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Abstract Coarray features have been implemented on the Omni XcalableMP
compiler with a source-to-source translator and layered runtime libraries. Three
memory allocation methods for coarrays were implemented for the GASNet and
MPI-3 communication libraries and the native interface of Fujitsu. For the coar-
ray PUT/GET communication, algorithms using DMA (zero-copy) and buffering
were introduced. Important techniques for achieving high performance were the
non-blocking PUT communication implemented in the runtime library and the
optimization for the GET communication in the translator. Using the ping-pong
benchmark and the modified version, the fundamental performance was evaluated
and analyzed. The MPI version of the Himeno benchmark was ported to the coarray
version and modified for fully using the non-blocking PUT. As a result of the
evaluation, the non-blocking coarray version clearly outperformed the original and
non-blocking MPI versions.

1 Introduction

XcalableMP (XMP) [1] has complementary global-view and local-view program-
ming models. The former is a directive-based language extension to the base
languages Fortran and C, and the latter adopts the coarray features defined in Fortran
2008 [2] and a part of the coarray features defined in Fortran 2018 [3]. The purpose
of the coarray features as the local-view part of XMP is (1) writing applications
that are not suitable for global-view programming and (2) writing important parts of
programs that are critical to performance with an easier programming model than
MPI message passing. Therefore, the coarray features in XMP must be naturally
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merged into the global-view XMP language and must exhibit high performance,
comparable to that of MPIL.

The Omni XMP compiler is an open-source implementation developed at RIKEN
and the University of Tsukuba [4]. The kernel of the Omni XMP compiler is a
source-to-source compiler that converts an XMP program into a Fortran program
by calling a runtime library. The coarray translator has been implemented on the
Omni XMP compiler. Since the images are mapped one-to-one to XMP nodes, each
image was implemented as a process, and the definition and reference to coarrays
were implemented as inter-node one-sided communications.

This chapter describes the techniques used in the coarray compiler and the
runtime library, and a comparison to MPI message passing. The remainder of this
chapter is organized as follows. Section 2 introduces the requirements of the coarray
features. Section 3 describes the implementation used to solve the requirements, and
Sect. 4 evaluates the performance and productivity of coarray programs. Related
research is described in Sect. 5, and Sect. 6 concludes this chapter.

2 Requirements from Language Specifications

The XMP Fortran language specification [1] supports many of the coarray features
defined in the Fortran 2008 standard [2], and intrinsic procedures CO_SUM,
CO_MAX, CO_MIN, and CO_BROADCAST defined in the Fortran 2018 standard [3]
are supported. In addition, the XMP C language specification was extended to
support coarray features.

This section introduces the coarray features and what is required of the compiler
in order to implement the coarray features.

2.1 Images Mapped to XMP Nodes

In the Fortran standard, an image is defined as an instance of a program. Each
image executes the same program and has its own individual data. Each image has
a different image index k. While the Fortran standard itself does not specify where
each image is executed, XMP specifies that images are mapped to executing nodes
on a one-to-one basis. Therefore, image k is always executed on executing node k,
where 1 < k < n, and n is the number of images as well as the number of executing
nodes. Since each MPI rank number of MPI COMM_WORLD (0-origin) is always
mapped to an XMP node number in order, image k corresponds to rank (k — 1).
Note that the executing nodes can be a subset of the entire (initial) node set. For
example, two distinct node sets can execute two coarray subprograms concurrently.
The first executing images at the start of the program are entire images. Coarray
features are compatible with those of the Fortran standard, unless the TASK and END
TASK directives are used. If the execution encounters a TASK directive specified
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with a subset of nodes, then the corresponding subset of images will be the executing
images for the task region. The current number of images and my image number,
which are given by inquire functions num_images and this image also match
the executing images, and the SYNC IMAGES statement synchronizes the executing
images. When the execution encounters the END TASK directive corresponding to
the TASK directive, the set of executing images is reinstated.

Requirement for the Implementation The runtime library should manage the
executing image set and the current image index in a stack in order to reinstate
them at the exit point of the task.

2.2 Allocation of Coarrays

A coarray or a coarray variable is a variable that can be referred from the other
images. A coarray with the ALLOCATABLE attribute is called an allocatable
coarray, and is otherwise called a non-allocatable coarray. A non-allocatable
coarray may not be a pointer and must have an explicit shape and the SAVE attribute.
In order to help intuitive understanding, we refer to a non-allocatable coarray a static
coarray. The lifetime of a static coarray is throughout execution of the program on
all images, even if the coarray is declared in a procedure called with a subset of
images.

On the other hand, an allocatable coarray is allocated with the ALLOCATE
statement and freed either explicitly with the DEALLOCATE statement or implicitly
at the end of the scope in which the ALLOCATE statement is executed (automatic

deallocation).
Static coarrays can be declared as scalar or array variables as follows:

real(8), save :: a(l100,100) [«]
type (user defined type), save :: s[2,2, ]

The square brackets in the declaration distinguish coarray variables from other
(non-coarray) variables. The declaration declares the virtual shape of the images,

and the last dimension must be deferred (as ‘x’).
Allocatable coarrays can be declared as follows:

real(8), allocatable :: b(:,:)[:]
type (user defined type), allocatable :: tl:,:,:]

A notable constraint is that at any synchronization point in program execu-
tion, coarrays must have the same dimensions (sizes of all axes) for all images
(symmetric memory allocation). Therefore, a static coarray must have the same
shape for all images during program execution, and an allocatable coarray must be
allocated and deallocated collectively at the same time with the same dimensions
for the executing images. Thanks to the symmetric memory allocation rule, all
executing images can have the same symmetrical memory layout, which makes it
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possible to calculate the address of the remote coarray with no prior inter-image
communication.

Requirement for the Implementation Static coarrays must be allocated and made
accessible remotely before execution of the user program and made inaccessible
remotely and be freed after execution of the user program. In contrast, allocatable
coarrays must be allocated and made accessible remotely when the ALLOCATE
statement is encountered and made inaccessible remotely and freed when the
DEALLOCATE statement is encountered or the exit point of the scope to which the
corresponding ALLOCATE statement is encountered.

2.3 Communication

Coarray features in XMP include three types of communications between images,
i.e., reference and definition to remote coarrays, collective communications (intrin-
sic subroutines CO_SUM, CO_MAX, CO_MIN, and CO_BROADCAST), and atomic
operations (ATOMIC DEFINE and ATOMIC_ REF). Collective communications
and atomic operations are similar to those in MPI library. Communications for

reference and definition to remote coarrays are characteristic for coarray features.
PUT communication is caused by an assignment statement with a coindexed
variable as the left-hand side expression, e.g.,

a(i,j) [k] = alpha * b(i,j) + c(i,3)

This statement causes the PUT communication to the array element a (i, j) on
image k with the value of the left-hand side. Using the Fortran array assignment
statement, array-to-array PUT communication can be written easily, e.g., the
following statement causes MxN-element PUT communication:

a(l:M,1:N) [k] = alpha * b(1:M,1:N) + c(1:M,1:N)

GET communication is caused by referencing the coindexed object, which is
represented by a coarray variable with cosubscripts enclosed by square brackets,
e.g.,s[1,2] and a(i,j) [k], where s and a are scalar and two-dimensional
array coarrays, respectively. A coindexed object can appear in almost any expres-
sion, including array expressions.

Requirement for the Implementation In order to implement definition/reference
to a coindexed variable/object, PUT/GET one-sided communication is suitable
for use. In order to avoid costly processing, such as a remote procedure call,
remote direct memory access-based (RDMA-based) implementation is desirable. In
PUT/GET communication for large data, redundant multiple memory copies should
carefully be avoided for all software layers, the communication library, the runtime,
the Fortran library, and the object.
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2.4 Synchronization

The access order of coarrays between images is explicitly controlled by the
programmer using the image control statement, such as SYNC ALL and SYNC
IMAGES statements. The statement allows the compiler system to make PUT/GET
communication asynchronous. The sequence of execution between the image
control statements is called as a segment. An asynchronous communication must
be completed by the end of the segment.

Inside each image, the compiler must maintain data dependency as before,
even if the program contains coarray communications. The compiler must suppress
the non-blocking communication, which postpones waiting for communication
completion. In order to keep data dependency among the definitions and references
to the same coarray in the same segment, non-blocking communication should be
restricted. The example below in which the same remote coarray is accessed a
number of times inside the same segment.

1 if (this_image()==1) then
2 al2]=

3 =a[2]

4 al2]=

5 al2]=

6 endif

Between lines 2 and 3, the completion wait for PUT communication is necessary
in order to avoid referencing data that is not defined completely. Similarly, between
lines 3 and 4, the completion wait for GET communication is necessary in order to
avoid referencing data that is being updated. However, between lines 4 and 5, the
completion wait is not necessary. The issue of race condition on image 2 cannot be
avoided by the completion wait on image 1 in general, and avoiding this issue is up
to the programmer.

Requirement for the Implementation Unless the same remote data is accessed
from the same segment, non-blocking completion can be delayed until the end
of the segment. Since the data received by the GET communication is usually
referenced soon, non-blocking GET communication is hard to use. Therefore,
if GET communication is always on blocking, then only the flow dependency
(between lines 2 and 3) should be considered.

2.5 Subarrays and Data Contiguity

Except for a dummy argument, an array is fully contiguous across the dimensions.
A subarray of the array can be fully or partially contiguous or non-contiguous. For
example, if an array is declared with the shape a (1:M, 1 :N), then the whole array
(referenced as a or a(:, :) or a(l:M,1:N)) is fully contiguous and a subarray
a(2:5,3) is partially contiguous. We defined a term contiguous length as the



102 H. Iwashita and M. Nakao

length for which the data is partially contiguous. For example, the contiguous
lengths of a(2,3) and a(2:5,3) are 1 and 4, respectively. a (1:M,1:3) is
two-dimensionally contiguous and has contiguous length 2 x M. a (1:M-1,1:3)
is one-dimensionally contiguous and has a contiguous length (M — 1).

Requirement for the Implementation For high-performance communication, it is
important to find the contiguous length across the dimensions, because thousands of
bytes of contiguous data is needed in order to be comparable to the communication
latency in general, and only the first dimension of the array is not always long
enough.

2.6 Coarray C Language Specifications

The XMP language specification extends the C language to support coarray features.
Array notations, such as subarray and array assignment statements, are adopted in
the C language. In XMP/C, a coarray is a data object but is not a pointer. A coarray
is either (1) of basic type, (2) a structure in which no component is a pointer or (3)
an array of 1, 2, or 3.

XMP/C also has static and allocatable coarrays. Coarray variables declared
directly in the file and declared with the static attribute are static. Coarray
variables can be allocated with intrinsic functions.

3 Implementation

3.1 Omni XMP Compiler Framework

The coarray translator was added to the Omni XMP compiler [4], as shown in
Fig. 1. The Omni XMP compiler is a source-to-source translator that converts XMP
programs into the base language (Fortran or C). The component “coarray translator”
(CAF translator) is located in front of the XMP translator to solve coarray features
previously. The output of the decompiler is a standard Fortran/C program, which
may include calls to the XMP runtime library.

The following procedures are generated in advance or in the coarray translator to
initialize static coarray variables prior to the execution of the user program:

* The built-in main program calls subroutine xmpf traverse init,the entry
procedure of initialization subroutines, before executing the user main program.

* Subroutine xmpf traverse init is generated by the coarray translator to
call initialization subroutines corresponding to all user-defined procedures.
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Input source code (CAF)

I: module mo :]
I: program main j

subroutine s1

Built-in main program (Fotran)
XMP Program )
(XMP language ’, program main

includes CAF) call xmpf_traverse_init

call xmpf_main
parser

Generated code (Fortran)

CAIF ;
. translator
subroutine s2 " subroutine xmpf_traverse_init)
| XMP call xmpf_init_mo
call xmpf_init_main
call xmpf_init_s1
Translated code (Fortran) - call xmpf_init_s1_s2
[ decompiler ]
module mo subroutine xmpf_init_mo
Fortran program Initialization ( I
I: subroutine xmpf_main w/runtime lib. call code ’— subroutine xmpf_init_main
subroutine s1 Fortran compiler & linker ] ’— subroutine xmpf_init_s1 —I
subroutine s2 V subroutine xmpf_init_s1_s2
| executable object ’7 |/

Fig. 1 XMP compiler and an example of coarray program compilation

* Each initialization subroutine xmpf init foois generated from user-defined
procedure foo by the coarray translator, which initializes all static coarrays
declared in foo.

3.2 Allocation and Registration

In order to be accessed using the underlying communication library, the allocated
coarray data must be registered to the library. The registration contains all actions
to allow the data to be accessed from the other nodes, including pin-down memory,
acquirement of the global address, and sharing information among all nodes.

3.2.1 Three Methods of Memory Management

The coarray translator and the runtime library implements three methods of memory
management.

e The runtime sharing (RS) method allocates and registers a large memory for
all static and dynamic coarrays at the initialization phase. The registered memory
is shared by all static and allocatable coarrays.
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e The runtime allocation (RA) method allocates and registers a large memory for
all static coarrays at the initialization phase. The RA method also allocates and
registers each allocatable coarray at runtime.

e The compiler allocation (CA) method allocates all coarray objects by the
Fortran system (at compile time or at runtime), and the address is passed to the
runtime library to be registered.

For the RS and RA methods, since the allocated memory address is determined
in the runtime library, the object code must accept the address allocated inside the
runtime system as an address of a regal Fortran variable. To make this connection,
it was necessary to use the Cray pointer, which is not in the Fortran standard. In
the case of the CA method, the runtime library accepts the address allocated in the
Fortran system and registers to the communication library.

3.2.2 Initial Allocation for Static Coarrays

Static coarrays are allocated and registered in the initialization subroutines
xmpf init foo.

In the RS and RA methods, static coarrays are initialized before execution of the
user program, as follows.

* In the first pass, all sizes of static (non-allocatable) coarrays are summed. The
size of each static coarray is evaluated form the lower and upper bounds specified
in the dimension declaration statement of each coarray. The lower and upper
bound expressions, possibly including binary and unary operations, references
to names of constants, and basic intrinsic functions, such as min/max and sum,
are evaluated by constant folding. Since the size of the structure that contains
allocatable or pointer components differs depending on the target compiler,
the coarray translator obtains the necessary parameters to calculate the size of
structures at build time.

* Then, the total size of static coarrays is allocated and the address and size are
registered to the underlying communication library.

* In the second pass, the addresses of all of the coarrays are calculated to share
the registered data. Due to the language specification, the sizes of the same
coarray are the same among all images (nodes). Therefore, the offset from the
base address of the registered data for each coarray can be the same among all
images.

In the RS method, allocatable coarrays also share the registered memory. The total
size of the memory to be registered should be specified with an environment variable
by the user. In the RA method, the total size is fully calculated by the runtime
library, and no information is required of the user because allocatable coarrays will
be dynamically allocated on the other memories.

In the CA method, the Fortran processor allocates each coarray, and the runtime
library then registers the address. Each static coarray is converted into a common



Coarrays in the Context of XcalableMP 105

(external) variable to share between the user-defined procedure (say foo) and its
initialization procedure (xmpf init foo). The data is statically allocated by the
Fortran system in a manner similar to the usual common variable. The address is
registered in the initialization procedure via the runtime library.

3.2.3 Runtime Allocation for Allocatable Coarrays

For the RS method, the runtime library has a memory management system for
cutting out and retrieving memory for each allocation and deallocation of coarrays.

Figure 2 illustrates the memory allocation and registration for allocatable
coarrays in the RA and CA methods.

These methods are properly used by the underlying communication library.
For GASNet, only the RS method is adopted because its allocation function can
be used only once in the program. For MPI-3, the CA method is not suitable
because frequent allocation and deallocation of coarrays cause expensive creation

translated user code XMP runtime communication
library

common
cray pointer < » address N
I Cray POINTER

statement llocat
variable A allocate @

common
descriptor < » descriptor 'y

The runtime allocates and registers coarrays and passes the address to the user code.

(a)
translated user code XMP runtime communication
library
common
coarray A €— » coarray A \
allocate
statically
common
descriptor < » descriptor 'y

The user code allocates coarrays and causes the runtime to register with the address.

(b)

Fig. 2 Memory allocation for coarrays in RA and CA methods. (a) RA method. (b) CA method
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and freeing of MPI windows. In the case of FI-RDMA, the RS method has no
advantage over the other methods. Since the allocated address is used for registration
to FJI-RDMA, no advantage was found for managing memory outside of the Fortran
system. The unusual connection through the Cray pointer causes degradation of the
Fortran compiler optimization.

3.3 PUT/GET Communication

In order to avoid disturbing the execution on the remote image, PUT and GET com-
munications are always implemented using remote direct memory access (RDMA)
provided by the communication library (except coarrays with pointer/allocatable
structure components). In contrast, local data access is selective between using
direct memory access (DMA) or using a local buffer. For the buffer scheme, one
of the four algorithms will be chosen.

3.3.1 Determining the Possibility of DMA

Coarray variables must be registered when allocated to be the target of RDMA
communication. In contrast, since the local data, which is the source of PUT or
the destination of GET, was not registered or linked to registered information, the
data could not be the target of DMA communication and had to be communicated
via the registered buffer.

When the local data is an entire coarray or a part of coarray, the coarray must
be registered, and efficient DMA-RDMA communication can be made. Since the
analysis at compile time is limited, we implemented the detector in the runtime
library using binary-tree search, as follows.

1. When a chunk of coarray data is registered to the communication library, the
runtime library adds the set of the local address and the size to a sorted table
called SortedChunkTable. The sort key is the local base address of the data.

2. When a chunk of coarray data is deregistered from the communication library,
the runtime library deletes the record in SortedChunkTable.

3. When a PUT or GET runtime library is called corresponding to a refer-
ence/definition to a coindexed object/variable, the local address is searched in
SortedChunkTable with binary search. The local data is already registered
if addr; < addr < addr; + size; for any i, where addr is the said local
address and add; and size; are the i-th address and size, respectively, in
SortedChunkTable.

If the communication data is large, then the cost of procedure 3 is relatively small
and is worth using. If the data is small, then the buffering algorithm, as shown in
Sect. 3.3.2, may be better.
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3.3.2 Buffering Communication Methods

For the buffer scheme, one of the four algorithms will be chosen depending on
three parameters: the size of the local buffer B and the local and remote contiguous
lengths Ny and Ng, respectively. Here, B should be large enough to ignore
communication latency overhead and we use approximately 400 kilo-bytes by
default. Unlike the case of MPI message passing, coarray PUT/GET communication
requires only one local buffer for any number of other images. Both N and Ng can
be evaluated at runtime. The Fortran syntax guarantees that Ny is a multiple of Ng
or Ny is a multiple of Ny . An algorithm to obtain the contiguous length is shown in
a previous paper [5].

Table 1 summarizes our algorithm for PUT/GET communication for five cases.
The unit size is the chunk length of the PUT/GET communication. Case 0 shows the
algorithm using RDMA-DMA PUT/GET communication, and Cases 1 through 4
show the algorithms using RDMA and local-buffering. Due to its strict condition,
the DMA scheme is rarely used. In addition, this scheme is not always faster than
the buffering scheme for Cases 2 and 3 because of the difference in the unit sizes.
The advantage of Cases 2 and 3 is that the unit size is extended to a multiple of Ny
by gathering a number of short contiguous data in the buffer, or by scattering from
the buffer into a number of short contiguous data.

3.3.3 Non-blocking PUT Communication

For higher performance, the PUT communication should be non-blocking, and the
completion wait should be delayed until the end of the segment. Writing and reading
the same remote data from the same image in the same segment appears to be a
very rare case, as described in Sect.2.4. However, this is difficult to detect with

Table 1 Summary of the PUT/GET algorithm related to Ny, Ng, and B

Scheme Case Condition Unit size
DMA Local data is registered min(Ngz, Ng)
Buffering 1 Ngr < B, Ngp <N, Ng

2 N; <Nr <B Ng

3 Np < B < Np Multiple of Ny (< B)

4 B < Np, B<Np, B (or less than B at last)
Scheme Case  PUT action for each unit GET action for each unit
DMA Put once Get once
Buffering Buffer once, and put once Get once, and unbuffer once

AW N =

Buffer for each Ny, and put once
Buffer for each Ny, and put once
Buffer once, and put once

Get once, and unbuffer for each Ny
Get once, and unbuffer for each Ny
Get once, and unbuffer once
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low cost. Since the subscripts and image indices are often variable expressions, the
compiler rarely selects non-blocking communication and usually generates safe but
slow code. We do not have a reasonable solution for this issue.

In the current implementation, the user selects blocking or non-blocking for PUT
communication at runtime with the environment variable.

3.3.4 Optimization of GET Communication

A reference to an array-coindexed object is converted to a call of a runtime library
function that returns a Fortran array value. For example, array assignment statement:

b(jl:j2) = a(il:1i2) [k]
is converted to
b(jl:j2) = xmpf coarray get generic(dp a,k,a(il:i2))

by the coarray translator, where dp_a is the descriptor of coarray a. The issue is
that the result of the library function is an array value, which causes several memory
copies. As a countermeasure, we optimized a specific but common case by the
translator. If a coindexed object is only the right-hand side of an array assignment
statement, then the entire assignment statement can be converted into a single library
call. The above example satisfies this condition and so can be converted again as
follows:

call xmpf coarray getsub generic(dp_a,k,a(il:i2),b(j1:32))

In this runtime library subroutine, the variable b (j1:j2) is expected to be the
local target of GET communication, instead of the local buffer that would be
generated by the Fortran runtime.

3.4 Runtime Libraries

The layer of the runtime libraries is shown in Fig. 3. One of the three communication
libraries is selected at the build time of the Omni compiler. The coarray runtime
consists of three layered libraries. The Fortran wrapper mediates the arguments
and the result value of the translated user program (written in Fortran) and
the upper-layer runtime (ULR) (written in C). The (ULR) library performs the
algorithms described above in this section. The lower-layer runtime (LLR) library
abstracts the difference between the communication libraries, except for the memory
management of coarray data.
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Fig. 3 Software stack for
coarray features object code (user program)

Fortran wrapper

coarray runtime library upper-layer runtime
lower-layer runtime
oo i GASNet or FJ-RDMA
mmunication libr:
communication library MPI or MP1-3
hardware interface IBV or Tofu lib. or ...

3.4.1 Fortran Wrapper

Each set of Fortran wrapper procedures has a generic name and dozens of
corresponding specific names. For example, the object code contains a call to a
function with the generic name xmpf coarray get generic.If thedataisa
two-dimensional array of the 16-byte complex type, the Fortran compiler selects the
corresponding specific name xmpf coarray get2d z16 at compile time and
generates the object code by calling a ULR function by the specific name.

The Fortran wrapper accepts Fortran array notations as the arguments and the
result variable and converts these notations into structures that can be handled in
a runtime library written in C. The Fortran wrapper also converts a C pointer to a
Fortran pointer with the shape using the Cray pointer.

The Fortran wrapper calls ULR procedures basically and calls MPI library
functions directly for collective communications.

3.4.2 Upper-layer Runtime (ULR) Library

The major role of ULR is performing the algorithms for coarray data alloca-
tion/registration (Sect. 3.2) and PUT/GET communications (Sect. 3.3). Additionally,
for atomic communications caused by intrinsic subroutines ATOMIC DEFINE
and ATOMIC REF, ULR calls the corresponding function of LLR after address
calculation.

3.4.3 Lower-layer Runtime (LLR) Library

The LLR basically abstracts the difference between the communication libraries.
The only exception is the allocation and registration of coarray data. Major functions
are shown below.

* Functions to allocate and register coarray variables, and functions to register
coarray variables that are already allocated. They are alternatively used in the
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RS and RA methods and in the CA method. Correspondingly, a set of functions
to deregister and deallocate and a set of functions to deregister are provided.

* Fundamental functions for RDMA-DMA GET communication and DMA-
RDMA PUT communication. It is assumed that both remote and local data
are previously registered. Blocking and non-blocking can be switched.

* Functions corresponding to image control statements, atomic subroutines, and
inquire functions.

The LLR also has the features for multi-dimensional data developed for the C
implementation, which are not used in the Fortran implementation because this
implementation is solved in ULR.

3.4.4 Communication Libraries

MPI-3 can be selected for all platforms on which it is implemented. Coarrays
are registered and deregistered at the start and end point of the MPI window.
Coarrays perform one-sided communication by MPT Put and MPI_Get and are
synchronized by MPI _Win fence. Implementation on MPI incurs certain costs
for dynamic allocation of coarrays and waiting for communication completion.

GASNet can be selected for more advanced implementation over InfiniBand.
Since allocation and registration of are inseparable and can be performed only once
on GASNet, the implementation allocates and registers a pool of memory, the size
of which should be large enough to contain all static and allocatable coarrays. The
XMP runtime should allocate and deallocate coarrays without using the Fortran
library but using the memory manager constructed for the pool.

FJ-RDMA can be selected for the implementation over the Tofu interconnection
of the K computer and Fujitsu PRIMEHPC FX series supercomputers. Basically,
each coarray is allocated by the Fortran library and the address is registered with
the FJ-RDMA interface FOMPI Rdma_ reg mem. The address is deregistered
with FOMPI Rdma_ dereg mem before being deallocated (freed) by the Fortran
library. One-sided communication is performed with FIJMPI Rdma put and
FJMPI_Rdma_get.

4 Evaluation

We evaluated the Omni XMP coarray compiler in the environments shown in
Table 2.
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Table 2 Specifications of the computers and evaluation environment

RIKEN RCCS HOKUSAI

CPU

Memory

Interconnect
Coarray
Fortran

MPI

Comm. layer

RIKEN RCCS
The K computer

SPARK64™VIIIfXx,
2 GHz, 128 Gflop/s,
8-core, 1 CPU/node

16 GB/node,

Bandwidth 64 GB/s
Tofu

Omni XcalableMP 1.3.1
Fujitsu Fortran 2.0.0
Fujitu MP12.0.0

Tofu library

Table 3 Ping-pong codes

GreatWare

Fujitsu PRIMEHPC FX100

SPARK64™XIfx,
1.975 GHz, 1 CPU/node,
4-SIMD x 32-core

32 GB/node,

Bandwidth 480 GB/s
Tofu2, 12.5GB/s x 2
Omni XcalableMP 1.3.1
Fujitsu Fortran 2.0.0
Fujitu MP12.0.0

Tofu library
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CCS, University of
Tsukuba

HA-PACS/TCA

E5-2680 v2 (Ivy Bridge),
10-core, 224 Gflop/s,

2 CPU/node

128 GB/node,

119.4 GB/s

InfiniBand FDR, 7 GB/s
Omni XcalableMP 1.3.1
Intel Fortran 16.0.4
Intel MPI 5.1.3

GASNet 1.24.2
(IBV-conduit, built with
Intel compilers)

PUT version

GET version

MPI version

if

(me ==1) then

x(1:n)[2] = x(1:n)

if (me == 1) then
sync images(1)

if (id == 0) then

call MPI_Send(x, n, ... 1, ...)

Ping syn.c images(2) else if (me == 2) then e f (id = 1) then
phase | elseif (me == 2) then x(1:n) = x(1:n)[1] S MPLRecv( Xm0, )
sync images(1) sync images(1) VL y N, 0,
i ; end if
end if end if
if (me == 1) then if (me ==1) then if (id == 0) then
Syne magesta) L) = x(Lin)[2] call MPI_Recv(x, n, ... 1, ...)
Pong else if (me == 2) then sync images(2) else if (d - 5 the,n e
phase x(1:n)[1] = x(1:n) else if (me == 2) then -

sync images(1)

end if

sync images(1)
end if

call MPI_Send(x, n, ... 0, ...)

end if

me is the image index, id is the MPI rank number

4.1 Fundamental Performance

Using the EPCC Fortran Coarray micro-benchmark [6], we evaluated the ping-pong
performance of PUT and GET communications compared with MPI_Send/Recv.
The codes are briefly shown in Table 3.

Corresponding to the codes in Table 3, Fig.4 shows how data and messages are
exchanged between two images or processes. In coarray PUT (a) and GET (b), inter-
image synchronization is necessary for each end of the phases to make the passive
image active and to make the active image passive. Whereas in MPI message passing
(c) and (d), such synchronization is not necessary because both processes are always
active. On the other hand, MPI message passing has its own overhead that coarray
PUT/GET does not have. Since the eager protocol (c) does not use RDMA, the



112 H. Iwashita and M. Nakao

me==1 me ==2 id==1 id==1
SFCEEEEEE t-- id == -
PW‘ 4
d;
K Sime "
| images N
sync L
image?< AN
B3 +-- <~ unbiffer
‘ansfe\'
18 nd
. ) 2
images : pras
><_ unbiiffer -~
-3----- 'Tatgfs. -7
(a) (b) (c)

Fig. 4 Diagrams for ping-pong codes. (a) Coarray PUT. (b) Coarray GET. (¢) MPI send/recv
eager protocol. (d) MPI send/recv Rendezvous protocol

receiver must copy the received data in the local buffer to the target. The larger the
data, the greater the overhead cost. In the rendezvous protocol (d), negotiations,
including remote address notification, are required prior to communication. The
overhead cost is not negligible when the data is small.

The result of the comparison between coarray PUT/GET and MPI message
passing is shown in Fig. 5. As the underlying communication libraries, FI-RDMA
and MPI-3 are used on FX100 and GASNet. And MPI-3 is used on HA-PACS.
GET (a) and GET (b) use the code without and with the optimization described
in Sect. 3.3.4, respectively. Bandwidth is the communication data size per elapsed
time, and latency is half of the ping-pong elapsed time. The difference between
GET (a) and GET (b) is the compile time optimization level of the coarray translator
described in Sect. 3.3.4.

The following was found regarding coarray PUT/GET communication.

Bandwidth Coarray PUT and GET slightly outperforms MPI rendezvous com-
munication for large data on FJ-RDMA and MPI-3. On FJ-RDMA/FX100 (a),
the bandwidths of PUT and GET (b) are, respectively, +0.1% to +18% and -0.4%
to +9.3% higher than MPI rendezvous in the rendezvous range of 32k through
32M bytes. In addition, on MPI-3 and/or HA-PACS, the bandwidths of PUT
and GET are, respectively, +0.3% to +0.8% and +0.1% to +1.3% higher in the
rendezvous range of 512k through 32M bytes. Based on the runtime log, zero-
copy communication was confirmed to have been performed both in PUT and
GET (b) by selecting the DMA scheme described in Sect. 3.3.1.
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Fig. 5 Ping-pong performance on Fujitsu PRIMEHPC FX100 and HA-PACS/TCA. (a) FJ-
RDMA/FX100 (CA-method). (b) MPI-3/FX100 (RA-method). (¢) GASNet/HA-PACS (RS-
method). (d) MPI-3/HA-PACS (RS-method)
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However, on GASNet/HA-PACS (c), PUT and GET (b) were only approximately
60% of the bandwidth of MPI rendezvous for a large amount of data. It is
presumed that data copy was caused internally.

Latency On FJ-RDMA (a) and MPI-3 (b) and (d), PUT and GET (b) have larger

(worse) latency than MPI eager communication in the range of <16kB on FX100
and <256kB on HA-PACS.
Coarray on GASNet (c) behaves differently than other cases on (a), (b), and (d).
Although the latency is larger than that for MPI for all data sizes, the difference
is smaller than in the other cases. At a data size of 8B, the latency of PUT is 2.93
ws and 2.1 times larger than the one of MPI while 5.73us and 3.7 times larger
for the case of MPI-3 (d).

Effect of GET optimization For all ranges in all cases, GET (a) has a smaller
bandwidth and a larger latency than GET (b). On FJ-RDMA (a), the bandwidth
is 1.41 to 1.85 times improved in the range of 32kB to 32MB by changing
the object code of GET (a) to GET (b). We found GET (a) caused two extra
memory copies. One copy performs the array assignment by the Fortran library,
and the other copy is from the communication buffer to the result variable of the
array function xmpf coarray get generic. The optimization described
in Sect. 3.3.4 eliminated these two data copies.

The large latency of coarray PUT/GET communication is problematic. In the
next subsection, we discuss how this problem should be solved by the compiler and
the programming.

4.2 Non-blocking Communication

For latency hiding, asynchronous and non-blocking features can be expected in
coarray PUT communication. The principle is shown in Fig. 6.

Figure 6a shows the half pattern of the ping-pong PUT communication. Coarray
one-sided communication is basically asynchronous, unless synchronization is
explicitly specified. Therefore, multiple communications without synchronization,
as shown in (b), are closer to actual applications. In addition, coarray one-sided
communication can be optimized using non-blocking communication, as shown in
(c). Blocking and non-blocking communications can be switched with the runtime
environment variable in the current implementation of the Omni compiler. In MPI
message passing, non-blocking communication can be written with MPI Isend,
MPI Irecv,and MPI Wait.

Figure 7 compares blocking/non-blocking coarray PUT and MPI message
passing communications. The two original graphs are the same as those of Fig. 5a.
Four other graphs display the results of the eight-variable ping-pong program, which
repeats the ping phase, sending eight individual variables from one to the other
in order, and, similarly, the pong phase in the opposite direction. Each block size
indicates the size of variables, and latency includes the time for eight variables.
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Fig. 6 Blocking and non-blocking PUT communications. (a) 1-variable/blocking. (b) n-
variable/blocking. (¢) n-variable/non-blocking

The following was found from the results:

* Non-blocking PUT significantly improves the latency of PUT communication.
From 8 B to 8 kB, the latency of non-blocking PUT communication is 4.63 times
faster on average than blocking PUT. Compared to the original PUT, from 8 B
to 8 kB, it performs communication eight times for a period of time 2.11 times
longer, on average. Hiding completion wait behind communication (Fig. 6¢)
greatly improves the performance.

Reduction of synchronization (Fig. 6b) itself does not improve the performance.

Compared to the original blocking PUT, eight-variable blocking PUT has 9.5—
10.1 times larger latency for a data set that is eight times larger.
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Fig. 7 Eight-variable ping-pong latency on PRIMEHPC FX100

Unless data size exceeds approximately 8 kB, the latency of non-blocking PUT
does not depend on the amount of data. The graph of non-blocking PUT is very
flat, within 4%, over the range from 8 B to 4 kB.

MPI eager communication has no effect on non-blocking for latency hiding. The
eager protocol, including the unbuffering process of the receiver, appears not to
be suitable for non-buffering.

Non-blocking coarray PUT outperforms MPI eager message passing, except for
very fine grain data. The latency of eight-variable non-blocking PUT is —9% to
54% and 18% to 61%, as compared to eight-variable blocking and non-blocking
MPI eager, respectively. At only two plots for 8 B and 16 B, the non-blocking
PUT is 4% and 9% slower than the values for blocking MPI. Otherwise, non-
blocking PUT is faster than MPI eager, and the more block size, the larger
difference in the latency.
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4.3 Application Program

The Himeno benchmark is a part of the 2D Poisson equation solver using the Jacobi
iteration method [7]. The MPI version of the Himeno benchmark is a strong scaling
program distributing up to three-dimensional nodes. The K computer shown in
Table 2 was used in this evaluation.

4.3.1 Coarray Version of the Himeno Benchmark

For comparison, we prepared the following three versions of Himeno programs.

MPJ/original The original MPI version of Himeno benchmark was used as a
two-dimensionally distributed in the y and z axes. The x axis was automatically
SIMD-vectorized by the Fortran compiler. The program executes the computa-
tion and communication parts repetitively. The communication part consists of
two steps: z-axis direction communication and y-axis direction communication,
as shown in Fig.8a. Each communication is written with non-blocking MPI
message passing and completion wait at the end of each step.

MPI/non-blocking The two-step communication was replaced by non-blocking
scrambled communication, as shown in Fig.8b. With this replacement, the

|t il

Step 1: exchange data with nodes on
both sides in the z direction

’ [

Exchange data with all 8 adjacent
nodes at once

‘B

N

Step2: exchange data with nodes on
both sides in the y direction

(a) (b)

Fig. 8 Two algorithms of stencil communication in the Himeno benchmark. (a) Original MPI
version. (b) Non-blocking MPI and coarray versions
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number of communications increases from four to eight per node, but all
communications become independent and can be non-blocking.

Coarray PUT/non-blocking The communication pattern is the same as that of
MPI/non-blocking. The data was declared as a coarray, and each communication
was written with a coarray PUT, i.e., an assignment statement with coindexed
variable as the left-hand side. Since the right-hand side of the statement is a ref-
erence to the same variable as the left-hand side coarray, the PUT communication
was converted to zero-copy DMA-RDMA communication.

4.3.2 Measurement Result

Figure 9 shows the measurement results for Himeno sizes M, L, and XL, executed
on 1x1,2x2,4x4, ---, 32x32 nodes on the K computer. The following results
were obtained:

* PUT non-blocking was the fastest at 76% of the measurement points of the
graph. On 1024 nodes, PUT non-blocking is 1.2%, 27%, and 42% faster than
MPI original for sizes M, L, and XL, respectively.

* As a result of analyzing the contents of elapsed time, it was confirmed that the
difference in the performance is caused by the difference in communication time.
As shown in (b) and (c), the communication times of PUT non-blocking are 56%
and 51% of those of MPI blocking on 256 nodes on L and XL Himeno sizes,
respectively.

* MPI non-blocking is not always faster than the MPI original. The effect of non-
blocking seems to be limited in MPI.

4.3.3 Productivity

Table 4 compares the scale of the source codes. The following features can be found.

* PUT blocking requires fewer characters for programming, especially in sub-
routines initcomm and initmax. The MPI programmer must describe the
Cartesian coordinates to represent neighboring nodes in initcomm, and must
declare MPI vector types to describe the communication pattern in initmax.
In contrast, the coarray programmer easily represents neighboring images with
coindex notation, e.g., [i,j-1, k], and communication patterns with subarray
notations, e.g.,p (1:imax, 1l:jmax, 1).

* The Fortran statement of the MPI program tends to be longer than that of
coarray. Since, comparing PUT non-blocking to MPI non-blocking, the number
of characters is one third while the number of statements is almost the same. This
means that the coarray program is more compact than the MPI program for each
statement. MPI library functions often require long sequences of arguments.
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Table 4 Source code scales for the Himeno benchmark

MPI original MPI non-blocking PUT non-blocking

Subroutine LOC SOC  Chars LOC SOC chars LOC SOC Chars

Jacobi 50 33 1546 50 32 1546 43 31 1314
Initcomm 65 39 1724 80 54 2380 19 19 421
Initmax 95 77 2336 115 85 2939 71 71 1584
Sendp 152 59 3724 299 91 7617 96 96 2435
Others 248 225 5872 250 227 5923 232 231 5276
Total 610 433 15,202 794 489 29,495 461 448 11,030

LOC: Number of lines of codes excluding comment and empty lines
SOC: Number of Fortran statements, which may span multiple lines
chars: Number of characters excluding those in comment lines

5 Related Work

The University of Rice has implemented coarray features with their own extension
called CAF2.0 [8]. CAF2.0 is a source-to-source compiler based on the ROSE
compiler. GASNet is used as its communication layer. Similarly to our RS and RA
methods, the Cray pointer is used to pass the data allocated in C to Fortran. Houston
University developed UH-CAF on the Open64-base OpenUH compiler [9]. UH-
CAF supports the coarray features defined in the Fortran 2008 standard. As the
communication layer, GASNet and ARMCI can be used selectively. OpenCoarrays
is an open-source software project [10]. OpenCoarrays is a library that can be
used with GNU Fortran (gfortran) V5.1 or later and supports the coarray features
specified in Fortran 2008 and a part of Fortran 2018. As the communication layer,
MPICH and GASNet can be used selectively. In the vendors, Cray and Intel fully
support and Fujitsu partially supports the coarray features specified in Fortran 2008.

In the latest Fortran standard, Fortran 2018, a subset of coarrays is referred to as
a team. It is similar to the executing images in the term of XMP, but does not affect
the parallel execution among images.

While non-blocking PUT communication is effective, non-blocking GET com-
munication is difficult to put into practical use because the acquired data is used
immediately. Cray has the directive extension for prefetching a remote coarray
corresponding to the GET communication.

Coarray C++ is a coarray implementation in C++. The coarray features are
implemented with the template library, unlike XMP/C, which is based on the C
language.
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6 Conclusion

This chapter described the coarray features in the context of XMP and the
characteristic implementation of the coarray translator.

For memory allocation and registration, the RS, RA, and CA methods were
implemented corresponding to the communication library GASNet, FI-RDMA, and
MPI-3.

For the coarray PUT and GET communications, DMA and four buffering
methods were described. The effect of the non-blocking PUT communication was
analyzed, and the knowledge is used to make the coarray version of the Himeno
benchmark from the original MPI version. The measurement results on 1024 nodes
of the K computer, the coarray version is 27% and 42% faster than the original MPI
version for Himeno sizes L and XL, respectively. The effect of the optimization
of GET communication was also obvious on the ping-pong benchmark on HA-
PACS/TCA and Fujitsu PRIMEHPC FX100.

As an evaluation of productivity, the coarray program uses fewer than half as
many characters as the MPI message passing program to write the same algorithm
as the Himeno benchmark.
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