Skip to main content

Pathology of the Spinal Cord Tumors

  • Chapter
  • First Online:

Abstract

The spinal cord is a continuum of the central nervous system (CNS), in which all tumors occur, which develops in the brain. Intradural spinal tumors are rare CNS tumors, comprising 2%–4% of CNS tumors. Here, a total of 892 adult spinal cord tumors from the archives of the Seoul National University Hospital, from January 2010 to December 2018, were analyzed and discussed. Among them, the most frequent primary spinal cord tumors were extra-axial tumors (68% of intradural spinal cord tumors [ID-SCT]), the second most common tumors were glioma ependymoma, subependymoma, myxopapillary ependymoma and astrocytic tumors (17.6% of ID-SCT), hemangioblastoma (5% of ID-SCT), and others including vascular malformation (5%), metastatic tumor (5% of ID-SCT), and chordoma (0.7% of ID-SCT). The most common extra-axial tumors were schwannoma (47% of ID-SCT), meningioma (16% of ID-SCT), neurofibroma (2% of ID-SCT) and malignant peripheral nervous tumor (<1% of ID-SCT) in order of frequency. The common gliomas were ependymoma (11% of ID-SCT), astrocytic tumors (4% of ID-SCT), myxopapillary ependymoma (3% of ID-SCT) and subependymoma (<1% of ID-SCT). The other tumor-like lesions were vascular malformation (5% of ID-SCT, n = 43) including cavernous, capillary. and arteriovenous malformation. Rare tumors were paraganglioma (1% of ID-SCT), chordoma (<1% of ID-SCT) and malignant melanoma (0.3% of ID-SCT). Metastatic tumors were similar incidence with hemangioblastoma (5%). The incidence of these spinal cord tumors of our hospital was similar to previously reported incidence. Intramedullary and extramedullary spinal cord tumors comprised approximately 5%–10% and 70%–80%, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abd-El-Barr MM, et al. Recent advances in intradural spinal tumors. Neuro Oncol. 2018;20(6):729–42.

    Article  CAS  Google Scholar 

  2. Chamberlain MC, Tredway TL. Adult primary intradural spinal cord tumors: a review. Curr Neurol Neurosci Rep. 2011;11(3):320–8.

    Article  Google Scholar 

  3. Ruggieri M, et al. The natural history of spinal neurofibromatosis: a critical review of clinical and genetic features. Clin Genet. 2015;87(5):401–10.

    Article  CAS  Google Scholar 

  4. Ren X, et al. Clinical, radiological, and pathological features of 26 intracranial and intraspinal malignant peripheral nerve sheath tumors. J Neurosurg. 2013;119(3):695–708.

    Article  Google Scholar 

  5. Chou D, et al. Malignant peripheral nerve sheath tumors of the spine: results of surgical management from a multicenter study. J Neurosurg Spine. 2017;26(3):291–8.

    Article  Google Scholar 

  6. Mawrin C, Perry A. Pathological classification and molecular genetics of meningiomas. J Neurooncol. 2010;99(3):379–91.

    Article  CAS  Google Scholar 

  7. Clark VE, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013;339(6123):1077–80.

    Article  CAS  Google Scholar 

  8. Bi WL, Prabhu VC, Dunn IF. High-grade meningiomas: biology and implications. Neurosurg Focus. 2018;44(4):E2.

    Article  Google Scholar 

  9. Smith MJ, et al. Germline SMARCE1 mutations predispose to both spinal and cranial clear cell meningiomas. J Pathol. 2014;234(4):436–40.

    Article  CAS  Google Scholar 

  10. Lamszus K, et al. Molecular genetic alterations on chromosomes 11 and 22 in ependymomas. Int J Cancer. 2001;91(6):803–8.

    Article  CAS  Google Scholar 

  11. Zemmoura I, et al. A deletion causing NF2 exon 9 skipping is associated with familial autosomal dominant intramedullary ependymoma. Neuro Oncol. 2014;16(2):250–5.

    Article  CAS  Google Scholar 

  12. Leeper H, Felicella MM, Walbert T. Recent Advances in the classification and treatment of ependymomas. Curr Treat Options Oncol. 2017;18(9):55.

    Article  Google Scholar 

  13. Fischer SB, et al. TRPS1 gene alterations in human subependymoma. J Neurooncol. 2017;134(1):133–8.

    Article  CAS  Google Scholar 

  14. Acerbi F, et al. The role of indocyanine green videoangiography with FLOW 800 analysis for the surgical management of central nervous system tumors: an update. Neurosurg Focus. 2018;44(6):E6.

    Article  Google Scholar 

  15. Lee CH, Chung CK, Kim CH. Genetic differences on intracranial versus spinal cord ependymal tumors: a meta-analysis of genetic researches. Eur Spine J. 2016;25(12):3942–51.

    Article  Google Scholar 

  16. Hamilton KR, et al. A systematic review of outcome in intramedullary ependymoma and astrocytoma. J Clin Neurosci. 2019;63:168–75.

    Article  Google Scholar 

  17. Kim TS, et al. Correlates of survival and the Daumas-Duport grading system for astrocytomas. J Neurosurg. 1991;74(1):27–37.

    Article  CAS  Google Scholar 

  18. Horbinski C, et al. Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol. 2010;119(5):641–9.

    Article  CAS  Google Scholar 

  19. Shankar GM, et al. BRAF alteration status and the histone H3F3A gene K27M mutation segregate spinal cord astrocytoma histology. Acta Neuropathol. 2016;131(1):147–50.

    Article  Google Scholar 

  20. Nagaishi M, et al. Genetic mutations in high grade gliomas of the adult spinal cord. Brain Tumor Pathol. 2016;33(4):267–9.

    Article  Google Scholar 

  21. Ebrahimi A, et al. High frequency of H3 K27M mutations in adult midline gliomas. J Cancer Res Clin Oncol. 2019;145(4):839–50.

    Article  CAS  Google Scholar 

  22. Imagama S, et al. Rapid worsening of symptoms and high cell proliferative activity in intra- and extramedullary spinal hemangioblastoma: a need for earlier surgery. Global Spine J. 2017;7(1):6–13.

    Article  Google Scholar 

  23. Li J. et al. Surgical management of a cervical intramedullary hemangioblastoma presenting with intracystic hemorrhage by hemi-semi-laminectomy via a posterior approach. J Int Med Res. 2019: 300060519847412.

    Google Scholar 

  24. Yao ZG. et al. Papillary solitary fibrous tumor/hemangiopericytoma: an uncommon morphological form with NAB2-STAT6 gene fusion. J Neuropathol Exp Neurol. 2019.

    Google Scholar 

  25. Shukla P, et al. Reappraisal of morphological and immunohistochemical spectrum of intracranial and spinal solitary fibrous tumors/hemangiopericytomas with impact on long-term follow-up. Indian J Cancer. 2018;55(3):214–21.

    Article  Google Scholar 

  26. Turkkan A, et al. Nuances to provide ideas for radiologic diagnosis in primary spinal paragangliomas: report of two cases. Br J Neurosurg. 2019;33(2):210–2.

    Article  Google Scholar 

  27. Muth A, et al. Genetic testing and surveillance guidelines in hereditary pheochromocytoma and paraganglioma. J Intern Med. 2019;285(2):187–204.

    CAS  PubMed  Google Scholar 

  28. Mei L, et al. Prognostic factors of malignant pheochromocytoma and paraganglioma: a combined SEER and TCGA databases review. Horm Metab Res. 2019;51(7):451–7.

    Article  CAS  Google Scholar 

  29. Saavedra A, et al. Malignant paraganglioma and somatotropinoma in a patient with germline SDHB mutation-genetic and clinical features. Endocrine. 2019;63(1):182–7.

    Article  CAS  Google Scholar 

  30. Sharifnia T, et al. Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nat Med. 2019;25(2):292–300.

    Article  CAS  Google Scholar 

  31. Meng T, et al. Molecular targeted therapy in the treatment of chordoma: a systematic review. Front Oncol. 2019;9:30.

    Article  Google Scholar 

  32. Du J, et al. Benign notochordal cell tumour: clinicopathology and molecular profiling of 13 cases. J Clin Pathol. 2019;72(1):66–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hye Park .

Editor information

Editors and Affiliations

Ethics declarations

We have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Park, SH. (2021). Pathology of the Spinal Cord Tumors. In: Chung, C.K. (eds) Surgery of Spinal Cord Tumors Based on Anatomy. Springer, Singapore. https://doi.org/10.1007/978-981-15-7771-0_2

Download citation

Publish with us

Policies and ethics