Skip to main content

Recent Trends in Computer-Aided Drug Design

  • Chapter
  • First Online:
  • 975 Accesses

Abstract

The process of drug discovery begins with the identification of a potential target. Depending on the availability of data, various computational approaches and tools have been explored from time to time for target identification and lead design. In this chapter, two case studies have been discussed. The first one involves newer approaches for target identification based on subtractive genomics and comparative metabolomics in the pathogenic bacteria, Pseudomonas aeruginosa, followed by lead design. The availability of complete genome sequences of pathogenic bacteria has increased the possibility of identification of promising targets, while considering host-pathogen interactions and host toxicity simultaneously. Subtractive genomics involves comparison of whole genomes of the host, pathogen and symbiotic organisms to identify unique essential genes. Similarly, comparative metabolomics is performed by comparison of all the known metabolic pathways in the above three categories. The entire approach was designed to identify a potential target that plays an essential role in the pathogen’s survival and constitutes a critical component in its metabolic pathway. The second case study describes various steps in identification of a potential lead compound against a target protein using molecular docking and molecular simulation methods. It elaborates on choosing a lesser known target protein of malaria, belonging to the pre-erythrocytic cycle of Plasmodium falciparum. Prediction of three dimensional structure of the target using comparative modelling, followed by detailed docking and simulation studies lead to the identification of a promising lead molecule. Wet laboratory studies are warranted on results of both the in silico case studies for further validation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amino, R., Giovannini, D., Thiberge, S., Gueirard, P., & Boisson, B. (2008a). Host cell traversal is important for progression of the malaria parasite through the dermis to the liver. Cell Host and Microbe, 3(2), 88–96.

    Article  CAS  PubMed  Google Scholar 

  • Amino, R., Giovannini, D., Thiberge, S., Gueirard, P., Boisson, B., Dubremetz, J. F., et al. (2008b). Host cell traversal is important for progression of the malaria parasite through the dermis to the liver. Cell Host and Microbes, 3, 88–96.

    Article  CAS  Google Scholar 

  • Amino, R., Thiberge, S., Martin, B., Celli, S., Shorte, S., Frischknecht, F., et al. (2006). Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nature Medicine, 12, 220–224.

    Article  CAS  PubMed  Google Scholar 

  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., et al. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, Florida.

    Google Scholar 

  • Bruccoleri, R. E., Dougherty, T. J., & Davison, D. B. (1998). Concordance analysis of microbial genomes. Nucleic Acids Research, 26, 4482–4486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheatham, T. E., Miller, J. H., Fox, T., Darden, P. A., & Kollman, P. A. (1995). Molecular dynamics simulations on solvated biomolecular systems: The particle Mesh ewald method leads to stable trajectories of DNA, RNA, and proteins. Journal of the American Chemical Society, 117(14), 4193–4194.

    Article  CAS  Google Scholar 

  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of non-bonded atomic interactions. Protein Science, 2(9), 1511–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desmond molecular dynamics system, version 2.2. New York: D. E. Shaw Research; 2009. Maestro-desmond interoperability tools, version 2.2, New York, NY: Schrödinger; 2009.

    Google Scholar 

  • Derbyshire, E. R., Mota, M. M., & Clardy, J. (2011). The next opportunity in anti-malaria drug discovery: The liver stage. PLoS Pathogens, 7(9), e1002178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Pierro, M., Elber, R., & Leimkuhler, B. (2015). A stochastic algorithm for the isobaric-isothermal ensemble with Ewald summations for all long range forces. Journal of Chemical Theory and Computation, 11(12), 5624–5637.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dutta, A., Singh, S. K., Ghosh, P., Mukherjee, R., Mitter, S., & Bandyopadhyay, D. (2006). In silico identification of potential therapeutic targets in the human pathogen Helicobacter pylori. In Silico Biology, 6, 005.

    Google Scholar 

  • Eisenberg, D., Luthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404.

    Article  CAS  PubMed  Google Scholar 

  • Formaglio, P., Tavares, J., Menard, R., & Amino, R. (2014). Loss of host cell plasma membrane integrity following cell traversal by Plasmodium sporozoites in the skin. Parasitology International, 63(1), 237–244.

    Article  CAS  PubMed  Google Scholar 

  • Franҫa, T. C. C. (2015). Homology modeling: An important tool for the drug discovery. Journal of Biomolecular Structure and Dynamics, 33(8), 1780e93.

    Google Scholar 

  • Freiberg, C. (2001). Novel computational methods in anti–microbial target identification. Drug Discovery Today, 6, S72–S80.

    Article  CAS  Google Scholar 

  • Frevert, U., Engelmann, S., Zougbede, S., Stange, J., & Ng, B. (2005). Intravital observation of Plasmodium berghei sporozoite infection of the liver. PLoS Biology, 3(6), e192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garg, S., Agarwal, S., Kumar, S., Yazdani, S. S., Chitnis, C. E., & Singh, S. (2013). Calcium-dependent permeabilization of erythrocytes by a perforin-like protein during egress of malaria parasites. Nature Communications, 4, 1736.

    Article  PubMed  CAS  Google Scholar 

  • Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and Swiss-Pdb Viewer: An environment for comparative protein modelling. Electrophoresis, 18(15), 2714–2723.

    Article  CAS  PubMed  Google Scholar 

  • Halgren, T. A. (2009). Identifying and characterizing binding sites and assessing druggability. Journal of Chemical Information and Modeling, 49(2), 377–389.

    Article  CAS  PubMed  Google Scholar 

  • Hamaoka, B. Y., & Ghosh, P. (2014). Structure of the essential plasmodium host cell traversal protein SPECT1. PLoS One, 9(12), e114685.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hopkins, A. L., & Groom, C. R. (2002). The druggable genome. Nature Reviews. Drug Discovery, 1, 727–730.

    Article  CAS  PubMed  Google Scholar 

  • Humer, F. (2005). Innovation in the pharmaceutical industry—Future prospects. Available: http://www.roche.com/fbh_zvg05_e.pdf

  • Huynen, M., Dandekar, T., & Bork, P. (1998). Differential genome analysis applied to the species–specific features of Helicobacter pylori. FEBS Letters, 1998(426), 1–5.

    Article  Google Scholar 

  • Huynen, M., Diaz-Lazcoz, Y., & Bork, P. (1997). Differential genome display. Trends in Genetics, 13, 389–390.

    Article  CAS  PubMed  Google Scholar 

  • Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G. (2012). ZINC:A free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52(7), 1757–1768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishino, T., Chinzei, Y., & Yuda, M. (2005). A Plasmodium sporozoite protein with a membrane attack complex domain is required for breaching the liver sinusoidal cell layer prior to hepatocyte infection. Cellular Microbiology, 7(2), 199–208.

    Article  CAS  PubMed  Google Scholar 

  • Ishino, T., Yano, K., Chinzei, Y., & Yuda, M. (2004). Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. PLoS Biology, 2(1), 77–84.

    Article  CAS  Google Scholar 

  • Jacobs, M. A., Alwood, A., Thaipisuttikul, I., Spencer, D., Haugen, E., Ernst, S., et al. (2003). Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 100, 14339–14344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser, K., Matuschewski, K., Camargo, N., Ross, J., & Kappe, S. H. I. (2004). Differential transcriptome profiling identifies Plasmodium genes encoding pre-erythrocytic stage-specific proteins. Molecular Microbiology, 51(5), 1365–2958.

    Article  Google Scholar 

  • Kanehisa, M., Goto, S., Kawashima, S., & Nakaya, A. (2002). The KEGG databases at genome net. Nucleic Acids Research, 30(1), 42–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskowski, M. W., & MacArthur, D. S. (1993). Moss, and Thornton. J.M. PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26, 283–291.

    Article  CAS  Google Scholar 

  • Mali, S., Steele, S., Slutsker, L., & Arguin, P. M. (2008). Malaria surveillance–United States, 2006. MMWR Surveillance Summaries, 57(5), 24–39.

    Google Scholar 

  • Mazier, D., Rénia, L., & Snounou, G. (2009). A pre-emptive strike against malaria’s stealthy hepatic forms. Nature Reviews Drug Discovery, 8, 854–864.

    Article  CAS  PubMed  Google Scholar 

  • Mdluli, K. E., Witte, P. R., Kline, T., Barb, A. W., Erwin, A. L., Mansfield, B. E., et al. (2006). Molecular validation of LpxC as an antibacterial drug target in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2006(50), 2178–2184.

    Article  CAS  Google Scholar 

  • Mota, M. M., Pradel, G., Vanderberg, J. P., Hafalla, J. C., & Frevert, U. (2001). Migration of Plasmodium sporozoites through cells before infection. Science, 291(5501), 141–144.

    Article  CAS  PubMed  Google Scholar 

  • Naik, P. K., Santoshi, S., & Birmani, A. (2010). Computational prediction of potent therapeutic targets of Pseudomonas aeruginosa and in silico virtual screening for novel inhibitors. Internet Electronic Journal of Molecular Design, 8, 42–62.

    Google Scholar 

  • Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95–99.

    Article  CAS  PubMed  Google Scholar 

  • Remmert, M., Biegert, A., Hauser, A., & Söding, J. (2011). HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nature Methods, 9, 173–175.

    Article  PubMed  CAS  Google Scholar 

  • Risco-Castillo, V., Topçu, S., Marinach, C., Manzoni, G., Bigorgne, A. E., Briquet, S., et al. (2015). Malaria sporozoites traverse host cells within transient vacuoles. Cell Host & Microbe, 18, 593–603.

    Article  CAS  Google Scholar 

  • Robertson, J. G. (2005). Mechanistic basis of enzyme–targeted drugs. Biochemistry, 44, 8918.

    Article  CAS  Google Scholar 

  • Roemer, T., Jiang, B., Davison, J., Ketela, T., & Veillette, K. (2003). Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Molecular Microbiology, 50, 167–181.

    Article  CAS  PubMed  Google Scholar 

  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341.

    Article  CAS  Google Scholar 

  • Sanseau, P. (2001). Impact of human genome sequencing for in silico target discovery. Drug Discovery Today, 6, 316–323.

    Article  CAS  PubMed  Google Scholar 

  • Sassetti, C. M., Boyd, D. H., & Rubin, E. J. (2003). Genes required for mycobacterial growth defined by high density mutagenesis. Molecular Microbiology, 48, 77–84.

    Article  CAS  PubMed  Google Scholar 

  • Sibley, L. D. (2004). Intracellular Parasite Invasion Strategies. Science, 304(5668), 248–253.

    Article  CAS  PubMed  Google Scholar 

  • Singh, N. K., Selvam, S. M., & Chakravarthy, P. (2006). T-iDT: Tool for identification of drug target in bacteria and validation by mycobacterium tuberculosis. In Silico Biology, 6(6), 485–493.

    CAS  PubMed  Google Scholar 

  • Srivastava, S., Santoshi, S., Malik, B. K., & Mathur, P. (2017). Molecular modeling and molecular dynamics studies of SPECT protein of Plasmodium falciparum and in silico screening of lead compounds. International Journal of Pharmaceutical Sciences and Research, 8(12), 5077–5087.

    CAS  Google Scholar 

  • Sterling, T., & Irwin, J. J. (2015). ZINC-15-Ligand discovery for everyone. Journal of Chemical Information and Modeling, 55(11), 2324–2337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., et al. (2000). Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 406, 959–964.

    Article  CAS  PubMed  Google Scholar 

  • Sturm, A., Amino, R., Van de Sand, C., Regen, T., Retzlaff, S., Rennenberg, A., et al. (2006). Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science, 313(5791), 1287–1290.

    Article  CAS  PubMed  Google Scholar 

  • Tatusov, R. L., Koonin, E. V., & Lipman, D. J. (1997). A genomic perspective on protein families. Science, 278, 631–637.

    Article  CAS  PubMed  Google Scholar 

  • Tavares, J., Formaglio, P., Thiberge, S., Mordelet, E., & Van, N. (2013). Rooijen, Role of host cell traversal by the malaria sporozoite during liver infection. The Journal of Experimental Medicine, 210(5), 905–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terstappen, G. C., & Reggiani, A. (2001). In silico research in drug discovery. Trends in Pharmacological Sciences, 22, 23–26.

    Article  CAS  PubMed  Google Scholar 

  • Vanderberg, J. P., Serena, C., & Michael, J. S. (1990). Plasmodium sporozoite interactions with macrophages in vitro: A videomicroscopic analysis. Journal of Eukaryotic Microbiology, 37(6), 1550–7408.

    Google Scholar 

  • Victoria, M., Granich, R., Gilks, F. C., Gunneberg, C., Hosseini, M., Were, W., et al. (2009). The global fight against HIV/AIDS, tuberculosis, and malaria: Current status and future perspectives. American Journal of Clinical Pathology, 131(6), 844–848.

    Article  Google Scholar 

  • Wang, S., Sim, T. B., Kim, Y. S., & Chang, Y. T. (2004). Tools for target identification and validation. Current Opinion in Chemical Biology, 8, 371–377.

    Article  CAS  PubMed  Google Scholar 

  • Wei, W., Ning, L. W., Ye, Y. N., & Guo, F. B. (2013). Geptop: A gene essentiality prediction tool for sequenced bacterial genomes based on orthology and phylogeny. PLoS One, 8(8), e72343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen, Q. F., Liu, S., Dong, C., Guo, H. X., Gao, Y. Z., & Guo, F. B. (2019). Geptop 2.0: An updated, more precise, and faster geptop server for identification of prokaryotic essential genes. Frontiers in Microbiology, 10, 1236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wixon, J., & Kell, D. (2000). The Kyoto encyclopedia of genes and genomes—KEGG. Yeast, 17, 48–55.

    CAS  PubMed  Google Scholar 

  • Yamauchi, L. M., Coppi, A., Snounou, G., & Sinnis, P. (2007). Plasmodium sporozoites trickle out of the injection site. Cellular Microbiology, 9, 1215–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, S. P., & Boddey, J. A. (2017). Molecular mechanisms of host cell traversal by malaria sporozoites. Molecular BioSystems, 47(2–3), 129–136.

    CAS  Google Scholar 

  • Zhang, R., Ou, H. Y., & Zhang, C. T. (2004). DEG: A database of essential genes. Nucleic Acids Research, 32, D271–D272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puniti Mathur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santoshi, S., Mathur, P. (2021). Recent Trends in Computer-Aided Drug Design. In: Singh, S.K. (eds) Innovations and Implementations of Computer Aided Drug Discovery Strategies in Rational Drug Design. Springer, Singapore. https://doi.org/10.1007/978-981-15-8936-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8936-2_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8935-5

  • Online ISBN: 978-981-15-8936-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics