016) Apocynin and ebselen reduce influenza A virus-induced lung inflammation in cigarette smoke-exposed mice. Sci Rep 6:20983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ueno-Iio T, Shibakura M, Iio K, Tanimoto Y, Kanehiro A, Tanimoto M, Kataoka M (2013) Effect of fudosteine, a cysteine derivative, on airway hyperresponsiveness, inflammation, and remodeling in a murine model of asthma. Life Sci 92(20–21):1015–1023

    Article  CAS  PubMed  Google Scholar 

  191. Hodge S, Matthews G, Mukaro V, Ahern J, Shivam A, Hodge G, Holmes M, Jersmann H, Reynolds PN (2011) Cigarette smoke-induced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine. Am J Respir Cell Mol Biol 44(5):673–681

    Article  CAS  PubMed  Google Scholar 

  192. Malhotra D, Thimmulappa R, Navas-Acien A, Sandford A, Elliott M, Singh A, Chen L, Zhuang X, Hogg J, Pare P, Tuder RM, Biswal S (2008) Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med 178(6):592–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Dianat M, Radan M, Badavi M, Mard SA, Bayati V, Ahmadizadeh M (2018) Crocin attenuates cigarette smoke-induced lung injury and cardiac dysfunction by anti-oxidative effects: the role of Nrf2 antioxidant system in preventing oxidative stress. Respir Res 19(1):58–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Jiao Z, Chang J, Li J, Nie D, Cui H, Guo D (2017) Sulforaphane increases Nrf2 expression and protects alveolar epithelial cells against injury caused by cigarette smoke extract. Mol Med Rep 16(2):1241–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wise RA, Holbrook JT, Criner G, Sethi S, Rayapudi S, Sudini KR, Sugar EA, Burke A, Thimmulappa R, Singh A, Talalay P, Fahey JW, Berenson CS, Jacobs MR, Biswal S, Broccoli Sprout Extract Trial Research Group (2017) Correction: lack of effect of oral sulforaphane administration on Nrf2 expression in COPD: a randomized, double-blind, placebo controlled trial. PLoS One 2(3):e0175077. https://doi.org/10.1371/journal.pone.0175077

    Article  Google Scholar 

  196. Li J, Tong D, Liuc J, Chen F, Shen Y (2016) Oroxylin A attenuates cigarette smoke-induced lung inflammation by activating Nrf2. Int Immunopharmacol 40:524–529

    Article  CAS  PubMed  Google Scholar 

  197. Gao W, Guo Y, Yang H (2017) Platycodin D protects against cigarette smoke-induced lung inflammation in mic. Int Immunopharmacol 47:53–58

    Article  CAS  PubMed  Google Scholar 

  198. Li XY, Luo BL, Wang LJ, Zhang WD, Liu ZG (2015) 15-Deoxy-prostaglandin J2 anti-inflammation in a rat model of chronic obstructive pulmonary disease and human bronchial epithelial cells via Nrf2 activation. Genet Mol Res 14(4):14037–14042

    Article  CAS  PubMed  Google Scholar 

  199. Sussan TE, Rangasamy T, Blake DJ, Malhotra D, El-Haddad H, Bedja D, Yates MS, Kombairaju P, Yamamoto M, Liby KT, Sporn MB, Gabrielson KL, Champion HC, Tuder RM, Kensler TW, Biswal S (2009) Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc Natl Acad Sci USA 106(1):250–255

    Article  CAS  PubMed  Google Scholar 

  200. Arja C, Surapaneni KM, Raya P, Adimoolam C, Balisetty B, Kanala KR (2013) Oxidative stress and antioxidant enzyme activity in South Indian male smokers with chronic obstructive pulmonary disease. Respirology 18(7):1069–1075

    PubMed  Google Scholar 

  201. Gilks CB, Price K, Wright JL, Churg A (1998) Antioxidant gene expression in rat lung after exposure to cigarette smoke. Am J Pathol 152(1):269–278

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Cheng SE, Lee IT, Lin CC, Kou YR, Yang CM (2010) Cigarette smoke particle-phase extract induces HO-1 expression in human tracheal smooth muscle cells: role of the c-Src/NADPH oxidase/MAPK/Nrf2 signaling pathway. Free Radic Biol Med 48(10):1410–1422

    Article  CAS  PubMed  Google Scholar 

  203. Zhu A, Ge D, Zhang J, Yue Teng Y, Yuan C, Huang M, Adcock IM, Barnes PJ, Xin Y (2014) Sputum myeloperoxidase in chronic obstructive pulmonary disease. Eur J Med Res 19(1):12–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Chang LY, Crapo JD (2002) Inhibition of airway inflammation and hyperreactivity by an antioxidant mimetic. Free Radic Biol Med 33(3):379–386

    Article  CAS  PubMed  Google Scholar 

  205. Smith KR, Uyeminami DL, Kodavanti UP, Crapo JD, Chang LY, Pinkerton KE (2002) Inhibition of tobacco smoke-induced lung inflammation by a catalytic antioxidant. Free Radic Biol Med 33(8):1106–1114

    Article  CAS  PubMed  Google Scholar 

  206. Sato A, Hoshino Y, Hara T, Muro S, Nakamura H, Mishima M, Yodoi J (2008) Thioredoxin-1 ameliorates cigarette smoke-induced lung inflammation and emphysema in mice. J Pharmacol Exp Ther 325(2):380–388

    Article  CAS  PubMed  Google Scholar 

  207. Hoidal JR, Fox RB, LeMarbe PA, Perri R, Repine JE (1981) Altered oxidative metabolic responses in vitro of alveolar macrophages from asymptomatic cigarette smokers. Am Rev Respir Dis 123:85–89

    CAS  PubMed  Google Scholar 

  208. Churg A, Marshall CV, Sin DD, Bolton S, Zhou S, Thain K, Cadogan EB, Maltby J, Soars MG, Mallinder PR, Wright JL (2012) Late intervention with a myeloperoxidase inhibitor stops progression of experimental chronic obstructive pulmonary disease. Am J Respir Crit Care Med 185(1):34–43

    Article  CAS  PubMed  Google Scholar 

  209. Cazzola M, Page CP, Calzetta L, Matera MG (2012) Emerging anti-inflammatory strategies for COPD. Eur Respir J 40:724–741

    Article  CAS  PubMed  Google Scholar 

  210. Guan S, Xu W, Han F, Gu W, Song L, Ye W, Liu Q, and Guo X (2017) Ginsenoside Rg1 attenuates cigarette smoke-induced pulmonary epithelial-mesenchymal transition via inhibition of the TGF-𝛽1/Smad pathway. BioMed Res Int 2017, Article ID 7171404, 12 pages

    Google Scholar 

  211. Luo F, Jingyan L, Yan T, Mingxing M (2017) Salidroside alleviates cigarette smoke-induced COPD in mice. Biomed Pharmacother 86:155–161

    Article  CAS  PubMed  Google Scholar 

  212. Yu D, Liu X, Zhang G, Ming Z, Wang T (2018) Isoliquiritigenin inhibits cigarette smoke-induced COPD by attenuating inflammation and oxidative stress via the regulation of the Nrf2 and NF-κB signaling pathways. Front Pharmacol 9:1001–1009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Guan R, Wang J, Li Z, Ding M, Li D, Xu G, Wang T, Chen Y, Yang Q, Long Z, Cai Z, Zhang C, Liang X, Dong L, Zhao L, Zhang H, Sun D, Lu W (2018) Sodium tanshinone IIA sulfonate decreases cigarette smoke-induced inflammation and oxidative stress via blocking the activation of MAPK/HIF-1α signaling pathway. Front Pharmacol 9:263–276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Siedlinski M, Boer JM, Smit HA, Postma DS, Boezen HM (2012) Dietary factors and lung function in the general population: wine and resveratrol intake. Eur Respir J 39(2):385–391

    Article  CAS  PubMed  Google Scholar 

  215. Suzuki M, Betsuyaku T, Ito Y, Nagai K, Odajima N, Moriyama C, Nasuhara Y, Nishimura M (2009) Curcumin attenuates elastase- and cigarette smoke-induced pulmonary emphysema in mice. Am J Physiol Lung Cell Mol Physiol 296(4):L614–L623

    Article  CAS  PubMed  Google Scholar 

  216. Ng TP, Niti M, Yap KB, Tan WC (2012) Curcumins-rich curry diet and pulmonary function in Asian older adults. PLoS One 7(12):e51753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Zhai T, Li S, Hu W, Li D, Leng S (2018) Potential micronutrients and phytochemicals against the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nutrients 10(7):813–831

    Article  PubMed Central  CAS  Google Scholar 

  218. Bao MJ, Shen J, Jia YL, Li FF, Ma WJ, Shen HJ, Shen LL, Lin XX, Zhang LH, Dong XW, Xie YC, Zhao YQ, Xie QM (2013) Apple polyphenol protects against cigarette smoke-induced acute lung injury. Nutrition 29(1):235–243

    Article  CAS  PubMed  Google Scholar 

  219. Sharafkhaneh A, Velamuri S, Badmaev V, Lan C, Hanania N (2007) The potential role of natural agents in treatment of airway inflammation. Ther Adv Respir Dis 1(2):105–120

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work is supported by grants from Fuji Oil Company, Osaka, Japan, and NIH (MeTRC5U5AMD007593). The Meharry Office for Scientific Editing and Publications provided language editing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salil K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ratna, A., Mukherjee, S., Das, S.K. (2020). Role of Oxidative Stress Induced by Cigarette Smoke in the Pathogenicity of Chronic Obstructive Pulmonary Disease. In: Chakraborti, S., Parinandi, N., Ghosh, R., Ganguly, N., Chakraborti, T. (eds) Oxidative Stress in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-32-9366-3_8

Download citation

Publish with us

Policies and ethics