Skip to main content

Detection of Seed and Propagating Material-Borne Bacterial Diseases of Economically Important Crops

  • Chapter
  • First Online:

Abstract

Seeds and propagating materials of plants are the primary source of pathogen inoculum to cause diseases. These materials also transmit the pathogen from one place to other places and establish the disease in a new area. Hence, it is an utmost requirement to detect the pathogen of a particular crop before transportation and sowing to ensure that no potentially damaging pathogens are introduced in the field through seeds and planting materials. This can be most effectively accomplished by keeping out pathogens from seed lots by either discarding or treating seeds with chemicals. Various conventional methods for the detection of pathogens such as visual examination, selective growth media, serological methods, and bioassay have been used commonly. But these methods have disadvantages like inefficiency, less specificity, less sensitivity, and more time-consuming. Now-a-days, polymerase chain reaction (PCR) has more potential to improve bacterial pathogen detection in seeds as well as planting materials. There are advanced techniques like BIO-PCR, immunomagnetic separation-PCR (IMS-PCR), and magnetic capture hybridization-PCR (MCH-PCR) which reduce inhibitory compounds during PCR, which further improve the detection level of bacterial pathogens from seeds and planting materials. IMS-PCR and MCH-PCR are more attractive due to their simple and universally applicable methods to test seeds for different culturable and non-culturable bacterial pathogens. However, it is difficult to adapt their applicability for routine testing of seed under the laboratory. It should be ensured that these methods should work and these methods must be validated in multi-laboratory tests thoroughly and these tests should be reproducible and repeatable before their commercialization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adachi N, Oku T (2000) PCR-mediated detection of Xanthomonas oryzae pv. oryzae by amplification of the 16S-23S rDNA spacer region sequence. J Gen Plant Pathol 66:303–309

    CAS  Google Scholar 

  • Alvarez AM (2004) Integrated approaches for detection of plant pathogenic bacteria and diagnosis of bacterial diseases. Annu Rev Phytopathol 42:339–366

    CAS  PubMed  Google Scholar 

  • Anonymous (2007) EPPO standards PM 7/80 (1) diagnostics Xanthomonas oryzae. Bull OEPP/EPPO Bull 37:543–553

    Google Scholar 

  • Audy P, Braat CE, Saindon G et al (1996) A rapid and sensitive PCR-based assay for concurrent detection of bacteria causing common and halo blight in bean seed. Phytopathology 86:361–366

    CAS  Google Scholar 

  • Berg T, Tesoriero L, Hailstones DL (2005) PCR-based detection of Xanthomonas campestris in Brassica seed. Plant Pathol 54:416–427

    CAS  Google Scholar 

  • Berg T, Tesoriero L, Hailstones DL (2006) A multiplex realtime PCR assay for detection of Xanthomonas campestris from brassicas. Lett Appl Microbiol 42: 624–630

    Google Scholar 

  • Bertolini E, Penyalver R, Garcı’a A et al (2003) Highly sensitive detection of Pseudomonas savastanoi pv. savastanoi in asymptomatic olive plants by nested-PCR in a single closed tube. J Microbiol Methods 52:261–266

    CAS  PubMed  Google Scholar 

  • Braun-Kiewnick A, Sands DC (2001) Gram negative bacteria. In: Schaad NW, Jones JB, Chun W (eds) Laboratory guide for identification of plant pathogenic bacteria, 3rd edn. APS Press, St. Paul, pp 84–120

    Google Scholar 

  • Chakrabarty PK, Sable S, Monga D et al (2005) Polymerase chain reaction based detection of Xanthomonas axonopodis pv. malvacearum and Cotton leaf curl virus. Indian J Agric Sci 75(8):524–527

    Google Scholar 

  • Chen J, Griffiths MW (2001) Detection of Salmonella and simultaneous detection of Salmonella and Shiga-like toxin producing Escherichia coli using the magnetic capture hybridization polymerase chain reaction. Lett Appl Microbiol 32:7–11

    PubMed  Google Scholar 

  • Chen JR, Johnson R, Griffiths M (1998) Detection of verotoxigenic Escherichia coli by magnetic capture hybridization PCR. Appl Environ Microbiol 64:147–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chitarra LG, van den Bulk RW (2003) The application of flow cytometry and fluorescent probe technology for detection and assessment of viability of plant pathogenic bacteria. Eur J Plant Pathol 109:407–417

    CAS  Google Scholar 

  • Cho MS, Kang MJ, Kim CK et al (2011) Sensitive and specific detection of Xanthomonas oryzae pv. oryzae by real-time bio-PCR using pathovar-specific primers based on an rhs family gene. Plant Dis 95(5):589–594

    CAS  PubMed  Google Scholar 

  • Choi HK, Silva FG, da Lim HJ et al (2010) Diagnosis of pierce’s disease using biomarkers specific to Xylella fastidiosa rRNA and Vitis vinifera gene expression. Phytopathology 100(10):1089–1099

    CAS  PubMed  Google Scholar 

  • Chun WWC, Alvarez AM (1983) A starch-methionine medium for isolation of Xanthomonas campestris pv. campestris from plant debris in soil. Plant Dis 67:632–635

    CAS  Google Scholar 

  • Civerolo EL, Sasser M, Helkie C et al (1982) Selective medium for Xanthomonas campestris pv. pruni. Plant Dis 66:39–43

    Google Scholar 

  • Cockerill FR, Smith TF (2002) Rapid-cycle real-time PCR: a revolution for clinical microbiology. Am Soc Microbiol News 88:77–83

    Google Scholar 

  • Cuppels DA, Elmhirst J (1999) Disease development and changes in the natural Pseudomonas syringae pv. tomato populations on field tomato plants. Plant Dis 83:759–764

    CAS  PubMed  Google Scholar 

  • Cuppels DA, Moore RA, Morris VL (1990) Construction and use of a nonradioactive DNA hybridization probe for detection of Pseudomonas syringae pv. tomato on tomato plants. Appl Environ Microbiol 56:1743–1749

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Moraes RR, Maruniak JE, Funderburk JE (1999) Methods for detection of Anticarsia gemmatalis nucleopolyhedrovirus DNA in soil. Appl Environ Microbiol 65:2307–2311

    PubMed  PubMed Central  Google Scholar 

  • Dreier J, Bermpohl A, Eichenlaub R (1995) Southern hybridization and PCR for specific detection of Clavibacter michiganensis subsp. michiganensis. Mol Plant Microbe Interact 10:195–206

    Google Scholar 

  • Elphinstone JG, Hennessy J, Wilson JK et al (1996) Sensitivity of different methods for the detection of Pseudomonas solanacearum in potato tuber extracts. Bull EPPO/OEPP Bull 26:663–678

    Google Scholar 

  • Franken AAJM, van Vuurde JWL (1990) Problems and new approaches in the use of serology for seed-borne bacteria. Seed Sci Technol 18:415–426

    Google Scholar 

  • Gitaitis R, Walcott R (2007) The epidemiology and management of seed-borne bacterial diseases. Annu Rev Phytopathol 45:71–97

    Google Scholar 

  • Gitaitis RD, Walcott RR, Sanders FH et al (2004) A lognormal distribution of phytopathogenic bacteria in corn, cowpea, tomato and watermelon seeds. Phytopathology 94:S34

    Google Scholar 

  • Goszczynska T, Serfontein JJ (1998) Milk-tween agar, a semi-selective medium for isolation and differentiation of Pseudomonas syringae, Pseudomonas syringae pv. phaseolicola and Xanthomonas axonopodis pv. phaseoli. J Microbiol Methods 32:65–72

    CAS  Google Scholar 

  • Goszczynska T, Venter SN, Coutinho TA (2006) PA 20, a semi-selective medium for isolation and enumeration of Pantoea ananatis. J Microbiol Methods 64:225–231

    CAS  PubMed  Google Scholar 

  • Gould WD, Hagedorn C, Bardinelli TR et al (1985) New selective media for enumeration and recovery of fluorescent pseudomonads from various habitats. Appl Environ Microbiol 49:28–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gund SV, Moger N, Krishnaraj PU et al (2011) Development of race specific SCAR marker for detection of Ralstonia solanacearum (race 2). J Appl Biosc 37:91–96

    Google Scholar 

  • Isabelle RS, Delphine L, Lionel G et al (2010) Multiplex nested PCR for detection of Xanthomonas axonopodis pv. allii from onion seeds. Appl Environ Microbiol 76(9):2697–2703

    Google Scholar 

  • Jacobsen CS (1995) Microscale detection of specific bacterial DNA in soil with a magnetic capture-hybridization and PCR amplification assay. Appl Environ Microbiol 61(9):3347–3352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jock S, Jacob T, Kim WS et al (2003) Instability of short sequence DNA repeats of pear pathogenic Erwinia strains from Japan and Erwinia amylovora fruit tree and raspberry strains. Mol Gen Genomics 268:739–749

    CAS  Google Scholar 

  • Kado CI, Heskett MG (1970) Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology 60:969–976

    CAS  PubMed  Google Scholar 

  • Kaluzna M, Janse JD, Young JM (2012) Detection and identification methods and new tests as used and developed in the framework of COST 873 for bacteria pathogenic to stone fruits and nuts Pseudomonas syringae pathovars. (Special Issue: Advances from the European Research and Training Network COST Action 873 (2006–2012). J Plant Pathol 94 (1):Supplement, S1.117–S1.126

    Google Scholar 

  • Kang MJ, Kim MH, Hwang DJ et al (2012) Quantitative in planta PCR assay for specific detection of Xanthomonas oryzae pv. oryzicola using putative membrane protein based primer set. Crop Prot 40:22–27

    CAS  Google Scholar 

  • Kawaradani M, Okada K, Kusakari S (2000) New selective medium for isolation of Burkholderia glumae from rice seeds. J Gen Plant Pathol 66:234–237

    Google Scholar 

  • Kim BK, Cho MS, Kim MH et al (2012) Rapid and specific detection of Burkholderia glumae in rice seed by real-time bio-PCR using species-Specific primers based on an rhs family gene. Plant Dis 96(4):577–580

    CAS  PubMed  Google Scholar 

  • Kim HM, Song WY (1996) Characterization of ribosomal RNA intergenic spacer region of several seedborne bacterial pathogens of rice. Seed Sci Technol 24:571–580

    Google Scholar 

  • Koike ST, Barak JD, Henderson DM et al (1999) Bacterial blight of leek: a new disease in California caused by Pseudomonas syringae. Plant Dis 83:165–170

    PubMed  Google Scholar 

  • Kubota R, Vine BG, Alvarez AM et al (2008) Detection of Ralstonia solanacearum by loop-mediated isothermal amplification. Phytopathology 98:1045–1051

    CAS  PubMed  Google Scholar 

  • Kurian KM, Watson CJ, Wyllie AH (1999) DNA chip technology. J Pathol 187:267–271

    CAS  PubMed  Google Scholar 

  • Lamka GL, Hill JH, McGee DC et al (1991) Development of an immunosorbent assay for seedborne Erwinia stewartii in corn seeds. Phytopathology 81:839–846

    Google Scholar 

  • Langrell SRH, Barbara DJ (2001) Magnetic capture hybridisation for improved PCR detection of Nectria galligena from lignified apple extracts. Plant Mol Biol Rpt 19:5–11

    CAS  Google Scholar 

  • Leach JE, White FF (1991) Molecular probes for disease diagnosis and monitoring. In: Khush GS, Toenniessen GH (eds) Rice biotechnology. CAB Inter, Oxon, pp 281–307

    Google Scholar 

  • Leite RP Jr, Minsavage GV, Bonas U et al (1994) Detection and identification of phytopathogenic Xanthomonas strains by amplification of DNA sequences related to the hrp genes of Xanthomonas campestris pv. vesicatoria. Appl Environ Microbiol 60:1068–1077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Lin B, Shen H et al (2011) Species-specific detection of Dickeya sp. (Pectobacterium chrysanthemi) in infected banana, tissues, soil and water. Afr J Biotechnol 10:16774–16780

    CAS  Google Scholar 

  • Lin CH, Hsu ST, Tzeng KC et al (2009) Detection of race 1 strains of Ralstonia solanacearum in field samples in Taiwan using a BIO-PCR method. Eur J Plant Pathol 124:75–85

    CAS  Google Scholar 

  • Lin H, Chen CW, Doddapaneni H et al (2010) A new diagnostic system for ultra-sensitive and specific detection and quantification of Candidatus Liberibacter asiaticus, the bacterium associated with citrus Huanglongbing. J Microbiol Methods 81(1):17–25

    CAS  PubMed  Google Scholar 

  • Lopez MM, Penalver J, Morente MC et al (2012) Evaluation of the efficiency of a conventional PCR protocol for the diagnosis of bacterial spot disease caused by Xanthomonas arboricola pv. pruni in stone fruits and almond (Special Issue: Advances from the European Research and Training Network COST Action 873 (2006-2012). J Plant Pathol 94(1):Supplement S1.75–S1.82

    Google Scholar 

  • Louws FJ, Rademaker JLW, de Bruijn FJ (1999) The three Ds of PCR-based genomic analysis of phytobacteria: diversity, detection, and disease diagnosis. Annu Rev Phytopathol 37:81–125

    CAS  PubMed  Google Scholar 

  • Maeda Y, Shinohara H, Kiba A et al (2006) Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii, Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences. Int J Syst Evol Microbiol 56:1031–1038

    CAS  PubMed  Google Scholar 

  • Maes M (1993) Fast classification of plant associated bacteria in the Xanthomonas genus. FEMS Microbiol Lett 113:161–165

    CAS  Google Scholar 

  • Maes M, Garbeva P, Kamoen O (1996) Recognition and detection in seed of the Xanthomonas pathogens that cause cereal leaf streak using rDNA spacer sequences and polymerase chain reaction. Phytopathology 86:63–69

    CAS  Google Scholar 

  • McGuire RG, Jones JB, Sasser M (1986) Tween media for semiselective isolation of Xanthomonas campestris pv. vesicatoria from soil and plant material. Plant Dis 70:887–891

    Google Scholar 

  • Mehta YR, Bomfeti C, Bolognini V (2005) A semiselective agar medium to detect the presence of Xanthomonas axonopodis pv. malvacearum in naturally infected cotton seed. Fitopatol Bras 30:489–496

    Google Scholar 

  • Menelas B, Block CC, Esker PD et al (2006) Quantifying the feeding periods required by corn flea beetles to acquire and transmit Pantoea stewartii. Plant Dis 90:319–324

    CAS  PubMed  Google Scholar 

  • Meng XQ, Umesh KC, Davis RM et al (2004) Development of PCR based assays for detecting Xanthomonas campestris pv. carotae, the carrot bacterial leaf blight pathogen, from different substrates. Plant Dis 88:1226–1234

    CAS  PubMed  Google Scholar 

  • Mew TW (1993) Xanthomonas oryzae pathovars on rice: cause of bacterial blight and bacterial leaf streak. In: Swings JG, Civerolo EL (eds) Xanthomonas. Chapman and Hall, London, pp 30–39

    Google Scholar 

  • Mohan SK, Schaad NW (1987) An improved agar plating assay for detecting Pseudomonas syringae pv. syringae and P.s. pv. phaseolicola in contaminated bean seed. Phytopathology 77:1390–1395

    Google Scholar 

  • Mondal KK, Rajendran TP, Phaneendra C et al (2012) The reliable and rapid polymerase chain reaction (PCR) diagnosis for Xanthomonas axonopodis pv. punicae in pomegranate. African J Microbiol Res 6(30):5950–5956

    Google Scholar 

  • Mulrean EN, Schroth MN (1981) A semiselective medium for the isolation of Xanthomonas campestris pv. juglandis from walnut buds and catkins. Phytopathology 71:336–339

    Google Scholar 

  • Munhoz CF, Weiss B, Hanai LR et al (2011) Genetic diversity and a PCR-based method for Xanthomonas axonopodis detection in passion fruit. Phytopathology 101(4):416–424

    CAS  PubMed  Google Scholar 

  • Nielsen SS, Gronbaek C, Agger JF et al (2002) Maximum-likelihood estimation of sensitivity and specificity of ELISAs and faecal culture for diagnosis of paratuberculosis. Prev Vet Med 53:191–204

    PubMed  Google Scholar 

  • Ojeda S, Verdier V (2000) Detecting Xanthomonas axonopodis pv. manihotis in cassava true seeds by nested polymerase chain reaction assay. Can J Plant Pathol 22:241–247

    CAS  Google Scholar 

  • Olsvik O, Popovic T, Skjerve E et al (1994) Magnetic separation techniques in diagnostic microbiology. Clin Microbiol Rev 7:43–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pagani MC (2004) An ABC transporter protein and molecular diagnoses of Xanthomonas arboricola pv. pruni causing bacterial spot of stone fruits Ph. D. thesis. University of North Carolina, Raleigh

    Google Scholar 

  • Pan YB, Grisham MP, Burner DM et al (1998) A polymerase chain reaction protocol for the detection of Clavibacter xyli subsp. xyli, the causal agent of sugarcane ratoon stunting disease. Plant Dis 82:285–290

    CAS  PubMed  Google Scholar 

  • Poussier S, Cheron JJ, Couteau A et al (2002) Evaluation of procedures for reliable PCR detection of Ralstonia solanacearum in common natural substrates. J Microbiol Methods 51:349–359

    CAS  PubMed  Google Scholar 

  • Pradhanang PM, Elphinstone JG, Fox RTV (2000) Specific detection of Ralstonia solanacearum in soil: a comparison of different techniques. Plant Pathol 49:414–422

    Google Scholar 

  • Prosen D, Hatziloukas E, Schaad NW et al (1993) Specific detection of Pseudomonas syringae pv. phaseolicola DNA in bean seed by polymerase chain reaction-based amplification of a phaseolotoxin gene region. Phytopathology 83:965–970

    CAS  Google Scholar 

  • Ranjan RK, Singh D, Baranwal VK (2016) Simultaneous detection of brown rot- and soft rot-causing bacterial pathogens from potato tubers through multiplex PCR. Curr Microbiol 73:652. https://doi.org/10.1007/s00284-016-1110-0

    Article  CAS  PubMed  Google Scholar 

  • Rico A, Erdozáin M, Ortiz-Barredo A et al (2006) Detection by multiplex PCR and characterization of non-toxigenic strains of Pseudomonas syringae pv. phaseolicola from different places in Spain. Spanish J Agril Res 4:261–267

    Google Scholar 

  • Rico A, Lopez R, Asensio C et al (2003) Non-toxigenic strains of Pseudomonas syringae pv. phaseolicola are a main cause of halo blight of beans in Spain and escape current detection methods. Phytopathology 93:1553–1559

    CAS  PubMed  Google Scholar 

  • Roumagnac P, Gagnevin L, Pruvost O (2000) Detection of Xanthomonas sp., the causal agent of onion bacterial blight, in onion seeds using a newly developed semi-selective isolation medium. Eur J Plant Pathol 106:867–877

    Google Scholar 

  • Saettler AW, Schaad NW, Roth DF (1989) Detection of bacteria in seed and other planting material. American Phytopathological Society, St. Paul

    Google Scholar 

  • Sakthivel N, Mortensen NC, Mathur SB (2001) Detection of Xanthomonas oryzae pv. oryzae in artificially inoculated and naturally infected rice seeds and plants by molecular techniques. Appl Microbiol Biotechnol 56:435–441

    CAS  PubMed  Google Scholar 

  • Santos MS, Cruz L, Norskov P et al (1997) A rapid and sensitive detection of Clavibacter michiganensis subsp. michiganensis in tomato seeds by polymerase chain reaction. Seed Sci Technol 25:581–584

    Google Scholar 

  • Sayler RJ, Cartwright RD, Yang Y (2006) Genetic characterization and real-time PCR detection of Burkholderia glumae, a new emerging bacterial pathogen of rice in the United States. Plant Dis 90:603–610

    CAS  PubMed  Google Scholar 

  • Schaad NW (1978) Use of direct and indirect immunofluorescence tests for identification of Xanthomonas campestris. Phytopathology 68:249–252

    Google Scholar 

  • Schaad NW, Berthier-Schaad Y, Knorr D (2007) A high through put membrane BIO-PCR technique for ultra-sensitive detection of Pseudomonas syringae pv. phaseolicola. Plant Pathol 56:1–8. https://doi.org/10.1111/j.1365-3059.2006.01488.x

    Article  CAS  Google Scholar 

  • Schaad NW, Cheong SS, Tamaki S et al (1995) A combined biological and enzymatic amplification (BIO-PCR) technique to detect Pseudomonas syringae pv. phaseolicola in bean seed extracts. Phytopathology 85:243–248

    CAS  Google Scholar 

  • Schaad NW, Frederick RD, Shaw J et al (2003) Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annu Rev Phytopathol 41:305–324

    CAS  PubMed  Google Scholar 

  • Schaad NW, Opgenorth D, Gaush P (2002) Real-time polymerase chain reaction for one-hour on-site diagnosis of pierce’s disease of grape in early season asymptomatic vines. Phytopathology 92:721–728 

    Google Scholar 

  • Schaad NW, White WC (1974) Survival of Xanthomonas campestris pv. campestris in soil. Phytopathology 64:1518–1520

    Google Scholar 

  • Serdani M, Curtis M, Miller ML et al (2013) Loop-mediated isothermal amplification and polymerase chain reaction methods for specific and rapid detection of Rhodococcus fascians. Plant Dis 97:517–529

    CAS  PubMed  Google Scholar 

  • Shepherd M, Block CC, Mcgee DC (1997) A new seed health assay for Clavibacter michiganensis subsp. nebraskensis. Phytopathology Abstr 87(6):S89

    Google Scholar 

  • Singh D, Dhar S (2011) Bio-PCR based diagnosis of Xanthomonas campestris pathovars in black rot infected leaves of crucifers. Indian Phytopath 64(1):7–11

    CAS  Google Scholar 

  • Singh D, Raghavendra BT, Singh Rathaur P et al (2014a) Detection of black rot disease causing pathogen Xanthomonas campestris pv. campestris by bio-PCR from seeds and plant parts of cole crops. Seed Sci Technol 42:36–46

    Google Scholar 

  • Singh D, Sinha S, Yadav DK et al (2014b) Detection of Ralstonia solanacearum from asymptomatic tomato plants, irrigation water, and soil through non-selective enrichment medium with hrp gene-based bio-PCR. Curr Microbiol 69(2):127–134

    CAS  PubMed  Google Scholar 

  • Singh D, Sinha S, Singh RP (2015) Detection of Xanthomonas oryzae pv. oryzae from seeds and leaves of rice (Oryza sativa) using hrp gene based BIO-PCR marker. Indian J Agric Sci 85(4):519–524

    CAS  Google Scholar 

  • Song WY, Kim HM, Hwang CY et al (2004) Detection of Acidovorax avenae ssp. avenae in rice seeds using BIO-PCR. J Phytopathol 152:667–676

    CAS  Google Scholar 

  • Sutton MD, Katznelson H (1953) Isolation of bacteriophages for the detection and identification of some seed-borne pathogenic bacteria. Can J Bot 31(2):201–205

    Google Scholar 

  • Toussaint V, Morris CE, Carisse O (2001) A new semi-selective medium for Xanthomonas campestris pv. vitians, the causal agent of bacterial leaf spot of lettuce. Plant Dis 85:131–136

    CAS  PubMed  Google Scholar 

  • Tran TM, Jacobs JM, Huerta A et al (2016) Sensitive, secure detection of race 3 biovar 2 and native U.S. strains of Ralstonia solanacearum. Plant Dis 100(3):630–639

    CAS  PubMed  Google Scholar 

  • Umesha S, Avinash P (2015) Multiplex PCR for simultaneous identification of Ralstonia solanacearum and Xanthomonas perforans. 3 Biotech 5(3):245–252

    CAS  PubMed  Google Scholar 

  • Umesha S, Chandan S, Swamy LN (2012) Colony PCR-single strand confirmation polymorphism for the detection of Ralstonia solanacearum in tomato. Inter J Integ Biol 13:45–51

    CAS  Google Scholar 

  • Walcott RR, Gitaitis RD (2000) Detection of Acidovorax avenae subsp. citrulli in watermelon seed using immunomagnetic separation and the polymerase chain reaction. Plant Dis 84:470–474

    CAS  PubMed  Google Scholar 

  • Walcott RR, Gitaitis RD, Castro AC et al (2002) Natural infestation of onion seeds by Pantoea ananatis, causal agent of center rot. Plant Dis 86:106–111

    CAS  PubMed  Google Scholar 

  • Waters CM, Bolkan HA (1992) An improved semi-selective medium and method of extraction for detecting Clavibacter michiganensis subsp. michiganensis in tomato seeds. Phytopathology 82:1072

    Google Scholar 

  • Wensing A, Zimmermann S, Geider K (2010) Identification of the corn pathogen Pantoea stewartii by mass spectrometry of whole-cell extracts and its detection with novel PCR primers. Appl Environ Microbiol 76(18):6248–6256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wensing A, Gernold M, Geider K (2012) Detection of Erwinia species from the apple and pear flora by mass spectroscopy of whole cells and with novel PCR primers. J Appl Microbiol 112(1):147–158

    CAS  PubMed  Google Scholar 

  • Williams PH (1980) Black rot: a continuing threat to world crucifers. Plant Dis 64:736–742

    Google Scholar 

  • Wittwer CT, Herrmann MG, Gundry CN et al (2001) Real-time multiplex PCR assays. Methods 25(4):430–442

    CAS  PubMed  Google Scholar 

  • Wullings BA, van Beuningen AR, Janse JD et al (1998) Detection of Ralstonia solanacearum which causes brown rot of potato, by fluorescent in situ hybridization with 23S rRNA-targeted probes. Appl Environ Microbiol 64:4546–4554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wydra K, Khatri-chhetri G, Mavridis A et al (2004) A diagnostic medium for the semi-selective isolation and enumeration of Xanthomonas axonopodis pv. vignicola. Eur J Plant Pathol 110(10):991–1001

    Google Scholar 

  • Yashitola J, Krishnaveni D, Reddy APK et al (1997) Genetic diversity within the population of Xanthomonas oryzae pv. oryzae in India. Phytopathology 87:760–765

    CAS  PubMed  Google Scholar 

  • Yuan WQ (1990) Culture medium for Xanthomonas campestris pv. oryzae. J Appl Bacteriol 69:798–805

    CAS  Google Scholar 

  • Yuanbo D, Zheng CJ, Rong CS et al (1983) A technique for the detection of Xanthomonas campestris pv. oryzae using bacteriophage. Seed Sci Technol 11:579–582

    Google Scholar 

  • Zaccardelli M, Campanile F, Spasiano A et al (2007) Detection and identification of the crucifer pathogen, Xanthomonas campestris pv. campestris, by PCR amplification of the conserved Hrp/type III secretion system gene hrc C. Eur J Plant Pathol 118:299–306

    CAS  Google Scholar 

  • Zhao T, Feng J, Sechler A et al (2009) An improved assay for detection of Acidovorax citrulli in watermelon and melon seed. Seed Sci Technol 37:78616–13321

    Google Scholar 

  • Zhao WJ, Zhu S, Liao XL et al (2007) Detection of Xanthomonas oryzae pv. oryzae in seeds using a specific TaqMan probe. Mol Biotechnol 35:119–127

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, D., Rathaur, P.S. (2020). Detection of Seed and Propagating Material-Borne Bacterial Diseases of Economically Important Crops. In: Kumar, R., Gupta, A. (eds) Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management. Springer, Singapore. https://doi.org/10.1007/978-981-32-9046-4_6

Download citation

Publish with us

Policies and ethics