Skip to main content

Introduction

  • Chapter
  • First Online:
  • 465 Accesses

Abstract

Golf, one of the most high-speed ball sports, is popularly referred to as the “Gentleman’s Game”. The objective of the game is simple: the players need to start from the tee (which lies in the teeing box) and deliver the ball into the hole (which lies in the putting green) by hitting a series of shots using a club. A golf course consists of several holes each having a unique layout design. Once all the competing golfers successfully play all the holes, the player who played the least number of shots wins the game. Despite its simple objective, golf is one of the most difficult ball sports due to the challenges it poses on the players. Apart from the teeing box and the hole, a golf course contains several other features that make up its architecture. These include hills, valleys, trees, sand bunkers and water bodies like lakes, ponds and sometimes even seas and ocean (see Fig. 1.1). While these features provide an aesthetic touch to the golf course, their primary role is to act as obstacles for the golfer during a game. In order to gain a competitive edge, the golfers need to minimise the number of shots they play. Hence, they need to properly plan their route taking into account the distance to be covered, as well the obstacle and hazards, that may come in the way. If a poorly planned (or poorly delivered) shot lands the ball in any of the hazards, it yields additional shots to the player which, in turn, manifests as a competitive disadvantage.

I get to play golf for a living. What more can you ask for, getting paid for doing what you love.

—Tiger Woods

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Google Earth, Data MVARI, Data SIO, NOAA, US Navy, NGA, GEBCO Landsat/Copernicus. Pebble Beach Golf Links, California. http://earth.google.com.

  2. Google Earth, Data SIO, NOAA, US Navy, NGA, GEBCO Landsat/Copernicus. Tournament Players Club, Florida. http://earth.google.com.

  3. Google Earth, Data SIO, NOAA, US Navy, NGA, GEBCO Landsat/Copernicus. Augusta National Golf Club, Georgia. http://earth.google.com.

  4. Google Earth, CNES/Airbus, Data SIO, NOAA, US Navy, NGA, GEBCO, SK telecom, Landsat/Copernicus. Nine Bridges Golf Club, South Korea. http://earth.google.com.

  5. Google Earth, CNES/Airbus, Data SIO, NOAA, US Navy, NGA, GEBCO, IBCAO, Landsat/Copernicus, Mexam Technologies. Muirfield Golf Club. http://earth.google.com.

  6. PGA Tour, Russell Knox implodes on No. 17 at THE PLAYERS https://youtu.be/BRJdDD0fj9c.

  7. Yaghoobian, N., & Mittal, R. (2018). Experimental determination of baseball spin and lift. Sports Engineering, 21, 1–10. https://doi.org/10.1007/s12283-017-0239-9.

    Article  Google Scholar 

  8. Humphreys, R. (2018), The precarious balance of designing for strong Jeju winds. Golf Course Architecture https://www.golfcoursearchitecture.net/content/the-precarious-balance-of-designing-for-strong-jeju-winds.

  9. Wesson, J. (2009). The Science of Golf. Oxford University Press.

    Google Scholar 

  10. Meister, D., Ladd, A., Butler, E., Zhao, B., Rogers, A., Ray, C., et al. (2011). Rotational Biomechanics of the Elite Golf Swing: Benchmarks for Amateurs. Journal of applied biomechanics, 27, 242–51. https://doi.org/10.1123/jab.27.3.242.

    Article  Google Scholar 

  11. Chu, Y., Sell, T. C., & Lephart, S. M. (2010). The relationship between biomechanical variables and driving performance during the golf swing. Journal or Sports Sciences, 28(11), 1251–1259. https://doi.org/10.1080/02640414.2010.507249.

    Article  Google Scholar 

  12. Hume, P. A., Keogh, J., & Reid, D. (2005). The Role of Biomechanics in Maximising Distance and Accuracy of Golf Shots. Sports Med, 35, 429–449. https://doi.org/10.2165/00007256-200535050-00005.

    Article  Google Scholar 

  13. Newman, S., Clay, S., & Strickland, P. (2002). The dynamic flexing of a golf club shaft during a typical swing. Proceedings Fourth Annual Conference on Mechatronics and Machine Vision in Practice, Toowoomba, Queensland, Australia, 1997, 265–270. https://doi.org/10.1109/MMVIP.1997.625343.

    Article  Google Scholar 

  14. Worobets, J., & Stefanyshyn, D. (2012). The influence of golf club shaft stiffness on clubhead kinematics at ball impact. Sports Biomechanics, 11(2), 239–248. https://doi.org/10.1080/14763141.2012.674154.

    Article  Google Scholar 

  15. Milne, R. D. & Davis, J. P. (1992). The role of the shaft in the golf swing. Journal of Biomechanics, 25(9), 975–983. https://doi.org/10.1016/0021-9290(92)90033-W.

  16. MacKenzie, S. J., & Sprigings, E. J. (2009). Understanding the role of shaft stiffness in the golf swing. Sports Eng, 12, 13–19. https://doi.org/10.1007/s12283-009-0028-1.

    Article  Google Scholar 

  17. Monk, S. A., Wallace, E. S & Otto, S. R. (2012). Effects of golf shaft stiffness on strain, clubhead presentation and wrist kinematics. Sports Biomechanics, 11(2), 223–228. https://doi.org/10.1080/14763141.2012.681796.

  18. Iwatsubo, T., Kawamura, S., Miyamoto, K., & Yamaguchi, T. (2000). Numerical analysis of golf club head and ball at various impact points. Sports Engineering, 3(4), 195–204. https://doi.org/10.1046/j.1460-2687.2000.00055.x.

    Article  Google Scholar 

  19. Nesbit, S. M., Hartzell, T. A., Nalevanko, J. C., Starr, R. M., White, M. G., Anderson, J. R., et al. (1996). A Discussion of Iron Golf Club Head Inertia Tensors and Their Effects on the Golfer. Journal of Applied Biomechanics, 12(4), 449–469. https://doi.org/10.1123/jab.12.4.449.

    Article  Google Scholar 

  20. Sweeney, M., Mills, P., Alderson, J., & Elliott, B. (2013). The influence of club-head kinematics on early ball flight characteristics in the golf drive. Sports Biomechanics, 12(3), 247–258. https://doi.org/10.1080/14763141.2013.772225.

    Article  Google Scholar 

  21. Feng, Z. M., Chiu, Y. J., & Chen, H. H. (2013). Design and Simulate of Golf Wood Club. Applied Mechanics and Materials, 419, 438–441. https://doi.org/10.4028/www.scientific.net/AMM.419.438.

    Article  Google Scholar 

  22. Chiu, J., & Shen, C. (2005). Analysis of the restitution characteristics of a golf ball colliding with a club-head. Japan J. Indust. Appl. Math., 22, 429. https://doi.org/10.1007/BF03167493.

    Article  MathSciNet  Google Scholar 

  23. Nakai, K., Wu, Z., Sogabe, Y., & Arimitsu, Y. (2004). A study of thickness optimization of golf club heads to maximize release velocity of balls. Communications in Numerical Methods in Engineering, 20(10), 747–755. https://doi.org/10.1002/cnm.698.

    Article  MATH  Google Scholar 

  24. Matsumoto, K., Tsujiuchi, N., Koizumi, T., Ito, A., Ueda, M., & Okazaki, K. (2015). Analysis of Shaft Movement Using FEM Model Considering Inertia Effect of Club Head. Procedia Engineering, 112, 10–15. https://doi.org/10.1016/j.proeng.2015.07.168.

    Article  Google Scholar 

  25. Mackenzie, S. J., & Boucher, D. E. (2016). The influence of golf shaft stiffness on grip and clubhead kinematics. Journal of Sport Sciences, 35(2), 105–111. https://doi.org/10.1080/02640414.2016.1157262.

    Article  Google Scholar 

  26. Kakiuchi, H., Inoue, A., Onuki, M., Takano, Y., & Yamaguchi, T. (2001). Applicaion of Zr-based bulk glassy alloys to golf clubs. Material Transactions, 42(4), 678–681. https://doi.org/10.2320/matertrans.42.678.

    Article  Google Scholar 

  27. Ismail, K., & Stronge, B. (2008). Calculated golf ball performance based on measured visco-hyperelastic material properties. Researchgate,. https://doi.org/10.1007/978-2-287-09411-82.

  28. Tanaka, K., Sato, F., Oodaira, H., Teranishi, Y., Sato, F., & Ujihashi, S. (2006). Construction of the Finite-Element Models of Golf Balls and Simulations of Their Collisions. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 220(1), 13–22. https://doi.org/10.1243/14644207JMDA80.

    Article  Google Scholar 

  29. Monk, S. A., Davis, C. L., Otto, S. R., & Strangewood, M. (2005). Material and surface effects on the spin and launch angle generated from a wedge/ball interaction in golf. Sports Eng, 8, 3–11. https://doi.org/10.1007/BF02844127.

    Article  Google Scholar 

  30. Axe, J. D., Brown, K., & Shannon, K. (2002). The vibrational mode structure of a golf ball. Journal of Sports Sciences, 20(8), 623–627. https://doi.org/10.1080/026404102320183185.

    Article  Google Scholar 

  31. Arakawa, K., Mada, T., Komatsu, H., Shimizu, T., Satou, M., Takehara, K., et al. (2009). Dynamic Deformation Behavior of a Golf Ball during Normal Impact. Experimental Mechanics, 49, 471–477. https://doi.org/10.1007/s11340-008-9156-y.

    Article  Google Scholar 

  32. TrackManGolf, TrackMan Average Tour Stats https://blog.trackmangolf.com/trackman-average-tour-stats/.

  33. Bearman, P., & Harvey, J. (1976). Golf Ball Aerodynamics. Aeronautical Quarterly, 27(2), 112–122. https://doi.org/10.1017/S0001925900007617.

    Article  Google Scholar 

  34. Davies, J. M. (1949). The aerodynamics of golf balls. Journal of Applied Physics, 20, 821–828. https://doi.org/10.1063/1.1698540.

    Article  Google Scholar 

  35. Tsuji, Y., Morikawa, Y., & Mizuno, O. (1985). Experimental Measurement of the Magnus Force on a Rotating Sphere at Low Reynolds Numbers. Journal of Fluids Engineering, 107, 484–488. https://doi.org/10.1115/1.3242517.

    Article  Google Scholar 

  36. Smits, A. J., & Smith, D. R. (1994). A new aerodynamic model of a golf ball in flight. Science and Golf, II, 340–347.

    Google Scholar 

  37. Choi, J., Jeon, W., & Choi, H. (2006). Mechanism of drag reduction by dimples on a sphere. Physics of Fluids, 18, 041702. https://doi.org/10.1063/1.2191848.

    Article  Google Scholar 

  38. Lyu, B., Kensrud, J., Smith, L., & Toyasa, T. (2018). Aerodynamics of Golf Balls in Still Air. The 12th Conference of the International Sports Engineering Association, 2, 238. https://doi.org/10.3390/proceedings2060238.

  39. Aoki, K., Muto, K., & Okanaga, H. (2010). Aerodynamic Characteristics and Flow Pattern of a Golf Ball with Rotation. Procedia Engineering, 2, 2431–2436. https://doi.org/10.1016/j.proeng.2010.04.011.

    Article  Google Scholar 

  40. Ting, L. L. (2002). Application of CFD technology analyzing the three-dimensional aerodynamic behavior of dimpled golf balls. ASME 2002 International Mechanical Engineering Congress and Exposition, 725–733. https://doi.org/10.1115/IMECE2002-32349.

  41. Aoyama, S. (1990). A Modern Method for the Measurement of Aerodynamic Lift and Drag on Golf Balls. Science and Golf, 199–204.

    Google Scholar 

  42. Ting, L. L. (2003). Effects of dimple size and depth on golf ball aerodynamic performance. ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, 811–817. https://doi.org/10.1115/FEDSM2003-45081.

  43. Sajima, T., Yamaguchi, T., Yabu, M., & Tsunoda, M. (2006). The aerodynamic influence of dimple design on flying golf ball. The Engineering of Sport, 6, 143–148. https://doi.org/10.1007/978-0-387-46050-5_26.

  44. Naruo, T., & Mizota, T. (2014). The influence of golf ball dimples on aerodynamic characteristics. Procedia Engineering, 72, 780–785. https://doi.org/10.1016/j.proeng.2014.06.132.

    Article  Google Scholar 

  45. Daish, C. B. (1972). The physics of ball games. London: English Universities.

    MATH  Google Scholar 

  46. Cross, R. (1999). The bounce of a ball. American Journal of Physics, 67, 222. https://doi.org/10.1119/1.19229.

  47. Penner, A. R. (2002). The run of a golf ball. Canadian Journal of Physics, 80, 931–941. https://doi.org/10.1139/P02-035.

    Article  Google Scholar 

  48. Cross, R. (2002). Grip-slip behaviour of a bouncing ball. American Journal of Physics, 70, 1093. https://doi.org/10.1119/1.1507792.

    Article  Google Scholar 

  49. Cross, R. (2010). Enhancing the bounce of a ball. The Physics Teacher, 48, 450. https://doi.org/10.1119/1.3488187.

    Article  Google Scholar 

  50. Haake, S.J. (1989). An apparatus for measuring the physical properties of golf turf https://research.aston.ac.uk/en/studentTheses/apparatus-and-test-methods-for-measuring-the-impact-of-golf-balls.

  51. Hubbard, M. and Alaways, L.W. (1999). Mechanical interaction of the golf ball with putting greens. In Proceedings of the 1998 World Scientific Congress of Golf. Edited by M.R. Farrally and A.J. Cochran. Human Kinetics, Leeds.

    Google Scholar 

  52. Baek, S. and Kim M. (2013). Golf Ball Bouncing Model Based on Real Images. Ubiquitous Information Technologies and Applications. Lecture Notes in Electrical Engineering, vol 214. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5857-575.

  53. Chaisuwan, P., Khemmani, S., Wicharn, S., Plaipichit, S., Pipatpanukul, C., & Puttharugsa, C. (2019). Measuring the coefficient of restitution for tennis and golf balls using smartphone sensors. Physics Education, 54, 065011. https://doi.org/10.1088/1361-6552/ab3c08.

    Article  Google Scholar 

  54. Penner, A. R. (2002). The physics of putting. Canadian Journal of Physics, 80, 83–96. https://doi.org/10.1139/P01-137.

    Article  Google Scholar 

  55. Holmes, B. W. (1991). Putting: How a golf ball and hole interact. American Journal of Physics, 59, 129. https://doi.org/10.1119/1.16592.

    Article  MathSciNet  Google Scholar 

  56. Erlichson, H. (1983). Maximum projectile range with drag and lift, with particular application to golf. American Journal of Physics, 51, 357–362. https://doi.org/10.1119/1.13248.

    Article  Google Scholar 

  57. Stengel, R. F. (1992). On the flight of a golf ball in the vertical plane. Dynamics and Control, 2, 147–159. https://doi.org/10.1007/BF02169495.

    Article  MathSciNet  MATH  Google Scholar 

  58. McPhee, J. J., & Andrews, G. C. (1988). Effect of sidespin and wind on projectile trajectory, with particular application to golf. American Journal of Physics, 56, 933–939. https://doi.org/10.1119/1.15363.

    Article  Google Scholar 

  59. Naruo, T., & Mizota, T. (2006). Experimental verification of trajectory analysis of golf ball under atmospheric boundary layer. The Engineering of Sport, 6, 149–154. https://doi.org/10.1007/978-0-387-46050-5_27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantanu Malik .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malik, S., Saha, S. (2021). Introduction. In: Golf and Wind. Springer, Singapore. https://doi.org/10.1007/978-981-15-9720-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9720-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9719-0

  • Online ISBN: 978-981-15-9720-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics